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1 Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
2 University of Vienna, Faculty of Physics, VCQ, A-1090 Vienna, Austria
3 University of Vienna, Max Perutz Laboratories, Department of Structural and Computational Biology,
A-1030 Vienna, Austria
4 Advanced Microscopy Facility, Vienna Biocenter Core Facilities (VBCF), A-1030 Vienna, Austria

E-mail: thomas.juffmann@univie.ac.at

Received 15 April 2021, revised 17 June 2021
Accepted for publication 28 June 2021
Published 13 July 2021

Abstract
Interferometric imaging is an emerging technique for particle tracking and mass photometry.
Mass or position are estimated from weak signals, coherently scattered from nanoparticles or
single molecules, and interfered with a co-propagating reference. In this work, we perform a
statistical analysis and derive lower bounds on the measurement precision of the parameters of
interest from shot-noise limited images. This is done by computing the classical Cramér–Rao
bound (CRB) for localization and mass estimation, using a precise vectorial model of
interferometric imaging techniques. We then derive fundamental bounds valid for any imaging
system, based on the quantum Cramér–Rao formalism. This approach enables a rigorous and
quantitative comparison of common techniques such as interferometric scattering microscopy
(iSCAT), coherent brightfield microscopy, and dark-field microscopy. In particular, we
demonstrate that the light collection geometry in iSCAT greatly increases the axial position
sensitivity, and that the Quantum CRB for mass estimation yields a minimum relative
estimation error of σm/m= 1/(2

√
N), where N is the number of collected scattered photons.
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1. Introduction

Scattering-based interferometric imaging is a powerful
method for the label-free detection and tracking of single
biomolecules in solution [1–8]. In these techniques, light
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scattered by a molecule is interfered with a reference to obtain
a detectable signal. Applications include the determination of
the mass of biomolecules and their oligomeric states [1–4],
as well as high speed tracking of nanoparticles in cellular
environments [5–8].

Due to the small scattering cross-section of a single protein
(e.g. 10−11µm2 for bovine serum albumin [2]), shot-noise typ-
ically limits how precisely mass or position can be estimated.
Sensitivity can be improved by increasing the number of col-
lected photons, either via longer observation times or higher
incident power. However, long observation times limited by
temporal dynamics of the sample and setup instabilities, and
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incident power is limited by detector well-depth and adverse
photo-induced heating. It is therefore crucial to extract as
much information as possible from every scattered photon.

The Cramér–Rao bound (CRB) quantifies the maximal
achievable precision regarding the estimation of parameters
from noisy measurements [9, 10]. CRBs have been used to
derive the achievable precision regarding localization [11–13]
and lifetime [14] estimation in fluorescence microscopy, as
well as phase and amplitude estimation in coherent micro-
scopy techniques [15, 16]. Furthermore, quantum estimation
theory [17, 18] provides fundamental bounds on precision,
describing the amount of information which can be extracted
from the quantum state of light itself. One can thus compare
the classical CRB, achieved with a givenmeasurement system,
with the quantum CRB (QCRB), bounding the achievable pre-
cision for any measurement system.

Here, we apply this formalism to scattering-based micro-
scopy techniques to quantify the estimation precision
regarding particle mass and position. We specifically com-
pare interferometric scattering microscopy (iSCAT) [19, 20],
coherent brightfield microscopy (COBRI) [21, 22], and dark-
field microscopy (DF) [23]. In section 2, we first adapt a vec-
torial model of image formation [24–26], already applied for
iSCAT [27], to COBRI and DF.We then introduce a numerical
model for the calculation of CRBs, and finally derive analytic
expressions for the corresponding QCRBs.

We apply this theoretical framework to interferometric ima-
ging in section 3. First, we discuss nanoparticle localization,
and show that all three techniques yield similar CRBs for
transverse x, y localization, while iSCAT can be more than
5× more precise for z localization. Second, we calculate
mass estimation precision, and show that DF is slightly more
photon-efficient than interferometric techniques. Third, we
discuss how these bounds are affected by attenuation of the
reference light [8, 28, 29].

2. Theory—background and results

In this section, we first introduce the vectorial imaging model
to precisely calculate the scattered fields. We then describe
the concept of classical Fisher information (FI) and CRBs for
shot-noise limited measurements, followed by their quantum
counterparts.

2.1. Image formation

In this study we focus on three coherent microscopy tech-
niques, as illustrated in figure 1. In all considered geometries,
incident light of wavelength λ induces dipole scattering. In
iSCATmicroscopy, the backwards-scattered light is interfered
with the portion of the incident light that is reflected at the
water-glass interface. In COBRI, the forward scattered light
is interfered with the transmitted incident light. In order to
increase contrast, the reference light is often selectively atten-
uated by a factor β using a mask in the Fourier plane [8]. In
DF, the scattered light is detected without interfering it with a
reference field. To compare these different imaging schemes,

Figure 1. Sketches of the experimental configuration in (a) iSCAT,
(b) COBRI and (c) DF microscopy. The light scattered by the
particle on the coverslip is imaged onto a camera where it interferes
with a reference. In iSCAT, the reference corresponds to the light
reflected at the coverslip-sample interface. In COBRI the transmitted
light is used as a reference, which can be selectively attenuated in
the back-focal plane of the objective lens by a factor β. In DF the
reference light is blocked completely, and only the scattered light is
detected. In (d) the typical three-layer structure is depicted, showing
the nanoparticle within a sample medium, a glass coverslip, and the
immersion oil. Aberrations are introduced when the experiment
deviates from the design conditions of the microscope objective.

a detailed model of image formation is required. Here, we
apply a vectorial model [24–26, 30] that goes beyond the
paraxial approximation in order to account for light collection
with high numerical aperture (NA). The model has recently
been applied to iSCAT [27], and demonstrated the importance
of aberrations introduced by particle defocus. In the follow-
ing, we lay out the most important steps of our model, which
also applied to DF and COBRI. Details can be found in the
appendix.

