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Abstract—Reservoir Computing is a class of Recurrent Neural
Networks with internal weights fixed at random. Stability relates
to the sensitivity of the network state to perturbations. It is an
important property in Reservoir Computing as it directly impacts
performance. In practice, it is desirable to stay in a stable regime,
where the effect of perturbations does not explode exponentially,
but also close to the chaotic frontier where reservoir dynamics are
rich. Open questions remain today regarding input regularization
and discontinuous activation functions. In this work, we use
the recurrent kernel limit to draw new insights on stability in
reservoir computing. This limit corresponds to large reservoir
sizes, and it already becomes relevant for reservoirs with a few
hundred neurons. We obtain a quantitative characterization of
the frontier between stability and chaos, which can greatly benefit
hyperparameter tuning. In a broader sense, our results contribute
to understanding the complex dynamics of Recurrent Neural
Networks.

I. INTRODUCTION

Recurrent neural networks (RNN) represent a broad class of
artificial neural networks. They present a temporal evolution
with nonlinear internal dynamics and feedback loops, and are
closer to biological neural networks compared to feedforward
architectures. As such, their behavior is richer but harder to
characterize. In particular, training RNNs remains a challeng-
ing problem and a topic of intense study [1]. For example,
backpropagation typically exhibits exploding or vanishing
gradients which limit our ability to train such networks.

To bypass this issue, reservoir computing (RC) fixes internal
weights randomly and only adjusts the output weights of the
network [2, 3]. This greatly facilitates the training process
since one only has to learn a linear output model, with no
problem of exploding or vanishing gradients. The philosophy
behind RC is to use a large ensemble of randomly-connected
neurons—the so-called reservoir—to embed time-dependent
information in a way such that a linear mapping to the desired
output is possible. RC has been applied to different areas
such as speech recognition [4], chaos cryptography [5], and
robot motor control [6]. It has been particularly promising for
chaotic time series prediction [7].

The reservoir is a nonlinear dynamical system driven by an
external input. Its properties need to be finely tuned to achieve
optimal performance. On one hand, two distinct input patterns
should lead to different reservoir states to distinguish them.
On the other hand, oversensitivity can also be detrimental as
the reservoir can fall in a chaotic dynamical regime, where
perturbations explode exponentially with time. It is thus im-
portant to have a stable reservoir, in which information about
the current reservoir state and input vanishes exponentially at
a controllable rate. This necessary condition has been stated in

the founding paper [2] as the Echo-State Property. The study
of this transition between stable and chaotic regimes is enabled
by the simplicity of RC, and we believe it may be relevant for
other RNN architectures as well.

This stability property depends on hyperparameters of the
reservoir—in particular, the standard deviation of the random
and input weights. In practice, the best performance is typ-
ically obtained at the edge of chaos, a stable regime close
to the chaotic frontier where dynamics are richer [8]. Basic
observations have been proposed to help with hyperparameter
tuning. For instance, if the activation function is 1-Lipschitz
continuous, then stability for any input is achieved when the
largest singular value of the internal weight matrix is smaller
than one [9]. However, this bound is typically too conservative
and a heuristic hyperparameter search is necessary for optimal
performance.

This transition between stability and chaos raises several
questions. Quantitative results are lacking for a broader class
of activation functions like the rectified linear unit (ReLU,
which is not differentiable at zero) or discontinuous activation
functions. Moreover, it has been observed that the input regu-
larizes the internal dynamics and allows for the use of spectral
radii slightly larger than one [8]. A broader stability analysis
would be beneficial since RC has been implemented in a large
variety of settings [10, 11, 12, 13, 14]; an example being
physical implementations with binary activation functions [15,
16].

