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Abstract

The topic of this thesis is the development of new reconstruction methods for cryo-
electron microscopy (cryo-EM). Cryo-EM has revolutionized the field of structural
biology over the last decade and now permits the regular discovery of biostructures.
Yet, the technical challenges associated to cryo-EM are still numerous, and the
measurements remain notoriously difficult to process. This calls for fast and robust
algorithms that can reliably handle the challenging reconstruction task at hand.

In this thesis, we investigated two reconstruction paradigms: model-based and
data-driven. Model-based methods formulate the reconstruction task as an inverse
problem and rely on a faithful model of the acquisition physics. By contrast, the
central philosophy of data-driven approaches is to let the reconstruction algorithm
be guided by the measured data through some learning procedure. Both paradigms
share a tight link in all our works: their reliance on a rigorous mathematical for-
mulation of the cryo-EM imaging model.

The first cryo-EM method we considered is scanning transmission electron to-
mography (STET), a modality whose primary concern is to reduce the electron
dosage required for accurate imaging. To handle this, we developed a tailored
acquisition-reconstruction STET framework that relies on the principles of com-
pressed sensing. This scheme permits high-quality reconstruction from a reduced
number of measurements, hence greatly preserving the sample.

We then designed several reconstruction algorithms for single-particle analysis
(SPA), a popular cryo-EM method that enables the determination of structures
at near-atomic resolution. A key challenge for the deployment of robust, iterative
reconstruction methods in SPA is that they usually come with a prohibitive compu-
tational cost if not carefully engineered. To circumvent this problem, we developed
a regularized reconstruction scheme whose cost-dominant operation is recast as a
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discrete convolution, which makes the use of our robust scheme feasible in SPA.
Building on this development, we devised a joint optimization framework that ef-
ficiently alternates between the reconstruction and the estimation of the unknown
orientations.

We then explored a learning-based method to estimate the unknown orienta-
tions in SPA directly from the acquired dataset of projections. Capitalizing on our
ability to model the cryo-EM procedure, we generated large synthetic SPA datasets
to train a function—parametrized as a neural network—to predict the relative ori-
entation between two projections based on their similarity. The framework relies
on the postulate that it is possible to recover, from these estimated orientation dis-
tances, the orientations themselves through an appropriate minimization scheme,
as supported by preliminary tests.

Finally, we developed a completely new paradigm for SPA reconstruction that
leverages the remarkable capability of deep neural networks to capture data distri-
bution. The proposed algorithm uses a generative adversarial network to learn the
3D structure that has simulated projections that most closely match the real data
in a distributional sense. By doing so, it can resolve a 3D structure in a single al-
gorithmic run using only the dataset of projections and CTF estimations as inputs.
Hence, it bypasses many processing steps that are necessary in the usual cryo-EM
reconstruction pipeline, which opens new perspectives for reconstruction in SPA.

Keywords: cryo-electron microscopy, tomographic reconstruction, single-particle
analysis, scanning transmission electron tomography, model-based, regularized in-
verse problems, compressed sensing, data-driven, neural networks.



Résumé

Cette thèse est consacrée au développement de nouvelles méthodes de reconstruc-
tion pour la cryo-microscopie électronique (cryo-EM). Cette technique d’imagerie
a révolutionné la biologie structurelle ces dix dernières années et permet désormais
la découverte régulière de nouvelles structures biologiques. Les difficultés liées à
cette méthode restent toutefois nombreuses ; en particulier, le traitement algorith-
mique des images acquises représente toujours une tâche extrêmement complexe.
Le développement d’algorithmes robustes et rapides permettant une reconstruction
fiable des structures tridimensionnelles est donc d’une importance capitale.

Dans cette thèse, nous avons exploré deux paradigmes de reconstruction pour la
cryo-EM : les méthodes dites model-based (basées sur un modèle) et les méthodes
dites data-driven (guidées par les données). Les approches model-based formulent
la reconstruction comme un problème inverse et s’appuyent sur une modélisation
précise du processus d’acquisition. Par contraste, la philosophie des méthodes data-
driven est de laisser les algorithmes de reconstruction exploiter les données acquises
à travers un processus d’apprentissage. Dans nos travaux, ces paradigmes sont
étroitement liés en ce qu’ils s’appuient tout deux sur une formalisation mathématique
rigoureuse du modèle d’acquisition d’image propre à la cryo-EM.

La première modalité cryo-EM sur laquelle nous avons travaillé est la micro-
scopie électronique en transmission à balayage (STET en anglais). Le défi principal
en STET est de minimiser la dose de radiation nécessaire à une acquisition de
qualité suffisante. Pour résoudre ce problème, nous avons développé un protocole
d’acquisition-reconstruction pour la STET qui exploite les principes de la théorie
de l’échantillonnage compressé. Cette approche permet d’obtenir des reconstruc-
tions de haute qualité à partir d’un nombre restreint de mesures, ce qui garantit
une meilleure préservation des échantillons biologiques.
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Nous avons également développé une série d’algorithmes de reconstruction pour
la modalité dite d’analyse des particules isolées (SPA en anglais). La SPA est une
technique d’imagerie cryo-EM très prisée qui permet la caractérisation tridimen-
sionnelle des structures biologiques à une résolution quasi atomique. En SPA, un
frein important au déploiement de méthodes de reconstruction itératives — pour-
tant d’une très grande robustesse — est qu’elles s’accompagnent généralement d’un
coût computationnel particulièrement élevé. Pour contourner ce problème, nous
avons développé un algorithme de reconstruction régularisée dont l’opération la
plus coûteuse est reformulée comme une convolution rapide, ce qui rend l’utilisation
d’une telle méthode concevable en SPA. En s’appuyant sur cet algorithme, nous
avons ensuite conçu une stratégie d’optimisation jointe qui alterne de manière ef-
ficace entre la reconstruction de la structure et l’estimation des orientations des
particules, qui sont initialement inconnues.

Nous avons ensuite exploré une méthode data-driven dont le but est d’estimer les
orientations directement à partir des mesures acquises par le microscope. Capital-
isant sur notre capacité à modéliser précisément le processus d’acquisition d’image
en SPA, nous avons généré de nombreuses données synthétiques pour apprendre
une fonction — paramétrée par un réseau de neurones — qui prédise l’orientation
relative entre deux images de mesure en se basant uniquement sur leur similarité.
Ce protocole s’appuie sur le postulat qu’il est possible de retrouver, à partir des ori-
entations relatives, l’ensemble des orientations absolues en utilisant un algorithme
d’optimisation approprié, comme le démontrent une série de tests préliminaires.

Pour finir, nous avons proposé un paradigme de reconstruction complètement
novateur pour la SPA qui repose sur la capacité remarquable des réseaux de neu-
rones à capturer les distributions sous-jacentes aux données. Notre approche utilise
un réseau antagoniste génératif pour apprendre progressivement la structure tridi-
mensionnelle dont la distribution des projections simulées s’approche le plus de
celle des vraies données. Cela permet la détermination de structures en une seule
exécution algorithmique, et cela en se basant uniquement sur les mesures acquises
et une estimation des paramètres optiques du microscope. Notre approche permet
d’éviter nombre d’étapes coûteuses inhérentes aux algorithmes standards, ce qui
ouvre de nouvelles perspectives dans le domaine de la reconstruction en SPA.

Mots clefs: cryo-microscopie électronique, reconstruction tomographique, anal-
yse de particules isolées, microscopie électronique en transmission à balayage, problèmes
inverses régularisés, échantillonnage compressé, réseaux de neurones.
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Laure Blanc-Féraud, Prof. Dimitri Van de Ville, Dr. Daniel Sage and Prof. Michael
Unser for the precious time they have dedicated to the reading and reviewing of
my thesis as members of my PhD defense jury.
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nos ballades en Valais, les sorties à Paris et en Bretagne, nos voyages un peu plus



xi

loins, les concerts, les soirées jeux, ton amour du biathlon (!), et j’en passe. La liste
est longue, elle n’en est pourtant qu’à ses débuts.
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auront sans l’ombre d’un doute été les plus beaux. J’embrasse également le petit
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Introduction

The topic of this thesis is the development of new reconstruction methods for
cryo-electron microscopy (cryo-EM). We investigate two reconstruction paradigms:
model-based and data-driven. Model-based methods formulate the reconstruction
task as an inverse problem and rely on a faithful model of the acquisition physics. By
contrast, the central philosophy of data-driven approaches is to let the reconstruc-
tion algorithm be guided by the measured data through some learning procedure.
In this introduction, we give an overview of the scientific background in which our
work takes place. We then summarize its main contributions in that context. Rele-
vant chapters are mentioned throughout this introduction. A roadmap of the thesis
is given in Figure 1.

From Jacques Dubochet to Neural Networks

Two scientific milestones coincided with this PhD thesis and left their mark on it: 1)
Jacques Dubochet received the 2017 Nobel Prize in Chemistry for his work on cryo-
EM [1], putting Lausanne in the imaging spotlight1, and 2) deep neural networks
took over the world of signal processing, for the better [2] and the worse [3]. Hence,
by both circumstances and conception, the subject of the thesis is very much rooted
in the framework of computational imaging—the central philosophy being to exploit
the tight link between physics and algorithms to produce imaging pipelines with
enhanced capabilities.

It is hard to overstate how much the imaging method in question, cryo-EM,
has revolutionized the field of structural biology [4]. The use of electron beams

1imaging.epfl.ch

1
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to image ice-embedded samples has permitted the recovery of 3D bio-structures
at unprecedented resolution (Chapter 1). This revolution was made progressively
possible by key scientific advances in sample preparation, detector hardware, and
reconstruction algorithms [5]. The advent of atomic-resolution cryo-EM has had a
tremendous impact in biomedical research, providing invaluable insights into the
biological processes that underlie many current diseases. Cryo-EM has for example
become vital in the quest toward prevention and treatment of age-related disorders
such as Alzheimer’s or Parkinson’s diseases [6].

Yet, despite its countless successes, cryo-EM imaging remains notoriously rid-
dled with technical challenges, for which scientists have spent the better part of the

Cryo-Electron 
Microscopy (Cryo-EM)

Chapter  

1
Chapter  

2
Model-Based Tomographic 
Reconstruction for Cryo-EM

Compressed Sensing 
for STET 

Chapter  

3
Fast Regularized 

Reconstruction for SPA 

Chapter  

4

Supervised Recovery  
of Orientations in SPA

Chapter  

5
Chapter  

6
SPA Reconstruction Via  

Deep Adversarial Learning 

Chapter  

7 Conclusion

Model-based Methods Data-driven Approaches

Figure 1: Roadmap of the thesis. The work dedicated to electron tomography is
highlighted in orange, and those dedicated to single-particle analysis in blue.
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last 30 years looking for ingenuous solutions. For one, most samples of interest are
highly radiation-sensitive. This results in extremely noisy measurements that are
difficult to process. In addition, information on key imaging parameters is com-
monly lacking. The situation is even more complex for single-particle analysis, an
EM modality that requires one to handle copious amounts of data, the unknown
orientation of samples, and their possible conformational heterogeneity. These dif-
ficult imaging conditions impose strong constraints on the quality and robustness
of the deployed image-processing methods.

Most cryo-EM variants for bioimaging are tomographic setups, which implies
that the measurements are the 2D projections of a 3D object. Hence, computa-
tional frameworks are necessary to retrieve the desired structure from the acquired
data (Chapter 2). The task of solving such inverse problems is not straightfor-
ward [7]. Those problems are generally ill-posed, meaning that one cannot rely
on the measurements alone to robustly recover the 3D object. Indeed, even small
perturbations on the measurements can massively impact the recovered solution—a
major difficulty in cryo-EM.

In practice, many cryo-EM software packages still rely on direct inversion al-
gorithms [8, 9, 10]. Those methods have the crucial advantage of being fast, so
that the processing of large datasets can be done in a reasonable amount of time.
Unfortunately, direct methods tend to be sensitive to heavy noise and/or to limited
measurements, which can reduce their performance in challenging imaging situa-
tions.

A more refined—and now classical—approach to overcome ill-posedness in imag-
ing consists in imposing suitable constraints on the solution [11]. One thereby
formulates an energy functional that measures the fidelity of the solution to the
measured data, while regularizing the solution to have some desired properties—
typically, sparsity [12]. The sought solution minimizes this functional (Chapter 2.3).
Such variational methods rely on a faithful modelling of the imaging system, and
tend to be more robust than direct algorithms. However, model-based methods
usually require iterative schemes that come with a prohibitive computational cost
if not carefully engineered, which has limited their wider use in cryo-EM.

Finally, the past years have seen an explosion of data-driven techniques in imag-
ing applications. In particular, the deployment of deep-learning models has had a
profound influence in reason of their remarkable ability to autonomously capture
data representations [13]. Cryo-EM has been positively impacted too, although
learning-based methods developed for the field mostly address the preprocessing
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steps (e.g., measurement denoising [14]) rather than the 3D reconstruction itself.
This is likely to see future developments in view of the good match of cryo-EM for
data-driven applications and its very large datasets, although concerns about their
robustness and reproducibility could linger given the high stakes.

Considered Cryo-EM Methods

Several cryo-EM imaging variants permit the imaging of samples from the
micro to the nano-scale. In this thesis, the focus is on two high-resolution
tomographic modalities: scanning transmission electron tomography (STET)
and single-particle analysis (SPA). For the sake of clarity, we provide here a
concise introduction to both. These methods are presented in greater details
in Chapter 1.

STET is dedicated to the imaging of thin 3D slices of biological samples,
typically cells or tissues [15]. A narrow beam of electrons is used to raster-scan
the specimen tilted at different orientations. The collected 2D measurements
are then used to reconstruct the desired volume. The primary concern in
STET is to reduce the electron radiation dosage—which is highly damaging
to biosamples—while maintaining an acceptable image quality. Robust
algorithms are also necessary to handle the heavily degraded measurements
and the so-called “missing wedge of information” in the Fourier domain.

SPA aims at characterizing the atomic structure of individual proteins them-
selves [16]. The procedure starts with the imaging of numerous 3D clones of
the object of interest positioned at random unknown orientations. A high-
resolution 3D reconstruction is then obtained by letting intricate algorithmic
schemes process the 2D projection measurements. The key challenges in SPA
reconstruction include heavy noise corruption, the estimation of the unknown
orientation of each projection, the handling of massive datasets, and the possi-
ble heterogeneity of samples.
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Contributions

An overarching theme of this thesis is the aim to integrate available information on
the cryo-EM imaging procedure into the reconstruction algorithms, for the purpose
of increasing their performance. The most powerful ways for doing so are to rely
on a realistic model of the acquisition physics, or to let the algorithms exploit the
large datasets through some learning procedure. In this context, our contributions
are two-fold.

1. The development of variational model-based methods for cryo-EM that can
be easily deployed in practice, with a particular focus on the increase in speed
and robustness to ill-posed imaging conditions. This is done for both STET
(Chapter 3) and SPA (Chapter 4).

2. The proposal of novel data-driven methods based on deep neural networks
that can be efficiently and robustly used in SPA. Both supervised (Chapter 5)
and unsupervised (Chapter 6) learning procedures are explored.

The link between these two paradigms is strong. The proposed learning-based
methods directly benefit from our ability to model the cryo-EM procedure, either
for the generation of realistic training datasets, or by using it as a module inside
the networks architectures themselves. The objective is to leverage the best of both
worlds: the guaranteed robustness of model-based approaches, and the remarkable
capabilities of learning-based methods at exploiting data statistics.

We hereafter provide a short summary for each of our main research works. All
rely on a sound mathematical framework that formalizes the practical objectives
at hand, which is also a contribution in itself. It goes without saying that these
works are the result of fruitful collaborative efforts. Throughout the manuscript,
we indicate in footnotes the publication(s) related to each work, and detail the
contribution of each collaborator whenever the author of this thesis is not first
author.

Compressed Sensing for STET (Chapter 3)

We present a tailored acquisition-reconstruction STET framework [17] that exploits
the principles of compressed sensing and permits to minimize the electron dosage
required for high-quality STET imaging. More precisely, we propose to scan only a
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small random subset of pixels at every sample orientation, and present a regularized
reconstruction scheme to recover the 3D sample from these strongly undersampled
data. We demonstrate on simulated and real data that reconstruction can then be
achieved with very few measurements, hence strongly reducing the effect of sample
degradation and preserving image quality.

Related Publication:

Laurène Donati, Masih Nilchian, Sylvain Trépout, Cédric Messaoudi, Sergio Marco, and

Michael Unser, “Compressed Sensing for STEM Tomography,” Ultramicroscopy, vol. 179,

pp. 47–56, 2017.

Fast Regularized Reconstruction Scheme for SPA (Chapter 4)

We present a fast regularized reconstruction framework for SPA that relies on a
rigorous mathematical modeling of the cryo-EM physics [18]. To make the use of
such iterative method feasible in SPA, we formulate its cost-dominant step as a
discrete convolution whose computational cost does not depend on the number of
projections. In addition, the representation of 3D objects with scaled basis functions
enables the reconstruction of volumes at any desired scale in the real space. This
brings increased robustness and permits further gains in computational speed.

We then use this fast algorithm as a building block of a new refinement frame-
work for SPA that alternates between the reconstruction and the estimation of
the unknown orientations [19]. This joint optimization scheme benefits from the
robustness brought by our regularized reconstruction scheme, which positively im-
pacts its convergence. The orientations are updated in the continuum through a
semi-coordinate-wise gradient descent, which removes the need for the computation-
ally expensive step of classical refinement procedures. We experimentally demon-
strate that this joint optimization framework can efficiently refine high-resolution
3D structures from projections with initially inaccurate orientations.

Finally, we further diminish the cost per iteration of our reconstruction algo-
rithm by ingeniously splitting its objective function [20].

Related Publications:

Laurène Donati, Masih Nilchian, Carlos Oscar S Sorzano, and Michael Unser, “Fast Mul-

tiscale Reconstruction for Cryo-EM,” Journal of Structural Biology, vol. 204, no. 3, pp.

543–554, 2018.

Mona Zehni, Laurène Donati, Emmanuel Soubies, Zhizhen J Zhao, and Michael Unser,
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“Joint Angular Refinement and Reconstruction for Single-Particle Cryo-EM,” IEEE

Transactions on Image Processing, 2020.

Lauréne Donati, Emmanuel Soubies, and Michael Unser, “Inner-Loop Free ADMM for

Cryo-EM,” IEEE International Symposium on Biomedical Imaging (ISBI), 2019.

Supervised Recovery of Orientations SPA: Learning from Pro-
jections (Chapter 5)

We present the outline of an ongoing research project for SPA that capitalizes on
the powerful learning capabilities of neural networks, yet still fundamentally relies
on our ability to faithfully model the cryo-EM imaging process for the generation
of the training dataset. Its target is the design of a learning-based method that
estimates the unknown orientations in SPA directly from the acquired dataset of
projections, i.e., without relying on any intermediate reconstruction procedure.

Our approach relies on the well-known observation that the more similar two
projections, the more likely they originated from two 3D particles that adopted
close orientations in the ice layer prior to imaging. Taking this line of thought fur-
ther, we train a function—parametrized as a neural network—to predict the relative
orientation between two projections based on their similarity. Using this trained
network, we can then estimate the relative orientations between pairs of projec-
tions in any SPA dataset. Our postulate is that we can finally recover, from these
estimated relative distances, the orientations themselves through an appropriate
minimization scheme.

A new Paradigm for SPA Reconstruction via Deep Adversar-
ial Learning (Chapter 6)

We present CryoGAN, a completely new paradigm for SPA reconstruction that
leverages the remarkable capability of deep neural networks to capture data distri-
bution. CryoGAN uses a generative adversarial network (GAN) to learn the 3D
structure that has simulated projections that most closely match the real data in
a distributional sense.

The architecture of CryoGAN resembles that of standard GAN, with the twist
that the generator network is replaced by a cryo-EM physics simulator. Thanks to
this adversarial scheme, CryoGAN can resolve a 3D structure in a single algorithmic
run using only the dataset of projections and CTF estimations as inputs. The
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algorithm is completely unsupervised, does not rely on an initial volume estimate,
and requires minimal user interaction. It is also backed up by a comprehensive
mathematical framework that provides guarantees on the recovery of the volume
under a given set of assumptions.

Experiments on synthetic and real datasets demonstrate the ability of CryoGAN
to capture and exploit real-data statistics in challenging imaging conditions. While
the spatial resolution of the CryoGAN reconstructions from real data is not yet
competitive with the state-of-the-art, we expect these results to improve in the
near future, along with the ongoing progresses in deep learning architecture. In the
meantime, the preliminary results obtained with CryoGAN are encouraging and
demonstrate the potential of adversarial-learning schemes in image reconstruction.

Related Preprint:

H. Gupta, M. T. McCann, L. Donati, M. Unser. “CryoGAN: A New Reconstruction

Paradigm for Single-particle Cryo-EM Via Deep Adversarial Learning”.

https://www.biorxiv.org/content/10.1101/2020.03.20.001016v1



Chapter 1

Cryo-Electron Microscopy
(cryo-EM)

1Cryo-electron microscopy (cryo-EM) encompasses a broad range of imaging meth-
ods that exploit the wave-like behavior of electrons in vacuum to produce a high-
resolution visualization of biological structures. At the heart of all cryo-EM disci-
plines lies the use of a transmission electron microscope (TEM) to image radiation-
sensitive samples under cryogenic conditions. Cryo-EM has been intensively used
over the past decades to study cellular and molecular biology at the nanometer
scale [21, 22]. It reveals the architecture of cells and proteins, which then brings
key insights about their functions. Hence, cryo-EM is a fundamental tool in the
search of diagnostic, preventive and curative solutions for a large spectrum of med-
ical diseases and disorders.

In this chapter, we present the operating principles underlying cryo-EM and its
variants of interests (STET, SPA), as well their specificity and the key associated
challenges. We do not intend here to provide a comprehensive review of those topics.
Rather, we aim to equip non-expert readers with the basic knowledge of cryo-EM
necessary to an appropriate understanding of our work. For more complete reviews
on the subject, we refer to [23, 24, 25].

1This chapter uses content from our works [17, 18].

9
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1.1 Cryo-EM in a Nutshell

1.1.1 The Transmission Electron Microscope (TEM)

Common to all cryo-EM modalities is the use of electron beams for imaging, which
permits a significant gain in resolution compared to other microscopy techniques
thanks to the extremely short wavelength of electrons (Figure 1.1). Such imaging
is performed using a TEM (Figure 1.2a), a device that sends parallel electrons
beams through a 3D sample to form a 2D projection image2. In short, electrons are
generated and accelerated by an electron gun, focused in beams by magnetic lenses,
and sent toward the specimen inside the TEM column. The electrons then interact
with the sample as they propagate through it, which provides indirect information
about the 3D structure of interest once magnified by lenses and captured by direct
electron detectors (DED). The exact design of a TEM is extremely complex and
varies depending on the application, the model, and the manufacturer.

Figure 1.1: The microscopy scale. Cryo-EM (blue) permits imaging up to the
nano-scale, whereas fluorescence microscopy (orange) and super-resolution light
microscopy (green) are limited to lower resolutions. However, light-based methods
enable the imaging of living samples, which is impossible in cryo-EM.

2The image-formation model behind cryo-EM is detailed in Section 1.2.
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1.1.2 Radiation Sensitivity and Cryogenization of Bio-Samples

The high resolving power of TEM comes at the cost of extreme constraints being
imposed on the imaged specimen. For one, high-vacuum conditions are required
inside the microscope for the electron beams to travel in straight lines and interact
uniquely with the sample. This necessitates to fix the specimen while trying to
maximally preserve its native structure—a non-trivial feat [1]. In addition, the in-
elastic scattering of electrons with the specimen causes extensive radiation damage.
This effect is particularly damageable to biological samples. This is problematic
because high-resolution imaging requires dense sampling with high electron dosage.

A major technical advance with respect to those two problems has been the
development of the plunge-freezing method in the 1980s by Jacques Dubochet and
his colleagues [1]. Their cryogenization technique permits the imaging of fully
hydrated specimen with preserved structure. This is achieved by embedding the
sample in a thin layer of water and rapidly freezing it at cryogenic temperature
(about -180°C) so that no ice crystal is formed. An additional advantage of the
technique is that the imaging of samples at very low temperatures helps mitigate
the extent of radiation damage. The effect is rather limited though, and electron-
induced radiation damages remains a serious problem in cryo-EM. Hence, high
electron voltages have to be sparingly used to image bio-samples. This results
in challenging measurements with extremely low signal-to-noise ratio (SNR), as
illustrated in Figure 1.2b-c.

Remark 1 (Jacques Dubochet). The Swiss biophysicist and EPFL-graduate
Jacques Dubochet is a recurring character in this thesis. In 2017, the Vau-
dois received, along with Joachim Frank and Richard Henderson, the Nobel
Prize in Chemistry for his work on the cryogenization of samples in electron
microscopy. This rewarded years of developments in cryo-EM that launched
a new era in structural biology, characterized by a boom of interdisciplinary
collaborations [26, 27].
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(a) Layout of
a TEM struc-
ture. Image from
wikipedia.org/TEM.

(b) A cryo-electron tomography
measurement [14].

(c) A single-particle cryo-EM
micrograph [28].

Figure 1.2: The (a) architecture of a TEM permits high-resolution imaging, but
the (b)-(c) measurements typically show high noise degradation, which makes their
processing difficult.

1.2 Image-Formation Model

The perfect modeling of the cryo-EM imaging system is an impossible task. Never-
theless, it is of great practical importance to approximate, as faithfully as can be,
the physics behind the acquisition process. The quest for computationally tractable
entities is also central for the design of applicable algorithms. Hence, a compromise
between accuracy and computability has to be found when modeling physical pro-
cesses. In this section, we derive the cryo-EM image-formation model that serves
as the building block for all our works (Chapters 3- 6).

1.2.1 Geometry of the Imaging Procedure

We start by defining the necessary mathematical objects and the 3D geometry asso-
ciated to our imaging model. We formulate the complete problem in the continuum
and later discuss discretization aspects in Chapter 2.

We model the 3D object being imaged—i.e., a physical entity that varies over
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space—as a function f : R3 → R that maps a point x ∈ R3 to a point f(x) ∈ R. In
cryo-EM, this function corresponds to the electric field of the bio-sample of interest,
called its Coulomb potential. The function f is often assumed to be compactly
supported as the biological objects are spatially localized.

Inside the microscope, the object is positioned at a given 3D orientation with
respect to the detector plane y = (y1, y2) ∈ R2, as illustrated in Figure 1.3 (left).
Hence, the geometry of the imaging procedure is described by the geometrical trans-
formation that maps the object coordinate system (x1, x2, x3) to the measurement
coordinate system (y1, y2). In order to represent all the possible orientations of
the 3D object in space, we consider that this mapping corresponds to a rotation in
SO(3), the group of all 3D rotations about the origin of R3.

In SO(3), every rotation can be described by a 3 × 3 orthogonal matrix with
determinant 1. As is standard in cryo-EM, we use Euler angles3 to parametrize
the rotation matrix that relates our two coordinate systems [29]. The Euler angles,
which we denote as θ = (θ1, θ2, θ3), are a set of three angles that describes a
sequence of three rotations about three fixed axes (Figure 1.3 (right)). The angle
θ1 ∈ [0; 2π), called the rotational angle, describes the first rotation around the x3

axis. The angle θ2 ∈ [0;π], called the azimutal angle, represents the second rotation
around the x2 axis. Finally, the third angle θ3 ∈ [0; 2π) corresponds to the in-plane
rotation in the measurement plane. We then denote the domain of the Euler angles
as Ωθ = [0; 2π) × [0;π] × [0; 2π). For the sake of conciseness, we hereafter use
the term “with/at orientation θ” when referring to an entity (e.g., 3D object, 2D
measurement) that is considered in an imaging geometry parametrized by θ.

1.2.2 Object Projection

Due to their extremely short wavelength (∼ 2pm at 300kV), electrons approxi-
mately travel in straight lines in vacuum. The initial intensity I0 of parallel electron
beams decays as they propagate through the 3D sample. The transmitted intensity
I ends up being recorded as a 2D measurement bθ following the Beer-Lambert’s
law [30],

bθ
(
y
)

= − log

(
I
(
y,θ

)
I0
(
y
) ) . (1.1)

3Although commonly used in 3D cryo-EM, the Euler angles convention comes with a few
technical challenges [29], as we shall later discuss in Chapter 5.



14 Cryo-Electron Microscopy (cryo-EM)

x1

x2

x3

θ1

θ2

θ3 y1

y2

Ω2D

ϑθ

Figure 1.3: Geometry of the 3D imaging model. The 3D object f in the coordinate
system (x1, x2, x3) is imaged along the projection direction ϑθ to produce the 2D
projection b in the coordinate system (y1, y2). The Euler angles θ = (θ1, θ2, θ3) ∈ Ωθ
compactly represent the 3D rotation that maps the object coordinate system to the
projection coordinate system. The angles θ1, θ2, and θ3, respectively correspond
to the rotation, the tilt, and the in-plane rotation in the projection plane. The set
Ω2D denotes the support of the projection.

Under the weak-phase object approximation, the relationship between the 3D object
f and its 2D measurement bθ in (1.1) is mathematically best described through the
X-ray transform Pθ : L2

(
R3
)
→ L2

(
R2
)

[31]. The X-ray transform is a linear op-
erator that maps a 3D function into its 2D line-integral image, called the projection
image, along the projection direction ϑθ =

(
cos θ1 sin θ2, sin θ1 sin θ2, cos θ2

)
∈ S2,

with S2 =
{
x ∈ R3 | ‖x‖2 = 1

}
the unit sphere in R3. Hence, we model an idealized

cryo-EM measurement as

bθ
(
y
)

= Pθ
{
f(x)

}
(y) =

∫
R
f
(
tϑθ + MT

θ⊥y
)
dt, (1.2)
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where MT
θ⊥ is the adjoint of the hyperplane projection matrix Mθ⊥ ∈ R2×3 given

by

Mθ⊥ =

(
cos θ1 cos θ2 cos θ3 − sin θ1 sin θ3 cos θ1 cos θ2 sin θ3 + sin θ1 cos θ3 − cos θ1 sin θ2
− sin θ1 cos θ2 cos θ3 − cos θ1 sin θ3 − sin θ1 cos θ2 sin θ3 cos θ1 cos θ3 sin θ1 sin θ2

)
.

(1.3)

The matrix Mθ⊥ has rows that specify the normal basis of the hyperplane per-
pendicular to the projection direction ϑθ. Intuitively, this matrix expresses how a
point in the object domain gets geometrically positioned in the projection domain,
while its adjoint MT

θ⊥ maps the reciprocal relationship.

1.2.3 Optical Effects and Detection

Equation (1.2) is a good starting point in the modelling of the cryo-EM imaging
procedure, but it only tells a limited part of the story. In practice, the beams exiting
the specimen undergo complex optical effects in the TEM microscope before they
reach the electron detectors. This results in an alteration of the projection frequency
content that is accounted for through a convolution with the shift-invariant 2D
point-spread function (PSF) h : R2 → R of the TEM (i.e., its impulse response),
such that

bθ
(
y
)

=
(
Pθ
{
f
}
∗ h
)
(y). (1.4)

In cryo-EM, these optical effects are mostly expressed in the Fourier domain as a
multiplication with the Fourier transform ĥ of the PSF, called the contrast transfer
function (CTF). The CTF is a rapidly oscillating and decreasing function with
multiple zero-crossings (Figure 1.4). Its theoretical model derives from the phase-
object approximation [32] and is most often given for ω ∈ R2 by

ĥ(ω) = E(ω)A(ω)C(ω), (1.5)

where E is called the envelope function, A corresponds the objective aperture func-
tion, and C represents the phase contrast transfer function. The first two functions
are mostly responsible for the limitation in resolution, while the third one explains
the oscillatory behavior of the CTF. More details on the modeling of the CTF are
given in Appendix A.2.

These CTF features—dampening, oscillations and zero-crossings—typically dis-
tort the projection amplitude and affect the resolution if left uncorrected. In prac-
tice, CTF-correction is often performed on every 2D projection prior to 3D recon-
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Figure 1.4: Example of a CTF in TEM (radial plot). The function (in Fourier space)
typically displays rapid oscillations, multiple zero-crossings, and is dampened by a
decreasing envelope function. Image simulated with www.c-cina.org/tools/soft/ctf-
simulation/.

struction4. This is most often done by estimating the parameters of the theoretical
CTF model (1.5) from the acquired measurements (e.g., by analyzing their power
spectra). This is a challenging procedure by itself given the high level of noise that
degrades the cryo-EM data (see Section 1.2.4 below).

The imaging model in (1.4) describes the measurements in their continuous
form. In practice, this information is captured at a large number of equally spaced
discrete points by electron detectors. Hence, we assume that the measurements
bθ
(
y
)

are acquired at the sampled points yj = j∆ for j ∈ Ω2D, where the set
Ω2D ⊂ Z2 denotes the support of the projection and is constituted of M = ]Ω2D

elements. For the sake of clarity, we consider ∆ = 1 (without loss of generality)

and we denote as b̃θ ∈ RM the discrete noiseless measurement vector for an object
with orientation θ.

4Some cryo-EM variants consider the possibility for each projection to be affected by a different
(shift-invariant) CTF. We shall discuss this point in due time.
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1.2.4 Noise Degradation

The final consideration is to account for random perturbations that degrade the
captured information. In cryo-EM, different types of noise can undesirably affect
the measurements [24], but the two major noise sources originate from the inter-
action of electrons with ice and from the electron counting by the TEM detectors.
This counting process, which is by nature discrete, leads to a noise that is usually
dominated by Poisson statistics. However, when large number of detection events
arise, the electrons are no longer individually observed and the Poisson distribu-
tion approaches a Gaussian one. We thus assume a cryo-EM projection b̃θ to be
corrupted by a substantial additive Gaussian noise nθ ∼ N (0, σ2 · Id) as suggested
in [33, 34], with nθ ∈ RM , such that

bθj = b̃θ + nθj =
(
Pθ
{
f
}
∗ w
)
(j) + nθj . (1.6)

More precise noise models than in (1.6) exist (e.g., which include noise sources
affected by the CTF), but those also tend to significantly complexify the subsequent
processing steps. Finally, it is worth insisting that, whatever the model considered,
noise degradation in cryo-EM remains a massive processing challenge: the measure-
ments typically have one of the lowest SNR of any imaging modality [35].

