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Phase retrieval consists in the recovery of a complex-valued 
signal from intensity-only measurements. As it pervades a 
broad variety of applications, many researchers have striven 

to develop phase-retrieval algorithms. Classical approaches in-
volve techniques as varied as generic gradient descent routines 
or specialized spectral methods, to name a few. However, the 
phase-recovery problem remains a challenge to this day. Recent-
ly, however, advances in machine learning have revitalized the 
study of phase retrieval in two ways: 1) significant theoretical ad-
vances have emerged from the analogy between phase retrieval 
and single-layer neural networks, and 2) practical breakthroughs 
have been obtained thanks to deep learning regularization. In 
this tutorial, we review phase retrieval under a unifying frame-
work that encompasses classical and machine learning methods. 
We focus on three key elements: applications, an overview of re-
cent reconstruction algorithms, and the latest theoretical results.

Introduction
Phase retrieval is a longstanding computational problem that 
is simple to define yet difficult to solve. It consists of the d-
dimensional search for x Cd!)  such that

	 .y Ax 2; ;= ) � (1)

There, one assumes that the measurements y Rn!  and the 
matrix A Cn d! #  are known, while $; ; is the elementwise mod-
ulus operator [Figure 1(a)]. Compared to the linear equation 

,y Ax= )  the missing phase in (1) makes the computational 
problem more challenging.

Phase retrieval is a problem that is encountered in many 
fields. In the context of imaging with electromagnetic waves, it 
arises whenever one wants to image an object from intensity-
only measurements [Figure 1(b)]. It has been described in the 
physics literature since the 1950s, first in crystallography [1], fol-
lowed by intense studies in astronomy since the 1980s [2]. More 
recently, it has been intimately linked with the next generation 
of image reconstruction algorithms, which solve this compu-
tational problem to push the limits of conventional imaging [3], 
[4], [5], [6]. Today, phase retrieval encompasses vastly different 
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imaging settings, from X-ray to optical or terahertz (THz) imag-
ing, to observe objects from molecular to astronomical scales. 
This equation is also encountered outside of computational 
imaging, for example, in computer-generated holography [7] or 
optical computing [8], to name a few. Despite the wide range 
of applications, the underlying physics-based models lead to the 
same universal phase-retrieval problem.

The phase-retrieval problem has stimulated the development 
of a variety of novel imaging modalities. Likewise, a plethora of 
reconstruction algorithms have been designed [9], from the first 
alternating-projection algorithms to convex relaxations [10] and 
spectral methods [11], [12]. Given the rich palette of new recon-
struction strategies, it may be unclear for practitioners which one 
to choose for a particular application. A description of their per-
formance and range of applicability would help in this regard.

Phase retrieval raises theoretical questions, such as the 
uniqueness of the solution [13] and the performance guarantees 
of algorithms [12], [14]. For instance, strong results have recent-
ly been obtained for random models where the elements of A 
are drawn as independent identically distributed (i.i.d.) random 
variables. In this case, a clear picture has emerged on regions of 

solvability [15], [16] and the best algorithm to use. While recent 
theoretical progress has pushed our understanding to more struc-
tured matrices A [16], tackling other models related to real-world 
settings remains a challenge.