Such questions are easier to tackle in the asymptotic limit,
when the reservoir size is very large. In this large size limit,
RC tends to a deterministic kernel that we iterate recurrently,
called a recurrent kernel (RK) [17, 18]. The powerful in-
terpretation of RK enables a mean-field study of stability.
However, it has only been applied to reproduce known results
with continuous activations and no input [17]. In another
study, local Lyapunov exponents have been introduced to
describe stability [9]. They provide a quantitative analysis of
the stability of RC in the presence of an input. However,
this metric needs to be computed as we iterate the reservoir,
making it computationally-demanding for applications such
as hyperparameter search. Moreover, it cannot handle non-
differentiable functions.

In this paper, we show how this asymptotic limit enables
us to quantitatively characterize stability in the presence of an
input and with discontinuous activation functions. In particular,
we exhibit two important properties of the activation function
impacting stability—continuity and boundedness. This kernel
limit greatly facilitates quantitative studies as stability boils

978-1-7281-8671-9/22/$31.00 ©2022 IEEE
978-1-7281-8671-9/22/$31.00 ©2022 European Union

20
22

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e 
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-7
28

1-
86

71
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IJC
N

N
55

06
4.

20
22

.9
89

23
02

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 26,2023 at 13:45:22 UTC from IEEE Xplore.  Restrictions apply. 



down to analyzing fixed points iterations of deterministic
functions.

In Section 2, we give a basic description of RC and RK,
along with a proper definition of stability in both cases. In
Section 3, we then show how to apply this stability study
to three representative examples: the error function activation
(bounded and continuous), the sign function (bounded and
discontinuous), and the Rectified Linear Unit or ReLU (un-
bounded and continous).

II. THEORETICAL BACKGROUND

A. Reservoir Computing

1) Definition: In the class of RC, we focus on the Echo-
State Networks. These generic randomly-connected RNNs
were first introduced by Jaeger [2] and are the most
commonly-used ones in the field. A time-dependent input
i(t) ∈ Rd is fed into a reservoir of size N , yielding the
following update equation for the reservoir state x(t) ∈ RN :

x(t+1) =
1√
N
f(Wrx

(t) +Wii
(t)). (1)

Here, f is an element-wise activation function, Wr the internal
reservoir weights, and Wi the input weights. These weights
are drawn from i.i.d. distributions N (0, σ2

r) and N (0, σ2
i ),

respectively. To emphasize the particularity of RC, these
weights are fixed randomly and are not trained. Thus, iterating
this update equation only depends on the input data.

The algorithm generates an output o(t) using a linear model

o(t) = Wox
(t). (2)

This training step consists of a simple linear regression. In
RC, the complexity of the computation is performed during
the nonlinear update described in Eq. (1).

Current research directions include the physical implemen-
tation of RC on dedicated hardware. Thanks to the flexibility
of RC, optical devices, dedicated electronics, and more exotic
architectures have been proposed for small-footprint and fast
computation. On top of that, recent software developments
include Deep Reservoir Computing [19, 20], in which a hierar-
chical architecture has been proposed to improve performance.

2) Stability: As discussed previously, stability is a funda-
mental property to study in RC. This stability is typically
characterized by the experiment depicted in Fig. 1a. We
initialize two different reservoirs x(0)

1 , x(0)
2 independently from

i.i.d. Gaussian distributions. They share the same weights Wr

and Wi and receive the same input i(t). At each time step,
the input i(t) ∈ Rd is randomly drawn from the unit sphere.
We investigate whether these reservoirs converge towards a
common trajectory.

The stability metric we choose quantifies the distance be-
tween the two reservoir states as it evolves with time. It is
given by

L(t) =
∥∥∥x(t)

1 − x
(t)
2

∥∥∥2 . (3)

A reservoir configuration is called stable for input i(t) if
limt→∞ L(t) = 0. Conversely, the Echo-State Property does

not hold when limt→∞ L(t) > 0. This is an indirect character-
ization of chaos; other behaviors such as several distinct fixed
points would also be possible but both settings would not be
suitable for a Reservoir Computing algorithm.