Equipped with the imaging model (1.6) in which the X-ray transform plays a
central role, the idea is then to image the object under different orientations, and
use tomographic reconstruction algorithms to obtain a 3D visualization of its struc-
ture (Chapter 2). In practice, this reconstruction task is always digitally handled.
Hence, careful discretization of the object f is necessary for practical applications;
this is the topic of Section 2.2.

1.2.5 Tomographic Variants in Cryo-EM

Several cryo-EM operating modes exist for bio-imaging, and most tomographic
setups fall in one of two categories (Figure 1.5):

1. Electron tomography (ET), in which a 3D tissue slice is imaged by sequen-
tially tilting the sample-stage around a single-axis of rotation (Section 1.3).
Hence, each 2D measurement corresponds to the projection of the 3D sample
at a given stage orientation, altered by some optical effects and noise.
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2. Single-particle analysis (SPA), in which hundreds of thousands of protein
clones with random orientations are rapidly freezed in a thin layer of ice and
subsequently imaged (Section 1.4). Each acquired 2D image thus corresponds
to the projection of a 3D clone under an unknown orientation, altered by some
optical effects and noise.

Cryo-embedded 
3D Tissue Slice

Electron Source

Detector

Electron Tomography (ET)

Stage Rotation (          )

(a) Schematic ET setup. The purple
area indicates the angular region left
uncovered due to technical constraints,
which results in a missing cone of infor-
mation in the Fourier domain.

Electron Source

Detector

N
o Stage Rotation

Single-particle Cryo-EM (SPA)

Cryo-embedded  
3D Protein Clones

(b) Schematic SPA setup. Numerous
clones of a molecule, each with its un-
known orientation, are freezed in ice and
subsequently imaged.

Figure 1.5: Illustrations of the cryo-EM variants for tomographic imaging: (a) ET
and (b) SPA.

ET and SPA share a number of similarities, most notably the cryogenization
of samples, the use of a TEM for imaging, heavy noise-degradation of the mea-
surements, and the reliance on tomographic reconstruction algorithms. Hence, the
image-formation model is the same for both variants and is given by (1.6).
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That being said, ET and SPA do differ in some important aspects, in particular
regarding the sample preparation, the tilting strategy, and the achieved resolution.
Those differences (Table 1.1) lead to reconstruction challenges that are specific to
each imaging method.

Sample Resolution Stage Rotation Missing Information

ET Tissue/Cell Slice Nano (1-10nm) Single-axis (±70°) Unimaged Tilt Wedge

SPA Protein Clones Near-atomic (1-10�A) None Proteins Orientations

Table 1.1: Main experimental differences between ET and SPA.

1.3 Electron Tomography (ET)

The most generic form of ET is transmission electron tomography (TET), which we
briefly present in Section 1.3.1. In this thesis, the ET method of interest is scanning
transmission electron tomography (STET5), a variant of TET that we describe in
Section 1.3.2.

1.3.1 Transmission Electron Tomography (TET)

The core principle in TET is to incrementally tilt, around a single axis of rotation
and over a large range of tilt angles, a thin 3D sample through which parallel elec-
tron beams are sent at each tilt angle (Figure 1.6a). The recorded 2D projections,
called the tilt-views, compose the tilt-series, which is then processed to obtain a 3D
reconstruction.

In conventional TET systems, the thickness of the sample and the geometry
of the specimen holder preclude imaging through a full 180° angular range (see
purple area in Figure 1.5a) [36]. Artifacts consequent to this missing wedge of
information in the Fourier domain may appear on the reconstructed image if the
lack of angular coverage is excessive and/or if the reconstruction algorithm is not
sufficiently robust. TET is currently restricted to the imaging of thin bio-samples
(< 350nm), which ensures correct propagation of the electrons even at high tilt
(±70°).

5The modality is also known as STEM in the community.
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Parallel Beams

Angular C
overage

Cryo-embedded 
Specimen Grid

Detector

Transmission 
Electron Tomography (TET)

(a) Cryo-TET set-up. Parallel beams
of electrons are simultaneously sent
through the tilted sample to form a
projection image.

Beam Scanning

Angular C
overage

Cryo-embedded 
Specimen Grid

Detector

Scanning Transmission 
Electron Tomography (STET)

(b) Cryo-STET set-up. Lenses focus
the electrons in a single beam and the
tilted sample is rastered to form a pro-
jection image.

Figure 1.6: Illustrations of two cryo-ET modalities: (a) TET and (b) STET.

1.3.2 Scanning Transmission Electron Tomography (STET)

The main difference between TET and STET is that in STET, the specimen is
scan-rastered by a focused electron beam, and the transmitted radiation is gradu-
ally detected (Figure 1.6b). Thanks to this scanning approach, STET offers several
advantages over TET for the imaging of bio-samples, including an increased resolv-
ing power, an improved contrast, and better SNR [37, 38, 39]. It also broadens
the scope of acceptable biological specimens [15]. Yet, STET still suffers from the
problems of missing information and radiation-sensitivity. Hence, a trade-off be-
tween the acquisition quality (i.e., wide and numerous high-SNR acquisitions) and
the sample integrity (i.e., low electron dosage) must be considered during imaging.

In that respect, the flexibility in the choice of the scanning approach offers some
interesting opportunities. The design of an acquisition-reconstruction STET frame-
work that combines a tailored scanning pattern and a reconstruction algorithm with
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increased robustness [17] is the subject of Chapter 3. We briefly review below the
approaches related to this work.

Literature Review

Several works have proposed reconstruction methods for STET that address the
missing-wedge problem and permit lower-dose acquisition without introducing sig-
nificant degradation in the final volume. These methods are categorized in two
main classes depending on whether the dose reduction is achieved by tilt/angular
downsampling or by image/spatial downsampling [40].

Tilt-downsampling (T-DS) techniques refer to algorithms that perform recon-
struction from a reduced number of tilt images. T-DS is generally performed by ac-
quiring fewer projections over the widest possible angular range. To compensate for
the induced lack of information, a standard approach is to incorporate prior knowl-
edge into the reconstruction process (see Section 2.3). Such advanced T-DS recon-
struction algorithms primarily include discrete algebraic reconstruction techniques
(DART) [41, 42] and compressing sensing (CS) based methods [43, 44, 45, 46].

Image-downsampling (I-DS) techniques take a different route and reduce the
electron beam coverage of individual tilt images. This can be achieved by de-
creasing the frame size, the per-pixel dwell time, or the beam current density [47].
Alternatively, one can scan only a fraction of the image pixels following a certain
downsampling pattern. The recovery of random I-DS projections has been the
topic of several publications. Most notably, Stevens et al. [48] applied a Bayesian
dictionary-learning technique to restore such measurements, while Saghi et al. [40]
used total variation (TV) to inpaint the I-DS measurements prior to feeding them
to a CS-based reconstruction algorithm. To the best of our knowledge, full 3D
tomographic reconstruction directly from the unrestored random I-DS STET data
had not yet been demonstrated prior to our work.

1.4 Single-Particle Analysis (SPA)

Single-particle analysis (SPA6) differs from ET in that its final goal is to characterize
the atomic model of proteins, i.e., the spatial organization of each atom in their

6The modality is also known in the field as single-particle cryo-EM. To ensure coherence with
our published works, we shall use the term SPA in this thesis.
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chains of amino acids (Figure 1.7c). The motivation is that proteins carry out
crucial functions in cells, and alterations in their structure usually affect their ability
to perform these tasks. Hence, SPA plays a major role in structural biology and
pharmaceutical research.

(a) Density map of β-gal
at a resolution of 7�A.

(b) Superimposition of
the atomic model and the
density map of β-gal for
visualisation purpose.

(c) Atomic model of β-
gal.

Figure 1.7: Visualization of the density map and the atomic model of the β-
galactosidase enzyme (PDB-5a1a) [49]. Images produced with Chimera [50]

A typical end-to-end SPA pipeline consists of three main phases [23].

1. The preparation of the sample and its imaging in cryogenic conditions with
a TEM (Figures 1.8a).

2. The reconstruction of the high-resolution 3D density map7 (Figure 1.7a) from
the 2D projection measurements using digital image-processing algorithms
(Figures 1.8b-c).

3. The determination of the atomic model (Figure 1.7c) based on the recon-
structed density map and prior knowledge on the physics of protein folding.

In this thesis, our focus is on the design of algorithms that reconstruct the density
map (Step 2). As the challenges faced by reconstruction algorithms in SPA derive

7In practice, the beams of electrons interact with the electron cloud of the protein. Hence, the
imaging procedure actually provides a direct representation of its 3D electron density, called the
density map. In the next chapters, we shall use the more generic term of 3D structure for the
sake of clarity.
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from the specificity of the imaging procedure (Step 1), we start by briefly presenting
its key aspects. The procedure of atomic modelling (Step 3) is beyond the scope of
our work; for further details, we refer to [51].

Remark 2 (The Boom of SPA). SPA is not a young imaging method: its de-
velopment began in the 1970s. However, its popularity has rocketed in recent
years due to technical advances in detector technology and software algorithms.
This launched a “resolution revolution” [5] that saw the determination of struc-
tures progress up to near-atomic resolution. This momentum culminated in
2017 with the Nobel Prizes of its pioneers Dubochet, Frank and Henderson.

(a) Imaging Proce-
dure.

(b) Pre-processing
of the micrographs.

(c) Reconstruction of the density
map from the projections.

Figure 1.8: Illustrations of three key steps in SPA for the reconstruction of the
density map. Note that the contrast and SNR of the measurements in the micro-
graph have been exaggerated for visualization purposes. In practice, the particles
are barely visible. Images from people.csail.mit.edu/gdp/cryoem.

1.4.1 Imaging Procedure

The key to appreciate the specificity of SPA is to first understand that the conven-
tional tomographic approach—i.e., to rotate a single object and take measurements
at every stage rotation—is not a viable option for the imaging of single proteins.
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The reason is that their radiation sensitivity is so high that they cannot withstand
the repetitive exposures to electron beams necessary in the standard setup.

The twist to get around this is to work with numerous 3D copies of the same pro-
tein, called “particles”, which are supposed to be structurally identical. The idea is
to let these particles adopt random positions and orientations in a thin layer of wa-
ter, freeze them at cryogenic temperatures, and image all particles simultaneously
with parallel electron beams in a minimal number of exposures (Figure 1.8a). The
collected measurements are called micrographs (Figure 1.8b), and contain thou-
sands of projections of the protein under different orientations, which can then be
used for tomographic reconstruction (Figure 1.8c).

The imaging procedure in SPA is incredibly ingenious, but its implementation
comes with a series of serious challenges. The most obvious one is that the orienta-
tions taken by the particles in the ice layer are random and thus unknown; yet, they
are essential for reconstruction. In addition, interactions with the ice surface can
sometimes drive particles to favor certain orientations, which leads to a nonuniform
angular coverage of the structure. Moreover, the acquired projections are always
extremely numerous, heavily degraded by noise, and affected by complex optical
effects, which makes their processing difficult.

Another major challenge with more recent (and thus trickier) samples is that
many proteins are actually dynamic entities: they perform functions in cells by
changing their configurations upon receiving some stimuli. The range of config-
urations adopted by the protein, called its conformational landscape, means that
the micrographs may actually contain a mix of projections from distinct 3D struc-
tures [52]. If left untreated, this can lead to a blurred incorrect reconstruction.

To summarize, the main difficulties that have to be considered when designing
reconstruction algorithms for SPA are:

1. The unknown orientation of each projection.

2. The strong optical effects that modulate the projections.

3. The extremely low contrast and SNR of the projections.

4. The massive amount of measurements to process.

5. (Possible) The nonuniform distribution of the particles’ orientations.

6. (Possible) The presence of degraded, unusable data in the measurements.
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7. (Possible) The structural heterogeneity of the sample.

This collection of problems makes the reconstruction task in SPA an enduring tech-
nical challenge: scientists have spent the better part of the last 30 years designing
a solid pipeline that can reliably deliver 3D structures with atomic resolution. The
result is an intricate multi-steps procedure that permits the regular discovery of
new structures, but that can still be prone to overfitting and irreproducibility.

1.4.2 Reconstruction of the Density Map

Prior to 3D reconstruction, a series of essential preprocessing steps are first needed
to localize, extract and normalize the individual 2D projections from the micro-
graphs [53, 54, 55, 56, 57]. Only then can one use intricate algorithmic schemes
to combine the large set of measurements, with the ultimate goal of producing a
high-resolution 3D reconstruction (i.e., smaller than 3-4�A). To handle the strongly
incomplete data (in particular, the unknown orientations), most software pack-
ages [58, 8, 9, 10, 59, 60, 61, 62] implement a so-called iterative-refinement pipeline
during which information is gradually added to a rough initial volume8.

Remark 3 (Terminology). The iterative-refinement pipeline in SPA sometimes
makes the use of the term ”reconstruction” confusing. Depending on the con-
text, it can either refer to the reconstruction of the final density map as a global
process, to the action of the reconstruction algorithm as a local procedure, or
to any 3D structure obtained throughout the pipeline. We shall try to make its
meaning clear when the context does not.

Iterative-Refinement Pipelines

Projection-matching approaches (Figure 1.9) refine the initial volume by alternat-
ing between estimation of the orientations and 3D reconstruction from the pro-
jections given the current (however inaccurate) parameter estimates [68, 69]. The
first rough 3D structure is often computed from high-SNR class averages—a com-
plicated task in itself given the challenging imaging conditions. From this first

8The search for an appropriate initialization is known in SPA as ab initio modelling [63]. It is
a very active field of research in itself [64, 65, 66, 62, 67], which is not surprising given the stakes.
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Figure 1.9: Schematic of the projection-matching approach. Image adapted from
cpb.iphy.ac.cn.

volume, one produces a finite number of synthetic projections with uniformly dis-
tributed orientations. Those projection templates are used to predict the relative
orientation of every 2D projection in the experimental dataset through some ap-
propriate angular-assignment method [70]. This process is then repeated with an
increasing number of distinct synthetic projection templates until the optimization
fulfills some convergence criterion.

Bayesian approaches [71, 72, 73] differ in the way they handle the unknown
orientations during this alternating refinement pipeline: they do not constrain the
2D projections to be assigned a unique orientation estimate. In practice, they rely
on the formulation of a maximum marginalized a posterior (MAP) estimation that
is solved by expectation maximization. The process starts with the calculation
of the posterior probabilities for all possible orientations based on statistical noise
models. These probabilities are then used to weight the contribution of each 2D
projection to every orientation class (as defined by the projection templates). This
treatment of the unknown orientations, called marginalization, is less sensitive to
the initial model and brings increased robustness in high-noise regimes compared
to projection-matching procedures. However, the marginalization process is often
computationally expensive. A recent work notably improved the computational effi-
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ciency of the MAP scheme by solving it through stochastic average gradient descent
(SGD) and using importance sampling to further reduce the cost of computing the
marginalized likelihood [74].

For both approaches, the global refinement process equates to a high-dimensional
nonconvex optimization problem with numerous local minima, whose outcome is
still predicated on the quality of the initial reconstruction [75, 76]. Moreover,
both are computationally challenging pipelines that can demand large resources or
rely on approximations (e.g., the reliance on sums instead of integrals during the
marginalization procedure) [77].

Tomographic Reconstruction Algorithms

All iterative-refinement pipelines rely on a reconstruction procedure at every step
of the pipeline. This reconstruction is carried out independently of the orientation
estimation. In most instances, software packages use direct algorithms based on the
central-slice theorem (Section 2.1) to perform this reconstruction [78, 79, 70]. Direct
methods work adequately when the projections are of good quality and sufficiently
numerous, and their speed is a key advantage. Unfortunately, their performance
can be limited in adverse imaging situations (Section 2.3.1).

A more sophisticated and robuster reconstruction approach is to formulate it as
a regularized inverse problem (see Section 2.3) that is solved iteratively [80, 81, 82,
83, 84]. Some approaches also take into account the blurring of each projection by
the CTF of the microscope [85, 32]. Those iterative methods permit high-quality
reconstruction but often require very large computational resources if not carefully
engineered. The design of a fast, regularized reconstruction framework for SPA
that is robust to the challenging imaging conditions is the subject of Chapter 4.

We conclude this introduction to SPA by mentioning that, although deep-
learning models have already had a profound impact in a wide range of image
reconstruction applications [86, 87, 88], their current utilization in SPA is mostly
restricted to preprocessing steps, such as micrograph denoising [89] or particle pick-
ing [90, 91, 92, 93, 94]. The design of a method that learns to estimate the unknown
orientation associated to each projection in a SPA dataset is the topic of Chapter 5.
In Chapter 6, we present a completely new paradigm for SPA reconstruction based
on deep adversarial learning, which we believe to be the first demonstration of a
deep-learning architecture able to perform the full SPA reconstruction procedure
without any prior training.



28 Cryo-Electron Microscopy (cryo-EM)



Chapter 2

Model-based Tomographic
Reconstruction for Cryo-EM

2.1 Context

1The technique of mathematically combining 2D projections acquired from various
directions into a 3D volume is known as tomography. Tomography is used in a
variety of imaging methods beyond cryo-EM (e.g., in X-ray computed tomography
(CT) [95]) to gather information about the internal structure of objects through
indirect measurements obtained with penetrating waves.

1This chapter uses content from our works [17, 18, 20].

29
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Remark 4 (EM and tomography). The story between tomography and EM
goes back a long time. Interestingly, it even precedes the development of X-ray
CT by Hounsfield and Cormack [95]. In their landmark 1968 paper [96], Aaron
Klug and David DeRosier elucidated the structure of the T4-bacteriophage by
combining a small set of 2D EM images—the dawn of tomographic EM! A
former student of the brilliant crystallography pioneer Rosalind Franklin, Klug
developed reconstruction methods based on the central-slice theorem (or, as Klug
put it, “a theorem familiar to crystallographers”) that are still of relevance today
(see Section 2.1.1). Sir Aaron Klug later received the Nobel Prize in Chemistry
for his outstanding contributions, which set the stage for a long series of Nobel
Prizes dedicated to this revolutionary imaging method.

2.1.1 Direct Inversion Methods

Tomographic reconstruction is most often performed using direct inversion meth-
ods. A prominent approach is the filtered back projection (FBP) algorithm [97],
which implements a discrete version of the analytically-derived X-ray inversion for-
mula [31]. In FBP, the projections are filtered with an appropriate convolution
kernel before being back projected in the object domain. As the X-ray inversion
formula is also an integral operator, FBP relies on the approximation of integrals by
sums and the use of interpolation to evaluate quantities between samples whenever
needed.

In cryo-EM, many software packages rather rely on direct Fourier-reconstruction
(DFR) methods [78, 79] that are based on the central slice theorem. This theorem
relates the Fourier transform of a 2D projection to an hyperplane (orthogonal to
the projection direction) in the Fourier transform of the 3D object. Formally, this
writes as

F3D

{
f
}(

MT
θ⊥ω

)
= F2D

{
Pθ
{
f
}}(

ω
)
, (2.1)

where F2D : L2

(
R2
)
→ L2

(
R2
)

and F3D : L2

(
R3
)
→ L2

(
R3
)

denote the 2D
and 3D Fourier transform operators respectively, and ω ∈ R2. We recall that
Mθ⊥ ∈ R2×3 is the hyperplane projection matrix whose expression is given in (1.3).
A popular DFR approach uses interpolation kernels in the Fourier domain to bring
irregularly-distributed samples onto a regular grid for each 2D projection, before
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applying an inverse 3D fast Fourier transform (FFT) to the set of regridded pro-
jections [70].

The success of direct inversion methods owes primarily to their speed and
their satisfactory performance when handling numerous, high-quality measure-
ments. However, the X-ray inversion formula is based on assumptions that can
get violated when the measurements are lacking (e.g., missing wedge of informa-
tion in STET) or heavily degraded by noise. Hence, the efficiency of direct methods
is usually limited in adverse imaging situations, which can be especially problem-
atic in cryo-EM. An alternative is to rely on more robust iterative optimization
approaches. These methods necessitate the modeling of the imaging process with
a discrete system matrix H that is physically accurate and can be handled com-
putationally. This entity is at the core of our works and permits the formulation
of the discrete forward model which relates the acquired 2D measurements to the
unknown 3D structure of interest.

2.2 Discrete Forward Model in Cryo-EM

We first recall that the cryo-EM image-formation model, which we fully derived in
the continuum in Section 1.2, is given by

bθj =
(
Pθ
{
f
}
∗ h
)
(j) + nθj , (2.2)

where

• f : R3 → R is the 3D object being imaged;

• θ = (θ1, θ2, θ3) ∈ Ωθ parametrizes the problem geometry in SO(3);

• Pθ : L2

(
R3
)
→ L2

(
R2
)

is the X-ray transform operator for an orientation θ;

• h : R2 → R is the PSF of the TEM microscope;

• bθ ∈ RM is the 2D measurement vector (i.e., the projection2) for an orienta-
tion θ;

• nθ ∈ RM is the additive Gaussian noise vector associated to bθ;

2Unless otherwise indicated, we shall use the term “projection” throughout this thesis to con-
cisely refer to a noisy, PSF-convolved 2D cryo-EM projection measurement.
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• j ∈ Ω2D ⊂ Z2 indicate the indices of the M-sized vectors, with M = ]Ω2D.

For practical reasons, we make the choice to look for an approximation f̃ : R3 → R
of f that accurately represents the 3D object in a computationally-convenient,
shift-invariant basis.

2.2.1 Discretization Scheme

Following the generalized sampling scheme [98], we parametrize f̃ in the reconstruc-
tion space

V (ϕ) =

{
f̃ =

∑
k∈Z3

c[k]ϕ(· − k) : c ∈ `2
(
Z3
)}
, (2.3)

where ϕ ∈ L2(R3) is a suitable basis function. In practice, the coefficient sequence
c is restricted to a finite number of coefficients as the object f̃ and the basis func-
tion ϕ we consider (see below) are compactly supported. We write this vector of
coefficients as c =

(
c[k]

)
k∈Ω3D

. Here, the set Ω3D ⊂ Z3 corresponds to the support

of the coefficients required to represent the object f̃ , and the number of elements
in Ω3D is N = ]Ω3D.

In practice, the coefficients c ∈ RN are optimized during the reconstruction
procedure (Section 2.3). Once the optimization is done, the obtained coefficients
can be re-expanded in the space V (ϕ) through (2.3) to obtain the continuous rep-
resentation of the reconstructed volume.

A suitable choice for the basis function ϕ is the optimized Kaiser-Bessel window
function (KBWF) [99, 100] defined as

ϕ(x) =


(

1−
( ‖x‖
a

)2)m2
Im
(
α
√

1−
( ‖x‖
a

)2)
Im(α)

if 0 ≤ ‖x‖ ≤ a,

0 otherwise.

(2.4)

The KBWF depends on three parameters: 1) the order m of the modified Bessel
function Im, 2) the window taper α, and 3) the support radius a. KBWFs satisfy
several key desirable properties of basis functions: they form a Riesz basis [101],
they are compactly supported, and they have minimal deviation from the partition-
of-unity condition3 [98] for specific sets of parameter values (e.g., m = 2, α = 10.83,

3It was shown in [100] that the properties of “compact support” and “partition-of-unity” were
mutually exclusive for isotropic basis functions.
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a = 2) [100]. Moreover, their isotropic property allows for a significant reduction
in computational costs, as we shall later illustrate in Chapter 4.

2.2.2 System Matrix and Forward Model

We now make the assumption that the measurement bθ in (2.2) are taken from
the approximation f̃ of f given by (2.3), and we aim at recovering its coefficients
c. Using the linearity and shift-invariance properties of the X-ray transform (see
Appendix A.1), we rewrite the cryo-EM image-formation model as

bθj =
(
Pθ
{
f̃
}
∗ h
)
(j) + nθj , (2.5)

=
∑
k∈Ω3D

c[k]
(
Pθ{ϕ} ∗ h

)
(j −Mθ⊥k) + nθj . (2.6)

This gives the entries of the system matrix Hθ for a single orientation θ as

[Hθ]j,k =
(
Pθ{ϕ} ∗ h

)
(j −Mθ⊥k). (2.7)

In practice, the tomographic setup produces a series of P projections, each with
orientation θp, where p = 1, . . . , P . For the sake of conciseness, we hereafter use
the notations bθp = bp, nθp = np, and Hθp = Hp. By concatenating these entities
for P measurements, we obtain the discrete formulation of the complete cryo-EM
forward model as

b = Hc + n, (2.8)

where

b =


b1

b2

...
bP

 ∈ (RM)P = RMP , H =


H1

H2

...
HP

 ∈ RMP×N , and n =


n1

n2

...
nP

 ∈ RMP .

(2.9)

Finally, we remark that the direct storage of the matrix H is not feasible due
to its size: its number of entries is typically on the order of billions for cryo-EM.
To circumvent this problem, we follow the approach presented in [102]. Taking
advantage of the isotropy of KBWFs, we store the oversampled values of (Pθ{ϕ}∗h)
for a single orientation θ = θp in a look-up table, from which we then derive all the
entries of H whenever needed.
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2.3 Model-based Reconstruction with Sparsity Con-
straint

2.3.1 Inverse Problems and Ill-Posedness

Equipped with the discrete linear cryo-EM forward model, the reconstruction task
now consists in recovering c from b in (2.8). In other words, the goal is to “reverse”
the acquisition process to reconstruct the 3D structure of interest, a procedure that
falls in the scope of inverse-problem theory. This process can be more or less
arduous depending on the imaging conditions. Formally, an inverse problem is said
to be well-posed if a solution exists, is unique, and continuously depends on the
measurements [103, 104]. By contrast, ill-posed inverse problems refer to problems
that do not satisfy one (or more) of these conditions.

Ill-posed problems often arise in practice. For one, the system matrix H is of-
ten non-invertible as the object size tends to exceed the measurements size. Even
when H is invertible, it is usually ill-conditioned, i.e., the ratio of its maximal
and minimal singular values is large. Hence, even small perturbations on the mea-
surements b massively impact the recovered solution, which makes direct inversion
futile in presence of noise. Most inverse problems in biological imaging—and cer-
tainly cryo-EM—are ill-posed to some degree, meaning that one cannot rely on the
measurements alone to uniquely and/or stably recover the desired object.

2.3.2 Sparsity-Based Variational Formulation

A standard solution to handle ill-posed imaging conditions is to rely on regularized
variational methods that inject prior information into the reconstruction proce-
dure. When the noise distribution is assumed to be Gaussian, the data-fidelity
term that best measures the fidelity of the reconstruction to the acquired data is
quadratic [105]. Then, variational methods take the form

ĉ = arg min
c∈RN

1

2
‖Hc− b‖22 + λR(Lc), (2.10)

where ĉ ∈ RN is the recovered volume estimate, R : RQ → R is a regularization
functional, L ∈ RQ×N is a regularization operator, and λ > 0 is the regularization
parameter that sets the strength of the regularization.
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Different constraints based on prior knowledge can be applied to the recon-
structed 3D object through the term R(Lc). A popular approach is to exploit
the sparsity of natural objects, i.e., the fact that they can be represented with a
small number of nonzero (or near-zero) coefficients in a suitable basis specified by
the operator L [106]. The inclusion of a sparsity-promoting constraint in (2.10)
is classically achieved by using the convex `1 norm as a regularization functional,
i.e., R = ‖·‖1. In this case, the cost function in (2.10) is non-differentiable, which
notably precludes the use of gradient-based minimization methods [107].

In this thesis, we often use the popular edge-preserving total-variation (TV)
regularization as our sparsity-based prior [12]. TV regularization is obtained by
combining the discrete gradient operator∇ ∈ R3N×N with the mixed (`1/`2)-norm
defined, for all u ∈ R3N , as

‖u‖2,1 =

N∑
n=1

‖un,.‖2 (2.11)

with un,. ∈ R3. Hence, we set R(Lc) = ‖c‖TV = ‖∇c‖2,1 in (2.10).

2.3.3 ADMM-based Minimization Algorithm

Many efficient iterative algorithms have emerged over the years to solve non-
differentiable, convex optimization problems [108, 109, 110, 111, 112]. A powerful
splitting-based algorithm with prime convergence speed that solves (2.10) is the
alternating direction method of multipliers (ADMM) [113, 114]. The philosophy
behind ADMM is to decompose a relatively intricate optimization problem into a
set of simpler sub-problems that are solved recursively until convergence.

We start by introducing an auxiliary variable u = Lc, u ∈ RQ, to rewrite (2.10)
as a constrained optimization problem

ĉ = arg min
c∈RN

1

2
‖Hc− b‖22 + λR(u) s.t. u = Lc. (2.12)

Its augmented Lagrangian function is given by

L(c,u,α) =
1

2
‖b−Hc‖22 + λR(u) +αT (Lc− u) +

ρ

2
‖Lc− u‖22, (2.13)
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where α ∈ RQ is the vector of Lagrange multipliers, and ρ > 0 is a penalty param-
eter that influences the convergence speed.

ADMM theory [113] then asserts that (2.12) can be decomposed into simpler
problems by alternatively minimizing (2.13) with respect to c and u, and updating
α with a gradient ascent on (2.13), such that

c(k+1) = arg min
c

L
(
c,u(k),α(k)

)
(2.14a)

u(k+1) = arg min
u

L
(
c(k+1),u,α(k)

)
(2.14b)

α(k+1) = α(k) + ρ(Lc(k+1) − u(k+1)). (2.14c)

Hence, the ADMM sub-solvers of (2.12) are given by
c(k+1) = arg min

c

1
2‖Hc− b‖22 + ρ

2‖Lc− u(k) + α(k)

ρ ‖22 (2.15a)

u(k+1) = arg min
u

λR(u) + ρ
2‖Lc(k+1) − u + α(k)

ρ ‖22 (2.15b)

α(k+1) = α(k) + ρ(Lc(k+1) − u(k+1)). (2.15c)

The pseudo code corresponding to this cyclic three-steps minimization scheme is
given in Algorithm 1.

The first ADMM step (2.15a) is a quadratic minimization with respect to c that
requires one to solve

∇cL
(
c(k+1),u(k),α(k)

)
= 0, (2.16)

which is equivalent to solving the linear system(
ρLTL + HTH

)
c(k+1) = HTb + ρLT

(
u(k) +

α(k)

ρ

)
(2.17)

in terms of c(k+1). The difficulty in our case is that we cannot explicitly build
the inverse of the matrix

(
ρLTL + HTH

)
due to the size of HTH. We thus rely

on an iterative algorithm—classically, the conjugate gradient (CG) method [107]—
to solve (2.17). This inner CG algorithm includes iterates that necessitate the
application of the normal matrix HTH to the current volume estimate, which can
be very costly if this normal matrix is not carefully engineered and/or if multiple
CG loops are needed. The matrix LTL often takes the form of a (diagonalizable)
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convolution operator, assuming that proper boundary conditions are used. Even
when this is not the case, its application often has negligible computational cost
compared to that of HTH.

We recognize in the second ADMM step (2.15b) the proximal operator corre-
sponding to the regularization functional R. We recall that the proximal operator,
proxΦ : RQ → RQ, of a function, Φ : RQ → R, is defined by

proxΦ(u;µ) = arg min
u

1

2
‖z− u‖22 + µΦ(u) (2.18)

for µ > 0. In many instances, the proximal operator admits a closed-form expression
that can be efficiently computed [115]. In the case of TV regularization, where
Q = 3N , the proximal operator associated to the ‖·‖2,1 norm corresponds to a
rapid pointwise thresholding operation [116]

[
proxTV(u;µ)

]
n,.

=

(
1− µ

‖un,.‖2

)
+

un,. (2.19)

with u ∈ R3N , un,. ∈ R3, and (·)+ = max(·, 0). The step (2.15b) is often said
to be a generic (i.e., application-independent) statistical step, as it affects the
reconstruction quality via the regularization constraints imposed on the solution.
Finally, the third ADMM step (2.15c) is a simple update of the Lagrange multipliers
that corresponds to a gradient ascent on (2.13).

A definite advantage of ADMM is that it reaches a solution with acceptable
precision in relatively few iterations [117]. Different stopping criteria can be chosen
for the ADMM and CG algorithms. In our works, we either fix the maximal number
of outer ADMM loops and inner CG loops, or we stop the run when the difference
between successive iterations drops below a certain threshold. The complete algo-
rithmic scheme derived in this section is implemented in the GlobalBioIm library,
an open source MATLAB library for solving inverse problems (see Remark 5). The
library being particularly flexible, one can easily introduce additional constraints
(e.g., positivity constraint), implement different splitting schemes, or use alterna-
tive minimization algorithms.



38 Model-based Tomographic Reconstruction for Cryo-EM

Algorithm 1 ADMM with inner CG loops

Inputs: c0 ∈ RN , b ∈ RMP , λ > 0, ρ > 0

1: u0 = Lc0, α0 = u0

2: k = 0
3: while (ADMM stopping criteria not met) do
4: while (CG stopping criteria not met) do

5: c(k+1) ← solve (2.17) using CG
6: end while
7: u(k+1) = proxR

(
Lc(k+1) − α(k)

ρ ; λ
ρ

)
8: α(k+1) = α(k) + ρ

(
Lc(k+1) − u(k+1)

)
9: k = k + 1

10: end while
11: return c(k+1)

Remark 5 (GlobalBioIm). The optimization methods that decouple the physi-
cal aspects of the problem from the imposition of prior constraints on the signal
are of special interest in inverse problems. They permit a particularly modular
implementation that unifies modality-specific reconstruction algorithms under
a common reconstruction framework [118]. The user-friendly and open-source
GlobalBioIm library [119, 120] capitalizes on this unified multiplicity of modali-
ties to offer users a standardized resolution of a wide range of imaging problems.