The detected intensity can be calculated as the interference
of the scattered field Esca with a reference field Eref at the
detector plane:

Idet =
∣∣Eref

∣∣2 + ∣∣Esca
∣∣2 + 2

∣∣Eref
∣∣∣∣Esca

∣∣cosϕsca, (1)

where ϕsca corresponds to the phase difference between the
two fields. Note that in our notation we omit the spatial
dependence and the incoherent sum on the two components
of the electric field for brevity.

The calculation of the amplitude of the reference light is
straightforward: assuming a linearly-polarized incident field
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Einc = Eincêx, we get Eref = r∥E
inc for iSCAT, and Eref =

βt∥E
inc for COBRI. Here, r∥ and t∥ are the Fresnel coeffi-

cients for the reflection and transmission of p-polarized light
at the coverslip-water interface (r⊥ and t⊥ will be used for
s-polarized light later), and β represents an optional attenu-
ation factor. For DF, Eref = 0.

The calculation of the scattered field is more involved: we
start with the scattering amplitude E1 ≡ E1eiψ0 êx, which is
proportional to the complex polarizability α of the particle and
the incident field: E1 ∝ αEinc. Next, we need to include aber-
rations with a precise propagation model. We assume that a
microscope objective provides aberration-free images under
very precise design settings: the imaged plane must be located
at the surface of a coverslip of thickness t∗g and refractive index
n∗g , after an immersion oil layer of thickness t∗i and refract-
ive index n∗i . Deviations from those settings will cause aber-
rations. As shown in figure 1(d), we now consider a particle
at a distance zp from the coverslip, and an immersion layer of
thickness ti, which is the typical experimental configuration
as described in [31]. The indices of refraction of the sample
medium, the immersion layer, and the cover glass are denoted
by ns, ni, and ng respectively. We assume for simplicity that
tg = t∗g , ng = ni = n∗i = n∗g . θs and θ are the angles of the optical
rays with respect to the optical axis in the sample medium and
immersion medium, respectively. We also define the maximal
angular aperture of the objective αa = sin−1(NA/ni), the azi-
muthal angle ϕ of a unit vector ŝ, and the detector position
r, with the origin at the central focus position in the design
setting.

With these settings, the scattered field in the detector plane
is given by a Richards–Wolf integral [24, 26, 32]:

Esca =− i
λ
E1eiψ

ˆ αa

0

ˆ 2 π

0
AeikΛeik̂s·r sinθ

√
cosθdθdϕ, (2)

with A a vector defined as:

A=

(
t∥ cosθs cos2 ϕ+ t⊥ sin2 ϕ
(t∥ cosθs− t⊥)cosϕsinϕ

)
, (3)

and the aberration term Λ depending on the geometry:

Λ = zpns(cosθs+ ξ)+ ni(ti− t∗i )(cosθ− 1), (4)

where ξ=+1 for iSCAT, and ξ=−1 for COBRI. This differ-
ence is a result of an additional optical path length in iSCAT
since the reference light and the scattered light do not originate
from the same plane as compared to COBRI. A more compact
formalism used to accelerate the numerical study is presented
in the appendix.

2.2. Cramér–Rao bounds introduction

From measuring the spatial distribution of intensities Idet(r)
one can estimate unknown parameters γ, like the position
x, y, z, or mass m of a particle. Any noise in the measurement
will inevitably lead to stochastic estimations. The information
about γ, which is contained in the detected, noisy intensities,

can be quantified using the concept of FI [9]. We build the
FI matrix by computing the FI for each pair of parameters γi
and γj, for the case where shot-noise is the dominant source of
noise [15] by:

[J (γ)]ij =

ˆ
dr

1
Idet(r)

(
∂Idet(r)
∂γi

)(
∂Idet(r)
∂γj

)
. (5)

The variance of any unbiased estimator γ̂(Idet) of the para-
meters γ must satisfy the Cramér–Rao inequality [9] given
by:

Var(γ̂j)⩾ [J−1(γ)]jj ⩾
1

[J (γ)]jj
. (6)

The first inequality gives the CRB for estimation precision of
γj, when all other parameters are unknown and the estima-
tion is potentially affected by crosstalk. The second inequality
yields the CRB assuming perfect knowledge of all other para-
meters. Finally, the corresponding lower bound on standard
deviation is:

σCRB,γj =
1√

[J (γ)]jj
. (7)