Phase retrieval is also deeply linked with machine learning. 
The underlying forward model can be interpreted as a single-layer 
neural network with a quadratic activation function [Figure 1(c)]. 
Thus, the solution to the phase-retrieval problem amounts to the 
learning of the network weights, which is a typical machine learn-
ing optimization problem. While phase retrieval certainly does not 
expose one to the full complexity of deep learning, it is already rich 
enough to provide an entry point to the difficult questions debated 
in the machine learning community today. In particular, it exhib-
its local minima, strongly relies on the quality of the initializa-
tion, and behaves differently depending on the amount of training 
data. As a result, it has sparked a strong interest in the theoretical 
machine learning community. In particular, phase retrieval could 
help us better understand the nonconvex optimization procedures 
typical of real-world machine learning. Ultimately, phase retrieval 
represents a transdisciplinary topic that impacts fields ranging 
from imaging applications to fundamental mathematics.
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FIGURE 1. The unifying framework for phase-retrieval applications. (a) The nonlinear phase-retrieval equation is encountered in (b) many computational 
imaging settings and (c) corresponds to single-layer neural network optimization. (d) Depending on the measurement matrix ,A  four different classes of 
phase-retrieval problems can be encountered in imaging applications.
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In this tutorial, we present an overview of phase retrieval 
today, from imaging applications to algorithms and theory. We 
introduce a unifying framework for the various problems in 
which a phase-retrieval equation arises: diverse and scattered 
applications can actually be grouped into four main categories 
depending on the matrix A. We also present the latest algorith-
mic and theoretical advances, in particular, the recent results 
developed by the theoretical machine learning community dur-
ing the past few years. The intuition and principles behind these 
concepts are described without diving into the technical points. 
These are described in previous works or dedicated reviews, 
which we reference for interested readers. We hope that our uni-
fied overview will foster interaction among research fields and 
lead to a better understanding of the phase-retrieval equation.

Background

Mathematical model
The phase-retrieval equation (1) relates three mathematical ob-
jects. In the context of imaging, one wants to reconstruct an 
object of interest x)  from the knowledge of the captured inten-
sities y and the imaging system modeled by the linear operator 
A. Beyond the field of imaging, this equation often arises over 
the estimation of a physical quantity x)  from energy measure-
ments on a sensor, as detectors are often sensitive to the squared 
modulus of a field. It will be useful to rewrite this equation as

	 ,  , ,y i n1fora xi i
2

f= =) � (2)

where A is the vertical concatenation of the rows ai
H (with 

H  denoting Hermitian conjugation), and ,x y x yH=  is the 
complex inner product. Thus, each measurement is obtained 
from the squared modulus of a scalar product with a sampling 
vector .a Ci

d!  The phase-retrieval problem can then be restat-

ed as follows: how many phaseless scalar products are required 
to reconstruct the unknown vector ?x)

To make algorithms robust to experimental measurements, 
the model can be enriched by incorporating a general noise chan-
nel pout  such that ,y p a xi i

2
out

H$+ ; ;; )^ h  which typically is addi-
tive Gaussian or Poissonian. The noise statistics can, indeed, be 
leveraged in the maximum-likelihood and Bayesian algorithms.

An important quantity to determine the difficulty of the prob-
lem is the oversampling ratio / .n da =  It compares the num-
ber of measurements to the number of parameters we want to 
estimate. The greater the oversampling ratio ,a  the easier the 
computational problem becomes. This sampling ratio also plays 
a role in the simpler problem of linear regression .y Ax= )  
There, the solution is not unique—the set of linear equations is 
underdetermined—for ,11a  and it can be solved exactly for 

1$a  in the absence of noise and assuming A to be full rank. 
Similar considerations apply to phase retrieval, although with a 
more complicated behavior. In this tutorial, we define and pres-
ent the latest results regarding injectivity (see “Injectivity: When 
Is the Solution Unique?”), weak recovery (see “Weak Recovery 
Threshold: When Do Reconstructions Start to Be Possible?”), 
full recovery (see “Perfect Recovery: When Can We Recon-
struct ‘Almost Exactly’?”), and asymptotic algorithmic perfor-
mance (see “Asymptomatic Guarantees: Can We Characterize 
the Performance of Reconstruction Algorithms?”). These dis-
cussions are highlighted in stand-alone theory boxes.

Let us emphasize that phase retrieval is, at first sight, a 
nonconvex problem. Indeed, if some 0x !  is in the solution 
set S  of the phase-retrieval equation (1), then the whole set 

, [ , )e 0 2xi !i ri" , is included in ,S  while the middle point 
( ( )) /2 0x x+ - =  is not in .S  This global phase ambiguity can 
be removed, for instance, by a quotient of the solution space or 
by considering instead the estimation of invariant quantities, 