The stability property depends on how the weights are
set. The two parameters σ2

r and σ2
i will tune the transition

between stability and chaos, by changing the variance of the
random weights. Small internal weights exponentially damp
the importance of previous reservoir states, while large internal
weights tend to increase initial perturbations leading to a
chaotic behavior.

Stability has been characterized for Lipschitz-continuous
functions for a random connectivity matrix [9]. For exam-
ple, since erf is 2/

√
π-Lipschitz, stability is ensured when

σr <
√
π/2. This result stands for any input and is optimal

when there is zero input. Nevertheless, it is too conservative
when an input is present.

B. Recurrent Kernels
1) Definition: As a linear model after a non-linear em-

bedding, RC has tight links with kernel methods. This class
of algorithms implicitly performs a linear regression in the
embedding space based on scalar products between pairs of
points. Kernels have been studied extensively and, in particu-
lar, Random Features have been proposed as finite-dimensional
approximations of kernels.

Similarly, the limit of RC when N goes to infinity is defined
as an RK. RC can be interpreted as the temporal equivalent
of Random Features: a finite-dimensional approximation of a
deterministic RK.

More precisely, this RK operates on time-dependent scalar
products between two reservoir states x(t) and y(t) driven by
inputs i(t) and j(t), respectively. Let wr,j and wi,j be the j-th
rows of Wr and Wi respectively. Eq. (1) then yields

⟨x(t+1),y(t+1)⟩ = 1

N

∑
j

f(w⊤
r,jx

(t) +w⊤
i,ji

(t))

× f(w⊤
r,jy

(t) +w⊤
i,jj

(t)). (4)

This sum of independent random terms concentrates like
Random Features of a certain kernel k [21]:

⟨x(t+1),y(t+1)⟩ → k

([
x(t)

i(t)

]
,

[
y(t)

j(t)

])
, (5)

i.e. a kernel on the concatenation of reservoirs and inputs.
This kernel function k is defined by the activation f and the
distribution of the random vectors p(w). To define determin-
istic RKs which are not linked to a particular RC algorithm,
one needs to remove the dependence in previous embeddings
x(t) and y(t). This is possible for any rotationally-invariant
distribution p(w), a more general setting than [18].

To summarize, RKs are deterministic algorithms where the
input data i(t) is used to recurrently update a Gram matrix
G(t), the matrix containing scalar products between all pairs
of points. This Gram matrix is initialized arbitrarily G(0) and
updated as

G(t+1) = k(G(t), {⟨i(t), j(t)⟩}i,j), (6)
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(a) (b) (c)

Fig. 1. Principle and motivation for an asymptotic stability study. (a) Scheme of a stability test. To study stability in Reservoir Computing, two identical
reservoirs are initialized differently and driven by the same input. The reservoir is stable if after a transient time, the reservoir state does not depend on
this arbitrary initialization. We thus monitor the squared distance between the reservoir states through time. (b-c) Asymptotic stability study in stable and
chaotic cases. Stability metric L(t) as a function of time t for various reservoir sizes and for the corresponding Recurrent Kernel limit. The stable case
corresponds to an erf activation function with σr = 0.85 and σi = 0. The chaotic case corresponds to the same previous parameters with the exception of
σr = 1.05.

where {⟨i(t), j(t)⟩}i,j denotes the scalar products between all
pairs of inputs at time t. For conciseness, we use the same
letter k for the kernel, a more detailed derivation for common
kernels can be found in [18].

Convergence of RC towards its RK limit has been observed
in practice in a large range of settings, when the activation
function is bounded. Formally, convergence has only been
proven in restrictive settings [18], which is why convergence
will be assessed on a case-by-case basis.

In practice, computing directly with the RK limit is bene-
ficial for medium-sized tasks with a few thousand examples.
Iterating them is efficient since it mostly consists of element-
wise operations. Kernel methods typically struggle when the
number of training points becomes very large as they need to
compute scalar products between all pairs of points.