2.3. Quantum CRBs

The Quantum Fisher Information (QFI) and the associated
Quantum Cramér–Rao Bounds (QCRB) provide fundamental
estimation bounds which are valid for any measurement sys-
tem [33]. The QFI quantifies the information contained in
the quantum state of light itself. Recently this approach was
applied to localization estimation precision in fluorescence
microscopy [12], where the parameters of interest were given
by the position of the particle (γ1,γ2,γ3) = (xp,yp,zp), and
the state of the fluorescence light was defined as a super-
position of single photon states described by their coordin-
ates in Fourier space. In iSCAT, the mass of the particle
constitutes a further parameter of interest γ4 =m, and the
light scattered by a particle can be described as a super-
position of coherent states parametrized by (θ,ϕ) with amp-
litudes ϵ(θ,ϕ) described in equation (2). Note that equation (1)
assumes coherence between the reference and the scattered
light, which constitutes a fundamental difference to the treat-
ment of incoherent fluorescent light [18]. These notions allow
calculating the QFI of the scattered fields collected by the
objective, and the QCRBs yielding a bound on estimation
precision irrespective of the measurement scheme that fol-
lows. Following the derivation in [34], we can write the
QFI as:

Kjj = 4
ˆ αa

0
dθ
ˆ 2π

0
dϕ |∂jϵ(θ,ϕ)|2 . (8)

The QFIs for localization, normalized for one collected
scattered photon, are given by:

Kxx =
1
A

ˆ αa

0
dθ
ˆ 2π

0
dϕ

∣∣∣kni cosϕsin2 θ√cosθA
∣∣∣2 (9)
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Figure 2. (a) Simulated detected intensity for iSCAT, COBRI, and DF at different axial particle positions zp. The field of view is 4× 4 µm2.
(b) On-axis phase shift ϕsca(zp) for iSCAT (cyan) and COBRI (blue). (c) On-axis signal to noise SNR(zp) for iSCAT, COBRI, and DF
(black). (d) Transverse and (e) axial CRBs for the different schemes as a function of zp, normalized for one scattered photon detected. The
dashed horizontal lines in panels (d) and (e) indicate the respective quantum CRBs. For all panels the focus plane zf was set to 1 µm and is
indicated by the horizontal dashed line.

Kyy =
1
A

ˆ αa

0
dθ
ˆ 2π

0
dϕ

∣∣∣kni sinϕsin2 θ√cosθA
∣∣∣2 (10)

Kzz =
1
A

ˆ αa

0
dθ
ˆ 2π

0
dϕ

∣∣∣kns(cosθs+ ξ)sinθ
√
cosθA

∣∣∣2 ,
(11)

where cosθs =
√
1− n2s sin

2 θ/n2i . Note that equation (11)
depends on ξ, i.e. on the optical path length difference of ref-
erence and scattered light. A is a normalization factor given
by:

A=

ˆ αa

0
dθ
ˆ 2π

0
dϕ

∣∣∣sinθ√cosθA
∣∣∣2 . (12)

The QFI for mass estimation is:

Kmm =
4
m2
. (13)

The associated QCRBs are:

Var(γ̂j)⩾ σ2
QCRB,γj =

1
Kjj

, (14)

written for the single parameter estimation, these fundamental
bounds also bound themaximal achievable precision formulti-
parameter estimation. In particular, this leads to the following
bound on relative mass estimation:

σQCRB,m
m

=
1
2
. (15)

These bounds have been derived for one scattered photon
collected by the optical system. To get the bounds for N
photons the variances have to be scaled by 1/N, and standard
deviations by 1/

√
N.

3. Numerical results

3.1. 3D localization precision

Interferometric imaging allows precise localization of single
nanoparticles. Since the number of scattered photons is only
limited by the intensity of the incoming field, precise track-
ing can be achieved on fast timescales and over an extended
period [5]. This is a unique advantage compared to fluores-
cence microscopy, where finite lifetimes and bleaching limit
tracking speed, precision and observation time.

Applying the equations introduced in the previous sections,
we can study the performance of interferometric scattering
techniques regarding localization precision. Figure 2 presents
the results obtained for a 30 nm-diameter gold nanoparticle.
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The microscope is focused to 1 µm above the cover glass. All
other relevant parameters for the simulation can be found in
the appendix. Figure 2(a) shows the simulated intensities (nor-
malized to the incident intensity Iinc) for iSCAT, COBRI (for
βt∥ = r∥), and DF. Intensities are calculated for five different
axial particle positions zp and we observe that the signal mod-
ulations are larger for iSCAT and COBRI than for DF, due to
the interference term in equation (1). A slight azimuthal asym-
metry is observed due to polarization effects. Note that the
z-positions of the particle were not chosen at equidistant steps
in order to highlight the fast oscillations in the modulation of
the iSCAT signal, as reported in [27].

These fast oscillations in iSCAT are due to fast changes in
the phase between the reference and the scattered light (plot-
ted in figure 2(b)), arising from changes in the relative optical
path length that scale linearly with zp. This is not observed for
COBRI, where both fields originate from the same plane. For
both techniques, there is an additional geometric phase shift,
i.e. the Gouy phase shift. While a Gouy phase shift of π would
be expected for a spherical wave passing through a focus [35],
this can be drastically different for highly aberrated beams
[36, 37], which needs to be considered in the analysis of 3D
tracking data.