Although they are more robust than direct methods, most iterative reconstruc-
tion schemes come with a prohibitive computational cost if not carefully engineered.
This is an important challenge in cryo-EM given the amount of data that needs to
be processed. The dominant computational cost in our reconstruction algorithm is
the linear step (2.17), which requires the repeated application of the normal ma-
trix HTH. Note that, although the discrete product HTb in (2.17) needs only be
computed once during the whole optimization procedure, this can also be costly in
its own right. The quest for computationally tractable formulations for HTH and
HTb is discussed in Chapter 4.



Chapter 3

Compressed Sensing (CS) for
STET

3.1 Introduction

1This work is dedicated to STET imaging (Figure 3.1, left), which we introduced
in Section 1.3.2. As explained then, the primary concern in STET is to reduce the
electron dosage—which is damaging to the sample (Figure 3.1, right)—while main-
taining an acceptable reconstruction quality. Our contributions to this conundrum
is the design of a robust acquisition-reconstruction scheme for STET that permits
high-quality reconstruction from limited STET measurements.

To set the context, we recall that popular downsampling strategies for low-dose
STET imaging include the two following approaches.

• Uniform tilt-downsampling (T-DS), where one acquires fewer equally-spaced,
fully-scanned 2D projections over the widest possible angular range. This is
equivalent to increasing the angular increment between two successive tilts.

• Random image-downsampling (I-DS), where one scans only a fraction of the

1The content of this chapter is based on [17]: Laurène Donati, Masih Nilchian, Sylvain
Trépout, Cédric Messaoudi, Sergio Marco, Michael Unser. Compressed Sensing for STEM To-
mography. Ultramicroscopy, 2017.

39
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Figure 3.1: (Left) In a typical STET setup, the lenses focus the electrons in a
single beam and the tilted sample is scan-rastered to form a projection image. The
purple area indicates the angular region left uncovered due to technical constraints,
which results in a missing cone of information in the Fourier domain. (Right) A
primary concern in STET is to reduce the electron damage that results from an
increased electron exposure (image adapted from [122]).

3D sample at each orientation following a random downsampling pattern,
resulting in incomplete 2D projections.

In [40], Saghi et al. combined the two downsampling techniques and demon-
strated that further reduction of radiation damage could be achieved by doing
so. Interestingly, they choose to perform the reconstruction in two distinct steps.
They first filled the missing pixels in each undersampled 2D projection through
TV-inpainting [121]. They then recovered the 3D volume from these restored pro-
jections with a TV-regularized tomographic reconstruction scheme.

The reconstruction task in such low-dose STET imaging conditions is highly ill-
posed due to the multiple sources of missing information. Those include a limited
number of projections, unscanned pixels in the projections, a missing wedge of
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information in the Fourier domain, and strong noise degradation of the projections.
This adverse situation advocates for the development of more robust reconstruction
methods than the one proposed in [40].

A particularly powerful paradigm to robustly handle reconstructions from very
few measurements is compressed sensing (CS) [123]. CS is extremely relevant to
biomedical imaging and has been applied with great success to multiple imaging
modalities [124, 125, 126, 127]. In short, the CS theory assesses that sparse signals
can be acquired with a reduced number of measurements provided that proper
acquisition and recovery methods are used.

In this work, we present a tailored acquisition-reconstruction STET framework
that relies on the principles of CS and permits to minimize the electron dosage
required for high-quality STET imaging. More precisely, we propose to scan only a
small random subset of pixels at every sample orientation, and present a regularized
reconstruction scheme to recover the 3D sample from these strongly undersampled
data. We demonstrate on simulated and real data that reconstruction can then be
achieved with very few measurements, hence strongly reducing the effect of sample
degradation and preserving image quality.

The chapter is organized as follows. In Section 3.2, we recall the principles
of CS theory and three of its key ingredients: data sparsity, incoherent sensing,
and `1-regularized signal recovery. We then demonstrate the applicability of each
principle to STET in the subsequent sections. In Section 3.3, we discuss the spar-
sity of biological STET samples. In Section 3.4, we demonstrate the incoherence
property of the random I-DS scheme associated with the wavelet representation
basis. In Section 3.5, we describe the nonlinear reconstruction scheme that permits
the robust recovery of volumes from measurements acquired in low-dose imaging
conditions. We present our experimental results in Section 3.6 and our conclusions
in Section 3.7.

3.2 CS Theory

As a preliminary, we briefly describe here the three theoretical components of CS
theory that are of central importance to our work.
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3.2.1 Data Sparsity

The theory of CS relies on the notion of sparsity [123]. A signal is said to be sparse
if it has a concise representation in some basis. The mathematical formulation is
as follows. Let the expansion of a signal c ∈ RN in an orthonormal representation
basis Ψ = [ψ1ψ2 · · ·ψN ] ∈ RN×N be given by

c =

N∑
n=1

anψn, (3.1)

where a = (a1, a2, . . . , aN ) ∈ RN is the sequence of expansion coefficients of c, with
an = 〈c,ψn〉. The implication of sparsity is that, in a suitable sparsifying basis Ψ,
the signal c is represented by very few nonzero coefficients an (in comparison to
N). Those nonzero coefficients thus concentrate most of the signal information. In
practice, most objects of interest are not exactly sparse, but rather approximately
sparse (i.e., compressible). For these signals, most of the coefficients in the sparsi-
fying basis Ψ have near-zero values instead of strictly null ones. We say that the
K-sparse approximation of the signal is obtained when one keeps only the K � N
larger coefficients and discards the rest.

3.2.2 Incoherent Sensing

It is well known in signal processing that sampling a signal below the Nyqvist
frequency introduces aliasing artifacts that manifest themselves as periodizations
in the Fourier domain [98]. A key idea in CS is to rely on a sensing matrix A
(i.e., an acquisition process2) that introduces incoherent artifacts in the sparsifying
representation basis Ψ. These artifacts are said to be incoherent because they
spread uniformly throughout the basis Ψ in a noise-like manner. Hence, the few
non-zero entries of a stand out from the introduced incoherent artifacts, and can
then be recovered through sparsity-promoting reconstruction [123].

The smallest sampling frequency that can accurately capture the signal infor-
mation is directly determined by the incoherence of the sensing matrix A with
respect to the sparsifying representation basis Ψ [128]. The coherence of a ma-
trix relates to the amount of cross-correlation between its column vectors [129].

2We use here the notation A to describe a more generic acquisition process than the cryo-EM
one introduced in Chapter 2 and modeled by H.
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In CS theory, the incoherence condition is fulfilled when A respects the restricted
isometry property [130]. Simply said, the larger the incoherence of the sensing-
representation bases pair A/Ψ, the fewer the number of samples needed for proper
signal reconstruction.

Herein lies the key practical challenge in CS: to design a physical acquisition
procedure that sufficiently fulfills the incoherence condition when paired with an
appropriate representation basis. In that respect, an important consideration for
the present work is that the column vectors of random matrices are largely inco-
herent with any fixed basis. Hence, random sensing matrices can very efficiently
capture information on sparse signals with a minimal number of measurements,
which we shall exploit for the design of an incoherent STET acquisition scheme
(Section 3.4).

3.2.3 `1-Regularized Signal Recovery

Let now consider the task of reconstructing the signal c ∈ RN from its measure-
ments b ∈ RMP collected through the sensing matrix A ∈ RMP×N , i.e. Ac = b.
Assuming that the conditions of sparsity and incoherence are met, CS theory as-
sesses that it is possible to correctly recover the original signal from its undersam-
pled measurements. More precisely, the transform coefficients a of c in (3.1) are
recovered by solving the optimization problem [131]

â = arg min
a∈RL

‖AΨa− b‖22 s.t. ‖a‖0 < K, (3.2)

with â ∈ RN and K > 0. The `0 seminorm ‖a‖0 counts the number of nonzero
elements of a, while the quadratic term enforces data consistency. Hence, the
minimization (3.2) yields the K-sparse solution that is the most compatible with the
measured data [123, 132]. In addition, the incoherence condition ensures that (3.2)
can be relaxed into the more computationally-tractable problem [131]

â = arg min
a∈RN

‖AΨa− b‖22 + λ‖a‖1, (3.3)

where the `1-norm promotes the sparsity of c in Ψ with a strength set by λ > 0.
The estimated signal ĉ can then be re-expanded through ĉ =

∑N
n=1 ânψn.
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3.3 Sparsity of STET Samples

We start our application of the CS principles to STET by exposing the sparsity
of the considered bio-samples in the discrete Haar wavelet transform (Haar DWT)
domain. In preamble, we recall that it has long been established that most natural
images or volumes are (approximately) sparse in appropriate domains, such as
the discrete cosine transform (DCT) and the DWT [133]. Similarly, the sparsity
of various signals of relevance in biomedical imaging has been demonstrated by
multiple works [124, 134, 135, 125]. In [136], Anderson et al. assessed the sparsity
of various EM samples in the block-DCT domain. For cryo-ET, Song et al. showed
that the projections exhibit sparsity in the DCT domain [137]. The suitability of the
DWT for sparsely representing ET data has also been demonstrated in a number of
empirical studies [138, 139, 140]. Even though the aforementioned works certainly
provide compelling arguments for the sparsity of STET samples, we confirm this
property in Figure 3.2 for the sake of completeness.

3.4 Incoherence Analysis for Random-Beam STET
(RB-STET)

We now restrict our interest to the low-dose STET regime achieved through ran-
dom I-DS, motivated by the observation that random matrices are largely inco-
herent with any fixed basis. For the sake of conciseness, we hereafter refer to this
acquisition setup as random-beam STET (RB-STET), for which an illustration is
provided in Figure 3.3 (left). In this section, we first derive the discrete forward
model for RB-STET. We then experimentally demonstrate the incoherence of RB-
STET sensing associated to the DWT representation basis Ψ. As discussed, this
amounts to verifying that the artifacts introduced by the RB-STET acquisition
scheme behave in a “noise-like” manner in Ψ.

3.4.1 Discrete Forward Model of RB-STET

We now derive the discrete forward model that relates the 3D object of interest
c to its RB-STET measurements b. This acquisition process corresponds to the
straight-line transmission of the electron beam through the sample at positions
dictated by the random I-DS scanning pattern. Hence, we can largely rely on the
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Figure 3.2: Illustration of the sparsity of biological 2D STET images in the Haar
DWT. We consider typical STET samples (here in 2D) and compute their Haar
DWT coefficients using the ImageJ software [141]. We then discard most of these
coefficients (90%-95%) and compute the inverse transform to get the K-sparse ap-
proximation of the original images. In the image domain, a large range of nonzero
coefficients is observed for all samples (left histograms). In contrast, most coef-
ficients in the sparsifying domain have near-zero values (right histograms). As a
result, discarding of 90%-95% of the transform coefficients does not lead to signifi-
cant perceptual losses in the inverse-transformed images (far right).

building blocks for cryo-EM modelling introduced in Section 2.2. In particular, we
use the system matrix Hp defined in (2.7) to model the transmission process for a
sample at orientation θp ∈ Ωθ. The random scanning for this projection bp is then
handled by introducing the diagonal matrix Sp ∈ RM×M , whose M -sized diagonal
has entries equal to ones at the locations on the projection plane scanned by the
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Figure 3.3: (Left) The RB-STET acquisition scheme. (Right) A fully-sampled
linear-scanning scheme. Image from Sylvain Trépout.

electron beam, and zeros elsewhere. We assume here that this random-scanning
regime follows a uniform distribution.

By concatenating all the relevant entities and assuming an additive Gaussian
noise model, we obtain the discrete formulation of the RB-STET forward model for
P projections as

b = Ac + n = SHc + n, (3.4)

with c ∈ RN ,

b =


b1

b2

.

.

.
bp

 ∈ RMP , S =


S1 0 · · · 0
0 S2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · Sp

 ∈ RMP×MP , H =


H1

H2

.

.

.
Hp

 ∈ RMP×N , and n =


n1

n2

.

.

.
np

 ∈ RMP .

(3.5)

The treatment of optical effects deserves some discussion here. An inherent
problematic of optical imaging systems in the context of CS is that their PSF can
negatively affect the incoherence of such sensing systems due to the correlative
nature of the convolution. In our case, we make the assumption that this deviation
from the ideal CS world is manageable and does not preclude the use of a CS-scheme
based in STET. Hence, we do not include the effect of PSF in our RB-STET forward
model and set h = δ in (2.2), with δ the Dirac delta distribution. We investigate
the soundness of this assumption in Section 3.6.2 by running experiments with real
STET projections.
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Figure 3.4: Comparison of the reconstruction of a sparse 2D signal (top row) from
two different downsampling approaches: uniform sinogram sampling (middle row)
and random sinogram sampling, which mimics RB-STET (bottom row). The pro-
jections (c) of the spatial signal (b) harbor an ”impulse-like” sparse expansion (a)
in the wavelet domain Ψ. Uniform undersampling of the projections (d) is asso-
ciated with a coherently aliased TPSF (f ). In contrast, random undersampling of
the projections (g) results in an incoherently aliased TPSF (i). As a corollary, FBP
reconstruction (indicated by P−1) of the randomly sampled 1D projections (h) is
more accurate (b) than the signal reconstructed from uniform sampling (e). The
small upper-right boxes in (a), (f ), and (i) display profile views of the respective
sparse representations.
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3.4.2 Experimental Incoherence-Analysis

We now verify the incoherence of the RB-STET sensing matrix A = SH ∈ RMP×N

in (3.5) with respect to the Haar DWT representation basis Ψ by using the trans-
form point-spread function (TPSF) analysis proposed by Lustig et al. [124]. The
TPSF generalizes the notion of PSF in that it assesses “how a single transform co-
efficient of the underlying object ends up influencing other transformed coefficients
of the measured undersampled object”.

The results of our incoherence analysis (performed in 2D) are displayed in Fig-
ure 3.4. The evaluation is performed on a (64× 64) synthetic image representing a
single square surrounded by zero values (Figure 3.4b). For the sake of simplicity, we
use the FBP3 algorithm to reconstruct the signal from 1800 noise-free projections
equally-spaced in [0; 2π) (Figure 3.4c). A uniform I-DS scheme (Figure 3.4d-f) is
also considered to permit comparison with the RB-STET regime (Figure 3.4g-i).

The results empirically confirm the incoherence between the RB-STET sensing
and the Haar DWT. Indeed, the introduced artifacts have a strongly incoherent
behaviour in Ψ (Figure 3.4i). In contrast, a uniform I-DS scheme leads to a much
less suitable outcome (Figure 3.4f), with the appearance of severe aliasing artifacts.
These results suggest that the signal of interest can indeed be recovered from un-
dersampled RB-STET measurements assuming that a proper non-linear recovery
scheme is used.

3.5 Reconstruction Scheme for RB-STET

Our focus so far has been on the Haar DWT as the sparsifying basis for our RB-
STET measurements. In this framework, the recovery scheme (3.3) actually cor-
responds to a wavelet-shrinkage problem [142], which can be solved through the
cycle-spinning technique [143, 144, 145]. An alternative is to link the wavelet-
shrinkage algorithm to the closely-related TV-regularised scheme [146, 147], which
is the approach we take in this work. Hence, our RB-STET reconstruction scheme
takes the variational form

ĉ = arg min
c∈RN

‖SHc− b‖22 + λ‖∇c‖1, (3.6)

3As mentioned in Section 2.1, FPB demonstrates satisfactory performance when the measure-
ments are sufficiently numerous, noise-free, and uniformly covering the Fourier domain.
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XY YZ

XZ

Figure 3.5: Orthoslices of our (512×512×256) ground-truth depicting the flagellar
pocket of a trypanosome [149]. The scale bar indicates 250nm.

where ∇ : R3N×N is the discretized gradient operator. We solve (3.6) using the
ADMM-based minimization algorithm presented in Section 2.3.2. The regulariza-
tion functional ‖ ·‖1 : R3N → R corresponds here to the `1 norm, which also admits
a fast pointwise proximal operator [148].

3.6 Experiments

We assess the performance of our RB-STET acquisition-reconstruction scheme with
experiments on synthetic and real STET data. In the synthetic case, we use as
ground-truth a 3D reconstruction obtained from a set of real fully-scanned STET
projections. We then simulate RB-STET projections from this ground-truth using
our forward model (3.4). In the real-case, we directly work with the aforementioned
real STET projections and randomly select a subset of pixels to mimic real RB-
STET projections. This allows us to assess the efficacy of our framework in more
realistic, challenging conditions that notably include optical effects.

3.6.1 Synthetic-Data Experiment

Simulation Conditions

Our ground-truth volume is a 3D visualization of size (512 × 512 × 256) of the
flagellar pocket of a trypanosome (Figure 3.5) [149]. We simulate the RB-STET
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acquisition process through (3.4) and (2.7), using a KBWF with parameters a = 2,
α = 10.8, m = 2 [100]. To mimic the missing wedge of information, we restrict
ourselves to an angular coverage of (−70°; +70°), with a 1° increment (i.e., 140
projections). For comparison purposes, two downsampling strategies are simulated
in the experiments: uniform T-DS and random I-DS. Uniform T-DS condition is
achieved by uniformly increasing the angular distance between two acquired projec-
tions. Random I-DS is achieved by applying a uniformly randomized subsampled
binary mask over the 140 initial projections.

Unless otherwise indicated, the reconstruction is performed by solving (3.6) us-
ing the ADMM-based algorithm presented in Section 2.3.2. For the reconstruction,
we use a different KBWF (a = 4, α = 19, m = 2) as basis function to reduce the
risk of inverse crime4. Finally, the optimization of the regularization parameter λ
in (3.6) is done by visual assessment.

Uniform T-DS vs Random I-DS

We first demonstrate the superiority of random I-DS strategies over uniform T-
DS techniques at various levels of electron-dosage reduction. We simulate both
downsampling conditions and compare the reconstructions from the two synthetic
datasets.

Figure 3.6 shows the orthoslices of the reconstructions when only 50%, 10%,
and 3% of the initial electron dosage is used. When the dose is reduced by half (left
column), high-quality reconstructions can still be obtained with both frameworks,
as confirmed by the clear overlapping of their corresponding profile lines. However,
when the ratio of scanned areas falls below 10% (middle column), the reconstruction
from the uniform T-DS measurements starts showing strong degradation whereas
the reconstruction from random I-DS acquisitions remains of satisfactory quality.
The profile lines on the 3% reconstructions (righ column) further illustrate the
superior robustness of the random I-DS strategy in low-dose imaging conditions:
Whereas the T-DS approach fails to retrieve any important change in intensity,
random I-DS still permits the visual delimitation of the main trypanosome struc-

4An inverse crime [150, 151] occurs when one uses the same theoretical ingredients to simulate
the measurements and reconstruct the sample. In this thesis, we reduce this risk by always using
KBWFs with different sets of parameters for generating the 2D projections and for reconstructing
the 3D object. The sets of KBWF parameters we consider both ensure minimal deviation of
KBWFs from the partition of unity condition [100].
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Downsampling (DS) : 3%

Uniform T-DS Random I-DS

Figure 3.6: (Top) Cross-sectional slices through the flagellar pocket reconstructed
from uniformly T-DS synthetic projections and from random I-DS synthetic projec-
tions at various downsampling levels (50%, 10%, 3%). (Bottom) Profile lines taken
on the XY-orthoslices of the reconstructed volumes. The position of the profile line
is indicated in yellow on the orthoslices. The scale bar indicates 250nm.

tures.

Reconstruction Algorithms for Random I-DS Data: Existing [40] vs Pro-
posed (RB-STET)

We now compare our full sensing-reconstruction RB-STET framework to the pio-
neering reconstruction approach5 proposed by Saghi et al. [40] for the reconstruction
of random I-DS measurements. As previously mentioned, the authors performed the
reconstruction in two distinct steps: They filled in the missing unscanned pixels in
the projections through TV-inpainting, and then applied an iterative tomographic

5This was the state-of-the-art approach at the time of publication.
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Figure 3.7: Comparison of the proposed RB-STET algorithm with the existing
one [40] for the reconstruction of synthetic random I-DS projections of T. bru-
cei [149]. (Top) Cross-sectional slices through the reconstructed flagellar pocket
for both algorithms at 50% and 20% downsampling. (Middle) FSC curves between
the ground-truth and the reconstruction for both algorithms at 50% and 20% down-
sampling. (Bottom) Profile lines taken on the XY-orthoslices of the reconstructions.
The position of the profile line is indicated in yellow on the orthoslices. The scale
bar indicates 250nm.
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algorithm with TV-regularization on the restored projections. We have reimple-
mented their algorithm as described in [40]. For both reconstruction schemes, the
optimization of the hyper-parameters is performed by visual assessment.

Figure 3.7 presents orthoslices of the reconstructions of random I-DS data
achieved by both frameworks at 50% and 20% downsampling ratios (top). The
corresponding Fourier shell correlation (FSC6) are also displayed (middle), as well
as the profile lines taken on the XY-orthoslices of the reconstructed volumes (bot-
tom). Visual and quantitative analysis of these results indicate that, at equivalent
dose reduction, the proposed RB-STET reconstruction algorithm outperforms the
algorithm from [40]. In particular, our algorithm can retrieve finer details (e.g.,
filament-like structures) and achieve higher resolution at both downsampling lev-
els, as indicated by the FSC curves and the profile lines.

Several reasons can be put forward to explain these improvements. First, the
proposed RB-STET algorithm performs the tomographic reconstruction in a single
global fashion, as prescribed by the theory of CS. Significant advantages follow: The
combination of more data gives additional information about the object of interest,
and the influence of sparsity increases with the dimensionality of the reconstruc-
tion procedure. Furthermore, as explained by the authors in their discussion [40],
their reliance on a delicate intermediate TV-inpainting step limits their capacity
to reconstruct fines structures when only few pixels are scanned, as TV-inpainting
tends to introduce strong staircase artifacts on the heavily-downsampled projec-
tions. Finally, our approach simplifies the optimization procedure in that it only
requires the tuning of a unique hyper-parameter (the regularization parameter λ).

3.6.2 Real-Data Experiment

To get some insight on the performance of the RB-STET scheme in real conditions,
we generate a RB-STET dataset from real STET projection measurements. To do
this, we apply a uniformly-randomised subsampling binary mask to the real projec-
tion dataset. The difference with the previous synthetic experiment is important as
the use of real STET projections 1) involves optical effects that may jeopardize the

6The FSC is a popular metric in cryo-EM [152]. It provides a measure of resolution by com-
paring the Fourier transforms of two volumes (e.g., the ground-truth and the reconstruction)
at different frequencies. The spatial frequency at which the FSC curve falls below a certain
criterion—commonly fixed at FSC=0.5 or FSC=0.143 in the cryo-EM community—indicates the
achieved resolution. For more details, see Appendix A.3.
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incoherence of our sensing-representation basis, and 2) increases the ill-posedness
of the reconstruction problem.

Sample Preparation and Data Acquisition

T. brucei cells are cultured in SDM79 medium supplemented with haemin and 10%
foetal calf serum [153], and fixed directly in the culture flask with 2.5% glutaralde-
hyde and 4% PFA for 30 min at room temperature. The cells are then rinsed three
times in PBS and subsequently post-fixed in 1% OsO4 for 30 min at room temper-
ature. They are then dehydrated in baths of increasing ethanol concentrations at
4° C and included in Epon resin. Sections of 500 nm are prepared using an ultra-
microtome and are mounted on electron microscopy copper grids for observation.

The tomographic tilt-series are acquired using the bright-field STET detector
(camera length: 60 cm; magnification: 150,000×; probe size: 1.5 nm; convergence
semi-angle of the beam: 25 mrad; collection semi-angle of the detector: 6.667 mrad)
on a JEOL 2200FS field emission gun 200 kV electron microscope (JEOL© Ltd.). A
total of 100 projections are acquired following a Saxton scheme [154] from -70° up to
+70° with tilt increments varying between 1° (at the highest tilt angles) and 2° (at
the lowest tilt angles around 0°). Images are recorded using the Recorder software
(JEOL© Ltd.). A total of five images with different foci are collected for each tilt
angle and merged as described in [149], enabling the recovery of information at
focus through the whole sample depth.

Reconstruction of Randomly-Downsampled Real STET Projections

The reconstruction is performed by solving (3.6) using the ADMM-based algorithm
presented in Section 2.3.2. Figure 3.8 compares the (512×512×256) reconstruction
from the unsampled real STET dataset to the (512 × 512 × 256) reconstruction
obtained when a 30% random I-DS scheme is applied to these projections.

The results show that the RB-STET reconstruction scheme can recover the
main Trypanosome structures even when only a third of the initial information is
available in the measurements. In particular, the structures annotated in Figure 3.8
can still be located and distinguished from one another in the reconstruction (Fig-
ure 3.8-bottom). The contours of the collarette and the flagellar membrane are also
correctly recovered. The analysis of the central structures of the flagellar pocket
(i.e., the basal body, the microtubules doublets and the central pair) underlines the
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Figure 3.8: Cross-sectional slices through the reconstructed flagellar pocket of T.
brucei from (top) real fully-scanned STET projections and from (bottom) real
STET projections with 30% random I-DS. The indicated biological structures are
the basal body (BB), the collarette (C), the central pair (CP), the flagellar mem-
brane (FM) and the microtubules doublets (MD). The scale bar indicates 250nm.

difficulty of recovering the higher-frequency details. Nevertheless, important visual
information on the shape and texture of those structures can be retrieved from the
reconstructed volume. Finally, these positive experimental results tend to confirm
that the presence of optical effect does not severely impact the incoherence of the
RB-STET acquisition scheme.

3.7 Discussion

We presented a regularized tomographic reconstruction framework to recover high-
quality volumes from randomly-downsampled STET projections (i.e., RB-STET
data). This acquisition-reconstruction framework was built upon the demonstra-
tion that, in contrast to uniform downsampling methods, RB-STET fulfills the
incoherence condition required by the CS theory when associated to the Haar
DWT representation basis. Its predicted superiority over T-DS approaches was then
demonstrated through simulations on synthetic RB-STET data. We also showed
that the proposed algorithm outperforms the pioneering approach by [40] for the
reconstruction of randomly downsampled STET measurements. The experiments
with real projections confirmed the robustness of the RB-STET in more realistic
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(and thus more challenging) imaging conditions.
Overall, this work establishes the potential of RB-STET to produce quality re-

constructions of detailed biological objects in low-dose imaging conditions. The
development of RB-STET could enable the study of highly electron-sensitive bio-
logical samples through less electron-intensive methods. The major development
ahead for RB-STET is the development of a physical setup that implements the ran-
dom I-DS acquisition scheme. The project, led by our collaborator Sylvain Trépout
at the Institut Curie, is an intricate one. The main technical challenges include the
need for fast but accurate beam-positioning, and the necessity of reducing sample
displacement during the random-scanning procedure to prevent reconstruction arti-
facts. By occurring at a timepoint where cryo-STET studies are emerging [15], this
new development could contribute to the feasibility and popularisation of RB-STET
in biological sciences.



Chapter 4

Fast Regularized
Reconstruction Framework
for SPA

In this chapter, we build upon the comprehensive mathematical framework intro-
duced in Chapter 2 and present a fast, regularized reconstruction framework for
SPA1. More specifically, our contributions to SPA are three-fold. The first and
central part is the design of a fast multicale reconstruction scheme (Section 4.1)
that makes the use of our regularized iterative method feasible in SPA. We then
use this fast algorithm as a building block of a new joint optimization framework
(Section 4.2) that alternates between the reconstruction and the estimation of the
unknown orientations. Finally, we propose an alternate splitting scheme for our
ADMM-based algorithm (Section 4.3) that removes the need for the nested CG
loops.

1SPA is introduced in Section 1.4.2.
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4.1 Fast Multiscale Reconstruction Scheme

4.1.1 Overview

2The determination of a high-resolution 3D structure in SPA is a highly challenging
procedure. This is due to a multiplicity of complicating factors, which include the
unknown projection orientations, an extreme noise level on the projections, their low
contrast, the conformational heterogeneity of molecules, an incomplete knowledge
of the imaging physics, and the large number of measurements to process.

To handle this, most SPA packages implement a so-called 3D iterative-refinement
procedure during which information is gradually added to a rough initial volume
estimate. In most instances, the reconstruction at every iteration of this refine-
ment pipeline is carried out independently of the angular estimation, which aims
at estimating the unknown orientation θp associated to each projection bp. The
reconstruction is usually performed with direct inversion methods, that are fast but
lack robustness in adverse imaging conditions.

In this work, we propose a multiscale iterative-reconstruction framework for
SPA based on the mathematical framework we derived in Section 2.2. By permit-
ting full 3D regularization, our algorithm is a robust alternative to direct methods
for performing reconstruction in adverse imaging conditions. We handle the recon-
struction of volumes at any desired spatial scale by representing 3D objects with
scaled basis functions. The controlled dilation of these basis functions then gives
us the possibility to adjust the scale of the representation to the quality of the
measurements.

The reconstruction task itself is formulated as a regularized optimization prob-
lem that is solved iteratively, as described in Section 2.3.2. To make the use of
such an iterative method feasible in SPA, we introduce a fast formulation for the
cost-dominant step of the reconstruction. The cost of this new operation does not
depend on the number of projection orientations, which results in a substantial
speedup. Moreover, the PSF is included inside the reconstruction scheme at no
extra computational cost.

This multiscale reconstruction tool generates interesting opportunities for the

2The content of this section is based on [18]: Laurène Donati, Masih Nilchian, Carlos Oscar
Sorzano, Michael Unser. Fast Multiscale Reconstruction for Cryo-EM. Journal of Structural
Biology, 2018. This article was part of the 2018 Special Issue on Cryo-EM Structure Map and
Model Challenges.
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stabilization of the 3D iterative refinement procedure in SPA, whose convergence
still heavily depends on the quality of the initial reconstruction [75, 76]. In par-
ticular, we show that reconstructing at a coarse scale increases the robustness to
angular misestimations and leads to gains in computational speed. We present
reconstructions obtained at different scales from a real dataset of the 2015/2016
EMDataBank Map Challenge3.

This chapter is structured as follows: the principles behind our multiscale frame-
work and its relevance in the context of SPA are explained in Section 4.1.2. We de-
tail the iterative multiscale reconstruction scheme in Section 4.1.3. In Sections 4.1.4
and 4.1.5, we derive fast formulations for the cost-dominant operations of our it-
erative scheme. The resulting reduction in computational cost is discussed in Sec-
tion 4.1.6. Finally, our results are presented in Section 4.1.7 and discussed in
Section 4.4.

4.1.2 Multiscale Representation

Multiscale for Solving Ill-Posed Inverse Problems

The idea behind multiscale processing is to process signals over a certain range of
scales when executing multistep procedures. An advantage is that operations per-
formed at coarse scale are usually more robust and permit gains in computational
speed [155]. They come useful when 1) only incomplete and degraded information
is available as input, and 2) a low-resolution output is acceptable for further pro-
cessing. A benefit is that this robustness of the initial coarse estimate can positively
impact the convergence of all subsequent steps in the procedure.

This observation is the motivation behind the so-called pyramid approaches [156,
157] that solve complex imaging problems iteratively using a multiscale representa-
tion of volumes. Several works have successfully used pyramid processing in biomed-
ical imaging for handling strongly ill-posed optimization problems with abundant
local minima [158, 159]. This approach has also been favorably used in alternate
minimization frameworks, for example in blind deconvolution works [160, 161].

Multiscale-based approaches have been used in SPA to improve the angular-
estimation procedure [162, 163]. In [163], Sorzano et al. use a coarse-to-fine discrete
wavelet transform to compute the correlation between the measurements and the
reference projections. A coarse scale indeed suffices to discriminate projections that

3https://challenges.emdataresource.org/2015 map challenge
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come from different orientations. However, if the projections match at a coarse
scale, then the analysis is pursued at a finer scale. This multiscale wavelet-space
matching algorithm provide gains both in speed and in robustness.

Several conditions specific to SPA advocate for the use of pyramid-like ap-
proaches inside the global refinement procedure itself. For example, it has been
shown that the determination of the unknown orientations essentially depends on
low-resolution information [164, 165]. Thus, a coarse representation of volumes is
more desirable at the early stages of the refinement process. Indeed, its resolution
proves sufficient for further processing while it remains robust to the incomplete
information.

Multiscale Representation for SPA

We thus look for the s-scaled function f̃s : R3 → R that accurately approximates
the 3D object f in a shift-invariant basis. The important aspect here is to consider
the scaled reconstruction space

Vs(ϕ) =

{
f̃s =

∑
k∈Z3

cs[k]ϕs(· − sk) : cs ∈ `2
(
Z3
)}

(4.1)

specified by the scaled basis function

ϕs = ϕ(·/s) ∈ L2(R3), (4.2)

where s > 0 denotes the scaling parameter. Similarly to Section 2.2.1, we use
the KBWF as our basis function ϕ. This choice is greatly motivated here by the
isotropy of KBWFs, which allows for a significant reduction in computational costs
as we shall later illustrate in Sections 4.1.4 and 4.1.5.

The coefficient sequence cs in (4.1) corresponds to the discrete s-scaled repre-
sentation of the reconstruction f̃s in the space Vs(ϕ). This sequence is restricted to
a finite number of coefficients as the object f (hence f̃s) and the considered basis
function ϕ are compactly supported. We write this finite sequence as the vector of
coefficients cs =

(
cs[k]

)
k∈Ωs3D

. Here, the set Ωs3D ⊂ Z3 corresponds to the support

of the coefficients required to represent the scaled reconstruction f̃s. After the op-
timization procedure, the obtained coefficients are reexpanded in the space Vs(ϕ)
through (4.1) to obtain the scaled reconstruction f̃s.
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Figure 4.1: Impact of the controlled dilatation of the basis function ϕs by the scal-
ing parameter s > 0 on the reconstruction. This simple dataset consists of 2,000
noiseless projections a (256 × 256 × 256) beta-galactosidase volume with equidis-
tributed orientations. The scale is decreased from left (s = 8) to right (s = 1), with
intermediate values s = 4 and s = 2. (a-d) Optimized isotropic KBWF ϕs (with
a = 2, α = 10.8, m = 2) are dilated by increasing s. (e-h) Central orthogonal
slices of the volume reconstructed with the proposed approach at different scales.
Volumes are reexpanded on a fine grid through (4.1). (i-l) Corresponding FSC
curves, which indicate at which frequencies the reconstructions correlates with the
ground truth (see Appendix A.3).