2) Stability: It is then natural to describe with RKs the
limit of this stability metric as N → ∞. The two reservoirs
evolving in parallel define a 2× 2 Gram matrix

G
(t)
N =


∥∥∥x(t)

1

∥∥∥2 〈
x
(t)
1 ,x

(t)
2

〉
〈
x
(t)
1 ,x

(t)
2

〉 ∥∥∥x(t)
2

∥∥∥2
 . (7)

This matrix is symmetric and invariant by permutation of x1

and x2. For this reason, we introduce G
(t)
eq = ∥x(t)

1 ∥2 =

∥x(t)
2 ∥2 and G(t)

neq = ⟨x(t)
1 ,x

(t)
2 ⟩.

Since the reservoirs are initialized with independent random
draws, the limit at t = 0 when N → ∞ is the identity matrix:

G(0) = lim
N→∞

G
(0)
N = I2. (8)

This defines the initial state of our recurrent kernel. Equiva-
lently, G(0)

eq = 1 and G(0)
neq = 0.

We then iterate this recurrent kernel with the input i(t). The
stability metric defined for RC in Eq. (3) has a RK equivalent,
simply obtained by developing the squared norm,

L(t) = 2(G(t)
eq −G(t)

neq). (9)

This simple expression comes from the deterministic na-
ture of RKs. We only have to compute how the two scalar
quantities evolve with time instead of distances between high-
dimensional vectors. This will enable us to perform analytic
studies to quantify the input regularization for example or to
tackle the case of discontinuous activation functions.

3) Examples: In this work, we will use three different
activation functions, all with Gaussian random weights. The
error function f1 = erf corresponds to an arcsine kernel in
Eq. (5)

k1(u,v) =
2

π
arcsin

(
2⟨u,v⟩√

(1 + 2∥u∥2)(1 + 2∥v∥2)

)
, (10)

the sign function f2 = sign to

k2(u,v) =
2

π
arcsin

(
⟨u,v⟩
∥u∥∥v∥

)
, (11)

and the Rectified Linear Unit f3 = ReLU to

k3(u,v) =
1

2π

(
⟨u,v⟩ arccos

(
− ⟨u,v⟩
∥u∥∥v∥

)
+
√
∥u∥2∥v∥2 − ⟨u,v⟩2

)
. (12)

To link with our case of RKs, u and v correspond respectively

to
[
σrx

(t)

σii
(t)

]
and

[
σry

(t)

σij
(t)

]
in Eq. (5). These three activation

functions have been chosen as they are representative of the
diversity between bounded and unbounded functions, as well
as Lipschitz-continuous and discontinuous functions.

III. RESULTS

A. Convergence of RC towards RK

For the classical case of an erf activation function with no
input, we know that stability occurs when σr <

√
π/2 [9]. In

Fig 1b and 1c, we display the time evolution of the stability
metrics L(t) and L(t) for σr = 0.85 <

√
π/2 and σr = 1.05 >
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√
π/2 respectively. Indeed, we observe that in the first case,

the stability metric converges to 0 as t increases, whereas it
does not converge to zero in the chaotic regime.

We see in these results the convergence of RC to the RK
limit. As the reservoir size increases, its stability metric L(t)

tends to the well-defined kernel limit L(t). This motivates
our asymptotic stability analysis. In practice, our RK limit
accurately describes stability of RC even for reservoirs of
moderate sizes around a few hundreds. Finite size effects may
appear for smaller sizes and mostly in the chaotic regime. We
can thus leverage this deterministic update equation to study
stability for various activation functions in the presence of an
input.

In the following, we show exact results for this RK limit.
It will describe typical behaviors of RC as well, neglecting
finite-size effects.