Figure 2(c) plots the on-axis (= center pixel) signal-to-
noise ratio (SNR) for the three techniques as a function of zp.
Assuming shot-noise limited measurements, the SNR is pro-
portional to:

SNR∝
|Esca|2 + 2

∣∣Eref
∣∣ |Esca|cosϕsca√∣∣Eref

∣∣2 + |Esca|2 + 2
∣∣Eref

∣∣ |Esca|cosϕsca
, (16)

where we set
∣∣Eref

∣∣= 0 for DF. The proportionality constant
depends on the collection efficiency and is the same for all
methods discussed here. We see that the changes in phase
lead to fast oscillations of the on-axis iSCAT SNR. For all
three techniques, the maximum SNR values are not observed
in focus, but closer to the cover glass. SNR values in iSCAT
and COBRI are twice as high as in DF, which agrees with the
analytic expression, where one obtains SNR∝ |Esca| for DF
and SNR∝ 2 |Esca|cosϕ for iSCAT and COBRI, as long as∣∣Eref

∣∣≫ |Esca|.
From this analysis one might conclude that iSCAT and

COBRI enable a localization precision twice as high as DF.
This notion however does not take the full PSF of the micro-
scope into account. We consider the task of estimating the
transverse and axial positions of the particle from the full PSF
information, and compute the associated CRBs of equation (6)
using finite differences. The results are shown in figures 2(d)
and (e), and are given per scattered photon that is collected. For
a finite numberN of scattered photons collected, the CRBs and
QCRBs scale as 1/

√
N. Note that we plot standard deviations,

i.e. the square root of the CRB and QCRB of equations (6)
and (14).

We observe that the minimal CRB for localization pre-
cision in the transverse x-direction is similar for all three
techniques (in y-direction it would differ slightly, due to the

Table 1. Quantum Cramér–Rao bounds for 3D localization in
iSCAT and COBRI, normalized for one scattered photon collected.

iSCAT (nm) COBRI (nm)

σQCRB, x 71 71
σQCRB, y 57 57
σQCRB, z 18 114

asymmetry introduced by polarization). The CRB for inter-
ferometric measurements fluctuates, depending on the phase
at the center of the PSF. These fluctuations are more rapid
for iSCAT than COBRI. The axial dependence of the trans-
verse localization precision shows pronounced differences,
with iSCAT and COBRI offering higher precision than DF
over a larger defocus range. This is a consequence of the
more pronounced off-axis features of the respective PSFs,
and is especially important for three dimensional tracking
applications.

Figure 2(e) presents the axial localization precision of the
three techniques. COBRI and iSCAT yield higher axial pre-
cision compared to DF thanks to the phase sensitivity of the
interferometric imaging scheme. Since this phase varies much
faster for iSCAT than for COBRI (figure 2(b)), the axial loc-
alization precision is greatly improved throughout the entire
zp range. Geometrically this has been explained in the dis-
cussion of figure 2(b), mathematically it is represented by the
ξ=±1 term in equation (4) affecting the z derivative as seen
in equation (11). This significant difference in sensitivity is a
particularly promising feature of iSCAT, since axial localiz-
ation is a notoriously challenging problem for which double-
objective collection [18] or PSF engineering [12] have been
proposed.

The corresponding QCRBs are depicted as horizontal
dashed lines in figures 2(d) and (e) and their values are given
in table 1. They are derived from the quantum state of light
itself, for the two different geometries of iSCAT and COBRI.
We see that for x localization, the QCRBs in both cases are
equal and that the optimal CRB for all three techniques sat-
urate this fundamental bound. On the other hand, for z local-
ization, the QCRB for iSCAT is significantly lower than for
COBRI. Both interferometric techniques saturate this bound
when the particle is close to the focus position. On the other
hand, the axial sensitivity of DF does not reach the QCRB.
Thus, the addition of a copropagating reference provides an
effective method to saturate the QCRB, comparable to other
interferometric strategies [18] or PSF engineering [38].

3.2. Mass estimation

Mass photometry is one of the most widespread applications
of iSCAT [1–3]. It relies on the fact that the polarizability α is
proportional to the mass of the nanoparticle. The task of estim-
ating the mass of the particle becomes a task of estimating the
amplitude of the scattered light.

The highest precision in mass estimation using interfero-
metric techniques is typically achieved when the particle binds
to the cover glass during the observation. Frames recorded
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Figure 3. Cramér–Rao bounds for mass estimation, as a function of
zf for iSCAT (cyan), COBRI (blue), and Darkfield (black). The
dotted line gives the CRB for the joint estimation of mass and zp
position in iSCAT. The CRBs are normalized by the mass to present
relative precision. QCRBs correspond to the horizontal dashed lines,
they do not depend on the imaging geometry. The particle is sitting
on the coverslip at zp= 5 nm.

before the binding event can then serve as an accurate estim-
ation of the background. This enables extensive averaging
and leads to measurements unaffected by nonspecific scat-
tering background. Assuming perfect background subtraction,
figure 3 shows the CRB formass estimation as a function of the
focus position of the microscope. While COBRI and iSCAT
yield a similar precision, DF slightly surpasses these two tech-
niques. All three techniques have the same QCRB, which
only depends on the scattered amplitude. This means that DF
is, in principle, the most efficient strategy for mass estima-
tion among them. Experimentally, however, mass estimation
using DF is difficult. This is due to the much smaller signal
(see figure 2(a)), which makes DF more prone to other noise
sources (e.g. camera read noise), as well as to systematic errors
due to spurious reflections and scattered fields from elements
along the optical system [20].