The scaling parameter s in (4.2) is the central element of our multiscale repre-
sentation. It dilates the basis function ϕs and thus controls the coarseness of the
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representation f̃s. A large value of s enforces a coarse (“low-resolution”) volume,
while a small value of s imposes a fine (“high-resolution”) representation. This is
illustrated in Figure 4.1, where the coarseness of the reconstructions increases with
the scaling parameter.

Finally, the scale s also influences the size of the set of coefficients cs. More
precisely, the number of coefficients decreases as the scale increases, with a size
of cs given by ]Ωs3D = N/s3. The scaling thus strongly impacts the speed of
the reconstruction algorithm, as the procedure is then performed on significantly
smaller objects. For the sake of clarity, we hereafter use the notation Ns = N/s3,
such that cs ∈ RNs .

4.1.3 Iterative Multiscale Reconstruction

Imaging Model with Multiscale Representation

We recall that our cryo-EM image-formation model is given by

bpj =
(
Pθp

{
f
}
∗ hp

)
(j) + npj , (4.3)

and is detailed in (2.2). We recall that bp is the 2D measurement of the 3D
object f imaged at orientation θp through a process that involves straight-line
electron transmission (via Pθp), optical effects (via hp), and additive Gaussian noise
degradation (via np). In SPA, the object f actually corresponds to P (supposedly
identical) copies of the same structure of interest, with P in the orders of 105-
106. Each of these 3D copies (called “particles”) gets imaged once, which yields P
projections bp.

We now assume that the s-scaled approximation f̃s of f in (4.1) yielded the
measurements given by (4.3). Using again the properties of the X-ray transform,
we rewrite (4.3) as

bpj =
(
Pθp

{
f̃s
}
∗ hp

)
(j) + npj (4.4)

=
∑
k∈Ωs3D

cs[k]
(
Pθp{ϕs} ∗ hp

)
(j − sMθp⊥k) + npj . (4.5)

This gives us the entries of the imaging matrix Hp
s as

[Hp
s ]j,k =

(
Pθp{ϕs} ∗ hp

)
(j − sMθ⊥p

k), (4.6)
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with j ∈ Ω2D and k ∈ Ωs3D.
Hence, the discrete forward model for P projections in our multiscale framework

is given by

b = Hscs + n, (4.7)

with cs ∈ RNs ,

b =


b1

b2

...
bP

 ∈ RMP , Hs =


H1
s

H2
s

...
HP
s

 ∈ RMP×Ns , and n =


n1

n2

...
nP

 ∈ RMP . (4.8)

Multiscale Reconstruction Framework

The task at hand is then to recover the set of coefficients cs that best explains the
complete vector b of 2D measurements obtained through (4.7). We assume here
that we have existing estimates (however inaccurate they may be) of the orientation
θp and the PSF hp for p = 1, . . . , P . Following our sparsity-based formulation
(Section 2.3), we perform the reconstruction by solving the regularized variational
problem

ĉs = arg min
cs∈RNs

1

2
‖Hscs − b‖22 + λ‖Lscs‖1, (4.9)

where Ls ∈ RQ×Ns is the regularization operator, and λ > 0 is the regularization
parameter.

The ADMM subsolvers of (4.9) are given in Algorithm 1 in Section 2.3. As
we discuss there, the computational bottleneck of our ADMM-based minimization
algorithm is the quadratic step (2.15a) that requires one to solve nADMM > 0 times
the linear system

(
ρLTs Ls + HT

s Hs

)︸ ︷︷ ︸
A

ck+1
s = HT

s b + ρLTs

(
uk +

αk

ρ

)
, (4.10)

in terms of ck+1
s . Since the matrix A =

(
ρLTs Ls + HT

s Hs

)
cannot be explicitly

inverted due to the size of HT
s Hs, we solve (4.10) using a conjugate-gradient (CG)

scheme at every k-th ADMM iteration. Hence, our ADMM minimization scheme
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requires the repeated matrix multiplication of HT
s Hs with the updated vector cs.

If not carefully engineered, this operation comes at a heavy computational cost
(O(N2)), which then makes the use of such an iterative reconstruction algorithm
out of practical reach for SPA.

4.1.4 Fast Implementation of HT
s Hscs

In this section, we provide an alternate mathematical formulation of HT
s Hscs that

significantly reduces the computational cost of this operation. As a preliminary, let
us define a condition on basis functions (with unit step size) that is required for
further calculations.

Definition 1 (Radial Nyquist criterion). The function ϕ ∈ L2(R3) satisfies the
radial Nyquist criterion (RNC) with respect to the grid Z3 if ϕ̂(ω) = 0 for all
‖ω‖ ≥ π.

A function thus satisfies the RNC if its Fourier transform is zero outside of a ball
of radius π. Note that if ϕs0 = ϕ(·/s0) satisfies the RNC, then so does ϕs = ϕ(·/s)
for all s ≥ s0, due to the scaling property of the Fourier transform.

In addition, for any pair of functions (f, g) that satisfy the RNC, it holds through
Shannon’s theorem and the orthonormality of sinc functions [98] that

∑
n∈Z2

f(n)g(n) =

∫
R2

f(x)g(x)dx. (4.11)

Finally, we recall that cs =
(
cs[k]

)
k∈Ωs3D

is the finite vector of coefficients of the
sequence cs.

We now provide in Theorem 1 our result on the fast computation of HT
s Hscs

for 3D objects.

Theorem 1. Assume that ϕs(x) = ϕ(x/s), with x ∈ R3 and s > 0, satisfies the
RNC for all s ≥ s0. Moreover, let the imaging matrix Hs be as defined in (4.8),
and P ∈ N∗ denote the number of projections. Then, for all s ≥ s0, the discrete
product HT

s Hscs can be computed for k ∈ Ωs3D as the discrete convolution

[HT
s Hscs]k = (cs ? rs)[k], (4.12)
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with the kernel sequence

rs[k] = |s|6
P∑
p=1

(
Pθp{ϕ} ∗ Pθp{ϕ∨} ∗ qp1/s

)
(Mθp⊥k). (4.13)

Here, the function qp1/s(y) = (hp ∗ (hp)∨)(sy), with y ∈ R2, corresponds to the

scaled autocorrelation function of hp(y).

Proof. Through a series of steps (detailed further down the proof), we rewrite the
entries of the discrete product HT

s Hscs for k ∈ Ωs3D as[
HT
s Hscs

]
k

=
[ P∑
p=1

(Hp
s)
THp

scs

]
k

(i)
=

P∑
p=1

∑
l∈Z3

cs[l]
∑
j∈Z2

(
Pθp{ϕs} ∗ hp

)
(j − sMθ⊥p

l) ·
(
Pθp{ϕs} ∗ hp

)
(j − sMθ⊥p

k)

(ii)
=

P∑
p=1

∑
l∈Z3

cs[l]

∫
R2

(
Pθp{ϕs} ∗ hp

)
(y − sMθ⊥p

k) ·
(
Pθp{ϕs} ∗ hp

)
(y − sMθ⊥p

l)dy

(iii)
=

P∑
p=1

∑
l∈Z3

cs[l]

∫
R2

(
Pθp{ϕs} ∗ hp

)
(ỹ) ·

(
Pθp{ϕs} ∗ hp

)
(ỹ − sMθ⊥p

(l− k))dỹ

(iv)
=

P∑
p=1

∑
l∈Z3

cs[l]
(
Pθp{ϕs} ∗ hp ∗

(
Pθp{ϕs} ∗ hp

)∨)
(sMθ⊥p

(l− k))

(v)
=
∑
l∈Z3

cs[l]

P∑
p=1

(
Pθp{ϕs} ∗ Pθp{ϕ∨s } ∗ hp ∗ (hp)∨

)
(sMθ⊥p

(l− k)).

(4.14)
We thus have that the product HT

s Hscs can be computed as the discrete convolu-
tion [

HT
s Hscs

]
k

= (cs ? rs)[k], (4.15)

with the kernel sequence rs ∈ `2(Z3) given by

rs[k] =

P∑
p=1

(
Pθp{ϕs} ∗ Pθp{ϕ∨s } ∗ qp

)
(sMθ⊥p

k), (4.16)
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where the function qp(y) = (hp∗(hp)∨)(y), with (hp)∨ the reflection of the function
hp and y ∈ R2, corresponds to the autocorrelation function of the PSF hp(y).

Equality (i) derives from the definition of Hp
s given by (4.6) and from the com-

pact support of cs and Pθp{ϕs}. Equality (ii) results from (4.11), which can be
invoked here as the function (Pθp{ϕs} ∗ hp)(n) with n ∈ Z2 satisfies the RNC.
Indeed, as the basis function ϕs satisfies the RNC by hypothesis, so does Pθp{ϕs}
through the central-slice theorem, and then so does Pθp{ϕs} ∗ hp through the con-
volution theorem. Equality (iii) is obtained through a simple change of variables,
while Equalities (iv) and (v) use properties of the continuous convolution.

We then rewrite the kernel rs[k] given by (4.16) as:

rs[k] =

P∑
p=1

(
Pθp{ϕs} ∗ Pθp{ϕ∨s } ∗ qp

)
(sMθ⊥p

k)

(vi)
= |s|2

P∑
p=1

(
Pθp{ϕ}(·/s) ∗ Pθp{ϕ∨}(·/s) ∗ qp(·)

)
(sMθ⊥p

k)

(vii)
= |s|4

P∑
p=1

(
(Pθp{ϕ} ∗ Pθp{ϕ∨})(·/s) ∗ qp1/s(·/s)

)
(sMθ⊥p

k)

(viii)
= |s|6

P∑
p=1

(
Pθp{ϕ} ∗ Pθp{ϕ∨} ∗ qp1/s

)
(Mθp⊥k), (4.17)

where qp1/s(y) = q(sy). Equality (vi) is obtained after applying twice the scale-

invariance property of the X-ray transform

Pθ{f(·/s)}(y) = |s| · Pθ{f}(y/s), (4.18)

where f ∈ L2(R3) and s 6= 0. Equalities (vii) and (viii) are both derived by using
the fact that the convolution of two functions Pθ{f},Pθ{g} ∈ L2(R2) scaled by a
factor s 6= 0 satisfies(

Pθ{f}(·/s) ∗ Pθ{g}(·/s)
)
(y) = |s|

(
Pθ{f} ∗ Pθ{g}

)
(y/s). (4.19)
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The benefit of Theorem 1 is that the costly step HT
s Hscs can now be quickly

computed as a pointwise multiplication in the Fourier domain. In practice, the
discrete convolution (cs ? rs) in (4.12) only needs to be computed for k ∈ Ωs3D.
We efficiently do this by convolving a padded cs with a kernel of finite support
rs =

(
rs[k]

)
k∈Ωs3D

using FFTs and periodic boundary conditions. This kernel is

obtained by first convolving the autocorrelation function of Pθp{ϕ} with the scaled
autocorrelation function of the PSF hp, and then interpolating its value at the sam-
pling points Mθp⊥k. Another benefit of Theorem 1 is that the cost of (4.12) does
not depend on the number of projections. These two aspects lead to a massive gain
in speed for the computation of HT

s Hscs, as illustrated in Table 4.1 and quantified
in Section 4.1.6.

Computation Hsc HT
s b HT

s Hsc fast HT
s Hsc (4.12)

Runtime [s] 127.70 132.08 257.41 0.81

Table 4.1: Comparaison of the runtimes for applying the system matrix H and its
variants HT

s , HT
s H, and our fast HT

s H (4.12) for a given experimental setup with
s = 1. The system matrix (2.7) computes 500 projections of a (128 × 128 × 128)
volume. The computation of the kernel (4.13) for the fast HT

s Hs takes 118.07s,
and is only needed once for the whole procedure.

The RNC criterion given in Definition 1 is a necessary condition for the theoret-
ical result obtained in Theorem 1. We ran practical tests to ensure that the use of
the KBWF—a basis function that does not verify the RNC but that is “effectively
localized in Fourier” [99]—had negligible impact on the quality of the computation
of HT

s Hscs through the discrete convolution (4.12). The choice of KBWF as basis
functions is motivated by their isotropy, which further reduces the cost of (4.12)
as the autocorrelation of Pθp{ϕ} only needs to be computed once for a randomly
selected θp.

Note that when no PSF effect is considered, i.e. hp = δ for p = {1, . . . , P}, the
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kernel (4.13) reduces to

rs[k] = |s|4
P∑
p=1

(
Pθp{ϕ} ∗ Pθp{ϕ∨}

)
(Mθp⊥k). (4.20)

The special case when s = 1 in (4.20) was introduced in X-ray tomography (with a
fixed rotation axis) by McCann et al. [166], and other works have proposed alter-
native speedups in parallel-beam tomography [167, 168, 169].

Finally, we remark that, because the fast HT
s Hscs computation (4.15) requires

the zero-padding of cs prior to applying the FFT, the linear step (4.10) cannot be
directly inverted in the Fourier domain through the circular convolution theorem.
Hence, the iterative ADMM scheme still has to rely on an inner CG scheme to
solve (4.10).

4.1.5 Fast Implementation of HT
s b

The linear step (4.10) also requires the computation of the discrete product HT
s b.

Even though this only needs to be done once for the whole reconstruction procedure,
it can also be costly in its own rights (O(M2P 2)). We present in Theorem 2 a fast
way of computing this vector.

Theorem 2. Assume that ϕs(x) = ϕ(x/s), with x ∈ R3 and s > 0, satisfies the
RNC for all s ≥ s0. Moreover, let the imaging matrix Hp

s be as defined in (4.6),
the measurements b be as defined in (4.3), and P ∈ N∗ denote the number of
projections. Then, for all s ≥ s0, the matrix-vector product HT

s b can be computed
for k ∈ Ωs3D as

[HT
s b]k =

P∑
p=1

(
bp ∗ Pθp{ϕ∨s } ∗ (hp)∨

)
(sMθp⊥k). (4.21)

Proof. Through a series of steps (detailed further down the proof), we rewrite the
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entries of the product HT
s b for k ∈ Ωs3D as

[
HT
s b
]
k

=
[ P∑
p=1

(Hp
s)
Tbp

]
k

(i)
=

P∑
p=1

∑
j∈Ω2D

bp[j]
(
Pθp{ϕs}(· − sMθ⊥p

k) ∗ hp
)

(j)

(ii)
=

P∑
p=1

∫
R2

bp(y)
(
Pθp{ϕs}(· − sMθ⊥p

k) ∗ hp
)

(y)dy

(iii)
=

P∑
p=1

∫
R2

bp(y)

∫
R2

Pθp{ϕs}(ỹ − sMθ⊥p
k)hp(y − ỹ)dỹdy

(iv)
=

P∑
p=1

∫
R2

Pθp{ϕs}(ỹ − sMθ⊥p
k)

∫
R2

bp(y)hp(y − ỹ)dydỹ

(v)
=

P∑
p=1

∫
R2

Pθp{ϕs}(ỹ − sMθ⊥p
k)
(
bp ∗ (hp)∨

)
(ỹ)dỹ

(vi)
=

P∑
p=1

(
bp ∗ Pθp{ϕ∨s } ∗ (hp)∨

)
(sMθ⊥p

k).

(4.22)

Equality (i) is obtained by applying the definition of Hp
s given by (4.6). Equality

(ii) results from (4.11). Equalities (iii), (v), and (vi) are all obtained by using the
definition of the continuous convolution. Equality (iv) is a simple rearrangement
of the two integrals.

The product HT
s b can thus be obtained by computing the convolutions in (4.21)

on a fine grid via 2D FFTs, storing the result in a lookup table, and evaluating
it at the points sMθ⊥p

k through interpolation. This significantly reduces the cost
of the operation, as we shall explain in Section 4.1.6. Another benefit is that the
computation of HT

s b can be easily parallelized over the set of P projections.

4.1.6 Computational Cost and Implementation

We assume that the task is to reconstruct a volume of size N = n3 from a set
of P measurements, each of size M = m2. We also consider the support of our
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unscaled basis function ϕ to be W 3, and the scale of the basis function ϕs along
each dimension to be s. For simplicity, we do not consider the cost of the PSF
inclusion here.

The computation of the HT
s Hs kernel in Theorem 1 requires the autocorrelation

of the projection of the unscaled basis function, which is precomputed and stored
in a lookup table. Since we are using isotropic basis functions, this lookup table is
relatively small. The evaluation of the kernel at the points Mθ⊥p

k then requires a

cost of O(PW 2n). Finally, the convolution of the kernel with the current coefficient
sequence ĉs only requires two FFTs. This comes at a cost of O(N log(n)/s3) at
every ADMM iteration.

The computation of HT
s b through Theorem 2 requires to perform discrete con-

volutions via 2D FFTs, at a cost in the order of O(PM log(m)). We store the result
in a lookup table. Then, its evaluation at the points sMθ⊥p

k comes at a cost of

O(PN/s3).

Whether the cost of our approach is comparable to that of direct methods
based on Fourier regridding4 (Section 2.1.1) depends on the specific experimental
conditions, especially on the scale desired for the reconstruction. In particular, the
coarser the representation of the image, the quicker our reconstruction procedure.
For example, when the reconstruction is performed at the scale s = 4, the cost
of computing HT

s Hscs is reduced by a factor 43 = 64 compared to a fine-scale
reconstruction with s = 1, which is a massive computational gain.

A pseudo-code of the proposed reconstruction algorithm is provided in Algo-
rithm 2. As inputs, the algorithm requires the projections and the desired scale for
the reconstruction. Optionally, a stack that contains the PSFs associated to every
projection can be given as input. This is only relevant when reconstructing at the
finest scale (s = 1), as the correction of high-frequency information is pointless at
coarse scales (s > 1) (see Figure 4.1, bottom row). Another more practical reason
for the optionality of this inclusion is that many SPA packages actually deconvolve
the projections (i.e., correct the effect of the PSF) prior to reconstruction.

4By comparison, standard DFR methods require that one 2D FFT be computed per projection
(O(PM log(m))), followed by some interpolation procedure. Assuming that the support of the
interpolating function is similar to that of our basis function, this yields a cost of O(PW 3M).
One then needs to apply one 3D inverse Fourier transform to get back to the spatial domain,
which comes at a cost of O(N log(n)).
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Algorithm 2 Fast ADMM iterative reconstruction at scale s

Inputs: c0 ∈ RN , b ∈ RMP , s > 0, λ > 0, nADMM > 0, nCG > 0, ρ > 0, h ∈ RMP

(if s = 1)

1: ϕs ← Initialize based on (4.2)
2: rs ← Compute based on (4.13)
3: HT

s b ← Compute based on (4.21)
4: u0 = Lsc

0, α0 = u0

5: k = 0
6: while (k < nADMM) do

7: c
(k+1)
s ← Solve (4.10) with CG for nCG iterations using Theorem 1, rs and

HT
s b

8: u(k+1) = proxR
(
Lsc

(k+1)
s − α(k)

ρ ; λ
ρ

)
9: α(k+1) = α(k) + ρ

(
Lsc

(k+1)
s − u(k+1)

)
10: k = k + 1
11: end while
12: return c

(k+1)
s

4.1.7 Experiments

We evaluate the performance of our fast multiscale algorithm on simulated and
real datasets. In particular, we explore how the scaling impacts the robustness of
the reconstruction to angular misestimation, i.e., the incorrect estimation of the

orientations
{
θp
}P
p=1

. We describe the experiments performed with simulated data

in the next two subsections, and present the results obtained with real data from
the 2015/16 EMDataBank Map Challenge in the final subsection.

Simulation Conditions and Implementation Details

We use as ground truth a (128 × 128 × 128) β-galactosidase volume with 2.2�A
resolution [170]. We compute 20,000 randomly equidistributed projections of the
ground truth using the imaging matrix (4.6) with a KBWF with parameters a = 2,
α = 10.8, m = 2. We then generate multiple datasets by adding (1) Gaussian
noise on the projections, such that their SNR is equal to 1, and (2) a uniformly
distributed zero-mean random variable to the ground truth orientations.
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Figure 4.2: (a) Effect of the scale on the robustness to angular misestimation for
β-galactosidase reconstruction. The reported resolution is the FSC resolution esti-
mate at the threshold value of 0.5. (b) FSC curves of β-galactosidase reconstructed
at scale s = 3 from 20,000 projections clustered in a varying number of classes
(n=11,31,59,99) before averaging. The variance of the error on the orientations is
15.47 deg2.

For every dataset, we cluster the projections in n distinct classes, as is com-
monly done in projection matching during the iterative-refinement procedure (see
Section 1.4.2). To do so, we generate n projections of the ground truth with uni-
formly distributed orientations, which serve as “class templates”. Each projection
in the dataset is then assigned to the class whose template has the closest ori-
entation. Then, for every class, the projections are aligned to the template by
rigid transformation (using the imregister function in MATLAB®), and aver-
aged. From these class averages, we reconstruct the 3D structure at different scales
using our algorithm. We consider small class sizes (from 10 to 100) to mimic the
processing conditions during the early stages of the iterative refinement procedure.

For the reconstruction, we solve (4.9) with Algorithm 2. We use TV regular-
ization, i.e., R(Lcs) = ‖cs‖TV = ‖∇cs‖2,1, with the gradient operator ∇ and the
mixed (`1/`2)-norm ‖·‖2,1 defined in Section 2.3. We set ϕ as a KBWF with pa-
rameters a = 4, α = 19, m = 2 that are different from those used to generate the
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Scale 4 Scale 3 Scale 2 Scale 1

Figure 4.3: Reconstructions at different scales (s = 1, 2, 3, 4) of the T20S Protea-
some from the 2015/2016 EMDatabank Challenge.

measurements in order to reduce the risk of inverse crime. We do not consider the
effect of the PSF in these simulations5.

The number of (outer) ADMM iterations is set to nADMM = 30, and the number
of (inner) CG iterations to nCG = 7. The regularization parameter is chosen by
spanning a range of powers of ten (i.e., five values from λ = 10−2 to λ = 102) and
selecting the best output in terms of FSC. Since this does not require the recom-
putation of the kernel rs nor of the product HT

s b to do so, the cost of this search
is acceptable. The penalty parameter ρ is set proportional to λ. The algorithm is
implemented using the GlobalBioIm library [119]. The accuracy of the reconstruc-
tions is evaluated by computing the FSC with respect to the ground truth, and
considering a threshold value of FSC = 0.5 when necessary.

Robustness to Angular Misestimations

We analyze here how angular misestimations influence the quality of the recon-
struction at different scales (s = 1, 2, 3, 4). To do so, we add an increasing amount
of error to the orientations prior to clustering the projections in 80 equidistributed
classes and averaging them. We then reconstruct the volumes at scales s = 1, 2, 3, 4.
For each one, we return the resolution reached at the threshold value FSC = 0.5.

The results presented in Figure 4.2a indicate that, as expected, robustness to
angular misestimations increases as the reconstruction is coarsened. At fine scale

5The beneficial impact of including the PSF for producing high-resolution reconstructions has
been established in multiple works [85, 32].
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(s = 1), the algorithm performs appropriately when the error level is low, but its
performance quickly degrades when the error on the orientations increases. This
behavior is much less pronounced at coarser scales (s = 2, 3, 4), where much better
robustness against angular misestimations is observed.

We then explore how the scaling influences the quality of the reconstruction
in the extreme case where only a very small number of projections classes (i.e.,
11) is available and contains angular misestimations (with var=15.47 deg2). This
situation mimics the early stages of the iterative-refinement procedure. The results
are presented in Figure 4.2b and show that, when performing reconstruction with
such a limited amount of data, all output volumes (s = 1, 2, 3, 4) have a roughly
similar information content. This is not surprising: at all scales, there is only
a limited resolution that can be achieved with such blurred and incomplete data,
which advocates for multiscale approaches during these early stages of the iterative-
refinement procedure. Indeed, the limited available frequency content is preserved
at coarse scales, and the associated gains in computational speed can be substantial
(see Section 4.1.6).

Real Data from the EMDataBank Map Challenge

We now deploy our reconstruction algorithm on a real dataset from the EMData-
Bank Map Challenge: the T20S Proteasome [171]. The dataset consists in 22,884
projections extracted from 196 micrographs. We classify those into 32 classes using
the CL2D protocol [172] in the Scipion software package [61]. From those classes, we
construct an initial volume with the algorithm in [173] assuming D7 symmetry. We
then apply five iterations of the reconstruct highres protocol in Scipion, using
the standard direct reconstruction method. The parameters for running those five
iterations are identical6 to those used in [174].

We then perform the final iteration of reconstruct highres using our multi-
scale reconstruction method, for the scales s = 1, 2, 3, 4. For all scales, the algorithm
separates the dataset in two halves, and performs on each half one iteration of an-
gular estimation and one of reconstruction. We run the reconstruct highres

protocol with its default parameters and all the Post-Processing options dis-
abled. For all scales, we use the same set of parameters for our algorithm: λ = 100,
nADMM = 30, nCG = 7. The results are displayed in Figures 4.3, 4.4 and 4.5.

6The parameters are described in a paper from the same special issue.
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(a) Scale 4 (b) Scale 3 (c) Scale 2 (d) Scale 1

Figure 4.4: Cross sections of T20S Proteasome reconstructions at different scales
(s = 1, 2, 3, 4). Slices number from top row to bottom row: 75, 100, 125, 150,
175, 200. The yellow lines (top row) indicate the location of the intensity profiles
displayed in Figure 4.5b are measured.
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Figure 4.5: (a) FSC curves for the T20S Proteasome reconstructions at differ-
ent scales (s = 1, 2, 3, 4). For each scale, the curve was obtained by comparing
reconstructions from two distinct halves of set of projections. (b) Profile lines
taken on a cross-section of the T20S Proteasome reconstructions at different scales
(s = 1, 2, 3, 4). The position of the measured pixels is indicated by the yellow lines
in Figure 4.4

Figure 4.3 presents the reconstructions obtained at the four scales, while Fig-
ure 4.4 displays several of their cross-sections. Line profiles taken from a cross-
section of the reconstructions are given in Figure 4.5b. These figures illustrate how
the scaling influences the coarseness of the reconstructions while preserving their key
structural features. The FSC curves of the reconstructed volumes are presented in
Figure 4.5a. For each scale, the curve is obtained by comparing the reconstructions
from the two halves of dataset. These results testify to the increase in robustness
achieved by coarse reconstructions, which is, once again, consistent with observa-
tions made by other multiscale approaches in various biomedical applications [155].
The possible extensions of this framework are discussed in Section 4.4
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4.2 Joint Angular Estimation and Reconstruction
Scheme

4.2.1 Overview

7In this section, we build on the fast reconstruction scheme introduced in Section 4.1
and present a novel optimization framework for SPA that jointly recovers the 3D
structure and the projection orientations.

As discussed, most software packages in SPA recover a high-resolution structure
by iteratively refining a rough initial volume. Currently, many state-of-the-art
iterative-refinement techniques [175, 176, 177, 178] alternate between

1. The reconstruction of the 3D structure for a given set of (however inaccurate)
projection orientations using direct methods (see Section 2.1.1);

2. The estimation of the orientations (i.e., angular estimation) for all the 2D
projections based on the previously reconstructed 3D volume.

For angular estimation, the most commonly-used method is projection match-
ing [68, 69]. This approach compares every projection against a set of “clean”
templates generated from the current 3D reconstruction and estimates their ori-
entations based on their closest match. Projection matching thus performs the
angular estimation on a discretized orientation space. As a consequence, the qual-
ity of the angular estimation depends on the fineness of this discretization (and
on the quality of the current volume estimate). The main problem is that a fine
discretization of SO(3) implies the generation of a large set of templates. Hence,
projection matching is a computationally-expensive procedure. Moreover, iterative-
refinement methods based on projection matching tend to perform poorly in low
SNR regimes [179]. Alternatively, one can follow a Bayesian approach to formulate

7The content of this section is based on [19]: Mona Zehni, Laurène Donati, Emmanuel
Soubies, Zhizhen J. Zhao, Michael Unser. Joint Angular Refinement and Reconstruction for
Single-Particle Cryo-EM. IEEE Transaction in Image Processing, 2020. This publication follows
from a four-months internship Mona Zehni (University of Illinois at Urbana-Champaign) carried
out in the Biomedical Imaging Group, EPFL, under the guidance of Laurène Donati and Em-
manuel Soubies. The three were involved in the conception of the project, the development of
the theory, the planning of the experiments, and the redaction of the manuscript. MZ carried out
most of the implementation and performed the numerical experiments.
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the refinement problem as a marginalized MAP estimation [175] (Section 1.4), but
this still involves some form of discretization of SO(3).

In this work, we present a novel iterative-refinement approach for SPA that
circumvents the aforementioned problems. More precisely, we formulate the refine-
ment procedure as a joint optimization scheme that alternates between

1. The reconstruction of the 3D structure (for a given set of projection orienta-
tions) using the fast regularized scheme introduced in Section 4.1;

2. The estimation of the projection orientations through a semi-coordinate-wise
gradient descent, based on the reconstructed volume. More specifically, we
use an explicit derivation of the gradient of our objective function to optimize
the orientations in the continuum.

The gain with our variational approach is two-fold. First, as discussed in Section 4.1,
the use of our ADMM-based reconstruction algorithm brings increased robustness
in highly ill-posed conditions, such as those faced at the early stages of refinement
for instance. This can then positively impact the convergence of the subsequent
steps in the refinement procedure. Second, our angular-estimation method avoids
the need for a fine discretization of the orientation space SO(3). Hence, it does away
with the computationally expensive procedure of projection matching. Numerical
results demonstrate that our method can efficiently refine a high-resolution 3D
structure from projections with initially inaccurate orientations.

This section is organized as follows. In Section 4.2.2, we describe our novel
joint optimization framework that is based on fast and robust algorithms. We then
compare the performance of our approach to several baselines in Section 4.2.3. We
present the obtained results in Section 4.2.4.

4.2.2 Joint Optimization Framework

Discrete Forward Model with In-Plane Translations

For this work, we slightly extend the image-formation model given in (1.6). In
particular, we consider the possibility for a p-th projection bp to be shifted8 from

8In SPA, shifts can arise when extracting the projections from their micrographs (see Sec-
tion 1.4). Shifts can be pre-corrected prior to 3D reconstruction, but this requires methods
capable of directly estimating them from the noisy dataset.
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its image center by an in-plane translation tp = (tp,1, tp,2) ∈ R2. We also include
sampling steps ∆1 and ∆2 of the projection domain. Hence, our image-formation
model formulates as

bpj =
(
Pθp

{
f
}
∗ hp

)
(Λj − tp) + npj , (4.23)

where Λ = diag(∆1,∆2) ∈ R2×2 is a diagonal matrix formed out of ∆1 and ∆2.
We then look for an (unscaled) approximation f̃ : R3 → R of f , and we assume that
it yielded the measurements (4.23). Using the generalized sampling scheme (2.3),
we then parametrize f̃ to obtain the discrete forward model for an orientation θp

bpj =
∑
k∈Ω3D

c[k]
(
Pθp

{
ϕ
}
∗ hp

)
(Λj −Mθ⊥k − tp) + npj . (4.24)

We concisely write (4.24) as

bp = H(θp, tp)c + np, (4.25)

where H(θp, tp) ∈ RM×N is the discrete system matrix for an orientation θp ∈ Ωθ
and an in-plane translation tp. The use of the new notation H(θp, tp) for the
system matrix is driven by the desire to explicit the latent variables of our joint
optimization scheme in the next subsection.

We then write the full dataset of P projections as b = {bp}Pp=1 ∈ RMP . Sim-

ilarly, the set of all orientations is defined as Θ = {θp}Pp=1 ∈ (Ωθ)P , and the set

of all in-plane translations as Γ = {tp}Pp=1 ∈ (R2)P . Our global forward model is
then given by

b = H(Θ,Γ)c + n, (4.26)

with c ∈ RN ,

b =


b1

...

bP

 ∈ RMP , H(Θ,Γ) =


H(θ1, t1)

...

H(θP , tP )

 ∈ RMP×N , n =


n1

...

nP

 ∈ RMP . (4.27)

For the sake of clarity, we hereafter use the notations HTH(Θ,Γ) = (H(Θ,Γ))TH(Θ,Γ)
and HT (Θ,Γ) = (H(Θ,Γ))T .
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Algorithm 3 Joint-Optimization Framework (Global Scheme)

Inputs: c0,Θ0,Γ0

1: k = 0
2: while not converged do

. Update the 3D structure:
3: ck+1 = ADMM

(
J (·,Θk,Γk), ck

)
. Update the latent variables:

4: (Θk+1,Γk+1) = GD
(
J (ck+1, ·, ·),Θk,Γk

)
5: k ← k + 1
6: end while

Return: ck,Θk,Γk

Joint Optimization Scheme

Our goal is then to jointly estimate the unknown variables in (4.26), namely the
coefficients of the 3D structure c, the projection orientations Θ, and the in-plane
translations Γ. To do so, we express this refinement procedure for

(
c,Θ,Γ

)
∈

RN × (Ωθ)P × (R2)P as the regularized minimization

(
ĉ, Θ̂, Γ̂

)
∈
{

arg min
c,Θ,Γ

J
(
c,Θ,Γ

)}
, (4.28)

with

J
(
c,Θ,Γ

)
=

1

2
‖b−H(Θ,Γ) c‖22 + λR(Lc), (4.29)

where the regularization term R(Lc) consists of the functional R : RQ → R, the
operator L ∈ RQ×N , and the parameter λ > 0, as described in Section 2.3.2.