B. Erf activation function

Eq. (9) defines two sequences G(t)
eq and G(t)

neq, initialized with
G

(0)
eq = 1 and G(0)

neq = 0, with update equations deduced from
Eq. (10) for the erf activation function:

G
(t+1)
eq =

2

π
arcsin

(
2σ2

rG
(t)
eq + 2σ2

i

1 + 2σ2
rG

(t)
eq + 2σ2

i

)

G
(t+1)
neq =

2

π
arcsin

(
2σ2

rG
(t)
neq + 2σ2

i

1 + 2σ2
rG

(t)
eq + 2σ2

i

) (13)

Thanks to our asymptotic model, we can precisely char-
acterize the transition between stability and chaos. The full
derivation is detailed in Appendix B.

Proposition 1. The two sequences Geq and Gneq are conver-
gent. For any σr ≥

√
π/2, the frontier between stability and

chaos is given by:

ψ(σr) =
4σ2

r

π
− 1

4
− 2σ2

r

π
arcsin

(
16σ4

r − π2

16σ4
r + π2

)
. (14)

• If σi ≥ ψ(σr), the dynamics are stable.
• If σi < ψ(σr), the dynamics are chaotic.

Reciprocally, since ψ is a bijection from [
√
π/2,+∞) to

[0,+∞), for any σi ≥ 0:
• If σr ≤ ψ−1(σi), the dynamics are stable.
• If σr > ψ−1(σi), the dynamics are chaotic.

We display in Fig. 2a, the limit of L(t) as a function of
the hyperparameters σr and σi. This limit is equal to 0 for
small values of σr. This corresponds to the region in which the
reservoir is in a stable regime. The limit of L(t) becomes non-
zero for large values of σr, which indicates chaotic reservoir
dynamics. The frontier between the stable and chaotic regions
depends on σi, the standard deviation of the input weights.
Having a large input pushes the transition between stability
and chaos to larger values of σr.

Without an input, i.e. for σi = 0, we obtain ψ−1(0) =√
π/2. We thus recover the previous result which is optimal

with no input [17]. Additionally, we quantify how much the
input regularizes the dynamics. This comes from the saturation

of the activation function. With a large input, the arguments
u of the activations erf(u) are typically larger and we are in
the flatter regions of the activation function. The network is
therefore less sensitive to changes.

The quantitative characterization of the frontier may provide
a useful tool to restrict the hyperparameter search space. As we
want to stay close to this frontier between stability and chaos
for optimal performance, it transforms a two-dimensional
hyperparameter search on both (σi, σr) to a unidimensional
search along the frontier.

C. Sign activation function

The equations to update the two quantities in Eq. (9) is
deduced from Eq. (11) for the sign activation function:

G
(t+1)
eq = 1

G
(t+1)
neq =

2

π
arcsin

(
σ2
rG

(t)
neq + σ2

i

σ2
r + σ2

i

)
(15)

Proposition 2. As soon as σr > 0 and for any value σi, the
stability metric is converging to a non-zero value, i.e.

lim
t→∞

L(t) = l > 0. (16)

This implies that any reservoir with sign activations is chaotic.

The case of discontinuous activation functions has not
received a lot of attention before. In the asymptotic limit, there
is an averaging effect that makes the kernel limit continuous.
Despite this well-defined limit, there is no rigorous stability
in the sense that L(t) converges to 0 exactly.

Fig. 2b shows this limit l as a function of (σr, σi). We
see that there is no stable region, apart from the trivial case
σr = 0. However, similar to the saturation effect with erf, the
addition of an input seems to regularize the dynamics. For
large values of σi, it is possible to still control the stability of
the system. More precisely, when σi ≫ σr, we have:

l ≈ 16σ2
r

π2σ2
i

. (17)

In this case, the input regularizes the dynamics and
limσi→∞ l = 0.

Indeed, training with step activation functions has been
performed successfully in practice [15, 16]. This observation
may be important for physical implementations of RC or low-
power RC with quantized activation functions.