The dotted line in figure 3 shows the mass estimation preci-
sion obtained for iSCAT, when both m and zp are unknown. In
this case the off-diagonal terms of the FI matrix contribute sig-
nificantly to the CRB, leading to lower estimation precision.
In practice this means that slight alterations in zp orm can lead
to similar changes in the PSF, and are therefore difficult to
discern. This degeneracy is lifted if the particle is moved out
of focus, where the shape of the PSF allows for an efficient
estimation of both parameters.

The CRB on mass estimation increases as we move away
from the focus position. This is due to the finite field-of-view
of our simulations (4× 4 µm), since energy is lost outside the
field-of-view for large zf values. While a larger field of view
could be considered, this can become challenging experiment-
ally, especially in the presence of other scatterers, additional
noise sources, or an inhomogeneous reference wave.

Figure 4. Cramér–Rao bounds for different attenuation values β.
(a) and (b) depict the CRB for the estimation precision of the axial
particle position zp for COBRI and iSCAT at varying attenuation
(dashed lines) as a function of zp. The same parameters as in figure 2
were used. In (c) and (d) the change in CRB for mass estimation as
a function of zf are illustrated for COBRI and iSCAT for increasing
attenuation. The same parameters as in figure 3 were used.

3.3. Attenuation of the reference beam

Several groups specifically attenuate the reference light
in order to increase the contrast in iSCAT and COBRI
[8, 28, 29], which decreases the requirements on detector well-
depth and frame rate. To investigate the impact of attenu-
ation on localization andmass estimation precision we plot the
respective CRBs for different attenuation values in figure 4.
We assume that the reference light can be attenuated without
affecting the scattered light. Experimentally this can be real-
ized using a mask in the back focal plane of the objective as
depicted in figure 1.

We observe that an increasing attenuation leads to a mono-
tonous transition between an interferometric setup into a DF
setup, with all the consequences discussed in the previous
sections. Both for iSCAT and COBRI, we see that the achieved
CRBs do not change as long as

∣∣Eref
∣∣≫ |Esca|, and that we

retrieve the DF characteristics for
∣∣Eref

∣∣≪ |Esca|. We deduce
that attenuation in iSCAT should be avoided if axial localiza-
tion is of concern. For transverse localization and mass estim-
ation, other experimental constraints might outweigh the gains
and losses in QFI offered by the introduction of attenuation.

4. Discussion and outlook

In this work we derived the estimation precision regard-
ing particle mass and localization that can be achieved in
scattering-based imaging schemes. Specifically, we compared
iSCAT, COBRI, and DF and calculated the respective classical
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and quantum Cramér–Rao Bounds ((Q)CRB) for shot-noise
limited measurements.

Most notably, we find that iSCAT yields a significantly bet-
ter axial localization precision than COBRI and DF. This is
due to the information related to the relative phase accumu-
lated between reference and scattered fields, which translates
into oscillations in iSCAT signal as a function of particle pos-
ition. For this reason, iSCAT also performs significantly bet-
ter than single-objective fluorescence microscopy [18]. This
information advantage also translates to the QCRB, in prin-
ciple enabling an estimation error roughly five times smaller
than those in COBRI and DF.

Regarding mass photometry, we find that all three tech-
niques offer the same QCRB, since mass estimation is tightly
related to estimating the amplitude of the scattered light and
not its phase. While DF yields a lower CRB than iSCAT and
COBRI, this advantage is hard to leverage experimentally,
since the small signals in DF require low-noise detection, and
excellent suppression of spurious signals. Note that our CRB-
results for DF also apply to other DF geometries like coherent
oblique angle light sheet microscopy [39]. We also show that
there is a divergence in mass photometry precision in iSCAT,
if the particle is close to the focus plane, and if neither the
mass, nor zp are known. Experimentally the divergence can be
avoided by a slight defocus of the sample. From the QCRB, a
fundamental bound σm/m= 1/(2

√
N) has been derived, with

N the number of collected scattered photons.
Our framework provides the means to quantitatively com-

pare the theoretical performance of different microscopy tech-
niques, with the possibility to take into account imaging arte-
facts, aberrations, or even other sources of noise. This allows
researchers to undoubtedly decide whether or not a given
technique is up for the task at hand. Furthermore, our res-
ults give the means to revisit the design of an experimental
setup for optimized sensitivity. For example, the fundamental
bounds derived here for axial localization are more precise
than the ones obtained for fluorescence microscopy, showing
the benefit of exploiting a coherent scattering process.

We finally note that this work has focused on the inform-
ation contained in the measurements. The ability to precisely
measure particle mass or localization also hinges on efficient
estimators, which remains a challenging question to tackle
[5]. For this direction, one could benefit from the consider-
able amount of prior studies on localization for fluorescence
microscopy [38, 40–42].