To solve (4.28), we alternate between the minimization over the coefficients c
and the minimization over the latent variables Θ and Γ. Although the objective
function in (4.28) is convex with respect to c, it is not convex with respect to Θ
and Γ. However, it can be shown9 that the objective function is differentiable with
respect to Θ and Γ, but that is usually nondifferentiable (due to R) with respect
to c.

9While not completely trivial due to the nonlinearity of H(Θ,Γ) with respect to Θ, this can
be handled using the continuity of Pθ and the chain rule.
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Algorithm 4 ADMM (Fast Update of the 3D Structure)

Inputs: b, Θ, Γ, c0, λ > 0, ρ > 0, KADMM > 0

1: u0 = Lc0, α0 = u0

2: k = 0
3: while k < KADMM do
4: uk+1 = proxR

(
Lck −αk/ρ; λ/ρ

)
5: g = (H(Θ,Γ))Tb + ρLT (uk+1 −αk/ρ)

6: ck+1 =
(
HTH(Θ,Γ) + ρLTL

)−1
g

7: αk+1 = αk + ρ
(
uk+1 − Lck+1

)
8: k ← k + 1
9: end while

Return: cKADMM

These observations dictate the choice of two distinct minimization procedures
within our global alternating scheme. For the minimization of J with respect to
c, we use the fast and robust ADMM scheme presented in Section 4.1.6, whose
pseudocode is given in Algorithm 4. For the minimization of J with respect to Θ
and Γ, we use a gradient descent with line search, as detailed in the next subsection.

The outline of this joint optimization procedure is given in Algorithm 3 and is
implemented within the GlobalBioIm library [180]. Note that, at Line 3 of Algo-
rithm 3, we use the notation ADMM

(
J (·,Θk,Γk), ck

)
to refer to the minimization

of J (·,Θk,Γk) using ADMM initialized with ck. We do the same for the gradient-
descent algorithm (see Line 4).

Update of the Latent Variables Θ and Γ

We first remark that the least-squares term in (4.29) can be written as

1

2
‖b−H(Θ,Γ) c‖22 =

1

2

P∑
p=1

‖bp −H(θp, tp) c‖22. (4.30)

Hence, when c is fixed, the minimization of J (c, ·, ·) amounts to solving

(θ̂p, t̂p) ∈
{

arg min
θ,t
Jp(θ, t)

}
(4.31)



82 Fast Regularized Reconstruction Framework for SPA

for all p ∈ {1, . . . , P}, where Jp : (θ, t) 7→ R is defined as

Jp(θ, t) =
1

2
‖bp −H(θ, t) c‖22. (4.32)

As the objective function Jp is differentiable, the minimization (4.31) can be
achieved using gradient-descent steps (assuming proper initializations). Hence, we
first need to compute the gradients

∇θJp(θ, t) =

(
∂Jp
∂θ1

(θ, t),
∂Jp
∂θ2

(θ, t),
∂Jp
∂θ3

(θ, t)

)
(4.33)

∇tJp(θ, t) =

(
∂Jp
∂t1

(θ, t),
∂Jp
∂t2

(θ, t)

)
. (4.34)

The explicit expressions of these quantities are provided in Theorem 3 for the
case when ϕ is an isotropic basis function. As a preliminary, we remark that due
to this isotropy we can write Pθp{ϕ} = P{ϕ} for all 1 < p < P . We also recall
that Λ is a diagonal matrix whose entries are the sampling steps ∆1 and ∆2, and
that bp denotes the continuous counterpart of bp through (1.4). Finally, we shall
denote with ? the discrete convolution between two periodized sequences.

Theorem 3. Let ϕ be an isotropic basis function, and H(θ, t) ∈ RM×N be defined
through (4.24). Then, for v ∈ {θ1, θ2, θ3, t1, t2}, there exist rv ∈ RN and qv ∈ RN
such that

∂Jp
∂v

(θ, t) =
1

2
cT (rv ? c− 2qv) , (4.35)

where, with ψ : y = (y1, y2) 7→
(
hp ∗ P{ϕ}

)
(y), for all k ∈ Ω3D, we have that

• if v = θi, for i ∈ {1, 2, 3}, then

rv[k] =
1

det(Λ)

(
∂Mθ⊥

∂θi
k

)T
∇ (ψ ∗ ψ∨) (Mθ⊥k), (4.36)

qv[k] =
1

det(Λ)

(
∂Mθ⊥

∂θi
k

)T
∇(bp ∗ ψ∨)(Mθ⊥k + t), (4.37)

• if v = tj, for j ∈ {1, 2}, then

rv[k] = 0, (4.38)

qv[k] =
1

det(Λ)

∂(bp ∗ ψ∨)

∂yj
(Mθ⊥k + t), (4.39)
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with ψ∨(y) = ψ(−y), and
∂M

θ⊥
∂θi

∈ R2×3 which contains the entrywise derivatives
of Mθ⊥ .

The proof of Theorem 3 is given in Appendix A.4.1. Among others, it includes
the derivation of the gradients of

(
ψ∗ψ∨

)
and

(
bp∗ψ∨

)
. In particular, we show that

they depend on P
{
ϕ
}

and
∂P
{
ϕ
}

∂yj
, whose expressions are provided in Proposition 1

for the specific case when ϕ is a KBWF.

Proposition 1. For the case when ϕ is the KBWF defined in (2.4), we have that

P
{
ϕ
}

(y) = aAβa(‖y‖)m+ 1
2 Im+ 1

2
(αβa(‖y‖)) , (4.40)

∂P
{
ϕ
}

∂yj
(y) = −αyjA

a
βa(‖y‖)m− 1

2 Im− 1
2
(αβa(‖y‖)), (4.41)

where α, a, and m are the KBWF parameters, βa(r) =

√
1− (r/a)

2
, A =

√
2π/α

Im(α) ,

and Im is the modified Bessel function of order m.

The proof of Proposition 1 is given in Appendix A.4.2.
Equipped with those gradient expressions, we then deploy a semi-coordinate-

wise gradient-descent to solve (4.31), as summarized in Algorithm 5. At each
iteration, the parameters θp and tp are updated sequentially. This permits the use
of different stepsizes γθ and γt for the orientations and the in-plane translations,
respectively, which is crucial to account for the different dynamics between the two
variables. Moreover, we use adaptive steps selected according to a backtracking
line-search method [181, 182]. Given an initial value, the step is decreased by a
factor of the parameter η ∈ (0, 1) until the cost corresponding to the updated
variable is smaller than its current value (i.e., conditions checked in Steps 6 and 12
in Algorithm 5).

Finally, we divide the projection dataset b into mini-batches and process them
in parallel to further accelerate the update of the latent variables Θ and Γ. This
parallelization is possible due to the separability of the objective function (4.31)
with respect to the (independent) projections.

Comparison of Computational Complexity

We now compare the computational complexity of the projection-matching ap-
proach to that of the proposed latent-variable update. Let N = n3 and M = m2,
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so that c ∈ Rn×n×n and bp ∈ Rm×m, with m usually close to n in practice.
1. Projection Matching
Each iteration consists of two steps.

• Generation of Clean Templates. Given the current structure c, evaluate
H(θ,0) c for Nθ1Nθ2 different values of θ = (θ1, θ2, 0) obtained by sampling
[0, 2π) with Nθ1 points and [0, π] with Nθ2 points. Let CH(n,m) be the cost of
one such evaluation that we shall shortly quantify. Then, the computational
complexity of this first step is O(Nθ1Nθ2CH(n,m)).

• Matching the Projections. For all p ∈ {1, . . . , P}, compare the projection

Algorithm 5 GD (Update of the Latent Variables)

Inputs: γ0
θ > 0, γ0

t > 0, KGD > 0, η ∈ (0, 1), Θ0, Γ0, c

1: for p = 1, . . . , P
2: k = 0
3: while k < KGD

. Update θp
4: γθ ← γ0

θ

5: θk+1
p = θkp − γθ∇θJp(θkp , tkp)

6: while Jp(θk+1
p , tkp) > Jp(θkp , tkp)

7: γθ ← ηγθ
8: θk+1

p = θkp − γθ∇θJp(θkp , tkp)
9: end while

. Update tp
10: γt ← γ0

t

11: tk+1
p = tkp − γt∇tJp(θk+1

p , tkp)

12: while Jp(θk+1
p , tk+1

p ) > Jp(θk+1
p , tkp)

13: γt ← ηγt

14: tk+1
p = tkp − γt∇tJp(θk+1

p , tkp)
15: end while
16: k ← k + 1
17: end while
18: end for

Return: ΘKGD ,ΓKGD
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bp against the Nθ1Nθ2 clean templates. This requires rotation and in-plane-
translation alignment, whose complexity is O(m2 log(m)) if done efficiently
using polar Fourier transforms [183], spherical harmonics [184], or steerable
basis functions [185]. Doing it for every projection and every template thus
results in a complexity of O(Nθ1Nθ2Pm

2 log(m)).

The complexity of projection matching is thus given by O(Nθ1Nθ2(Pm2 log(m) +
CH(n,m))), where the cost CH(n,m) depends on the implementation of the forward
model. For instance, some fast implementations rely on the central-slice theorem
and nonuniform FFTs. This strategy roughly requires one 3D-FFT of c, one inter-
polation step to extract the central slice perpendicular to the projection direction,
and one inverse 2D-FFT of this slice. This then gives CH(n,m) = n3 log(n3)+m2 +
m2 log(m2), and an overall complexity of O(Nθ1Nθ2(Pm2 log(m) + n3 log(n))).
2. Proposed Update Scheme
As stated by (4.35) in Theorem 3, the evaluation of the partial derivative ∂Jp/∂v
can be done at the cost of one 3D convolution (only required when v = θi), one
componentwise subtraction, and one scalar product. This gives a complexity of
O(n3 log(n)), i.e., the cost of computing the 3D convolution in the Fourier domain.
We then have to add the cost of computing rv and qv in Theorem 3. First, let us

remark that
∂M

θ⊥
∂θi

is known in closed form from (1.3). Hence, the complexity of

computing
∂M

θ⊥
∂θi

k for all k ∈ Ω3D is O(n3). We then distinguish two situations:

• The explicit expressions of ∇ (ψ ∗ ψ∨) and ∇(bp ∗ ψ∨) are known. Given θ
and t, the computation of rv and qv amounts to evaluating these gradients at
the points Mθ⊥k (or Mθ⊥k + t), for k ∈ Ω3D, followed by an inner product

with
∂M

θ⊥
∂θi

k, which results in an overall complexity of O(n3).

• The explicit expressions of ∇ (ψ ∗ ψ∨) and ∇(bp ∗ ψ∨) are unknown. Due to
their independence with respect to θ and t, these quantities need only be eval-
uated once (optionally, with some upsampling) on the grid Ω2D using (A.18)
with Proposition 1 and discrete convolutions (complexity of O(m2 log(m))).
With this precomputed quantity saved as a lookup table, the evaluation of
∇ (ψ ∗ ψ∨) and ∇(bp ∗ ψ∨) at the points Mθ⊥k (or Mθ⊥k + t) is obtained
through interpolation. Hence, the computational complexity is O(n3) here as
well.

Considering that we have P projections and that KGD iterations of gradient descent
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are performed at each latent-variable update (see Algorithm 3), we obtain an overall
complexity of O(PKGDn

3 log(n)) for our proposed approach.
In practice, KGD is usually kept small, e.g., KGD = 3 in our experiments. As

for projection matching, it is recommended [179] to set Nθ1Nθ2 in the order of n2

to maintain a precise estimation of the orientations. Hence, the proposed method
offers an interesting improvement in runtime over projection matching.

4.2.3 Experiments

Datasets

We assess the performance of our algorithm on two synthetic datasets. The first
dataset corresponds to the Holliday junction complex (HJC) structure, while the
second corresponds to the Human patched 1 (PTCH1) protein. For each dataset,
we generate the synthetic ground-truth from their atomic model [186, 187] in the
Protein Data Bank using Chimera [50]. The sizes of the HJC and PTCH1 volumes
used in our simulations are (90 × 90 × 90) and (84 × 84 × 84), with voxel sizes of
2.867Å and 1.8Å, respectively. We also synthesize a higher-resolution version of
HJC with size (124× 124× 124) and voxel size 2Å. The first two volumes are used
in our proof of concept simulations; the last volume is used in the experiment that
mimics more realistic cryo-EM conditions.

From the ground truths, we generate P projections using (4.23). We sample the
orientation space using P points in an equi-distributed fashion over {(θ1,p, θ2,p)}Pp=1.

The in-plane rotations {θ3,p}Pp=1 are generated by uniformly sampling P points on
a [0, 2π) interval. We apply those in-plane translations by moving the center of
the projections randomly by at most mt pixels in either the horizontal or vertical
directions. In our experiments, we use at most 20, 000 projections to demonstrate
the feasibility of our method. Finally, the projections are corrupted by additive
Gaussian noise with zero mean and variance σ2. The average SNR across all pro-

jections is then given by SNRdata = 10 log
(

1
P

∑P
p=1

‖b̃p‖22
σ2

)
, where b̃p corresponds

to the noiseless measurement vector (see Section 1.2).

Initial Structure, Orientations, and In-Plane Translations

As an initial volume for the refinement procedures, we use the volume generated
by the 3D ab-initio model in Relion [188]. For the orientations, we consider two
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possible initializations.

• Model Init-1 : We add a zero-mean random variable uniformly distributed
in [−eθ, eθ] to the ground-truth orientations, i.e., θinit

p = θtrue
p + εθ,p where

εθ,p,j ∼ Unif(−eθ, eθ), for p ∈ {1, . . . , P} and j ∈ {1, 2, 3}.

• Model Init-2 : We use the orientations estimated by the 3D ab-initio model
in Relion as initial orientations θinit

p , p ∈ {1, . . . , P}.

The in-plane translations {tp}Pp=1 are all initialized at zero. Our different ini-

tializations are thus Θinit = {θinit
p }Pp=1, Θtrue = {θtrue

p }Pp=1, Γinit = {0}Pp=1, and

Γtrue = {ttrue
p }Pp=1.

Tuning of the Algorithm Parameters

The following parameters need to be set in our algorithm: λ, ρ, and KADMM,
used in the update of the structure (Algorithm 4), and γΘ, γt, and KGD, used
in the update of the latent variables (Algorithm 5). In our experiments, we use
KADMM = 2 or KADMM = 5, along with KGD = 3, γθ = 10−7, γt = 10−5, and
η = 0.25. The parameters λ and ρ grow like the noise level σ. We use the same
set of parameters for the two molecules. We set the parameters of the KBWF to
a = 4, α = 19, and m = 2 [100].

Metrics

We assess the quality of the reconstructions with the FSC metric. For the orienta-
tions, we visualize the deviations of the estimated angles from their ground-truth
values. More precisely, we examine the histogram of the differences {θtrue

i,p −θrec
i,p }Pp=1

for i ∈ {1, 2, 3}, and compare it to that of {θtrue
i,p − θinit

i,p }Pp=1. When the difference
between the orientations is small (up to some global rotations), the histogram of
the differences is more concentrated around zero. On the contrary, the histogram is
more spread for estimations that are further away from their ground-truth values.

Compared Methods

We compare our joint-optimization method to the following approaches:
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1. Reconstruction with Unrefined Orientations. We do not refine the initial ori-
entations and directly reconstruct the 3D structure. This gives an indication
of the quality of reconstruction prior to any refinement procedure.

2. Reconstruction with True Orientations. We reconstruct the structure with
the ground-truth orientations and in-plane translations. This serves as an
oracle benchmark that allows us to quantify the improvement brought by the
refinement procedures.

3. Reconstruction with the Relion Package [175]. We run the 3D auto-refine
function in Relion (version 2.1.0) using its default parameters. For the ex-
periments with the initial in-plane translations set to zero, the Initial offset
range and Initial offset step parameters are set to their minimum values: 0
and 0.1; otherwise, they are set to 4 and 0.5. All the reconstructions obtained
with Relion are postprocessed. To reduce the impact of noise, we mask the
projections with a soft circular mask with a diameter proportional to the sup-
port of the structure. We then apply a low-pass to filter the volumes with a
cutoff frequency that corresponds to the final FSC between the two half maps
using the postprocessing function in Relion.

4.2.4 Results

Visual Comparison

In Figure 4.6, we compare the 3D structures obtained using our join-optimization
scheme (Figure 4.6-(d)) and the other methods (Figure 4.6-(c,e,f)). In this experi-
ment, the latent variables are initialized following the Init-1 model. As expected,
the reconstruction fails when the unrefined orientations are used (Figure 4.6-(c)),
which confirms that angular estimation is required to achieve a successful recon-
struction. By contrast, a perfect knowledge of the latent variables leads to a success-
ful reconstruction (Figure 4.6-(e)). The reconstruction obtained with our method
(Figure 4.6-(d)) closely resembles that obtained with the perfectly known latent
variables, which demonstrates its ability to correctly refine both the 3D structure
and the latent variables. Figure 4.6-(f) displays the 3D structure refined by Relion,
which is visually less similar to the ground-truth.
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(a) PTCH1, P = 500, fc = 0.03, SNRdata = 3.5781 (dB), mt = 0.

(b) HJC, P = 500, fc = 0.02, SNRdata = −0.5733 (dB), mt = 3.

Figure 4.6: Reconstructions of PTCH1 and HJC. Left: Samples of the noisy projec-
tions. Top row: 3D structures. Bottom row: Intensity maps of the central slice of
the structures. The presented volumes are (a) the ground truth, (b) the initial vol-
ume, (c) the reconstruction with unrefined projection orientations, (d) the output
of our joint refinement approach, (e) the reconstruction with the true projection
orientations, (f) the output of Relion after postprocessing. For both experiments,
the latent variables are initialized following the Init-1 model with eθ = 0.7 [rad].
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Figure 4.7: Comparison of the FSC between the 3D structure from various baselines
and the ground-truth 3D structure. Rel-w-postpr (solid green curve) and Rel-wo-
postpr (dashed green curve) refer to the Relion results with and without postpro-
cessing, respectively. Note that Rel-wo-postpr is obtained after averaging the two
half maps. The experimental setups are identical to the ones used in Figure 4.6.

FSC Curves

The FSC curves of the reconstructed volumes are sketched in Figure 4.7. These
curves confirm that our joint-optimization approach correctly refines the initial
low-resolution structure. Indeed, its resolution closely approaches that of the re-
construction obtained with a perfect knowledge of the latent variables. Moreover,
our framework outperforms Relion with and without postprocessing.

Quality of Angular Refinement

We display in Figure 4.8 the histogram of the differences between 1) the true and
the initial orientations, 2) the true orientations and the ones refined by our method,
and 3) the true orientations and the ones refined by Relion. The optimal histogram
is obtained when all the differences are zero, up to a global rotation. The corre-
sponding curve then resembles a delta function. We thus observe that our proposed
method performs well in refining the orientations, and outperforms Relion in doing
so.
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Figure 4.8: Histogram of the differences between the true and estimated orienta-
tions for our method (red curves) and for Relion (green curves). For comparison
purposes, the histogram of the differences between the true and the initial unrefined
orientations is provided (blue curves). The experimental setup is identical to Fig-
ure 4.6 (HJC). The x-axis is truncated between -15 and 15 degrees for visualization
purposes.
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Figure 4.9: Histogram of the differences between the true and estimated translations
for our method (red curves) and for Relion (green curves). For comparison, the
histogram of the differences between the true and the initial unrefined translations
is provided (blue curves). The experimental setup is identical to Figure 4.6(HJC).
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Figure 4.10: Evolution through iterations for the refinement of PTCH1. The ex-
perimental setup is the same as in Figure 4.6.

Figure 4.9 compares the histogram of the differences between 1) the true and the
initial in-plane translations, 2) the true in-plane translations and the ones refined
by our method, and 3) the true in-plane translations and the ones refined by Relion.
Here as well, the figure demonstrates the ability of our method to refine in-plane
translations, and its superior performance compared to Relion.

Convergence Results

The evolution of the volume during our joint-optimization procedure is presented
in Figure 4.10. The evolution of the resolution of the reconstruction is shown in
Figure 4.11 for our framework and two other baselines. There, rc marks the radial
frequency at which the FSC between the true and the reconstructed structures
equals 0.5.

When the orientations are perfectly known, the reconstruction process reaches
a high resolution in twenty iterations. Importantly, our framework converges to
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an almost equally high resolution structure starting from poor angular estimations.
Once more, we observe that refining the latent variables is vital to achieve a high-
quality reconstruction of the structure. Indeed, reconstruction fails when the set of
unrefined orientations is used.

Simulation of a Real Scenario

We mimic here a real scenario in which the output of the 3D ab initio method
provided by Relion is used to initialize both the structure and the orientations.
The in-plane translations are initialized with zeros. We use the HJC structure to
synthesize a volume with size (124 × 124 × 124) and with a voxel size of 2Å. The
number of projections is 20, 000 and the average SNR of the projections is −14.2dB.
Samples of the projections are provided in Fig. 4.12.

We split the projection dataset in two halves and refine each half separately,
starting from the same initial volume. Independent refinement of the two halves—
the outputs of which are called “half maps”—is a common practice in SPA and has
two main goals. First, a convergence criterion is obtained by comparing the two
refined half maps against each other. More precisely, we stop the refinement when
the FSC between the half maps fails to improve from one iteration to the next.
Second, it reduces overfitting, especially in high-noise regimes.

A visual comparison of the structures refined by our method and by Relion is
presented in Fig. 4.12 (c)-(e). Both results are postprocessed by combining the half
maps and filtering out frequencies beyond the final FSC by applying a soft tight
mask. A quantitative comparison between our method and Relion is provided in
Fig. 4.13 and shows that our method outperforms Relion both with and without
postprocessing.

We compare the histogram of the differences between the refined and the ground-
truth orientations for our method and Relion in Figures 4.14. We do the same for
the in-plane translations in Figure 4.15. In both cases, we observe that our method
enjoys comparable performance with Relion for the refinement of the orientations
and of the in-plane translations. That being said, while our joint-optimization
framework offers a substantial gain over Relion in the proof-of-concept experiments,
the difference here is less significant for a larger volume and a noisier regime. Nev-
ertheless, several improvements could further improve our method; we will discuss
those in Section 4.4.
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Figure 4.11: Evolution of rc, the radial frequency at which the FSC equals 0.5.
Comparison between our joint-reconstruction framework (dash-dotted), reconstruc-
tion with true orientation projections (solid), and reconstruction with unrefined
orientation projections (dashed). The experimental setup is identical to Figure 4.6
(HJC).

¨

Figure 4.12: Reconstructions of HJC. Left: Samples of the noisy projections. Top
row: 3D structures. Bottom row: Intensity maps of the central slice of the struc-
tures. The presented volumes are (a) the ground truth, (b) the initial volume, (c)
the output of our joint refinement approach after postprocessing, (d) the output of
Relion after postprocessing. For this experiments, the latent variables are initial-
ized following the Init-2 model using the results from Relion 3D ab-initio modeling.
The parameters of this experiment are: P = 20000, SNRdata = −14.2 dB, mt = 3.
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Figure 4.13: Comparison between the FSC of the structures obtained from several
baselines and the ground-truth structure. Relion-w-postpr (solid green curve) and
Relion-wo-postpr (dashed green curve) refer to the Relion results with and without
postprocessing, respectively. Note that, Relion-wo-postpr is obtained after averag-
ing the two half maps. The experimental setups are identical to the ones used in
Figure 4.12.
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Figure 4.14: Histogram of the differences between the true and estimated orienta-
tions for our method (red curves) and for Relion (green curves). For comparison
purposes, the histogram of the differences between the true and the initial unre-
fined orientations is provided (blue curves). The experimental setup is identical to
Figure 4.12. The x-axis is truncated between -17 and 17 degrees for visualization
purposes.
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Figure 4.15: Histogram of the differences between the true and estimated transla-
tions for our method (red curves) and for Relion (green curves). For comparison, the
histogram of the differences between the true and the initial unrefined translations
is provided (blue curves). The experimental setup is identical to Figure 4.12.
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4.3 Inner-loop-free ADMM

4.3.1 Overview

10In Section 4.1, we derived a fast formulation for the cost-dominant term of our
ADMM-based iterative scheme. As discussed then, this development is essential to
the deployment of our iterative reconstruction scheme in SPA, and to the design
of the joint-optimization framework presented in Section 4.2. Yet, our “standard”
ADMM loop still relies on an inner CG scheme to solve the linear step in its
minimization procedure, which leads to an algorithmic cost that grows prohibitively
with the number of inner CG iterations required for the reconstruction.

In this work, we present an inner-loop-free ADMM algorithm for cryo-EM in-
spired by [189]. By using an appropriate splitting scheme, we eliminate the need
for a nested CG to solve the linear step. Experiments show that this improvement
leads to a noticeable increase in algorithmic speed.

4.3.2 ADMM Without Inner CG Loops

We recall that our SPA reconstruction framework formulates as

ĉ = arg min
c∈RN

1

2
‖Hc− b‖22 + λR(Lc) + i≥0(c), (4.42)

whereR(Lc) injects prior knowledge into the reconstruction process with a strength
set by λ > 0, withR : RQ → R and L ∈ RQ×N . We also consider here the additional
constraint i≥0 : RN → R that imposes the nonnegativity of the reconstruction. In
our standard ADMM formulation (Section 2.3), the splitting scheme writes as

ĉ = arg min
c∈RN

1

2
‖Hc− b‖22 + λR(u) + i≥0(c) s.t. u = Lc, v = c, (4.43)

with u ∈ RQ, v ∈ RN the two auxiliary variables. As previously discussed, the
cost-dominant operation of the ADMM scheme that derives from (4.43) is the linear

10The content of this section is based on [20]: Laurène Donati, Emmanuel Soubies, Michael
Unser. Inner-Loop-Free ADMM for Cryo-EM. IEEE International Symposium on Biomedical
Imaging (ISBI), 2019.
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step

(
ρuLTL+ρvI+HTH

)
ck+1 = HTb+ρuLT

(
uk+1 +

αku
ρu

)
+ρv

(
vk+1 +

αkv
ρv

)
, (4.44)

that needs to be solved in terms of ck+1. Here, I ∈ RN×N is the identity matrix,
αu ∈ RQ, αv ∈ RN , are the Lagrangian multipliers, and ρu, ρv > 0 are their
associated penalty parameters. In all that precedes, we relied on an iterative CG
to solve (4.44) since we cannot explicitly build the inverse of the matrix

(
ρuLTL +

ρvI + HTH
)

nor can we perform the inversion in the Fourier domain due to the
padding of ck+1 prior to the convolution.

To avoid the use of CG, we propose a novel splitting of (4.42) inspired by [189].
The idea is to add a tailored auxiliary variable w ∈ RN in the splitting scheme to
simplify the standard ADMM algorithm and makes its linear step directly solvable.
We formulate this new splitting scheme as

ĉ = arg min
c∈RN

1

2
‖Hc− b‖22 + λR(u) + i≥0(v) s.t. u = Lc, v = c, w = Tc,

(4.45)
where T = (A − HTH)1/2 ∈ RN×N with A a symmetric positive semidefinite
matrix such that A � HTH. In other words, we impose that the matrix A ∈ RN×N
dominate the term HTH. In this work, we set A = ‖H‖2I.

The augmented Lagrangian for (4.45) is then given by

L
(
c,u,αu,v,αv,w,αw

)
=

1

2
‖Hc− b‖22 + λR(u) + 〈αu,u− Lc〉+

ρu

2

∥∥∥u− Lc
∥∥∥2

2

+ i≥0(v) + 〈αv,v − c〉+
ρv

2
‖v − c‖22 + 〈αw,w −Tc〉+

ρw

2

∥∥∥w −Tc
∥∥∥2

2
,

(4.46)

where αw ∈ RN is the additional vector of Lagrangian multipliers and ρw > 0 its
associated penalty parameter. The ADMM alternating scheme is thus (temporarily)
composed of 7 steps.
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• Minimization w.r.t. the auxiliary variables u, v and w:

uk+1 = proxR
(
Lck − α

k
u

ρu
;
λ

ρu

)
(4.47)

vk+1 = proxi≥0

(
ck − α

k
v

ρv
;

1

ρv

)
(4.48)

wk+1 = arg min
w∈RN

ρw

2

∥∥∥w −Tck +
αkw
ρw

∥∥∥2

2
= Tck − α

k
w

ρw
. (4.49)

• Minimization w.r.t. to the object c:

ck+1 = arg min
c∈RN

1

2
‖Hc− b‖22 +

ρv

2

∥∥∥vk+1 − c +
αkv
ρv

∥∥∥2

2

+
ρu

2

∥∥∥uk+1 − Lc +
αk+1

u

ρu

∥∥∥2

2
+
ρw

2

∥∥∥wk+1 −Tc +
αkw
ρw

∥∥∥2

2
.

(4.50)

• Update of the dual variables αu, αv and αw:

αk+1
u = αku + ρu

(
uk+1 − Lck+1

)
(4.51)

αk+1
v = αkv + ρv

(
vk+1 − ck+1

)
(4.52)

αk+1
w = αkw + ρw

(
wk+1 −Tck+1

)
. (4.53)

The operations (4.47), (4.48), (4.51) and (4.52) are identical to the ones found in
the standard ADMM algorithm. As stated earlier, the proposed algorithm thus
necessitates two steps more than the standard ADMM. The trick to reduce the
number of steps is that we can plug (4.49) into (4.50), which then simplifies to:

ck+1 =arg min
c∈RN

1

2
‖Hc− b‖22 +

ρu

2

∥∥∥uk+1 − Lc +
αk+1

u

ρu

∥∥∥2

2
+
ρv

2

∥∥∥vk+1 − c +
αkv
ρv

∥∥∥2

2
+
ρw

2

∥∥∥T(ck − c)
∥∥∥2

2
.

(4.54)

Operations (4.49) and (4.53) can then be set aside as they are not used in any of
the other alternating steps. Moreover, if one sets ρw = 1, the minimizer of (4.54)
satisfies(
ρuLTL + ρvI + A

)
ck+1 = HTb + ρuLT (uk+1 + αku/ρu) + ρv(vk+1 + αkv/ρv) + (A−HTH)ck.

(4.55)
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The elegance of this formulation is that (4.55) can be solved directly without relying
on a nested CG. Indeed, the matrix

(
ρuLTL + ρvI + A

)
is easily invertible in the

Fourier domain.

For a volume of size N , this new scheme leads to a complexity of O(2N log(N))
per ADMM iteration. By comparison, the standard ADMM with K inner CG
loops has a complexity of O(2(K+ 1)N log(N)) per iteration. A pseudocode of our
inner-loop-free ADMM is presented in Algorithm 6.

4.3.3 Experiments

We compare the convergence speed of the standard ADMM scheme and that of
the proposed inner-loop-free algorithm by reconstructing a synthetic dataset. We
use as our ground truth a (256× 256× 256) β-galactosidase volume [170]. We put
ourselves in challenging imaging conditions, such as those faced at the beginning of
the refinement procedure (i.e., few data, noisy projections, multiple angular mis-
estimations). From the ground truth, we compute 30 equidistributed projections
using the imaging model in (2.7) with a KBWF as basis function. We then de-

Algorithm 6 Inner-loop-free ADMM (proposed)

Require: b ∈ RMP , c0 ∈ RN , A = ‖H‖2I ∈ RN×N , λ > 0, ρ > 0

1: ρu = ρv = ρ
2: u0 = Lc0, α0

u = u0

3: v0 = c0, α0
v = v0

4: k = 1
5: while (not converged) do

6: uk+1 = proxR
(
Lck − αku

ρu
; λ
ρu

)
7: vk+1 = proxi≥0

(
ck − αkv

ρv
; 1
ρv

)
8: ck+1 ← solve (4.55) directly using fast HTH
9: αk+1

u = αku + ρu

(
uk+1 − Lck+1

)
10: αk+1

v = αkv + ρv

(
vk+1 − ck+1

)
11: k ← k + 1
12: end while
13: return ck+1
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Figure 4.16: Comparisons of the empirical convergence of the objective func-
tion (4.42) for three ADMM schemes: the standard ADMM with inner CG loops
(resp. 1 and 3) and the proposed inner-loop-free ADMM. The proposed algorithm
provides a noticeable gain in algorithmic speed for cryo-EM reconstruction.

grade these projections with Gaussian noise, setting their SNR to 1, and we add
some error on the projection orientations prior to reconstruction. For the sake of
simplicity, we do not consider the effect of the PSF. The reconstruction algorithms
are implemented using the GlobalBioIm library [118].

We compare three ADMM configurations: two standard ADMM setups with 1
and 3 inner CG loops, respectively, and the inner-loop-free ADMM. The algorithm
parameters (i.e., the regularization parameter λ and the penalty parameter ρ with
ρu = ρv = ρ) are tuned empirically to get the best reconstruction with the fastest
convergence. We run each algorithm for 200 iterations and monitor the evolution
of the cost with respect to the elapsed time (Figure 4.16.a) and the number of
iterations (Figure 4.16.b).

The results show that the proposed inner-loop-free ADMM provides a notice-
able gain in algorithmic speed compared to the standard approach. As expected,
the convergence of the standard ADMM accelerates with the number of CG iter-
ations, but this also severely increases the execution time of the algorithm. The
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cost per iteration of the proposed ADMM algorithm is lower and permits faster
computations.

4.4 Discussion

It is worth recalling that the use of our iterative reconstruction framework in SPA
is made entirely possible by the fast formulations of its cost-dominant operations
(Section 4.1). Without these mathematical contributions, the applicability of our
framework to this data-intensive modality would be rather limited. Another key
feature of the proposed approach is its ability to inject prior information into the
reconstruction procedure. Through its regularization term, our scheme is a ro-
bust alternative for handling reconstructions for which direct methods fail to yield
satisfactory results.