D. ReLU activation function

The equations to update the two quantities in Eq. (9) are
deduced from Eq. (12) for the ReLU activation function:

G
(t+1)
eq =

1

2

(
σ2
rG

(t)
eq + σ2

i

)
G

(t+1)
neq =

1

2π

(
σ2
rG

(t)
neq + σ2

i

)
arccos

(
−σ

2
rG

(t)
neq + σ2

i

σ2
rG

(t)
eq + σ2

i

)
+

1

2π

√(
σ2
rG

(t)
eq + σ2

i

)2
−
(
σ2
rG

(t)
neq + σ2

i

)2
(18)
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Fig. 2. (a-c) Asymptotic stability metric for f = erf , f = sign, and f = ReLU as a function of σi and σr . Asymptotic values are computed from the
update equations of the recurrent kernel limit, for t = 200 large enough. When this stability metric converges to 0, the recurrent kernel dynamics are stable.
Whenever it converges to a non-zero value, the recurrent kernel dynamics are unstable or chaotic. In blue is drawn the frontier between the stable and chaotic
regions.

Proposition 3. If σr <
√
2 and for any value σi, the RK is

stable, i.e. we have

lim
t→∞

L(t) = 0. (19)

Fig. 2c shows this limit as a function of (σr, σi). We observe
that there is no input regularization. In contrast with the erf
case, the frontier shows no dependence on σi. This is linked
with the absence of saturation in the ReLU activation function.

For σr >
√
2, the stability metric diverges and the RK is

unstable. An interesting point to notice is that despite ReLU
being 1-Lipschitz, the frontier is not for σr = 1 as it could
have been predicted from classical analysis of the Lipschitz
constant. Instead, slightly larger reservoir weights are possible,
thanks to the subdifferentiability of ReLU at zero.

To apply these results to RC, particular care needs to be
taken here regarding the convergence of RC towards its RK
limit. This convergence is quite robust in practice for bounded
activation functions but it is not always the case with ReLU
activations. Indeed, we show in Appendix A that convergence
is obtained in a large part of the stable region but not in the
unstable region.

IV. DISCUSSION

In this work, we have presented a framework to study
the asymptotic stability of RC. We relied on the recurrent
kernel limit to quantitatively characterize trajectories when
the reservoir size is large. We then applied our framework to
three different activation functions. We showed the importance
of having a continuous activation function and made the link
between input regularization and saturation of the activation
function.

These results can be important in practice for hyperparame-
ter tuning. They also help to develop a better understanding of
stability in non-classical cases. We believe this framework is
powerful enough to be applied to a wide range of applications.

In the future, more general results with strong convergence
proofs of RC towards RKs may be derived, supporting the
observations presented here. This study may be generalized
to a larger class of functions, like the hyperbolic tangent
which is commonly used in RC. The observed behaviors could
be extended to any differentiable and saturating activation
function. The corresponding kernel and related quantities may
not have an analytic expression, but they can still be computed
with integrals.

One may also extend this approach to other RC architectures
such as Deep Reservoir Computing [19, 20]. As a more
general comment, this kernel approach may be relevant for
non-recurrent architectures as well, to understand better the
propagation of perturbations in neural networks.

The associated code is available at [22].
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APPENDIX A
CONVERGENCE OF RC TOWARDS RK

The results shown in Fig. 2 are exact for RKs, but con-
vergence of RC towards the RK limit is required to translate
them in RC. This convergence needs to be assessed for each
combination of hyperparameters (σi, σr).

We evaluate this convergence by iterating both a reservoir
of size N = 2000 and the associated RK for each activation
function presented previously. They are fed two random input
time series i(t) and j(t) of length 50 and the final 2 × 2
Gram matrices are computed, denoted G for RC and G for
the associated RK. Our convergence metric is defined as

E = ∥G− G∥2F (20)

with ∥ · ∥F the Frobenius norm.
We see in Fig. 3 that convergence is reliably obtained with

erf and sign activation functions. On the other hand, with an
unbounded ReLU activation function, convergence does not
happen for large values of σr. This implies that the previous
theorems also hold for RC, apart from the ReLU case for large
σr. This apparent link between stability and convergence of
RC towards a kernel limit calls for more investigation.