To build a mathematically sound theory of phase retrieval, it 
is important to understand if the solution to the (noiseless) 
phase-retrieval problem is unique. Stated differently, for a 
given measurement matrix ,A Cn d! #  is the map 
A : Axx C RA

d n2"! ; ; !  injective? While we do not mention 
it explicitly, the reader should remember that injectivity is 
always meant up to a global phase. Since 2014, the follow-
ing picture has gradually emerged on a complete character-
ization of injectivity.
Conjecture S1
For any d 2$  and any full-rank ,A Cn d! #  the following 
holds:
i.	 If ,n d4 41 -  then the map AA  is noninjective.
ii.	 If ,n d4 4$ - , then the map AA  is injective for a “ge-

neric” A . We refer to the description of the conjecture 
in [13] for a more detailed definition of the notion of a 
“generic” .A

First described as the “ ( )d4 4-  conjecture” [13], point ii was 
later proven in [S1]. Meanwhile, point i has been proven for 
small dimensions d 3#  in [13], disproved for ,d 4=  and 
refined for large dimensions in a probabilistic sense [S2]. 

In particular, for large ,d 1&  the threshold /n d 4-  
should indeed distinguish between “typically injective” and 
“typically noninjective” behaviors. In practice, to efficiently 
recover in the not-too-oversampled regime / ,n d 4K  this 
suggests that one should leverage a priori information on 
the object (e.g., regularization methods).
References
[S1] A. Conca, D. Edidin, M. Hering, and C. Vinzant, “An algebraic char-
acterization of injectivity in phase retrieval,” Appl. Comput. Harmon. 
Anal., vol. 38, no. 2, pp. 346–356, Mar. 2015, doi: 10.1016/j.
acha.2014.06.005.

[S2] C. Vinzant, “A small frame and a certificate of its injectivity,” in Proc. 
2015 Int. Conf. Sampling Theory Appl. (SampTA), pp. 197–200, doi: 
10.1109/SAMPTA.2015.7148879.

Injectivity: When Is the Solution Unique?
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such as ( ) .x x H) )  Notwithstanding, the solution set might still be 
nonconvex. Thus, the general phase-retrieval problem cannot be 
analyzed directly through the prism of convex optimization.

Neural network representation
As (1) describes a linear operation followed by an elementwise 
nonlinearity, phase retrieval is equivalent to the training of a 
single-layer neural network with a quadratic activation function. 
More precisely, for each , , ,i n1 f=  the input data ai  are pre-
sented to a network with weights x, with a target output y, as de-
picted in Figure 1(c). Training the network for this regression task 
amounts to the recovery of x)  in the phase-retrieval equation.

This corresponds to the simplest neural network archi-
tecture with a nontrivial polynomial nonlinearity. Still, it 
captures the difficulties of training a shallow neural network 
with a nonconvex loss functional. In particular, convergence 
is not assured with gradient descent methods, as they may get 
trapped into local minima or saddle points. More generally, 
single-layer neural networks belong to the class of generalized 
linear models. This simple yet rich architecture has attracted 
the attention of theoreticians, which explains the recent profu-

sion of studies around phase retrieval. This parallel enriches 
the discussion between physics and machine learning, as we 
further illustrate throughout this tutorial.

Applications

Unifying framework for phase-retrieval applications
The phase-retrieval problem is central to a large variety of 
applications in science and technology. Although many of 
these approaches were developed independently over the 
years, they share the same phase-retrieval equation (1). 
Diversity comes notably from the set of computations per-
formed by the matrix A that depends on the physical model 
of the imaging system. This domain knowledge sometimes 
makes it difficult for nonexperts to navigate the landscape of 
phase-retrieval applications.

To offer a unifying perspective, we are proposing classifying 
phase retrieval into four major groups: Fourier, coded-illumina-
tion, coded-detection, and random models [Figure 1(d)]. Targeted 
toward imaging, this classification has been designed to facilitate 
interactions between fields. It may be used by practitioners to 

Complementary to injectivity studies, many recent works 
have focused on the question of weak recovery—in other 
words, when does it become possible to nontrivially esti-
mate the signal ?x)  In mathematical terms, this means that 
there exists a procedure that is polynomial time in d and 
that returns an estimator xt  satisfying

	 , .lim 0xx
d

2
"

)

3
t � (S1) 

Note that an xt  uniformly sampled on the sphere (i.e., 
completely random) satisfies with high probability 