Beyond these contributions, our multiscale scheme can be especially beneficial
at the early stages of the iterative-refinement procedure. During these first mo-
ments, the optimization problem is highly ill-posed due the almost complete lack of
information on the orientations and the underlying 3D structure. Reconstruction
algorithms are thus likely to get trapped into abundant local minima if they lack
robustness, which then undermines the rest of the iterative-refinement procedure.
Indeed, several works have demonstrated that the accuracy of the initial volume es-
timates can considerably affect the final high-resolution reconstruction [76, 75]. In
that sense, our multiscale reconstruction scheme could provide novel ways of stabi-
lizing the early ill-posed stages. A judicious approach could be to start the process
with coarse reconstructions that are more robust to errors on the orientations, but
yet contain all the necessary information for their further refinement [164, 165].
One could then repeat the process by slowly increasing the scale as the estimation
of the orientations is refined.

In the same line of thought, the multiscale scheme could be combined with the
joint-optimization framework we introduced in Section 4.2 to improve the iterative-
refinement procedure. The idea would be similar here, i.e., to perform first the
orientation estimation at coarser scales in order to benefit from the increased ro-
bustness to noise and to unknowns. This extension would not only improve the
performance of the joint-optimization method, it would also increase its computa-
tional attractiveness by reducing its numerical complexity. Another development
for our joint-orientation framework could be to add regularization for the latent-



4.4 Discussion 103

variable estimation themselves.
Finally, the aforementioned contributions open the door for other types of de-

velopments in SPA, such as the inclusion of novel constraints, a different han-
dling of specimens with symmetries, or the use of promising learning-based ap-
proaches [190, 191].
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Chapter 5

Supervised Recovery of
Orientations in SPA:
Learning from Projections

5.1 Context

1In the previous chapters, we focused on model-based methods for cryo-EM that
formulate the reconstruction task as an inverse problem and rely on a faithful model
of the acquisition physics. Yet, the past years have also seen an explosion of data-
driven approaches, whose central philosophy is to let the reconstruction algorithms
be guided by the measured data through some learning procedure. In this chapter,
we present the outline and the preliminary results of an ongoing research project
for SPA that capitalizes on the powerful learning capabilities of neural networks,
yet still fundamentally relies on our ability to faithfully model the cryo-EM imaging
process (for the generation of the training dataset). As we shall shortly detail, its
target is the design of a method that learns to estimate the unknown orientation

1This work is linked to a student project that is currently undertaken by Jelena Bancac (MSc
Student, EPFL) under the joint supervision of Laurène Donati and Michaël Defferrard (LTS2,
EPFL). LD and MD conceived the original idea, devised the project, and planned the experiments.
JB carried out most of the implementation and performed the numerical experiments.

105
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associated to each projection in a SPA dataset. The method is still at its proof-of-
concept stage, and several interesting developmental steps lie ahead.

We already discussed that, in SPA, the 3D particles adopt a random orientation
in the ice layer before being imaged with parallel electron beams. Hence, the pro-
jection geometry associated to each 2D projection is unknown. Yet, this knowledge
is essential for tomographic reconstruction. To handle this, a popular approach
used by most SPA software packages is to alternatively refine the 3D structure
and the orientation estimation. This is also the philosophy behind our novel joint-
optimization scheme presented in Section 4.2. Iterative refinement procedures are
extremely powerful and have permitted the determination of numerous biological
structures up to near-atomic resolution [5]. Unfortunately, the outcome of these
methods is predicated on the quality of the initial reconstruction, or, equivalently,
on the initial estimation of the orientations [75, 76]. Several methods have been
designed to produce a first rough structure [64, 65, 66, 62, 67], but this remains a
notoriously arduous challenge in SPA.

5.2 Outline of the Proposed Method

In this work, we present a learning-based method to estimate the unknown orienta-
tions in SPA directly from the acquired dataset of projections, i.e., without relying
on any intermediate reconstruction procedure.

Our approach relies on the well-known observation that the greater the similarity
between two projections, the more likely they originated from two 3D particles that
adopted close orientations in the ice layer prior to imaging2. This principle guides
a number of applications in SPA, including that of projection matching [68].

Taking this line of thought further, we train a function—parametrized as a
neural network—to predict the relative orientation between two projections based
on their similarity. To make such training possible, we capitalize on our ability to
model the cryo-EM imaging procedure to generate a large, representative synthetic
dataset using publicly available 3D atomic models.

Using this trained distance function, we can estimate the relative orientations
between pairs of projections in any real dataset. Our postulate is that we can
then recover, from these estimated relative orientations, the orientations themselves

2Up to some possible intrinsic symmetries of the objects, which we discuss later.
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through an appropriate minimization scheme. This two-steps pipeline is illustrated
in Figure 5.1.

Inputs: Acquired Projection Dataset

SiameseNN

(trained on 

synthetic data) 

Step 1: Estimate Relative Orientations (Sec. 5.4) Intermediate Representation

Step 2: Orientations Recovery (Sec. 5.5) Outputs: Recovered Orientations

Figure 5.1: Overview of the proposed two-steps method: 1) estimate the relative

orientations between projection pairs through a learned distance d̂b, and 2) recover
the orientations from the estimated relative orientations. As done previously, we
denote a pth projection by bp. In this work, we use the notation qp to symbolize
the orientation of bp, for reasons that we shall further detail in Section 5.3. The
geodesic distance between two orientations is denoted by dq.

The task of recovering points based on their relative distances has been ex-
tensively studied in the literature, mostly within the framework of dimensionality
reduction and primarily for the case of Euclidean embedding spaces3 [192, 193, 194,
195, 196] . In that respect, the short example given by Dokmanic et al. in [196] effi-

3An “embedding space” corresponds to the lower-dimensional space in which data is embedded,
i.e., mapped to in such a way that the relative distances between its points are preserved as much
as possible.
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ciently illustrates the philosophy behind such methods (see the “An Analogy” box).

An Analogy: Mapping the Position of Swiss Cities with a Train
Timetable [196]

Figure 5.2: Image adapted from [196].
The red signs indicate the correct city loca-
tions. The black dots denote the recovered
city locations. The green triangles indicate
the places where the present thesis has been
written.

In this toy problem, the authors aim at
estimating the position of five cities on
the Swiss map based not on the spatial
distances between them, but on the time
it takes to travel by train between them.
Those time data (in minutes) are collected
in the following timetable:

L G Z N B


Lausanne 0 33 128 40 66
Geneva 33 0 158 64 101
Zürich 128 158 0 88 56
Neuchâtel 40 64 88 0 34
Bern 66 101 56 34 0

.

Remarkably, even though these time data
only roughly correlate with the physical
distances between the cities, one can still
obtain a remarkably good estimate of their
positions on the Swiss map (up to some
symmetries of the embedding space) using
a multidimensional scaling algorithm.

This example, if rather simple, nevertheless underlines well the key ingredients
of methods that aim at retrieving points from distances that may not be directly
measurable:

1. An appropriate proxy for the “real” distance. In the above example, the proxy
for the spatial distance between two cities is the time taken to travel by train
between them. In our case, we shall consider the similarity between two
projections to be a good proxy for their relative orientation.

2. A sufficiently rich collection of proxy distance data. In this example, these
data are provided by the (complete) train timetable. In our approach, we
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shall estimate the relative orientations between numerous pairs of projections
based on the aforementioned proxy distance.

3. An efficient recovery scheme. In [196], the embedding space being Euclidean,
the theoretical framework of the Euclidean distance matrices (EDMs) guar-
antees that one can retrieve the desired points from the collected distances.
In our case, as we shall shortly explain, we aim to embed the estimated rel-
ative orientations on SO(3), the space of 3D rotations. Unfortunately, the
extension of the EDM theory to such manifold is all but straightforward.

There is no straightforward way to “handcraft” a proxy distance that would
robustly predict the similarity between two projections. Hence, we resort to learning
this distance function by parametrizing it as a neural network and capitalizing on
1) the public availability of large datasets of 3D atomic models4, and 2) our ability
to model the cryo-EM imaging process (Chapter 2). This is the topic of Section 5.4.

Equipped with this learned distance, the idea is then to apply the aforemen-
tioned two-steps method (see Figure 5.1) for any projection dataset. This is detailed
in Section 5.5. As we just mentioned, we cannot rely on the theoretical framework
of EDMs since our embedding space is non-Euclidean. Despite this lack of theoret-
ical guarantees, we are able to appropriately minimize our objective function using
a gradient-based algorithm, as we experimentally demonstrate in Section 5.4.

As a preamble, we discuss the need in this work for an alternative representation
of orientations in SO(3) that relies on unit quaternions.

5.3 Unit Quaternions and the Geodesic Distance

As mentioned, our objective is to recover unknown 3D orientations by embedding
their estimated relative distances on the SO(3) space. As we shall explain in the
next sections, this embedding requires the efficient computation of the relative
distance between two rotations R1,R2 ∈ SO(3), which corresponds to the rotation
R∗ ∈ SO(3) such that R1 = R∗R2.

We have been working so far with Euler angles to describe the orientation of
a 3D object in the electron microscope, as is standard in SPA. In other words,
we relied on the Euler angles θ = (θ1, θ2, θ3) ∈ Ωθ to encode the 3D rotation

4https://www.ebi.ac.uk/pdbe/emdb
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that relates the object coordinate system to the projection coordinate system (see
Chapter 1). Unfortunately, the relative distance between two rotations R(θ1),
R(θ2), parametrized by Euler angles cannot be directly computed from θ1, θ2,
but requires the computation of the rotation matrices, which is computationally
inefficient5. Hence, we resort to a more convenient representation of 3D rotations
that relies on unit quaternions.

The algebra of quaternions was introduced in the mid-nineteenth century by
Hamilton [198]. A quaternion q ∈ H takes the form

q = a1 + bi+ cj + dk, (5.1)

where (a, b, c, d) ∈ R4, and 1, i, j, and k are the fundamental quaternion units

1 =

(
1 0

0 1

)
, i =

(
i 0

0 −i

)
, j =

(
0 1

−1 0

)
, k =

(
0 i

i 0

)
, (5.2)

with i the imaginary unit. Any quaternion q can thus be represented by its set
of coefficients (a, b, c, d) ∈ R4. The algebra H is similar to the algebra of complex
numbers C, with the exception of the multiplication operation being noncommuta-
tive.

In this work, we restrict our interest to unit quaternions q ∈ U, with U =
{
q ∈

H | |q| = 1
}

, which identify the S3 hypersphere in R4. Unit quaternions concisely
and elegantly represent the elements of the SO(3) group. More precisely, a unit
quaternion q ∈ U parametrizes a rotation R ∈ SO(3) through

R(q) =

a2 + b2 − c2 − d2 2bc− ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2d2 2cd− 2ab

2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2

 . (5.3)

The geodesic distance dq : U×U→ [0, π] between two unit quaternions qi, qj ∈ H
is then defined as

dq(qi, qj) = 2 arccos
(
|〈qi, qj〉|

)
, (5.4)

5Another technical challenge with Euler angles is that they suffer from the so-called gimbal
lock problem, which arises when θ2 = 0 and restricts the number of rotational degrees of freedom
to one even though θ1 and θ3 have not yet been fixed [197].
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with the inner product between quaternions given by

〈qi, qj〉 = aiaj + bibj + cicj + didj . (5.5)

The distance (5.4) is the shortest distance between qi and qj on the surface of
S3. As S3 is isomorphic to the universal cover of SO(3), this distance corre-
sponds to the magnitude of the relative orientation R∗ between R(qi) and R(qj)
in SO(3) [199]. In other words, the relative distance between two rotations en-
coded by unit quaternions can be efficiently computed from the unit quaternions
themselves through (5.4), which is of key practical importance for this work.

For the sake of conciseness, we shall use the term “with orientation q” to refer
to 2D/3D objects considered in an imaging geometry parametrized by q, similar to
what we previously did with Euler angles.

5.4 Estimating Relative Orientations from Projec-
tions

Equipped with the geodesic distance dq, our goal is now to find a “projection
distance” db that is a good predictor of dq. Before discussing the different options,
we briefly describe the synthetic datasets used in this work.

5.4.1 Experimental Dataset

We consider two proteins as ground truths: the β-galactosidase, a protein with a
dihedral (D2) symmetry, and the lambda excision HJ intermediate (HJI), an asym-
metric protein. Their deposited PDB atomic models are 5a5a [49] and 5j0n [186],
respectively. For each atomic model, we generate the ground truth by fitting a 5Å
density map in Chimera [200]. We thus obtain a volume of size (117× 117× 117)
for the β-galactosidase, and a volume of size (275× 275× 275) for the HJI.

From these ground truths, we generate 5, 000 synthetic projections of size (117×
117) and (275× 275), respectively, using the ASTRA projector6 [201]. The projec-
tion orientations are sampled from a uniform distribution over half the SO(3) space,
which suffices to generate all the possible projections of a volume. For the sake of

6The open-source ASTRA toolbox implements an accelerated projector for 3D tomography.
The code is provided in Python, which is convenient at the current stage of development.
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Figure 5.3: Plotting the Euclidean distance between two projections versus their
actual relative orientation (measured by the geodesic distance) for (left) the asym-
metric protein (5j0n) dataset, and (right) the symmetric protein (5a1a) dataset.

simplicity, the projections are currently kept unblurred and noiseless. Whenever
training neural networks, we split the datasets into a distinct training set (50%),
validation set (22%), and testing set (33%), to ensure that the results can generalize
to unseen projections. The complete pipeline is implemented in Tensorflow [202].

5.4.2 Baseline Test with the Euclidean Distance

As a baseline, we first evaluate the suitability of the Euclidean distance as a projec-
tion distance db to predict dq. For the two aforementioned datasets, we randomly
select 1, 000 pairs of projections. For each pair, we compute the Euclidean dis-
tance between the projections db(b

i,bj) = ‖bi−bj‖2 and their relative orientation
dp(qi, qj) through (5.4). We then report the (dq, db) relationship for all pairs in
Figure 5.3, for both the asymmetric protein (left) and the symmetric one (right).

Two principal observations can be made from this experiment. First, as sus-
pected, the Euclidean distance between projections fails to be a consistent predictor
of their relative orientation distance, even in the simple imaging conditions consid-
ered here (no noise and no effect of the PSF). In particular, the larger the relative
distance dq, the poorer the predictive ability of the Euclidean distance as db. The
other interesting observation is that the intrinsic symmetry of the β-galactosidase



5.4 Estimating Relative Orientations from Projections 113

Sister CNN #2 

Sister CNN #1 

Training Dataset

Same Structure/Weights

Fe
at

ur
es

 S
im

ila
rit

y 

Lo
ss

 F
un

ct
io

n 

Loss

Siamese Neural Network as

Figure 5.4: Training a Siamese neural network (SiameseNN) to become a faithful
predictor of the relative orientation between two input projections. In other words,
we train the SiameseNN to serve as a projection distance d̂b that correctly ap-
proximates the orientation distance dq. The training is performed with a synthetic
dataset that contains thousands of projections with their associated orientation.

protein (5a1a) appears in its (dq, db) plot.

5.4.3 Learning d̂b with a Siamese Neural Network

As previously discussed, we make the choice to learn a good approximation d̂ on a

synthetic training dataset
{
b∗p, q∗p

}Nt
p=1

through

d̂b = arg min
db

∑
i,j

∣∣db(b∗i,b∗j)− dq(q∗i , q∗j )∣∣2, (5.6)

with dq defined in (5.4), and whereNt indicates the number of projection-orientation
pairs in the training dataset. More precisely, we parametrize the distance function
db in (5.6) as a Siamese neural network (SiameseNN) [203], and resort to learning
its weights w, as illustrated in Figure 5.4.
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SiameseNNs, also termed “twin networks”, are commonly used in the field of
deep metric learning to learn similarity functions [204]. They are usually consti-
tuted of two sister neural networks that work in tandem and share the exact same
architecture and weights. Their role (once trained) is to extract the projection
features that are the most relevant to predict the relative orientation between two
projections. The weights w of the two sister networks are progressively learned by
1) comparing the difference of their projection feature vectors to the magnitude of
the corresponding relative orientations, and 2) back-propagating this error (via the
derivative chain rule) to the weights.

Generating a Proper Training Dataset for the SiameseNN

The success of the SiameseNN as a faithful predictor of relative orientations even-
tually relies on our capacity to generate a synthetic training dataset that is both
large and representative of SPA measurements. In other words, we need to create
a training set whose data distribution is diverse enough to cover that of unseen
projection datasets. The objective is for the SiameseNN to be able to handle pro-
jections acquired in all sorts of imaging conditions and originating from 3D volumes
it has never been trained on.

We shall create such comprehensive training dataset by capitalizing on two
favorable conditions. First, there exists a large publicly-available database of de-
posited atomic models of proteins, which gives us access to thousands of different 3D
ground truths. Then, we shall take advantage of our ability to model the cryo-EM
imaging procedure (Chapter 2) to generate, from these ground truths, a synthetic
dataset that contains a massive amount of realistic projections whose orientations
are, by definition, all known.

Note that an interesting aspect of SiameseNNs for the present application is that
they intrinsically predict the relationship between objects. Hence, a well-trained
SiameseNN could be relatively robust to the change of volumes. In the same line of
thought, our SiameseNN will likely benefit from the profound structural similarity
shared by proteins—after all, they all derived from just the same 21 amino acids.

Preliminary Training Results

We present here a preliminary evaluation of the ability of SiameseNNs to learn a
projection distance d̂b that correctly approximates the orientation distance dq.
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(a) Training losses of the Siame-
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(b) Training losses of the Siame-
seNN on the symmetric protein
(5a1a) training and validation
datasets.

(c) Relative orientations predicted
by the trained SiameseNN from pro-
jections in the asymmetric protein
(5j0n) testing dataset.

Figure 5.5: Training results for the SiameseNN.
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SiameseNNs come with a variety of more or less powerful architectures. At
the current stage of development, we work with a simple one. Our SiameseNN
is composed of two convolutional neural networks (CNNs) with shared weights.
Their output features vectors are compared through an Eulidean distance, i.e.,
F (x,y) = ‖x − y‖2 in Figure 5.4. The detailed architecture of this SiameseNN is
given in Figure A.1 in Appendix A.5.

For each protein, we train the SiameseNN on its training dataset for 250 epochs
(∼10 hours) using an Adam optimizer [205], a learning rate of 10−3, and a batch
size of 256 projections. The evolution of the training and validation losses are
presented in Figure 5.5a for the asymmetric protein (5j0n), and in Figure 5.5b for
the symmetric one (5a1a). The results demonstrate that the SiameseNN succeeds
at learning a proxy distance for the asymmetric protein dataset, as convergence is
reached in about 50 epochs (∼ 2 hours).

However, the current SiameseNN architecture fails at learning the distance for
the dataset 5a1a, which is very likely due to the symmetry of the β-galactosidase
protein. Indeed, its synthetic dataset contains pairs of projections that share the
same db, yet differ in their dq. This simply advocates for the restriction to non-
overlapping areas on SO(3) when sampling the orientations used to generate the
SiameseNN training dataset. The latter would then only contain projection pairs
with a linear (dq, db) relationship, which should ensure a successful training of the
network. For the rest of the experiments, we use the asymmetric protein (5j0n)
dataset.

We then feed to the trained SiameseNN 1, 000 pairs of projections randomly
selected from the 5j0n testing dataset, and report the (dq, d̂b) relationship of each
pair in Figure 5.5c. These results confirm that, for this protein at least, the Siame-
seNN is able to predict the orientation distance dq using only the projections as
inputs. Moreover, it clearly outperforms the Euclidean distance at doing so. These
preliminary results are encouraging, as much has yet to be gained from improving
upon the rather primitive SiameseNN architecture we currently use.

5.5 Orientation Recovery

Equipped with an appropriately learned d̂b, the objective is then to recover the

unknown unit quaternions
{
qp
}P
p=1

associated to the projections
{
bp
}P
p=1

in any

given dataset.
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5.5.1 Minimization Scheme

We propose to start this process by computing of a great number of pairwise pro-

jection distances
{
d̂b
(
bi,bj

)}P
i,j=1

through d̂b. Then, our postulate is that we can

recover the orientations from theses distances by solving{
q̂p
}P
p=1

= arg min
qi∈U

∑
i,j

∣∣d̂b(bi,bj)− dq(qi, qj)∣∣2, (5.7)

as is illustrated in Figure 5.1.
In practice, one cannot possibly evaluate (5.7) for every pair of orientations{

qi, qj
}P
i,j=1

given the extremely large size of SPA datasets, with P typically in the

order of dozens of thousands. Hence, we need to partially sample the projection
dataset. We experimentally demonstrate in Section 5.5.2 that this does not affect
the performance of our recovery scheme.

As previously discussed, we are not yet aware of any guarantee of convergence
for (5.7). Similarly, we do not know of any theoretical characterization of the
behaviour of (5.7) in ill-posed conditions, such as when pairwise distances are mis-
estimated, for instance. Hence, we rely for now on experimental demonstrations to
1) ensure feasibility, and 2) indicate where efforts need to be invested.

5.5.2 Feasibility Check: Recovery from the Exact Relative
Distances

Our first investigation is to verify that it is at all possible to recover the orientations
through (5.7) from their true relative distances (i.e., using dq and not a proxy db).

We use the 5, 000 projections from the asymmetric protein (5j0n) dataset. Out
of the possible 25 mio possible pairs, we randomly select only 5, 000 of them and
compute their geodesic distance through (5.4). We then minimize (5.7) using the
SGD Adam optimizer [205] for 30K steps (∼1 hour) with a learning rate of 0.1.

The results are given in Figure 5.6. They confirm that it is possible to recover
the orientations from their true relative distances, even though the embedding space
is non-Euclidean. As previously discussed, this is not a straightforward result. The
results also demonstrate that a large subsampling of the projection pairs does not
affect the convergence of (5.7), which is in straight line with the observations made
by numerous Euclidean-based dimensionality reduction works [192, 193, 194, 195].
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(a) (b)

Figure 5.6: Results of the orientation recovery scheme when using the perfect ori-
entation distances for the asymmetric protein (5j0n). (a) Evolution of the loss
of (5.7) during minimization. (b) Coverage of SO(3) after the orientation recovery
from the perfect relative distances.

5.5.3 Robustness of Recovery to (Additive) Errors on the
Relative Distances

We now go one step further and evaluate the behaviour of (5.7) when the true
relative distances are corrupted by additive Gaussian noise.

The experimental conditions are the same than in the previous section, except
that we add an error with increasing variance on the relative distances prior to the
minimization. The results are presented in Figure 5.7 (red curve).

Before discussing the results, we remark that one cannot really quantify the
performance of (5.7) through its loss. Unfortunately, it is also not appropriate to

directly compute the error between the recovered orientations
{
q̂p
}P
p=1

and the true

ones
{
qp
}P
p=1

. The reason is that the recovery of orientation through (5.7) is up

to a global rotation, i.e., any global rotation of the set of recovered orientations
is as valid as any other. This is not a problem for the ultimate application of
our scheme, but it complicates the quantitative evaluation of its performance in
synthetic experiments. We circumvent this problem by 1) aligning the true and
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Figure 5.7: Results of the recovery scheme (red curve) and the alignment procedure
(blue curve) when an increasing amount of errors is added to the true relative
distances.

recovered orientation sets, and 2) computing their distance after alignment. The
alignment is performed by searching for the orthogonal matrix (with determinant
± 1) T ∈ R4 that minimizes

T̂ = arg min
T∈R4

∑
i,j

∣∣dq(qi, qj)− dq(Tq̂i,Tq̂j)∣∣2. (5.8)

For all variances, the distance after alignment is reported in Figure 5.7 (blue curve).

These results demonstrate that the performance of the minimization scheme (5.7)
linearly depends on the quality of the relative distances, which advocates for a
proper and extensive training of the SiameseNN in the next stages of development.
Another interesting output of Figure 5.7 is that it indicates that the error of the
orientation recovery behaves as a monotonic function of its loss. Hence, it suggests
that the loss can be used as a good indicator of its performance, which has obvious
practical implications for our future works on real data.
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5.6 Discussion

The results obtained so far provide some key insights on the viability of the proposed
method. They guarantee that each component of this new paradigm can handle the
task it is designed for, and they provide some early indications on the robustness of
the overall scheme. Unfortunately, we have not yet had the time to run an end-to-
end pipeline and evaluate the performance of (5.7) when the trained SiameseNN is

used as learned d̂b; this is very clearly the next line of research.
The obtained results underline the importance of learning an accurate proxy

distance d̂b. In this regard, we could improve the performance of the SiameseNN
in several ways, for instance by further tuning the architecture of its twin CNNs.
We could also parametrize the function F , which compares the similarity of the
features outputs (see Figure 5.4), as a feed-forward neural network instead of the
current Euclidean distance, and learn its weights as well.

Once these improvements are made, we shall enhance the training dataset for
the SiameseNN and test its predictive ability in more challenging situations. To
achieve this, we shall rely on our powerful, expressive forward model of the cryo-EM
procedure to generate realistic projections from thousands of atomic models in the
PDB database. This will also allow us to test different options for the challenging
handling of proteins with multiple conformational states.



Chapter 6

A New Reconstruction
Paradigm for SPA via Deep
Adversarial Learning

6.1 Context

1We extensively discussed in all that precedes that a major challenge in SPA is
that the imaged 3D particles have unknown orientations. Current reconstruction
techniques either estimate the orientations through an iterative-refinement pro-
cedure [68] or marginalize them in likelihood-based optimization procedures [10].
Both are computationally challenging approaches that can demand very large re-
sources or rely on approximations that may limit the attainable resolution (see
Section 1.4).

1This chapter uses content from a recent preprint: Harshit Gupta, Michael
T. McCann, Laurène Donati, Michael Unser. CryoGAN: A New Recon-
struction Paradigm for Single-particle Cryo-EM Via Deep Adversarial Learning.
https://www.biorxiv.org/content/10.1101/2020.03.20.001016v1. HG and MM conceived
the original idea and implemented the pipeline. HG carried out most of the experiments. LD
provided expertise on cryo-EM related aspects. All authors were involved in the planning of the
experiments and discussed the results. LD took the lead in writing, with inputs from all authors.
MU supervised the project.
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In Chapter 4, we introduced a refinement-based approach that brings increased
robustness and does away with the computationally expensive procedure of pro-
jection matching. Yet, like all iterative-refinement approaches, its outcome de-
pends on the quality of the initial reconstruction. In this regard, the learning-
based method presented in Chapter 5—whose target is to estimate the orientations
directly from the acquired dataset of projections—could prove highly useful. How-
ever, the method is still at its proof-of-concept stage and several key developmental
steps lie ahead.

In this chapter, we introduce CryoGAN, a completely new paradigm for SPA
reconstruction based on deep adversarial learning. The CryoGAN algorithm can re-
solve a 3D structure in a single algorithmic run using only the dataset of projections
and CTF estimations. Moreover, it does not rely on a first low-resolution volume
estimate and can be initialized with a zero-valued volume. While the spatial resolu-
tion of the CryoGAN reconstructions from real data is not yet competitive with the
state-of-the-art, we expect these results to improve in the near future. In particu-
lar, we believe that the ongoing progresses in deep-learning architectures will help
enrich the CryoGAN algorithm and improve the resolution of its reconstructions.

In the meantime, the preliminary results obtained with CryoGAN are encourag-
ing and demonstrate the potential of adversarial-learning schemes in image recon-
struction. As far as we know, CryoGAN is the first demonstration of a deep-learning
architecture able to perform the full SPA reconstruction procedure without any
prior training. The framework is a prime illustration of the immense gain that can
derive from combining the robustness of model-based approaches with the powerful
abilities of learning-based schemes.

6.2 Overview: The CryoGAN Paradigm

CryoGAN is an unsupervised reconstruction algorithm for SPA that exploits the
remarkable ability of generative adversarial networks (GANs) to capture data dis-
tributions [206]. Similar to GANs, CryoGAN is driven by the competitive training
of two entities: one that captures the distribution of real data, and another that
discriminates between generated samples and samples from the real dataset (Fig-
ure 6.1a). In a classical GAN, the two entities are each a convolutional neural
network (CNN). They are known as the generator and the discriminator and are
trained simultaneously using backpropagation.
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The important twist with CryoGAN is that we replace the generator network
by a cryo-EM physics simulator (Figure 6.1b). This simulator implements a mathe-
matical model of the imaging procedure to produce a synthetic measurement based
on 1) the current volume estimate and 2) a random projection orientation. As
we have done so far, this image-formation model considers that the cryo-EM 2D
measurement is the projection of the volume at that orientation, modulated by
microscopy-related effects and corrupted by substantial additive noise.

The cryo-EM physics simulator is then paired with a discriminator network
whose architecture is similar to that of standard GANs. The role of the discrimi-
nator in CryoGAN is to encourage the simulator to learn the volume whose simu-
lated dataset distribution matches that of the real dataset, while it simultaneously
gets better at evaluating the simulated projections for authenticity. This novel
adversarial-learning scheme allows CryoGAN to output the 3D structure whose
simulated projections are the most consistent, in a distributional sense, with the
real projections in a 2D measurement set.

The CryoGAN architecture represents a complete change of paradigm for SPA
reconstruction. No estimation of the orientations is attempted during the learning
procedure; rather, the reconstruction is obtained through a distributional matching
performed in a likelihood-free manner. Due to this innovative setting, CryoGAN
sidesteps many cumbersome processing stages such as 2D alignment and 2D/3D
classification. It also avoids many of the computational drawbacks associated with
likelihood-based methods, in particular the need to marginalize over all orientations
via numerical integration.

In practice, CryoGAN requires no prior knowledge of the 3D structure; its
learning process is purely unsupervised and data-driven. The user needs only to
feed the projections and estimates of the contrast transfer function (CTF). No initial
estimate of the volume is needed: the algorithm starts with a volume initialized
with zeros.

As we shall now detail, the CryoGAN algorithm is based on a sound mathe-
matical framework that provides guarantees on the recovery of the volume under
a given set of assumptions that are often met in practice, at least to some degree
of approximation. Its adversarial learning scheme falls under the framework of
Wasserstein GANs (WGANs), with some key architectural differences. The Cryo-
GAN algorithm is implemented in PyTorch [207], and mostly relies on stochastic
gradient descents (SGD) to alternate between the updates of the discriminator and
of the volume.
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Figure 6.1: A schematic comparison between (a) a classical GAN architecture
and (b) the CryoGAN architecture. Both frameworks rely on a deep adversarial
learning scheme to capture the distribution of real data. CryoGAN exploits this
ability to look for the volume whose simulated measurements have a distribution
that matches this real data distribution. This is achieved by adding a “cryo-EM
physics simulator” that produces synthetic measurements following a mathematical
model of the cryo-EM imaging procedure. Importantly, CryoGAN does not rely on
a first low-resolution volume estimate, but is initialized with a zero-valued volume.
Note that, for both architectures, the updates involve backpropagating through the
neural networks; those actions are not indicated here for the sake of clarity.
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6.3 Mathematical Framework of CryoGAN

Similar to what we have done so far2, we model the imaging procedure in SPA
through the linear relationship

b = Hϕc + n, (6.1)

where b ∈ RM is a 2D projection, c ∈ RN corresponds the 3D volume of interest,
Hϕ ∈ RM×N is the forward operator with imaging parameters ϕ, and n ∈ RM
represents an additive noise that follows a distribution pn.

The set of imaging parameters is denoted as ϕ = (θ1, θ2, θ3, t1, t2, d1, d2, αast).
It includes the Euler angles θ = (θ1, θ2, θ3) ∈ Ωθ, the projection shifts t = (t1, t2) ∈
R2, and the CTF parameters h = (d1, d2, αast) ∈ R3, where d1 is the defocus-major,
d2 is the defocus-minor, and αast is the angle of astigmatism. We then model the
forward operator Hϕ as

Hϕ = ChStPθ, (6.2)

where Pθ : RN → RM is the projection operator, St : RM → RM is the shift
operator, and Ch : RM → RM corresponds to the convolution operator with the
PSF, which, we recall, is the inverse Fourier transform of the CTF with parameters
h.

6.3.1 The Quest for Distributional Matching

The ultimate goal of SPA reconstruction is to estimate a 3D structure crec whose
projections are consistent with the observed projections (i.e., the acquired data) of
the true structure ctrue.

We can write the conditional probability density function of a measurement b
given a volume c by marginalizing over the imaging parameters

p(b|c) =

∫
ϕ

pn(b−Hϕc)pϕ(ϕ)dϕ, (6.3)

where pϕ is the distribution of the imaging parameters ϕ. We denote bnoiseless =
Hϕc.

2The only noteworthy change of notation in this chapter is the use of b to denote a single
projection rather than a stack of projections, which helps alleviate the subsequent notations.
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In our formulations, the projections in the real dataset are samples of a dis-
tribution pdata. We then make the assumption that the distribution p(b|ctrue)
corresponds to the distribution p(b|ctrue) = pdata(b) of the real dataset, which is
reasonable if the image-formation model faithfully mimics the cryo-EM physics.

We demonstrate in Theorem 4 in Appendix A.6.2 that two 3D volumes c1 and
c2 have identical conditional distributions p(b|c1) = p(b|c2) if and only if c1 is
equal to c2, up to rotation and reflection. Hence, Theorem 4 implies that, for the
reconstruction crec to satisfy crec = ctrue, it must also satisfy p(b|crec) = p(b|ctrue).

This is a mathematical result of importance as it means we can formulate the
reconstruction task as the minimization problem

crec = arg min
c
D
(
p(b|c), p(b|ctrue)

)
= arg min

c
D
(
pc(b), pdata(b)

)
, (6.4)

where D is some distance between two distributions. In essence, (6.4) states that
the appropriate reconstruction is the 3D structure whose theoretical projection set
is the most similar to the real data set in a distributional sense. For the sake of
conciseness, we shall henceforth use the notation p(b|c) = pc(b).