APPENDIX B
TECHNICAL RESULTS FOR f = erf

A. Study of Geq

We define the function h1 on [0, 1] by

h1 : x 7→ 2

π
arcsin

(
2σ2

rx+ 2σ2
i

1 + 2σ2
rx+ 2σ2

i

)
(21)

such that G(t+1)
eq = h1

(
G

(t)
eq

)
.

Since h1(0) = 2
π arcsin

(
2σ2

i

1+2σ2
i

)
> 0, h1(1) =

2
π arcsin

(
1− 1

1+2σ2
r+2σ2

i

)
< 1, and the continuity of h1, the

intermediate value theorem ensures the existence of at least
one fixed point for h1.

Moreover, h1 is strongly concave, as it is twice differen-
tiable with

h′′1(x) = − 16σ4
r(1 + 3σ2

rx+ 3σ2
i )

π(1 + 2σ2
rx+ 2σ2

i )
2(1 + 4σ2

rx+ 4σ2
i )

3/2
< 0

(22)
for x ∈ [0, 1]. h1 thus has at most two fixed points.
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Fig. 3. (a-c) Convergence study of RC towards RK for f = erf , f = sign, and f = ReLU as a function of σi and σr . Frobenius norm E between
the final Gram matrices obtained from a reservoir of size N = 2000 and the Recurrent Kernel equivalent, iterated with two different random inputs i(t) and
j(t) of length 50. We observe robust convergence when the activation function is bounded or for small values of σr .

If h1 had two fixed points a1 < a2, then the strong
concavity of h1 would imply h1(0) < a + b−a

b−a (0 − a) = 0,
which contradicts the first observation of this proof. Thus, h1
has a unique fixed point that we denote by a.

Since h1(1) < 1, h1(x) ̸= x for x ∈ (a, 1], and because
h1 is continuous, we necessarily have h1(x) < x for all
x ∈ (a, 1]. The sequence Geq is thus decreasing. As it is non-
negative, thus bounded below, it converges to a, the fixed point
of h1.

B. Study of Gneq

We define the function hg2, defined on [0, a] and
parametrized by g ∈ [a, 1], by

hg2 : x 7→ 2

π
arcsin

(
2σ2

rx+ 2σ2
i

1 + 2σ2
rg + 2σ2

i

)
(23)

such that G(t+1)
neq = h

G(t)
eq

2

(
G

(t)
neq

)
. As Geq converges to a, we

will study the sequence gneq defined by g(0)neq = 0 and g(t+1)
neq =

ha2

(
g
(t)
neq

)
.

Since ha2 is strongly convex as it is of the form ha2(x) =
A arcsin(Bx+C) with A,B,C > 0, it has at most two fixed
points. One of them is a, since

ha2(a) =
2

π
arcsin

(
2σ2

ra+ 2σ2
i

1 + 2σ2
ra+ 2σ2

i

)
= h1(a) = a. (24)

Let b be the smallest fixed point of ha2 . Because ha2 is an
increasing non-negative function, 0 ≤ ha2(x) ≤ b and gneq
stays in [0, b].
ha2(x) ̸= x for x < b by definition of b. As ha2(0) > 0 and

using the continuity of ha2 , ha2(x) > x for x ∈ [0, b). gneq is
hence an increasing sequence. Because it is bounded above, it
converges to b, the unique fixed point of ha2 restricted to [0, a].