Another interesting direction for future studies is the con-
sideration of more complex incident light fields. While our
results are derived assuming a plane incoming wave, excit-
ing possibilities arise when considering adaptive wave-front
[15, 34, 43] and amplitude [13] shaping of the input light, non-
classical states [44, 45], or cavity enhanced measurement geo-
metries [46–49].
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Appendix A. Vectorial PSF derivation

In this section, we explicitly derive the PSF model used for all
image simulations in this manuscript. This derivation is equi-
valent to the one found in [27], but wewill discuss the different
steps in more detail to obtain the 3D vectorial PSF formalism.

A.1. Design setting of the microscope

We consider a three-layer model which describes the actual
experiment [31], introducing three different regions with dif-
ferent refractive indices after the microscope objective (see
figure 5): immersion oil, coverslip made of glass, and the
sample medium. These three layers are described by their
thickness and refractive index (ti,ni), (tg,ng), and (zp,ns),
respectively.

Microscope objectives are engineered to produce
aberration-free images of a specific plane. This is called the
design setting of the objective, characterized by parameters
(t∗i ,n

∗
i ) and (t∗g ,n

∗
g). The imaged plane in this design setting

is located right at the coverslip, which makes it independ-
ent of the sample parameters. Experiments are performed as
close as possible to these design conditions. For example, we
assume that the refractive index of the immersion oil and the
parameters describing the cover glass match the design condi-
tion, i.e. ni = n∗i , and (tg,ng) = (t∗g ,n

∗
g). We also assume that

ni = ng, such that reflections at the oil glass interface can be
neglected. On the other hand, (zp,ns) depend on the sample
and the scatterer position, and the immersion oil thickness ti
is a parameter set experimentally, related to the focus position
of the microscope [31].

It is in this setting that [27] have derived a vectorial PSF
model following a similar approach for fluorescence micro-
scopy [26]. It is based on the vectorial model for a two-layer
setting [24], which showed excellent agreement with a model
based on the Huygens-Fresnel principle [30]. The geometric
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Figure 5. Illustration of the layer structure for (a) the design
parameters and (b) the abberrated case.

aberrations of the three-layer setup can be described follow-
ing [31], leading to a model that describes iSCAT experiments
with high-fidelity [27].

We will start by describing the vectorial PSF model in the
design setting, introducing the geometric aberrations of iSCAT
and COBRI experiments in a second step.

A.2. The Richards–Wolf integral

To model the 3D electric field propagation in this ima-
ging configuration, we will use the Richards–Wolf integral
approach [32]. This vectorial model is well-suited for the high-
NA configurations of localization techniques. From the elec-
tric strength vector at the back focal plane of the objective Ẽa,
the electric field in the object space can be calculated as:

Eb(r) =− ik
2 π

ˆ αa

0

ˆ 2 π

0
Ẽ
a
eik̂s·r sinθ

√
cosθdθdϕ, (A1)

where r is defined relative to the focus position and the Fourier
space is parametrized by the polar angle θ and the azimuthal
angle ϕ.

The electric field is decomposed into a superposition of
plane waves eik̂s·r. The unit vector ŝ defining the direction of
propagation has coordinates (sinθc cosϕ,sinθc sinϕ,cosθc).
The coordinates of the detector position are defined as r=
(rcosϕd,rsinϕd,zc). The equations above allow calculating
the fields in different detector planes. In the following we will
assume zc= 0 for conciseness. The plane wave factor thus
writes:

eik̂s·r = eikr sinθc cos(ϕ−ϕd) = eiknir sinθ cos(ϕ−ϕd), (A2)

where we have used Snell’s law: sinθc = ni sinθ.

A.3. 3D interferometric PSF in the design setting

We start this discussion by considering a typical experiment in
the design setting, where the nanometric scatterer is placed on
the surface of the coverslip. There are two contributions to the
measured electric field to consider: the reference wave and the
scattered field from the nanoparticle generated by the dipole
emission induced by the incident light.

We assume the incident light E0 to be linearly polarized
along the x direction. In iSCAT, it is partially back-reflected at
the glass-sample interface, yielding the reference field:

Eref∗ = r∥E
0 êx, (A3)

where r∥ is the Fresnel reflection coefficient of the
glass-sample interface for p-polarized waves at normal
incidence:

r∥ =
ng cosθs− ns cosθg
ng cosθs+ ns cosθg

. (A4)

This factor may introduce a phase shift for the reflected light,
but it does not in a typical iSCAT experiment, where ng and ns
are real and ng > ns. For COBRI, the reference field is instead
given by:

Eref∗ = βt∥E
0 êx, (A5)

with t∥ the associated Fresnel transmission coefficient and β
an optional attenuation factor.

The portion of light that is transmitted induces a dipole on
the nanoparticle. The polarizability of a spherical particle of
radius a, where a≪ λ, is given by:

α= 4 πa3
ϵ1 − ϵs
ϵ1 + 2 ϵs

, (A6)

where ϵ1 and ϵs are the permittivities of the nanoparticle and
the sample medium respectively. The scattering phase and
amplitude are given by:

ψ0 = arg(α), (A7)

and:

E1 = η
k2√
6 π

|α|Einc, (A8)

where η = 1/π arcsin(min(NA/ns,1)) is a factor taking into
account the light collection efficiency [27]. The incident field
on the particle is Einc = t∥E0. Note that the near-fields of the
radiating dipole are neglected here.