We use for (6.4) the Wasserstein distance defined as

D(p1, p2) = inf
γ∈Π(p1,p2)

E(b1,b2)∼γ [‖b1 − b2‖], (6.5)

where Π(p1, p2) is the set of all the joint distributions γ(b1,b2) whose marginals
are p1 and p2, respectively. Our choice is driven by works demonstrating that
the Wasserstein distance is more stable than other popular distances (e.g., total-
variation or Kullback-Leibler) for this kind of applications [208].

Using (6.5), the minimization problem (6.4) expands as

crec = argmin
c

inf
γ∈Π(pc,pdata)

E(b1,b2)∼γ [‖b1 − b2‖]. (6.6)

By using the formalism of [208, 209, 210], this minimization problem can also be
stated in its dual form

crec = argmin
c

max
f :‖f‖L≤1

(
Eb∼pdata

[f(b)]− Eb∼pc [f(b)]
)
, (6.7)

where the function f belongs to the set of functions with Lipschitz value ‖f‖L less
than 1.
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6.3.2 CryoGAN and the Connection with WGANs

A key observation is that (6.7) falls under the framework of the generative adver-
sarial networks (GANs) [206] called WGANs (for Wasserstein-GANs) [208].

In the classical WGAN representation, the function f is parameterized by a
neural network Dφ with parameters φ that is called the discriminator. The task of
the discriminator is to learn to differentiate between samples that originate from
real data and samples that originate from synthetic data. These synthetic data are
produced by another neural network called the generator, which aims at producing
data realistic enough to delude the discriminator. This adversarial-learning scheme
drives the WGAN to capture the distribution of the real data.

In CryoGAN, we also learn the volume c whose simulated projections follow the
real-data distribution, as captured through adversarial learning. The role of the
cryo-EM physics simulator is to produce synthetic projections of a volume estimate
c using (6.1). These simulated projections then follow a distribution b ∼ pc. Hence,
(8) translates into

crec = argmin
c

max
Dφ:‖Dφ‖L≤1

(
Eb∼pdata [Dφ(b)]− Eb∼pc [Dφ(b)]

)
. (6.8)

As proposed in [211], the Lipschitz constraint ‖Dφ‖L ≤ 1 is best enforced by
penalizing the norm of the gradient of Dφ with respect to its input. This gives the
final formulation of our reconstruction problem as

crec = argmin
c

max
Dφ

(
Eb∼pdata

[Dφ(b)]− Eb∼pc [Dφ(b)]− λ · Eb∼pint [(‖∇bDφ(b)‖ − 1)2]
)
.

(6.9)

Here, pint describes the uniform distribution along the straight line between points
sampled from pdata and pc, while λ ∈ R+ is an appropriate penalty coefficient
(see [211], Section 4).

6.4 The CryoGAN Algorithm

6.4.1 The CryoGAN Adversarial Learning Scheme

Equation (6.9) is a min-max optimization problem. By replacing the expected
values with their empirical counterparts (i.e., sums) [211], we reformulate it as the
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minimization of

LS(c,Dφ) =
∑
n∈S

Dφ(bndata)−
∑
n∈S

Dφ(bnsim)− λ
∑
n∈S

(‖∇bDφ(bnint)‖ − 1)2), (6.10)

where

• S consists of either the full dataset Sfull = {1, . . . , Ntot} or a batch B ⊆ Sfull;

• bndata is a real projection sampled from the acquired dataset;

• bnsim ∼ pc is a synthetic projection of the current estimate c generated by the
cryo-EM physics simulator;

• bnint = αn · bndata + (1 − αn) · bsim, where αn is sampled from a uniform
distribution between 0 and 1.

In practice, we minimize (6.10) through SGD using batches. We alternatively
update the discriminator Dφ (in ndiscr iterations) using an Adam optimizer [205]
and the volume c (in 1 iteration) using the appropriate gradients of LS(c,Dφ).
The pseudo-code and the schematic view of the CryoGAN algorithm are given
in Algorithm 7 and Figure 6.1b, respectively. The architecture of the CryoGAN
discriminator is presented below (see Section 6.4.3).

6.4.2 The Cryo-EM Physics Simulator

The goal of the physics simulator is to sample bsim ∼ pc(b). We do this in three
steps.

1. Sample the imaging parameters ϕ from the distribution pϕ: ϕ ∼ pϕ.

2. Generate noiseless CTF-modulated and shifted projections from the current
volume estimate with Hϕ(c).

3. Sample the noise model to simulate noisy projections b = Hϕ(c) + n, where
n ∼ pn.

The pseudo-code of the cryo-EM physics simulator is given in Algorithm 8.
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Algorithm 7 CryoGAN

Parameters: number ntrain of training iterations; number ndiscr of iterations
of the discriminator per training iteration; size N of the batches used for SGD;
penalty parameter λ.

for ntraindo
for ndiscr do

• Sample real projections: {b1
batch, . . . ,b

N
batch} = {bndata}n∈B .

• Sample projections simulated from current c: {b1
sim, . . . ,b

N
sim} ∼ pc (see

Algorithm 2).

• Sample {α1, . . . , αn} ∼ U [0, 1].

• For all n ∈ {1, . . . , N}, compute bnint = αn · bnbatch + (1− αn) · bnsim.

• Update the parameters φ of the discriminator Dφ by ascending its stochas-
tic gradient

∇φLB(c,Dφ) = ∇φ
(

N∑
n=1

Dφ(bnbatch)−
N∑
n=1

Dφ(bnsim)− λ
N∑
n=1

(‖∇bDφ(bnint)‖ − 1)2

)
.

(6.11)

end for

• Sample {b1
sim, . . . ,bsim

N} ∼ pc;

• Update of the volume c by descending its stochastic gradient

∇cLB(c,Dφ) = ∇c

(
−

N∑
n=1

Dφ(bnsim)

)
. (6.12)

end for
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Algorithm 8 Cryo-EM Physics Simulator

Inputs: current volume estimate c

1. Sample the imaging parameters ϕ = [θ, t,h].

• Sample the Euler angles θ = (θ1, θ2, θ3) ∼ pθ.

• Sample the 2D shifts t = (t1, t2) ∼ pt.

• Sample the CTF parameters h = (d1, d2, αast) ∼ ph.

2. Generate a synthetic noiseless projection based on (6.2), with bnoiseless = Hϕc.

3. Sample the noise n ∼ pn. Add to the projection as bsim = bnoiseless + n.

Step 1: Sampling of the Imaging Parameters

We recall that the set of imaging parameters is given byϕ = (θ1, θ2, θ3, t1, t2, d1, d2, αast).

We first sample the Euler angles θ = (θ1, θ2, θ3) from a distribution pθ decided
a priori based on the acquired dataset. Similarly, the projection shifts t = (t1, t2)
are also sampled from the prior distribution pt.

The CTF parameters h = (d1, d2, αast) are sampled from the prior distribution
ph. For example, a uniform distribution over the defocus range can be assumed.
In practice, we exploit the fact that the CTF parameters can often be efficiently
estimated for the micrographs. We then uniformly sample from the whole set of
extracted CTF parameters.

Step 2: Synthesis of Noiseless Cryo-EM Projections

We generate noiseless projections bnoiseless by applying Hϕ to the current volume
estimate c. The projection operator Pθ in (6.2) is implemented using the ASTRA
toolbox [201].
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Step 3: Sampling of the Noise Model

The precise modeling of the noise is a particularly challenging feat in cryo-EM.
To produce noise realizations that are as realistic as possible, we extract random
background patches directly from the micrographs themselves, at locations where
3D particles do not appear. For consistency, the noise patch added to a given
noiseless projection is taken from the same micrograph that was used in Step 1
to estimate the CTF parameters previously applied to that specific projection.
Additional details for this implementation are given in Appendix A.6.6.

6.4.3 The CryoGAN Discriminator Network

The role of the discriminator is to differentiate between projections from the real
dataset and projections synthesized by the cryo-EM physics simulator. The gradi-
ents from the discriminator (see (6.12) in Algorithm 7) carry information on the
difference between real and synthesized images at a given run-time. Those gradi-
ents are used by the simulator to update itself, thus improving on the realism of
the projections.

The discriminator network takes an image as input and outputs a scalar value.
Its architecture is illustrated in Figure 6.2. It is composed of 8 layers: 6 convolu-
tional blocks followed by 2 fully connected (FC) layers. Each convolutional block
is made up of a convolutional layer followed by a max-pooling and a leaky ReLU
(with negative slope of 0.1). The number of channels in each convolutional layer is
96, 192, 384, 768, 1536, and 3072, respectively. The filters in these layers are of size
3, and the padding size is 1. The max-pooling layer uses a kernel of size 2 with a
stride of 2. This leads to a downsampling by a factor of 2. The output of the final
convolutional block is then reshaped, fed into the FC layer with 10 neurons, and
finally processed by a leaky ReLU. The resulting activations are fed to the last FC
layer to output a scalar.

6.5 Results

6.5.1 Performance on a Synthetic Dataset

We first assessed the viability and performance of CryoGAN on a synthetic dataset
that consists of 41,000 β-galactosidase projections. To generate this dataset of “real
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Figure 6.2: Architecture of the discriminator. The parameter for the channel size
is C = 96 in every experiment. The input image with size H ×W is successively
processed and downsampled to output a scalar.

projections”, we fitted the PDB entry (5a1a) of the protein with a 5Å-resolution
structure and applied the forward model (6.2) to obtain thousands of projections
modulated by CTF effects and corrupted by noise. We then randomly divided
this dataset in two and applied the CryoGAN algorithm separately on both halves
to generate half maps. The details of the experimental setup are given in Ap-
pendix A.6.5.

We ran the CryoGAN algorithm for 160 minutes on an NVIDIA P100 GPU
and obtained a 7.58Åresolution reconstruction (Figure 6.3.a). Starting from a zero-
valued volume, CryoGAN progressively updates the 3D structure so that its sim-
ulated projections, generated by the cryo-EM physics simulator and displayed in
Figure 6.3.b, reach a distribution that matches that of the particles dataset. These
gradual updates are at the core of the deep adversarial learning scheme of Cryo-
GAN. At each iteration of the algorithm, the gradients from the discriminator
(Figure 6.1.b) carry information about the current difference between the picked
particles (“real data”) and the generated projections (“fake data”). These gradi-
ents are used by the cryo-EM physics simulator to update its parameters and learn
a volume that improves the fidelity of the projections. Hence, at the end of its run,
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Figure 6.3: CryoGAN is applied on a synthetic dataset (dubbed “picked particles”)
generated from a 5Å β-galactosidase volume. (a) Starting with zero-values, the
volume is progressively updated to produce projections whose distribution matches
that of the picked particles. (b) Evolution during training of some “clean” projec-
tions (i.e., before CTF and noise) generated by the cryo-EM physics simulator. (c)
Row 1 : Clean projections (before CTF and noise) generated at the final stage of
training. Row 2 : CTF-modulated projections (before noise) generated at the final
stage of training. Row 3 : Realistic projections (with CTF and noise) generated at
the final stage of training. Row 4 : Samples of picked particles, for comparison. (d)
FSC curves between the two reconstructed half maps at different training times.
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the volume learned by CryoGAN has projections (Figure 6.3.c, Rows 1-3) that are
similar to the picked particles (Figure 6.3.c, Row 4) in a distributional sense. The
evolution of the FSC between the reconstructed half maps (Figure 6.3.d) testifies
to the progressive increase in resolution that derives from this adversarial learning
scheme.

6.5.2 Results on Real Data

We then deployed CryoGAN on 41,123 β-galactosidase projections (EMPIAR-
10061) to assess its capacity to reconstruct real, experimental data. This dataset is
much more challenging and puts CryoGAN to the test. Here as well, we randomly
divided the dataset in two and applied CryoGAN separately on both halves. The
details of this experimental setup are given in Appendix A.6.6.

We ran CryoGAN for 160 minutes to obtain a 8Åresolution reconstruction using
an NVIDIA P100 GPU. The results are displayed in Figure 6.4. The flexible archi-
tecture of CryoGAN permits the straightforward injection of prior knowledge on
this specific imaging procedure into the reconstruction pipeline (e.g., the assump-
tion of uniform-pose distribution). Using this prior knowledge and its adversarial
learning scheme, CryoGAN converges toward the reconstruction that best explains
the statistics of the dataset (Figure 6.4.a). As with the synthetic experiment, this
is achieved by exploiting the gradients of the discriminator to update the simulator
and the current volume estimate, so that the projections generated at later iter-
ations (Figure 6.4.b) follow a distribution that better approaches that of the real
dataset. Higher-resolution details are thus progressively introduced in the estimated
volume throughout the run, as illustrated by the FSC curves between successive
reconstructed half maps (Figure 6.4.d). For this particular run, this resulted in
a 7.99Å β-galactosidase structure whose synthetic projections closely resemble the
real projections, both visually (Figure 6.4.c) and—more importantly—statistically.

6.6 Discussion

We demonstrated the ability of CryoGAN to autonomously reconstruct 3D struc-
tures through a purely data-driven adversarial learning scheme, which represents
a complete change of paradigm for SPA reconstruction. Capitalizing on the abil-
ity of deep-learning models to capture data distributions, the CryoGAN algorithm
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Figure 6.4: Evolution of CryoGAN while reconstructing the real β-galactosidase
dataset from [49]. (a) Starting with zero-values, the volume is progressively up-
dated to produce projections whose distribution matches that of the real dataset.
(b) Evolution during the training of clean projections (i.e., before CTF and noise)
generated by the cryo-EM physics simulator. (c) Row 1 : Clean projections gen-
erated at the final stage of training. Row 2 : CTF-modulated projections (before
noise) generated at the final stage of training. Row 3 : Realistic projections (with
CTF and noise) generated at the final stage of training. Row 4 : Samples of the real
dataset. (d) FSC between the two reconstructed half maps at different training
times.
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looks for the reconstruction that is most consistent with the measurements in a
distributional sense. Hence, it is able to avoid the angular-assignment procedure
altogether by directly exploiting the statistics of the provided dataset. CryoGAN
is a truly unsupervised algorithm that requires minimal prior information and user
input. It is backed up by a sound mathematical framework that gives guarantees on
the recovery, provided the image-formation model is valid. When the assumptions
are met, our main theorem (see Appendix A.6.2) asserts that CryoGAN samples
the proper probability distribution and recovers the correct 3D volume.

An important point is that CryoGAN bypasses angular assignments in a likelihood-
free manner, which is in contrast with the likelihood-based approaches used, for in-
stance, in the CryoSPARC software [62]. This permits CryoGAN to avoid marginal-
ization over the angles, a complex task that is inherent in likelihood-based ap-
proaches but that is undesirable because it requires the approximation of inte-
grals by sums. CryoGan also sidesteps many cumbersome processing steps such
as 2D alignment or 2D/3D classification, which further reduces the need for user-
dependent inputs.

Our synthetic experiments demonstrate the ability of CryoGAN to resolve a
structure so that its simulated projection distribution matches that of the experi-
mental projections. These results validate the CryoGAN paradigm and the viability
of its current implementation. Indeed, without any prior training and starting from
a zero-valued volume, the algorithm is able to autonomously capture the relevant
statistical information from the dataset of noise-corrupted, CTF-modulated pro-
jections, and to learn the volume that best explains these statistics. The results on
the real β-galactosidase dataset further demonstrate the capacity of CryoGAN to
perform reconstruction in challenging real imaging conditions.

Roadmap for Future Work

The implementation of the CryoGAN algorithm is bound to further improve. We
expect that several interesting developmental steps lie ahead. In particular, we are
convinced that the ongoing progresses in deep-learning architectures will help enrich
the fast-evolving CryoGAN algorithm, providing additional gains in resolution in
the near future.

The current implementation of CryoGAN is at the proof-of-concept stage. Among
several algorithmic refinements, we expect the speed could be increased by using a
fast Fourier-transform-based projector. Some fine tuning of the global CryoGAN
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architecture (e.g., the number of convolutional layers in the discriminator) could
further improve its performance, leading again to faster convergence. This would
consequently improve the resolution that can be obtained in a given amount of time.
The use of a larger discriminator and/or size of the dataset size, GPU permitting,
would likely have the same effect.

Like all reconstruction algorithms, CryoGAN can fail if the dataset contains too
many corrupted projections, possibly with broken structures or strong optical aber-
rations. Several solutions could be deployed to handle excessive outliers in the data
distribution. One approach would be to include a step that automatically spots and
discards corrupted data so that the discriminator never sees them. Another inter-
esting option is to directly simulate the patches of nonaligned micrographs/frames
(rather than picked projections) and match their distribution to that of the raw
dataset. Doing so would also allow cryoGAN to bypass additional preprocessing
tasks, in particular, particle picking. Finally, recent deep-learning-based approaches
able to track outliers in data could prove useful.

Similar to the likelihood-based methods, the CryoGAN algorithm requires the
specification of the distribution of orientations. One could also parameterize it and
learn its parameters during the reconstruction procedure [212]. A similar approach
could be used to calibrate the distribution of the translations of the projections.

On the theoretical side, we currently have mathematical guarantees on the re-
covery of volumes for which the assumed distribution of orientations (be it uniform
or not) matches the distribution of the real data. Moreover, we have prior mathe-
matical indications that this can also be achieved when there is a certain mismatch
between the assumed distribution of orientations and the actual one, given that an
appropriate GAN loss is used.

The performance of the cryo-EM physics simulator should improve hand-in-hand
with our ability to precisely model the physics behind SPA with computationally
tractable entities. At the moment, CryoGAN assumes that the noise is additive in
its image-formation model. One could alternatively consider a Poisson-noise-based
forward model [213, 214]. This would, however, require backpropagating through
a Poisson distribution, a nontrivial operation at this stage of development.

Another promising direction of research is the use of a coarse-to-fine strategy
to reconstruct the volume progressively as the resolution improves. The motiva-
tion is that increased robustness during the low-resolution regime tends to have a
positive impact on the convergence of the higher-resolution steps. Several GAN
architectures rely on such approaches, such as the progressive GANs [215] and the
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styleGANs [216]. The benefits of multi-scale refinement could be considerable for
CryoGAN given the extremely challenging imaging conditions that prevail in SPA
and make the convergence of optimization algorithms sometimes fail. The core idea
here would be to have the discriminator learn to differentiate between real and syn-
thetic distributions first at a low resolution, and then at successively higher ones.
The impact on CryoGAN could be as important as the one it had on GANs, which
progressed in just a few years from generating blurry facial images [206] to syn-
thetic images indistinguishable from real facial images [215, 216]. More generally,
the upcoming tools and extensions in GAN architectures could bring significant
gain in resolution to the CryoGAN implementation.

While the spatial resolution of the CryoGAN reconstructions from real data
is not yet competitive with the state-of-the-art, the algorithm is already able to
steadily perform the hardest part of the job, which is to obtain a reasonable struc-
ture by using nothing save the projection dataset and CTF estimations. We believe
that the aforementioned developments will help to bring the CryoGAN algorithm
to the stage where it becomes a relevant contributor for high-resolution reconstruc-
tion in SPA. Moreover, we have laid out a roadmap of future improvements that
should get us to this stage. Our hope is that this new take on GANs will foster
developments beyond the present application in cryo-EM.



Chapter 7

Conclusion: On Getting the
Best of Both Worlds

Our mathematical formulation of the cryo-EM imaging model (Chapter 2) is the
foundational layer of all the works presented in this thesis. In particular, it is at
the core of the variational methods we developed for STET (Chapter 3) and SPA
(Chapter 4). By incorporating prior knowledge into the reconstruction process,
model-based methods demonstrate superior performance in ill-posed conditions.
Hence, they permit high-quality reconstruction even in the challenging, low-dose
imaging conditions faced in cryo-EM. In addition, model-based methods are backed
up by solid theoretical foundations that guarantee their robustness.

By contrast, the power of data-driven approaches lies in their (not yet fully
understood) ability to exploit information directly from the datasets, which would
be hardly accessible otherwise. In this regard, the two data-driven approaches
we designed for SPA also completely rely on our ability to model the cryo-EM
procedure. Our supervised method for orientation recovery (Chapter 5) depends
on this model for the creation of a realistic training dataset, while in CryoGAN
(Chapter 6) it plays a key role as a module inside the adversarial scheme itself. To
the best of our knowledge, CryoGAN is the first demonstration of a deep-learning
architecture able to singlehandedly perform the full SPA reconstruction procedure
without prior training, which testifies to the potential of such hybrid approaches.

139
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SPA has revolutionized structural biology over the last decade and will remain
an active topic of research for years to come. Beyond the technical challenges
addressed in this thesis, the most notable remaining difficulty with the current
pipeline is the non-straightforward handling of structural heterogeneity. It that
respect, the flexible architecture of CryoGAN could facilitate its extension to the
treatment of structures with a continuum of conformational states, a feat often
perceived as the greatest challenge ahead for SPA [52].

In any case, the most impactful forthcoming developments in cryo-EM will likely
rely on a combination of model-based and learning-based elements, and leverage the
best of both worlds. Ultimately, the better the model, the stronger the learning,
the higher the performance of the algorithm. This foresees an intense, powerful
interplay between the two paradigms in the near future—from model-based to data-
driven, and back.
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Appendices

A.1 Properties of the X-ray Transform

The X-ray transform fulfills several important properties. We state here the main
ones in 3D. For the proofs, we refer to [31].

Linearity. For any α, β ∈ R and f, g ∈ L2(R3), we have that

Pθ
{
αf + βg

}
(y) = α · Pθ

{
f
}

(y) + β · Pθ
{
g
}

(y). (A.1)

This follows directly from the linearity of integral operators.

Pseudo-shift-invariance. For any x0 ∈ R3, we have that

Pθ
{
f(· − x0)

}
(y) = Pθ

{
f
}

(y −Mθ⊥x0), (A.2)

where Mθ⊥ is given in (1.3).

Scale-Invariance. For any α > 0, we have that

Pθ
{
f(α·)

}
(y) = α−1Pθ

{
f
}

(αy). (A.3)

Pseudo-Distribution w.r.t. Convolution. For any f, g ∈ L2(R3), we have that

Pθ
{
f ∗ g

}
(y) =

(
Pθ
{
f
}

(·) ∗ Pθ
{
g
}

(·)
)
(y). (A.4)
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A.2 CTF Model in Cryo-EM

We model the CTF in cryo-EM as

ŵ(ω) = A(ω)E(ω)C(ω), (A.5)

where A is the objective aperture function, E describes the spatial and chromatic
envelop function, and C is the phase contrast transfer function [23]. More precisely,
we have that

• A : R2 → R is given by

Â(ω) =

1, ‖ω‖ ≤ ωcutoff

0, ‖ω‖ > ωcutoff,
(A.6)

where ωcutoff =
2πdap
flλ

is the cutoff frequency, fl is the focal length of the
objective lens, and dap corresponds to the diameter of the aperture;

• E : R2 → R is given by

Ê(ω) = exp
(
−B(‖ω‖2)

)
, (A.7)

where B(‖ω‖2) is a function influenced by chromatic aberration and spatial
incoherence;

• C : R2 → Rtakes the form

C(ω) = −
√

1−A2 sin(γ(ω))−A2 cos(γ(ω)), (A.8)

with

γ(ω) = πλ

(
z(α)‖ω‖2 − 1

4
λ3cs‖ω‖4

)
, (A.9)

where λ is the electron wavelength, cs is third-order spherical aberration
constant, α is the phase of the vector ω, and z(α) is the defocus arising
at the phase α. This defocus is given as

z(α) = zu cos2(α− α0) + zv sin2(α− α0), (A.10)

where zu and zv are the horizontal and vertical defocus and α0 is the reference
angle that defines the azimuthal direction of axial astigmatism. All these
parameters are part of the experimental setup.
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A.3 Fourier Shell Correlation (FSC) Metric

To assess the quality of a reconstruction, we use the Fourier shell correlation (FSC)
between the reconstructed volume V rec and the ground-truth V gt, as defined by

FSC(r) =

∑
ri∈r

V̂ rec(ri)V̂
gt(ri)

∗√∑
ri∈r
|V̂ rec(ri)|2

∑
ri∈r
|V̂ gt(ri)|2

. (A.11)

where r = {(xi, yi, zi) : |
√
x2
i + y2

i + z2
i − r| ≤ εr}, for εr > 0, denotes the set of all

points in the discrete Fourier domain that lie in a spherical shell with inner radius
r − εr and outer radius r + εr, centered at origin. The FSC thus computes the
correlation between two corresponding spherical shells of the density maps in the
Fourier domain.
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A.4 Proofs for Section 4.2

A.4.1 Proof of Theorem 3

Let us expand Jp(θ, t) in (4.32) as

Jp(θ, t) =
1

2
cTHTH(θ, t)c− cTHT (θ, t)bp +

1

2
‖bp‖2

=
1

2
cT (w(θ) ∗ c)− cTHT (θ, t)bp +

1

2
‖bp‖2, (A.12)

where w(θ corresponds to one term in the kernel w(Θ) ∈ RN is given by, ∀k ∈ Ω3D,

[w(Θ)]k =
1

det(Λ)

P∑
p=1

(
ψθp ∗ ψ∨θp

)
(Mθ⊥p

k), (A.13)

with ψθp = h∗Pθp(ϕ). Note that the kernel w(Θ) does not depend on the in-plane
translations Γ.

Moreover, because ϕ is isotropic, we have that Pθ(ϕ) = P(ϕ), a quantity that
does not depend on θ. Hence,

[w(θ)]k =
1

det(Λ)
(ψ ∗ ψ∨) (Mθ⊥k), (A.14)

with ψ = h ∗ P(ϕ).
Then, from (A.12), one easily sees that, for all v ∈ {θ1, θ2, θ3, t1, t2},

∂Jp
∂v

(θ, t) =
1

2
cT (rv ∗ c− 2qv) , (A.15)

where

rv =
∂w(θ)

∂v
and qv =

∂HT (θ, t)bp

∂v
. (A.16)

We now distinguish two cases.

Case v = θi for i ∈ {1, 2, 3}
From (A.14) and the chain rule, we get that

rv[k] =
1

det(Λ)

(
∂Mθ⊥

∂θi
k

)T
∇ (ψ ∗ ψ∨) (Mθ⊥k), (A.17)
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where
∂M

θ⊥
∂θi

∈ R2×3 contains the entry-wise derivatives with respect to θi of the
matrix Mθ⊥ given in (1.3). Moreover, from the definition of ψ : y 7→ (h∗P(ϕ))(y),
with y = (y1, y2) ∈ R2, and from the derivation property of the convolution, we
have that

∇ (ψ ∗ ψ∨) =


∂h

∂y1
∗ P(ϕ) ∗ ψ∨

∂h

∂y2
∗ P(ϕ) ∗ ψ∨

 =

h ∗
∂P(ϕ)

∂y1
∗ ψ∨

h ∗ ∂P(ϕ)

∂y2
∗ ψ∨

 . (A.18)

Note that we could have also differentiated ψ∨ (instead of h or P(φ)).

From [18], we have that

[
HT (Θ,Γ)g

]
k
=

1

det(Λ)

P∑
p=1

(
bp ∗ ψ∨θp

)
(Mθ⊥p

k + tp). (A.19)

For qv, we get from (A.19) that

qv[k] =
1

det(Λ)

∂(bp ∗ ψ∨)(Mθ⊥k + t)

∂θi

=
1

det(Λ)

(
∂Mθ⊥

∂θi
k

)T
∇(bp ∗ ψ∨)(Mθ⊥k + t), (A.20)

where ∇ (bp ∗ ψ∨) is obtained in the same way as (A.18), with differentiation on
ψ∨ instead of bp.

Case v = tj for j ∈ {1, 2}

As w(θ) does not depend on the in-plane translation t, we have that rv = 0RN .
For qv, as in (A.20), we get that

qv[k] =
1

det(Λ)

∂(bp ∗ ψ∨)

∂yj
(Mθ⊥k + t). (A.21)
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A.4.2 Proof of Proposition 1

The closed-form expression of the x-ray transform of the KBWF ϕ is provided
in [217] as

P
{
ϕ
}

(y) =
a
√

2π/α

Im(α)
βa(‖y‖)m+ 1

2 Im+ 1
2
(αβa(‖y‖)) , (A.22)

where βa(r) =
√

1− (r/a)2 and Im is the modified Bessel function of order m.

Now, let us introduce the function f(u) = (αu)m+ 1
2 Im+ 1

2
(αu) whose derivative is

f ′(u) = α(αu)m+ 1
2 Im− 1

2
(αu). Then, we can write (A.22) as

P
{
ϕ
}

(y) =
a
√

2π/α

Im(α)

1

αm+ 1
2

f(βa(‖y‖)) (A.23)

and, for all v ∈ {1, 2}, obtain that

∂P
{
ϕ
}

∂yv
(y) =

a
√

2π/α

Im(α)αm+ 1
2

yv
‖y‖β

′
a(‖y‖)f ′(βa(‖y‖)). (A.24)

Finally, the injection of f ′ and β′a(r) =
(
− r
a2

(
1− (r/a)2

)− 1
2

)
=
(
− r
a2βa(r)

)
into (A.24) leads to

∂P(ϕα,a)

∂yv
(y) = − a

√
2π/α

Im(α)αm+ 1
2

yv
‖y‖
‖y‖α(αβa(‖y‖))m+ 1

2

a2βa(‖y‖)
× Im− 1

2
(αβa(‖y‖)),

= −αyv
√

2π/α

aIm(α)
βa(‖y‖)m− 1

2

× Im− 1
2
(αβa(‖y‖)), (A.25)

which completes the proof.
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A.5 Architecture of the SiameseNN for Distance
Learning

Figure A.1: Architecture of our SiameseNN. The question mark indicates the num-
ber of images per batch, as parallel computations are used to speed up the training.
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A.6 Supplementary Materials for Chapter 6

In this section, we present the theoretical results associated to the CryoGAN
paradigm, as well as the experimental conditions of the experiments presented in
Chapter 6. The notations used in the mathematical proofs correspond to those
used in the submitted preprint manuscript1.

A.6.1 Forward Model in CryoGAN

We indicate here the notations used to model the SPA imaging procedure in Cryo-
GAN. This is done through the linear relationship

y = Hϕx + n, (A.26)

where

• y ∈ RM is a 2D projection of size M = M1 ×M2;

• x ∈ RV is the 3D density map of size V = V1 × V2 × V3;

• Hϕ ∈ RM×V denotes the forward operator (see (A.27)) with parameters ϕ;

• ϕ = (θ1, θ2, θ3, t1, t2, d1, d2, αast) is the set of imaging parameters. It includes
the projection (Euler) angles θ = (θ1, θ2, θ3), the projection shifts t = (t1, t2),
and the CTF parameters c = (d1, d2, αast), where d1 is the defocus-major, d2

is the defocus-minor, and αast is the angle of astigmatism;

• n ∈ RM represents an additive noise following a distribution pn.

The forward operator Hϕ is given by

Hϕ = CcStPθ. (A.27)

It is composed of the projection operator Pθ : RV → RM , the shift operator
St : RM → RM , and the convolution operator Cc : RM → RM .

1https://www.biorxiv.org/content/10.1101/2020.03.20.001016v1
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A.6.2 Theoretical Guarantee of Recovery

The proposed paradigm is supported by Theorem 4, a major contribution of this
work. Recall from (A.26) and (A.27) that y = Hϕx + n is the 2D measurement
obtained from the 3D volume x. The operator is Hϕ = CcStPθ, where Pθ is the
projection operator, St is the shift operator, and Cc is the convolution operator.

Let f : Rd → R. Then its support is Support{f} = {x ∈ Rd : f(x) 6= 0}. If
Support{f} = Rd, then f is said to have a full support.

Theorem 4. Let y = Hϕx+n as given in (A.27) with ϕ = (θ1, θ2, θ3, t1, t2, d1, d2, αast),
where θ = (θ1, θ2, θ3) are the projection angles, t = (t1, t2) are the shifts, and
c = (d1, d2, αast) are the CTF parameters (defocus-major, defocus-minor, and angle
of astigmatism, respectively), x ∈ RV is the vectorized 3D volume, and y,n ∈ RM
are vectorized 2D images. Let θ ∼ pθ, c ∼ pc, t ∼ pt, and n ∼ pn. Moreover,
assume that

1. the Fourier transform p̂n of the noise distribution pn has a full support;

2. the support of pc is such that, for any c1, c2 ∈ Support{pc} and c1 6= c2, the
support F{Cc1

+ Cc2
} is full;

3. the volume x is nonnegative everywhere and has a bounded support;

4. the probability distributions pθ, pc, and pt are bounded.

Then, it holds that
p(y|x1) = p(y|x2)⇔ x1 = G(x2), (A.28)

where G is some member of the set of rotation-reflection operations.

Proof. We first comment on the assumptions. Assumption 1) is true for many
noise distributions, including the Gaussian distribution. Assumption 2) is generally
true as well. In fact, it is used to justify the application of Wiener filter to the
clustered projections in classical cryo-EM reconstruction pipelines. Assumption 3)
is true since the volume represents the Coulomb potential, which is nonnegative.
Also, the biological structures considered in cryo-EM have finite sizes.

We denote ynoiseless = Hϕx with distribution pnoiseless(·|x). We shall prove the
following in sequence:

1. p(·|x1) = p(·|x2)⇔ pnoiseless(·|x1) = pnoiseless(·|x2),
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2. pnoiseless(·|x1) = pnoiseless(·|x2)⇔ x2 = G(x1).

For the first part we progress by noting that y = ynoiseless + n. Since the distri-
bution of the addition of two random variables is equal to the convolution of the
distributions of the two random variables, we have that

p(y|x) = (pnoiseless(·|x) ∗ pn)(y), (A.29)

F{p(·|x)} = F{pnoiseless(·|x)}F{pn}. (A.30)

By Assumption (1, Theorem 4), we can now write that

pnoiseless(·|x) = F−1

{F{p(·|x)}
F{pn}

}
. (A.31)

From (A.31), it is easy to see that p(·|x1) = p(·|x2)⇔ pnoiseless(·|x1) = pnoiseless(·|x2).
This concludes our first part.