C. Equation of the frontier

Using Eq. (9), the limit of L(t) is

lim
t→∞

L(t) = 2(a− b). (25)

We want to study when a is the smallest fixed point of ha2 .
This property is linked with the derivative (ha2)

′(a). Since
ha2 is strongly convex with ha2(0) > 0, if (ha2)

′(a) > 1, there
exists another fixed point in (0, a), while when (ha2)

′(a) < 1,
a is the smallest fixed point of ha2 . The derivative is given by

(ha2)
′(g) =

4σ2
r

π
√
1 + 4σ2

rg + 4σ2
i

. (26)

The frontier corresponds to the equation (ha2)
′(a) = 1. This

equation can be rewritten as:

a =
4σ2

r

π2
− 1

4σ2
r

− σ2
i

σ2
r

. (27)

Injecting this in the equation defining a as a fixed point of
h1, i.e.

a =
2

π
arcsin

(
2σ2

ra+ 2σ2
i

1 + 2σ2
ra+ 2σ2

i

)
, (28)

yields the desired equation for the frontier.

APPENDIX C
TECHNICAL RESULTS FOR f = sign

We define the function h2 on (0, 1) by

h2 : x 7→ 2

π
arcsin

(
1− σ2

r(1− x)

σ2
r + σ2

i

)
, (29)

such that G(t+1)
neq = h2

(
G

(t)
neq

)
. Gneq corresponds to fixed point

iteration of h2, starting at G(0)
neq = 0. It therefore converges to

the smallest fixed point of h2.
h2 is strictly convex, and thus has at most two fixed points.

x = 1 corresponds to one such fixed point with a vertical
tangent. Since h2(0) > 0, there is another fixed point in (0, 1),
that we denote by b. In the end, limt7→∞ L(t) = 2(1− b) > 0.
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For σi ≫ σr, the asymptotic approximation of arcsin gives

1− b = 1− h2(b) (30)

= 1− 2

π
arcsin

(
1− σ2

r(1− b)

σ2
i

+O

(
σ4
r

σ4
i

))
(31)

= 1− 2

π

(
π

2
−
√
2

√
σ2
r(1− b)

σ2
i

)
+O

(
σ3
r

σ3
i

)
(32)

=
2
√
2σr

√
1− b

πσi
+O

(
σ3
r

σ3
i

)
. (33)

Taking the square, we finally obtain

1− b =
8σ2

r

π2σ2
i

+O

(
σ3
r

σ3
i

)
. (34)

APPENDIX D
TECHNICAL RESULTS FOR f = ReLU

We define the function h1 on R+ by

h1 : x 7→ 1

2

(
σ2
rx+ σ2

i

)
. (35)

We have G(t+1)
eq = h1

(
G

(t)
eq

)
. Since h1 is an affine function,

the study of its fixed points is straightforward.
When σr <

√
2, h1 has a unique fixed point a given by

a =
σ2
i

2− σ2
r

. (36)

Since h1(x) ≥ x for x ≤ a, Geq is an increasing sequence,
and therefore converges to a.

We define the function h2 on [0, a] by

hg2 : x 7→ 1

2π

(
σ2
rx+ σ2

i

)
arccos

(
−σ

2
rx+ σ2

i

σ2
rg + σ2

i

)
+

1

2π

√
(σ2

rg + σ2
i )

2 − (σ2
rx+ σ2

i )
2
. (37)

We have G(t+1)
neq = h

G(t)
eq

2

(
G

(t)
neq

)
. As Geq converges to a, we

will study the sequence gneq defined by g(0)neq = 0 and g(t+1)
neq =

ha2

(
g
(t)
neq

)
.

First of all, a is a fixed point of ha2 . We then compute the
first derivative:

(ha2)
′(x) =

1

2π
σ2
r arccos

(
−σ

2
rx+ σ2

i

σ2
ra+ σ2

i

)
. (38)

In particular, (ha2)
′(a) = σ2

r/2 < 1.
Moreover the second derivative is

(ha2)
′′(x) =

σ4
r

2π
√
(σ2

ra+ σ2
i )

2 − (σ2
rx+ σ2

i )
2
> 0 (39)

for all x ∈ [0, a). Thanks to these two inequalities, a is the
unique fixed point of ha2 in [0, a], and ha2(x) > x for x ∈ [0, a).
gneq is an increasing sequence bounded above, thus converges
towards a, the fixed point of ha2 .
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