To propagate this dipole emission to the back focal plane,
we consider the p (denoted by ∥) and s (denoted by⊥) polariz-
ation components separately, determined by the following unit
vectors:

ês∥ = (cosθs cosϕ,cosθs sinϕ,−sinθs) (A9)

8
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ê⊥ = (−sinϕ,cosϕ,0). (A10)

The scattered field in the back focal plane then reads:

Ẽ
1∗

= E1eiψ0

(
(êx · ês∥)t∥ê

s
∥ +(êx · ês⊥)t⊥ê⊥

)
(A11)

= E1eiψ0A, (A12)

with:

A=

(
t∥ cosθs cos2 ϕ+ t⊥ sin2 ϕ
(t∥ cosθs− t⊥)cosϕsinϕ

)
. (A13)

One can then use the Richards–Wolf integral to go from the
back focal plane to the camera plane:

Ecam∗
= Eref∗ +Esca∗ , (A14)

with:

Esca∗ =− ik
2 π

E1eiψ0

ˆ αa

0

ˆ 2 π

0
Aeik̂s·r sinθ

√
cosθdθdϕ.

(A15)

Note that since they were generated at the same plane,
no phase retardation is introduced between the two waves.
Also, for simplicity, the particle is placed on the optical
axis. For a translated particle at position rp = (xp,yp,0), we
have to replace r by r− rp in equation (A1). This adds a
factor e−ikni(xp cosϕ+yp sinϕ) sinθ in the integrand of the previous
equation that will be omitted for the rest of this derivation.

A.4. 3D aberrated iPSF

Once the microscope is defocused or the particle is not directly
bound to the cover slip, this leads to changes in optical path
lengths that are described by an aberration function Λs, which
depends on the coordinates in Fourier plane [24, 25]. They can
be expressed as [31]:

Λs(θ) =
zpns
cosθs

+
tini
cosθ

− t∗i ni
cosθ

− ni sinθ(zp tanθs+ ti tanθ− t∗i tanθ) (A16)

= zpns cosθs+(ti− t∗i )ni cosθ. (A17)

The immersion oil thickness ti in the actual experiment is a
parameter which is not easily measured experimentally. It can
be estimated from the best geometric focus position zf thanks
to the following relation [31]:

ti = zp− zf+ ni

(
t∗i
ni

−
zp
ns

)
. (A18)

In the interferometric scheme of iSCAT, we also need to
account for the additional phase due to the changed propaga-
tion distance of the incident wave:

Λ ′
s = nszp+ ni(ti− t∗i ). (A19)

This term only corresponds to the way in, as for the back-
ward pass it has already been accounted for in the aberration
term. This term does not appear in COBRI, for which Λ ′

s = 0
in the equations below.

For the reference wave, the optical path difference com-
pared to the design setting in iSCAT is given by:

Λ ′
r = 2 ni(ti− t∗i ). (A20)

For COBRI, this difference is:

Λ ′
r = ni(ti− t∗i )+ nszp. (A21)

We thus obtain the following equations:

Ecam = Eref +Esca, (A22)

with:

Eref = Eref∗ (A23)

Esca =− ik
2 π

E1eiψ0

×
ˆ αa

0

ˆ 2 π

0
AeikΛeik̂s·r sinθ

√
cosθdθdϕ, (A24)

where we have concatenated all the aberration terms into Λ =
Λs+Λ ′

s −Λ ′
r . Since the intensities only depend on the phase

difference between scattered and reference waves, and since
Λ ′
r does not depend on θ, the optical path length Λ ′

r term
of the reference has been introduced in the Richards–Wolf
integral. We obtain the expressions given in the main text,
namely:

Λ = nszp(cosθs+ 1)+ ni(ti− t∗i )(cosθ− 1), (A25)

for iSCAT, and this term for COBRI is:

Λ = zpns(cosθs− 1)+ ni(ti− t∗i )(cosθ− 1). (A26)

A.5. Compact formalism

An integration of equation (A24) over ϕ leads to the final
expression:

Esca =− ikE1eiψ0

2

(
I0 + I2 cos(2ϕd)
I2 sin(2ϕd),

)
(A27)

where:

I0 =
ˆ αa

0
B0(θ)

(
t⊥ + t∥

1
ns

√
n2s − n2i sin2 θ

)
dθ, (A28)

I2 =
ˆ αa

0
B2(θ)

(
t⊥ − t∥

1
ns

√
n2s − n2i sin2 θ

)
dθ, (A29)

with:

Bm(θ) =
√
cosθ sinθJm(nikrsinθ)e

ikΛ, (A30)
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using Jm the Bessel function of order m for m= 0, 2. To
compute this integration, Snell’s law has been used, cosθs =

1/ns×
√
n2s − n2i sin2 θ, along with the following identities

[32]:

ˆ 2 π

0
cos(mϕ)eiρcos(ϕ−ϕd)dϕ= 2 πimJm(ρ)cos(mϕd),

(A31)

ˆ 2 π

0
sin(mϕ)eiρcos(ϕ−ϕd)dϕ= 2 πimJm(ρ)sin(mϕd). (A32)

This compact formalism only requires the computation
of a single integral, compared to the two integrations in
equation (A24). This accelerates the numerical computation
of the PSF for all camera pixel positions r.