For the second part, we use the result from Theorem 6, which is based on a
continuous-domain volume. Note that x actually represent a continuous domain
volume. Given Assumption (4, Theorem 4), the continuous-domain representation
of x is

fx(·) =

V1∑
k1=1

V2∑
k2=1

V3∑
k3=1

ck1,k2,k3 β(· − sk), (A.32)

where β is a compactly supported basis function, s is the size of a voxel in unit
length, and c is such that fx(sk) = x[k] for k ∈ Z3. We assume a β such that
fx is nonnegative. The operator Hϕx has the same effect as the application of the
continuous-domain forward operator, given in (??), to fx and then discretization
and vectorization. We can now invoke Theorem 6 which claims that, given fx1

and
fx2 , the support of their corresponding pnoiseless is identical if and only if fx1 and
fx2 are identical up to a rotation-reflection operation. The latter is equivalent to
x1 = G(x2), where G is some rotation-reflection operation. This concludes that
pnoiseless(·|x1) = pnoiseless(·|x2)⇔ x1 = G(x2).

A.6.3 Theoretical Guarantee of Recovery in the Continuous
Domain

In the absence of CTF and shifts the recoverability of f : R3 → R from its 2D
projections obtained at unknown random poses is guaranteed by [218, Theorem
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3.1]. We first go through the notations described in [218] before we state the
required foundational result. We then extend [218, Theorem 3.1] to the case when
the CTF and shifts are present.

Notations and Preliminaries

Let SO(3) be the space of the special orthonormal matrices and D be the Borel
σ−algebra induced using the standard Riemannian metric on SO(3). Then, (SO(3),D)
describes the measurable space of orthonormal matrices. Let ∆W

N = {x ∈ RN :
‖x‖2 ≤ W} for some W ∈ R+. By (L2,B), we denote the measurable space of all
the square-integrable functions supported in ∆W

2 with Borel σ−algebra B induced
by the L2-norm. We denote by F the set of all the functions supported in ∆W

3 ,
which are nonnegative and essentially bounded.

For any f ∈ F and A ∈ SO(3), we denote y = PA{f} =
∫∞
−∞Af(x1, x2, x3)x3

where Af(x) = f(A−1x). Let pA be a probability density on the space (SO(3),D).
Note that there is a bijective mapping from θ in Theorem 1 and A. In fact, A
represents the rotation matrix associated with the projection angle θ.

We denote by Ψ the normalized Haar measure on (SO(3),D) and by ΨA the
measure associated with pA such that ΨA[·] =

∫
(a∈·) pA(a)Ψ[a].

For a given f ∈ F, the density pA induces a probability measure Pproj(·|f) on
the space (L2,B) through the mapping PA{f} such that

Pproj(·|f) = ΨA[{A ∈ SO(3) : PA{f} ∈ ·}]. (A.33)

When pA is uniform on SO(3), one has that

Pproj(·|f) = Pproj(·|Rf), ∀f ∈ F and R ∈ O(3), (A.34)

where O3 is the space of all orthogonal matrices such that det A ∈ {−1, 1}. The
invariance in (A.34) is true since

Pproj(·|f) = Ψ[{A ∈ SO(3) : PA{f} = ·}]
= Ψ[{A ∈ SO(3) : PR−1A{Rf} = ·}]
= Ψ[{RA′ ∈ SO(3) : PA′{Rf} = ·}]
= Ψ[{A′ ∈ SO(3) : PA′{Rf} = ·}] (A.35)
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where A′ = R−1A and the last equality follows from the right invariance of Haar
measure. We define G{F} = {γA : A ∈ O3} such that

(γAf)(·) = f(A−1·),∀A ∈ O(3), f ∈ F. (A.36)

We define the shape [f ] as an orbit of f under the influence of G such that [f ] =
{γAf : γA ∈ G}. When pA is uniform, the shape [f ] is composed of all the rotations
and reflections of f .

We can now restate [218, Theorem 3.1]. We discuss here the sketch of the proof
given in [218].

Theorem 5 ([218, Theorem 3.1]). Let pA be any bounded distribution on SO(3)
and let the assumptions of Theorem 4 be true; then, ∀f, g ∈ F,

[f ] 6= [g]⇒ Pproj(·|f)⊥Pproj(·|g). (A.37)

Sketch of the Proof. Without loss of generality, we provide the sketch of the
proof for the case when pA is uniform. For the case when pA is nonuniform the
argument remains the same provided that ΨA associated with the non-uniform
distribution pA is absolutely continuous with respect to Ψ (ΨA � Ψ). This has
been stated in [218]. Since we assume pA to be bounded, this condition is satisfied.
The only difference here with respect to the uniform distribution is that the orbit
of f and g are more restricted than O(3).

The proof first uses in [219, Proposition 7.8] which we restate here as Proposition
2.

Proposition 2 ([219, Proposition 7.8]). Let f ∈ F and let SA be an uncount-
ably infinite subset of SO(3), then f is determined by the collection {PA{f}}A∈SA

ordered with respect to A ∈ SA.

Note that this proposition assumes that the angle of the projections are known.
Although in our case the angles are unknown, we shall see that this proposition
will be useful.

We now want to determine how different Pproj(.|f) and Pproj(.|g) are for any
given f and g. For this, we use the equality

TV(P1,P2) = 2 inf
γ∈Π(P1,P2)

E(y1,y2)∼γ [1y1 6=y2
], (A.38)
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where TV is the total variation distance and Π(P1,P2) is the set of all the joint
distributions γ(y1,y2) whose marginals are P1 and P2 [209]. In fact, E[1y1 6=y2

] is
equal to the probability of the event y1 6= y2. In our context, this translates into

TV(Pproj(.|f),Pproj(.|g)) = 2 inf
γ∈Π(Pproj(.|f),Pproj(.|g))

Prob(y1 6= y2), where (y1,y2) ∼ γ.
(A.39)

The optimum is achieved at the extremas which are sparse joint distributions and
are such that the variable y2 is a function of y1. For any arbitrary joint distribution
(or coupling) of this form, the proof then assigns a measurable function h : SO(3)→
SO(3) such that (y1,y2) = (PA{f},Ph(A){g}) for A ∼ pA.

We can then write that

Ψ[{A ∈ SO(3) : Ph(A){g} ∈ ·}] = Pproj(·|g). (A.40)

The task now is to estimate Prob(y1 6= y2), where (y1,y2) = (PA{f},Ph(A){g})
for A ∼ pA.

(Continuous h). When h is continuous, Proposition 2 implies that, if [f ] 6= [g], then

Ψ[{A ∈ SO(3) : ‖PA{f} − Ph(A){g}‖2 > 0}] = 1. (A.41)

(General h). When the function h is discontinuous, the proof uses Lusin’s theorem
to approximate h by a continuous function. Lusin’s theorem states that, for any
δ > 0, there exists an hδ such that h(A) = hδ(A),∀A ∈ Hδ and Ψ[SO(3)|Hδ] < δ.
This then leads to

Ψ[{A ∈ SO(3) : ‖PA{f} − Ph(A){g}‖2 > 0}] ≥ Ψ(Hδ)

≥ 1− δ. (A.42)

Since δ is arbitrarily small, the event {PA{f} 6= Ph(A){g}} has probability 1.

In conclusion, for any arbitrary coupling, the event {PA{f} 6= Ph(A){g}} has
probability 1 if [f ] 6= [g]. This implies that, when [f ] and [g] are not the same,
the total-variation distance between Pproj(·|f) and Pproj(·|g) is 2. This ensures that
the two probability measures are mutually singular meaning that the intersection
of their support has zero measure. This concludes the proof.
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A.6.4 Noiseless CTF-Modulated Projections

We now extend the previous result to the case when the CTF is present. We assume
that c ∼ pc such that the support of pc is in some bounded region C ⊂ R3. We
denote Ψc[·] as the measure associated with pc on the space C.

We denote by (SO(3)× C) the product space of SO(3) and C, while we denote
by ΨA,c the measure on this product space. We then define

Pproj,CTF(·|f) = ΨA,c[{(A, c) ∈ (SO(3)× C) : Cc ∗ PA{f} ∈ ·}], (A.43)

where Cc is the space-domain CTF.

Theorem 6. Let pA be a bounded probability distribution on SO(3), pc be a dis-
tribution of the CTF with parameters c ∈ C, and let the assumptions of Theorem 4
be true; then, ∀f, g ∈ F,

[f ] 6= [g]⇒ Pproj,CTF(·|f)⊥Pproj,CTF(·|g). (A.44)

Proof. Similarly to the previous proof, we show that the TV distance between
Pproj,CTF(·|f) and Pproj,CTF(·|g) is 2 when [f ] and [g] are distinct. For simplification,
we assume that pA is uniform. (When this is not the case the proof essentially
remains the same.) We need to show that Prob(y1 6= y2) = 1, where (y1,y2) ∼ γ
for any arbitrary coupling γ of Pproj,CTF(·|f) and Pproj,CTF(·|g). For an arbitrary
coupling γ such that Prob(y1 6= y2) is minimum, we again assign h : (SO(3)×C)→
(SO(3)× C) such that

(y1,y2) = (Cc ∗ PA{f},Ch1(A,c) ∗ Ph0(A,c){g}), (A.45)

where A ∼ pA, c ∼ pc and where h0 : (SO(3)×C)→ SO(3) and h1 : (SO(3)×C)→
C are such that h(A, c) = (h0(A, c), h1(A, c)). This implies that

Pproj,CTF(·|g) = ΨA,c[{(A, c) ∈ (SO(3)× C) : Ch1(A,c) ∗ Ph0(A,c){g} ∈ ·}].
(A.46)

We now show that, for any h, the event {y1 6= y2} has probability 1.
(Continuous h). We first assume that h is continuous and use the same kind of
technique as in the proof of [218, Theorem 3.1].

Since SO(3) is transitive, we can write that

h(A, c) = (AΓA,c, h1(A, c)). (A.47)
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As h is continuous, so is ΓA,c. Let {Amn ×Cmn }nm=1 be a collection of n disjoint sets
which creates the partition of (SO(3)× C). These partitions are such that for any
m, there exists a km such that {Amn+1 × Cmn+1} ⊂ {Akmn × Ckmn }. This means that,
as n increases, the partitions become finer. We now define

hn(A, c) = (AΓmn , h
m
n,1(A, c)) ∀ (A, c) ∈ {Amn × Cmn }, (A.48)

such that

Γmn = arg min Γ ∈ {ΓA,c : (A, c) ∈ {Āmn × C̄mn }} min
(A,c)∈{Āmn ×C̄mn }

‖PA{f} − PAΓ{g}‖,

(A.49)

where Āmn and C̄mn are the closures of Amn and Cmn , respectively. The sequence hn
converge to h as n→∞. We denote

K = {(A, c) ∈ (SO(3)× C) : ‖Cc ∗ PA{f} −Ch1(A,c) ∗ PAΓA
{g}‖ > 0}, (A.50)

Kn = {(A, c) ∈ (Amn × Cmn ) : ‖Cc ∗ PA{f} −Ch1(A,c) ∗ PA{Γmn g}‖ > 0}. (A.51)

Similarly to [218, Theorem 3.1], we can then show that

ΨA,d[K] = lim
n→∞

m=n∑
m=1

ΨA,d[Km]. (A.52)

We invoke Proposition 3, which gives that ΨA,c[Kn] = ΨA,c[(Amn ×Cmn )]. Therefore,
ΨA,d[K] = ΨA,c[(SO(3) × C)] = 1. This means that, when h is continuous, the
event {y1 6= y2} has probability 1 if [f ] 6= [g].
(General h). When h is discontinuous, we can invoke Lusin’s theorem to claim
the same, similarly to Theorem 5. This means that, for any h, if [f ] 6= [g], then
the probability of the event {y1 6= y2} is 1. Therefore, the TV distance between
Pproj,CTF(·|f) and Pproj,CTF(·|g) is 2, yielding that Pproj,CTF(·|f)⊥Pproj,CTF(·|g).
This concludes the proof.

Proposition 3. Let f, g ∈ F, A′ ⊆ SO(3), C′ ⊆ C, Γ ∈ SO(3), and

K′ = {(A, c) ∈ (A′ × C′) : ‖Cc ∗ PA{f} −Ch1(A,c) ∗ PA{Γg}‖ > 0}. (A.53)

Let the assumptions from Theorem 4 be true. Then, if [f ] 6= [g], it holds that

ΨA,c[K′] = ΨA,c[(A′ × C′)]. (A.54)
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Proof. We show that ΨA,c[K′c] = 0, where (K′c ∪ K′) = (A′ × C′). We define
the set SA = {c ∈ C′ : ‖Cc ∗ PA{f} − Ch1(A,c) ∗ PA{Γg}‖ = 0}. We define
SA′′ = ∪A∈A′′SA for any A′′ ⊆ A′. We define

A′1 = {A ∈ A′ : SA is an uncountable set}, (A.55)

A′2 = {A ∈ A′ : SA is a countable non-empty set}. (A.56)

Note that K′c = ∪2
k=1 ∪A∈A′k (A× SA). Then,

ΨA,c[{K′c] =

2∑
k=1

ΨA,c[∪A∈A′k(A× SA)}] (A.57)

We now look at the two cases.

• (When SA is uncountable). For this case, we show that Ψ[A′1] = 0. The main
argument is that if this is not true, then it contradicts [f ] 6= [g].

For the sake of conciseness, we denote PA{f} by If and PA{Γg} by Ig. For
any A ∈ A′1, it holds that

Cc ∗ If = Ch1(A,c) ∗ Ig, ∀c ∈ SA, (A.58)

Ĉc · Îf = Ĉh1(A,c) · Îg, ∀c ∈ SA, (A.59)

where Ĉ, Îf , and Îg are the Fourier transforms of C, If , and Ig, respectively.

We define ze(Î) = {ω ∈ R2 : Î(ω) = 0}, ωα = {[(r cosα, r sinα)] : r > 0}, and
zeα(Î) = ze(Î) ∩ ωα. From (A.59), we can write that

ze(Ĉc) ∪ ze(Îf ) = ze(Ĉh1(A,c)) ∪ ze(Îg), ∀c ∈ SA. (A.60)

Two remarks are in order. Firstly, by assumption 2 of Theorem 4, ze(Ĉc1
)∩

ze(Ĉc2
) = ∅ for c1 6= c2. (Remember that zeα(Ĉc) for any α ∈ [0, π] is

nonempty (see “Image Formation Theory).) Secondly, by assumption 3 of
Theorem 4, the supports of f and g are compact and nontrivial, so are the
supports of If and Ig. This means that their Fourier transforms Îf and Îg are
analytic functions, which implies that there are infinitely many α such that
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the cardinality of the sets zeα(Îf ) and zeα(Îf ) is countable. We call the set
of such α as Sα. Now, we have that

zeα(Ĉc) ∩ (zeα(Ĉc) ∪ zeα(Îf )) = zeα(Ĉc) ∩ (zeα(Ĉh1(A,c)) ∪ zeα(Îg)),

zeα(Ĉc) ∪ (zeα(Ĉc) ∩ zeα(Îf )) = (zeα(Ĉc) ∩ zeα(Ĉh1(A,c))) ∪ (zeα(Ĉc) ∩ zeα(Îg)),

zeα(Ĉc) ∪ (zeα(Ĉc) ∩ zeα(Îf )) = zeα(Ĉc) ∩ zeα(Îg) (A.61)

for all c ∈ SA and α ∈ [0, π].

We can now write that

∪c∈SA
zeα(Ĉc) ∪ (zeα(Ĉc) ∩ zeα(Îf )) = ∪c∈SA

zeα(Ĉc) ∩ zeα(Îg). (A.62)

for any α ∈ Sα. The set on the left hand side of (A.62) has an uncountably
infinite cardinality since there are uncountably many c ∈ SA and for each c
there are distinct zeα(Ĉc). In return, the set in the right hand side of (A.62)
is countable for a given α ∈ Sα. Therefore, for any α ∈ Sα, the two sets have
different cardinality, which raises a contradiction. The only possible scenario
in which (A.60) is true is when h1(A, c) = c. Using (A.59), we infer that
PA{f} = PA{Γg}. Therefore, for any A ∈ A′1, PA{f} = PA{Γg}. However,
Ψ[A′1] = 0 since, if this is not true, then [f ] = [g] by Proposition 2.

Now note that

ΨA,c[∪A∈A′1(A× SA)] ≤ Ψ[A′1]︸ ︷︷ ︸
0

Ψc[∪A∈A′1SA]︸ ︷︷ ︸
finite

= 0. (A.63)

• (When SA is countable and nonempty). Since SA is a countable set in this
case, its elements have a bijection with natural numbers. We denote this
bijection by b : Z × A′2 → SA. We denote by q(z) = ∪A∈A′2(A, bA(z)), ∀z ∈
Z. Note that q(z) is a graph of the function b(z, ·). Since it is a graph,
ΨA,c[q(z)] = 0.

We also have that ΨA,c[∪A∈A′2(A × SA)] = ΨA,c[
∑
z∈Z q(z)]. The latter

vanishes since it is the measure of a countable addition of sets of measure
zero. Hence, ΨA,c[∪A∈A′2(A× SA)] = 0.

This gives that ΨA,c[K′c] =
∑2
k=1 ΨA,c[∪A∈A′k(A×SA)] = 0, which concludes the

proof.
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A.6.5 Synthetic-Data Experiment

Experimental Dataset. We construct a synthetic cryo-EM dataset that mimics
the real β-galactosidase dataset (EMPIAR-10061) from [49]. We generate 41,000
synthetic β-galactosidase particles using our cryo-EM image-formation model (see
Online Methods). The ground-truth volume is generated by fitting a 5Å density
map on the PDB-5a1a atomic model in Chimera [200]. This gives a volume of size
(302×233×163) with pixel size 0.637Å. The volume is then padded, averaged, and
downsampled to size (180× 180× 180) with pixel size 1.274Å. This corresponds to
a Nyquist resolution of 2.548 Å for the reconstructed volume.

The projection orientations are sampled from a uniform distribution over SO(3),
where SO(3) is the group of 3D rotations around the origin of R3. For the CTF,
a micrograph from the EMPIAR-10061 dataset is randomly selected and its CTF
parameters are extracted using Relion [10]. We then apply the CTF with these
parameters to the clean projections. The parameter B of the envelope function of
the CTF (see (A.7)) is chosen such that it decays to 0.2 at the Nyquist frequency.

Noisy projections are obtained by adding a randomly selected background patch
from the same micrograph to each noiseless projection. The noise patch is first
normalized to zero-mean and scaled. The scaling is such that the ratio of the
energy of the signal to the energy of the noise (SNR) is kept at 0.55, which is
equivalent to -5.2 dB.

The dataset is randomly divided into two halves. The algorithm is applied
separately on both halves to generate the half-maps.

Generator Settings. We reconstruct a volume of size (180 × 180 × 180) voxels
for each half dataset. The pixel size is 1.274 Å. The volumes are initialized with
zeros. The D2 symmetry of β-galactosidase is enforced during reconstruction.

We use our image-formation model to generate realistic projections from the
current volume estimate at every CryoGAN iteration. The distribution of the
imaging parameters is identical to the one used to generate the dataset. To add
the noise on the CTF-modulated projections, we keep the same approach as the
one used to generate the dataset. However, we assume that the final SNR of each
projection is unknown, leading us to learn the scaling parameter that controls the
ratio between the projections and the noise patches.

We apply a binary spherical mask of size (171× 171× 171) on the learned vol-
ume. To handle the sharp transitions at the mask borders, we enforce some clipping
constraints on the masked volume. The clipping value increases linearly with the
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distance from the center of the projection to the border of the mask, while its min-
imum value at the center increases linearly from 0 to 10% of the maximum protein
value with the number of epochs (i.e., a full pass through each half-dataset). This
promotes nonnegativity during the initial phases of reconstruction and increases
the stability of the algorithm.
Discriminator Architecture. The architecture of the discriminator network is
detailed in Online Methods. The discriminator is initialized identically for the two
half datasets. All projections (i.e., the picked particles and the ones generated
by the simulator) are normalized to zero-mean and unit standard-deviation before
being fed to the discriminator.
General Settings. The adversarial learning scheme is implemented in Pytorch
[207]. For the optimization, we use [205] (β1 = 0.5, β2 = 0.9, ε = 10−8) with a
learning rate of 10−3 and a batch size of 8. The learning rate decreases by 8% at
every epoch. The parameter for the gradient-penalty term is kept to λ = 0.001.
The discriminator is trained 4 times for every training of the generator (ndiscr = 4
in Algorithm 7).

For the back-propagations, the norm of the gradients for the discriminator are
clipped to a maximal value of 106. For the generator, the gradients for each pixel are
clipped to a maximal value of 103. The clipping values increase linearly from zero
to those maxima in the first two epochs. Doing so improves on the stability of the
adversarial learning scheme in the start, in particular, on that of the discriminator.
All parameters are tuned for a fixed value range that follows from the normalization
of all projections.
Computational Resources. The reconstruction is run on a Nvidia P100 GPU
with 18GB memory. Each epoch lasts 10 minutes. The algorithm is run for 16
epochs which, in the current implementation, takes 160 minutes.

A.6.6 Real-Data Experiment

Experimental dataset. The dataset consists of 41,123 β-galactosidase (EMPIAR-
10061) particle images extracted from 1,539 micrographs [49]. Particle images of
size (384 × 384) are downsampled to (192 × 192), with pixel size of 1.274 Å. This
corresponds to a Nyquist resolution of 2.548 Å for a reconstructed volume of size
(180× 180× 180).

The dataset is randomly divided into two halves. The algorithm is applied
separately on both halves to generate the half-maps. The defocus and astigmatism
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parameters of the CTF are estimated from each micrograph using Relion.
Generator Settings. We reconstruct a volume of size (180 × 180 × 180) voxels
for each half dataset. The pixel size is 1.274 Å. The volumes are initialized with
zeros. The D2 symmetry of β-galactosidase is enforced during reconstruction. A
uniform distribution is assumed for the orientations. The CTF parameters esti-
mated in Relion are used in the forward model of the CryoEM physics simulator.
The parameter B of the envelope function of the CTF (see (A.7)) decays to 0.4
at the Nyquist frequency. The translations (vertical and horizontal) are sampled
independently from triangle-shaped distributions.

To handle the noise, we randomly extract (prior to the learning procedure)
41,123 patches of size (384 × 384) from the background of the micrographs at lo-
cations where particles do not appear; this is done by identifying patches with the
lowest variance. We extract as many noise patches per micrograph as we have
particle images. Each noise patch is then downsampled to size (192 × 192) and
normalized. Then, during run-time, the noise patches are sampled from this col-
lection, scaled, and added to the simulated projections. For consistency, the noise
patch added to a given simulated projection is taken from the same micrograph
as the one that was used to estimate the CTF parameters previously applied to
that specific projection. The scaling operation weighs the contribution of the noise
with respect to the projection signal. This is handled by multiplying the pixel val-
ues of the noise images and the projection images by two scalars that are learnt
throughout the procedure. These two scalar values are the same for every pair of
noise/projection images, so that the same amount of extracted noise is added to
every simulated projection.

We apply a binary spherical mask of size (171×171×171) on the learned volume.
To handle the sharp transitions at the mask borders, we enforce the same clipping
constraints on the masked volume as in the synthetic experiment.
Discriminator Architecture. The architecture of the discriminator network is
detailed in Online Methods. The discriminator is initialized identically for the two
half datasets. The projection images (real and synthesized) are smoothed with a
Gaussian kernel before being fed to the discriminator. The width of the kernel is
initially set at 2 and decreases by 2% at every epoch.
General Settings. The adversarial learning scheme is implemented in Pytorch
[207]. For the optimization, we use [205] (β1 = 0.5, β2 = 0.9, ε = 10−8) with a
learning rate of 10−3 and a batch size of 8. The learning rate decreases by 8% at
every epoch. The parameter for the gradient-penalty term is kept to λ = 1. The
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discriminator is trained 4 times for every training of the generator (ndiscr = 4 in
Algorithm 7).

For this dataset, the algorithm is first run for 8 epochs (with translation search
switched off) to produce a stable low-resolution reconstruction (15Å). The process
is then restarted using this volume and run for 12 epochs to obtain a high-resolution
volume. In this second stage, we limit the refinement to the high-frequency com-
ponents above 15Å.

For the back-propagations, the norm of the gradients for the discriminator are
clipped to a maximal value of 106. For the generator, the gradients for each pixel are
clipped to a maximal value of 103. The clipping values increase linearly from zero
to those maxima in the first two epochs. Doing so improves on the stability of the
adversarial learning scheme in the start, in particular, on that of the discriminator.
The gradients that correspond to the learning of the scaling ratios between the
noise and projection images are clipped to a value of 10.
Computational Resources. The reconstruction is run on a Nvidia P100 GPU
with 18GB memory. Each epoch lasts 10 minutes. The algorithm is run for 200
minutes.
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[20] Lauréne Donati, Emmanuel Soubies, and Michael Unser, “Inner-Loop Free
ADMM for Cryo-EM,” IEEE International Symposium on Biomedical Imag-
ing (ISBI), 2019.

[21] Carol V Robinson, Andrej Sali, and Wolfgang Baumeister, “The molecular
sociology of the cell,” Nature, vol. 450, no. 7172, pp. 973–982, 2007.

[22] Julia Mahamid, Stefan Pfeffer, Miroslava Schaffer, Elizabeth Villa, Radostin
Danev, Luis Kuhn Cuellar, Friedrich Förster, Anthony A Hyman, Jürgen M
Plitzko, and Wolfgang Baumeister, “Visualizing the molecular sociology at
the HeLa cell nuclear periphery,” Science, vol. 351, no. 6276, pp. 969–972,
2016.

[23] Joachim Frank, Three-dimensional electron microscopy of macromolecular
assemblies: Visualization of biological molecules in their native state, Oxford
University Press, 2006.

[24] Yifan Cheng, Nikolaus Grigorieff, Pawel A Penczek, and Thomas Walz, “A
primer to single-particle cryo-electron microscopy,” Cell, vol. 161, no. 3, pp.
438–449, 2015.

[25] Rafael Fernandez-Leiro and Sjors HW Scheres, “Unravelling biological macro-
molecules with cryo-electron microscopy,” Nature, vol. 537, no. 7620, pp. 339,
2016.

[26] BL Trus, AC Steven, AW McDowall, M Unser, J Dubochet, and RJ Podolsky,
“Interactions between actin and myosin filaments in skeletal muscle visualized
in frozen-hydrated thin sections,” Biophysical journal, vol. 55, no. 4, pp. 713–
724, 1989.



166 BIBLIOGRAPHY

[27] Arnaud Amzallag, Cedric Vaillant, Mathews Jacob, Michael Unser, Jan Bed-
nar, Jason D Kahn, Jacques Dubochet, Andrzej Stasiak, and John H Mad-
docks, “3D reconstruction and comparison of shapes of DNA minicircles
observed by cryo-electron microscopy,” Nucleic acids research, vol. 34, no.
18, pp. e125–e125, 2006.

[28] Minglei Zhao, Shenping Wu, Qiangjun Zhou, Sandro Vivona, Daniel J Cipri-
ano, Yifan Cheng, and Axel T Brunger, “Mechanistic insights into the recy-
cling machine of the snare complex,” Nature, vol. 518, no. 7537, pp. 61–67,
2015.

[29] COS Sorzano, R Marabini, J Vargas, J Otón, J Cuenca-Alba, A Quintana,
JM de la Rosa-Trev́ın, and JM Carazo, “Interchanging geometry conven-
tions in 3DEM: mathematical context for the development of standards,” in
Computational Methods for Three-Dimensional Microscopy Reconstruction,
pp. 7–42. Springer, 2014.

[30] DF Swinehart, “The beer-lambert law,” Journal of chemical education, vol.
39, no. 7, pp. 333, 1962.

[31] F. Natterer, The mathematics of computerized tomography, Society for In-
dustrial and Applied Mathematics, jan 2001.
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EM structure of β-galactosidase in complex with a cell-permeant inhibitor,”
Science, vol. 348, no. 6239, pp. 1147–1151, 2015.

[50] E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt,
E.C. Meng, and T.E. Ferrin, “UCSF Chimera-A visualization system for
exploratory research and analysis,” Journal of computational chemistry, vol.
25, no. 13, pp. 1605–12, 2004.

[51] Eva Nogales, “The development of cryo-EM into a mainstream structural
biology technique,” Nature methods, vol. 13, no. 1, pp. 24–27, 2016.

[52] Joachim Frank, “New opportunities created by single-particle cryo-EM: the
mapping of conformational space,” 2018.



BIBLIOGRAPHY 169

[53] Joachim Frank and Terence Wagenknecht, “Automatic selection of molecular
images from electron micrographs,” Ultramicroscopy, vol. 12, no. 3, pp. 169–
175, 1983.

[54] James Z Chen and Nikolaus Grigorieff, “SIGNATURE: a single-particle selec-
tion system for molecular electron microscopy,” Journal of structural biology,
vol. 157, no. 1, pp. 168–173, 2007.

[55] ZA Ripstein and JL Rubinstein, “Processing of cryo-EM movie data,” in
Methods in enzymology, vol. 579, pp. 103–124. Elsevier, 2016.

[56] Charles V Sindelar and Nikolaus Grigorieff, “An adaptation of the wiener
filter suitable for analyzing images of isolated single particles,” Journal of
structural biology, vol. 176, no. 1, pp. 60–74, 2011.

[57] Sjors HW Scheres, “Semi-automated selection of cryo-EM particles in
RELION-1.3,” Journal of structural biology, vol. 189, no. 2, pp. 114–122,
2015.

[58] Joachim Frank, Brian Shimkin, and Helen Dowse, “SPIDERâa modular soft-
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J.M. Carazo, and C.O.S. Sorzano, “Xmipp 3.0: An improved software suite
for image processing in electron microscopy,” Journal of Structural Biology,
vol. 184, no. 2, pp. 321–328, 2013.

[178] N. Grigorieff, “FREALIGN: High-resolution refinement of single particle
structures,” Journal of Structural Biology, vol. 157, no. 1, pp. 117–125, 2007.

[179] F.J. Sigworth, “Principles of cryo-EM single-particle image processing.,” Mi-
croscopy, vol. 65, no. 1, pp. 57–67, 2016.

[180] E. Soubies, F. Soulez, M. McCann, T-A. Pham, L. Donati, T. Debarre,
D. Sage, and M. Unser, “Pocket guide to solve inverse problems with Glob-
alBioIm,” Inverse Problems, 2019.

[181] L. Armijo, “Minimization of functions having Lipschitz continuous first par-
tial derivatives.,” Pacific Journal of Mathematics, vol. 16, no. 1, pp. 1–3,
1966.

[182] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, New York,
NY, USA, second edition, 2006.

[183] Z. Yang and P. A. Penczek, “Cryo-EM image alignment based on nonuniform
fast fourier transform,” Ultramicroscopy, vol. 108, no. 9, pp. 959 – 969, 2008.

[184] J. Lee, P. C. Doerschuk, and J. E. Johnson, “Exact reduced-complexity max-
imum likelihood reconstruction of multiple 3-d objects from unlabeled unori-
ented 2-d projections and electron microscopy of viruses,” IEEE Transactions
on Image Processing, vol. 16, no. 12, pp. 2865–2878, Dec 2007.

[185] Z. Zhao and A. Singer, “Rotationally invariant image representation for view-
ing direction classification in cryo-EM,” Journal of Structural Biology, vol.
186, no. 1, pp. 153 – 166, 2014.



BIBLIOGRAPHY 183

[186] Gurunathan Laxmikanthan, Chen Xu, Axel F Brilot, David Warren, Lindsay
Steele, Nicole Seah, Wenjun Tong, Nikolaus Grigorieff, Arthur Landy, and
Gregory D Van Duyne, “Structure of a holliday junction complex reveals
mechanisms governing a highly regulated dna transaction,” Elife, vol. 5, pp.
e14313, 2016.

[187] X. Qi, P. Schmiege, E. Coutavas, J. Wang, and X. Li, “Structures of human
patched and its complex with native palmitoylated sonic hedgehog,” Nature,
vol. 560, no. 7716, pp. 128–132, 2018.

[188] R. Fernandez-Leiro and S.H.W. Scheres, “A pipeline approach to single-
particle processing in Relion,” Acta Crystallographica Section D, vol. 73, no.
6, pp. 496–502, 2017.

[189] Y Zhu, “An augmented ADMM algorithm with application to the generalized
lasso problem,” Journal of Computational and Graphical Statistics, vol. 26,
no. 1, pp. 195–204, 2017.

[190] Ivana Tosic and Pascal Frossard, “Dictionary learning,” IEEE Signal Pro-
cessing Magazine, vol. 28, no. 2, pp. 27–38, 2011.

[191] Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael
Unser, “Deep convolutional neural network for inverse problems in imag-
ing,” IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522,
2017.

[192] Mikhail Belkin and Partha Niyogi, “Laplacian eigenmaps for dimensionality
reduction and data representation,” Neural computation, vol. 15, no. 6, pp.
1373–1396, 2003.

[193] Joseph B Kruskal, Multidimensional scaling, Number 11. Sage, 1978.

[194] Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[195] Leland McInnes, John Healy, and James Melville, “Umap: Uniform mani-
fold approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.



184 BIBLIOGRAPHY

[196] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli, “Eu-
clidean distance matrices: essential theory, algorithms, and applications,”
IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 12–30, 2015.

[197] Don Koks, Explorations in mathematical physics: the concepts behind an
elegant language, Springer Science & Business Media, 2006.

[198] Boris A. Rosenfeld, A History of Non-Euclidean Geometry: Evolution of the
Concept of a Geometric Space, Springer New York, Sept. 1988, Google-
Books-ID: DRLpAFZM7uwC.

[199] Du Q Huynh, “Metrics for 3D rotations: Comparison and analysis,” Journal
of Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[200] Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch,
Daniel M Greenblatt, Elaine C Meng, and Thomas E Ferrin, “Ucsf chimeraâa
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