A.6. Normalization of the photon number

The FI is proportional to the number of photons N, while
the CRB scales as 1/N and the minimal standard deviation as
1/
√
N. This photon number is proportional to:

N∝
¨

dr|Esca|2, (A33)

where we can neglect a constant prefactor.
The Cramér–Rao bounds presented in this work are nor-

malized for one photon going through the imaging system.We
thus normalize all electric fields with a global prefactor such
that N= 1, similar to [18].

Appendix B. Fundamental bounds using quantum
CRB

In this section we derive fundamental bounds on the local-
ization precision of the nanoparticle that can be achieved in
interferometric imaging schemes. This work is related to [18]
where fundamental bounds have been derived for fluorescence
microscopy and [34] where these quantities have been com-
puted for coherent states.

B.1. Fundamental bound on localization

We consider a nanoparticle at position (xp,yp,zp). For brevity,
the Richards–Wolf integral model described in equation (A24)
can also be written as:

Esca =

ˆ αa

0

ˆ 2 π

0
ϵ(θ,ϕ)eik̂s·rdθdϕ, (B1)

with the amplitude given by:

ϵ(θ,ϕ) =− ik
2π

E1eiψ0 sinθ
√
cosθ

× eikΛe−ikni(xp cosϕ+yp sinϕ) sinθA. (B2)

The scattered field in the back focal plane of the objective is
described as a superposition of coherent states in a basis of

plane waves parametrized by (θ,ϕ), and with an amplitude
ϵ(θ,ϕ). We normalize this amplitude to one scattered photon
passing through the imaging system:

ˆ αa

0
dθ
ˆ 2π

0
dϕ|ϵ(θ,ϕ)|2 = 1. (B3)

To emphasize the dependence on the particle position, we
note that the amplitude of the coherent state is of the following
form:

ϵ(θ,ϕ) = Es(θ,ϕ)eikni((xp cosϕ+yp sinϕ) sinθ)+iknszp(cosθs+ξ),
(B4)

with Es(θ,ϕ) independent from (xp,yp,zp). In this expression,
we have neglected the reference and the vectorial formalism,
which would add an additional dimension. The ξ term in the
zp term is linked with the geometrical path length difference
caused by the particle height zp. It is equal to +1 for iSCAT
and −1 for COBRI.

The QFI of a pure state made of orthogonal coherent states
has a very concise formulation, as derived in equation (1) of
[34]. Thus, we obtain the QFI for each parameter:

Kxx = 4
ˆ αa

0
dθ
ˆ 2π

0
dϕ |∂xϵ(θ,ϕ)|2 (B5)

= 4
ˆ αa

0
dθ
ˆ 2π

0
dϕ |ϵ(θ,ϕ)kni cosϕsinθ|2 . (B6)

Similarly:

Kyy = 4
ˆ αa

0
dθ
ˆ 2π

0
dϕ |ϵ(θ,ϕ)kni sinϕsinθ|2 , (B7)

Kzz = 4
ˆ αa

0
dθ
ˆ 2π

0
dϕ |ϵ(θ,ϕ)kns(cosθs± 1)|2 , (B8)

where following from Snell’s law, cosθs =
√
1− n2s sin

2 θ/n2i .
Injecting the expression of ϵ yields the final formula of the
QCRB described in equations (9)–(11).

Finally, the associated Quantum Cramér–Rao bounds are:

σ2
QCRB,x =

1
Kxx

(B9)

σ2
QCRB,y =

1
Kyy

(B10)

σ2
QCRB, z =

1
Kzz

. (B11)

The integrals on θ and ϕ are computed numerically and the
resulting QCRBs are shown in figure 2.
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B.2. Fundamental bound on mass photometry

The amplitude of the coherent states is proportional to polariz-
ability, and therefore to mass m. We write ϵ(θ,ϕ)=mδ(θ,ϕ),
where the introduced quantity δ(θ,ϕ) does not depend on m.

The QFI is thus given by:

Kmm = 4
ˆ αa

0
dθ
ˆ 2π

0
dϕ |∂mϵ(θ,ϕ)|2 , (B12)

= 4
ˆ αa

0
dθ
ˆ 2π

0
dϕ |δ(θ,ϕ)|2 (B13)

=
4
m2
, (B14)

thanks to the normalization of ϵ.
The fundamental bound on mass estimation then writes:

σ2
QCRB,m =

1
Kmm

=
m2

4
. (B15)

Appendix C. Parameters used for simulations

For all simulations the following parameters were used: we
considered a wavelength of 517.5 nm and used a NA of
1.3. The refractive indexes were: ns= 1.33, ng= 1.5 and
ni= 1.5. We took the ideal scenario where ni = n∗i and tg =
t∗g . The permittivity of the gold nanoparticle was set to
−3.7328+ 2.7725i [51]. The thicknesses used were, t∗i =
100 µm, t∗g = 170 µm and ti was given by equation (A17). The
particle position was centered at xp = yp = 0 for all simula-
tions. Gold nanoparticles had a 30 nm diameter with a density
of 19.3 × 103 kgm−3.
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