O / )d1 0(x x "=),t  for .d " 3

A series of precise results on the weak recovery of phase 
retrieval under a random-design assumption was obtained 
in recent years. In particular, under R.1 or R.2, [15] and 
[16] showed that, if ,n d " 3  with /n da = , there exists a 
sharp threshold WRa  distinguishing between impossible 
( WR1a a ) and possible ( WR2a a ) weak recovery. For 
example, in noiseless complex phase retrieval with a 
Gaussian measurement matrix, this yields 1WRa = , as seen 
in Figures 2 and 3. Note that the “optimal” spectral meth-
od we described in the “Spectral Methods” section has 
been shown to reach the asymptotic weak recovery thresh-
old; i.e., it satisfies (S11) for any WR2a a  [15], [33].

Weak Recovery Threshold: When Do Reconstructions Start to Be Possible?

Crucially, injectivity studies inherently consider “worst 
case” scenarios on the choice of the signal x)  to recover 
and the measurement matrix ,A  and they do not leverage 
the high dimensionality of the problem. To go beyond this 
framework, the perfect recovery (or full recovery) phenom-
enon has also attracted interest in past years. This question 
is fundamentally high-dimensional and can be formulated 
as follows: for d 1& , when is /n da =  large enough so 
that, for any typical x)  and ,A  there exists an estimator 
xt  of x)  (with x|| || 1=t ) that satisfies ,x x - ?1)t

By leveraging prior knowledge on the structure of the sig-
nal x)  (i.e., giving a sense to the typicality), this question 

has been answered in the very large class of random mod-
els R.1 and R.2 [16]. In particular, perfect recovery can be 
achieved much before the typical injectivity threshold 

,4a =  e.g., at 2-a  for Gaussian matrices A  and a 
uniformly sampled x)  as seen in Figure 3.

Studies of perfect recovery turn out to be more relevant 
to practical phase-retrieval setups than injectivity analy-
ses. In these setups, the measurement matrix and signal 
are not the worst case but, rather, constrained by the 
properties of the physical problem (e.g., a natural 
image). Then, one is often willing to accept vanishingly 
small errors.

Perfect Recovery: When Can We Reconstruct “Almost Exactly”?
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draw links between applications and benefit from the expertise 
of other fields. For theoreticians, it may give directions to fol-
low when defining new theoretical models to study.

Fourier phase retrieval
Fourier phase retrieval was, historically, the first occurrence 
of this nonlinear equation. Wave propagation over a long dis-
tance, referred to as far-field propagation, is modeled by a 
Fourier transform [17], as in ,A F=  where F is a 2D Fou-
rier transform matrix. The first phase-retrieval problems ap-
peared in modalities where optical components are difficult 
to manufacture, most notably for X-rays or electron imaging 
[3]. In these cases, the imaging system is often minimalist 
and only involves far-field propagation. From the determina-
tion of molecular structures using X-rays to aberration cor-

rection in astronomy [2], Fourier phase retrieval has been as-
sociated with major scientific discoveries in the past century.

Since the Fourier transform is a unitary operation (i.e., 
),F F 1H = -  we necessarily have ,n d=  leading to the oversam-

pling ratio .1a =  This problem is fundamentally ill posed, as we 
only know amplitudes, with no phase information about the Fouri-
er transform of .x)  Additional information on x)  is required to lift 
this degeneracy. The famous work of Gerchberg [18] uses another 
intensity measurement of x)  directly so that, in (1), A becomes a 
vertical concatenation of the identity and Fourier operators. Anoth-
er common assumption exploits a support and nonnegativity con-
straint on x)  [2], which is often valid in astronomy. Other more 
involved assumptions may be invoked, and they are described in 
the “Regularization in the Deep Learning Era” section. New appli-
cations of Fourier phase retrieval have recently appeared, such as 

A considerable effort has been devoted 
to characterizing the performance of the 
diverse algorithms presented in the 
“Reconstruction Algorithms” section, with 
a particular emphasis on the theoretical 
analysis of the error for large n and d, 
often under random-design assumptions.

For instance, the Bayesian algorithms 
of the “Bayesian Algorithms” section 
and, in particular, asymptomatic mes-
sage passing (AMP) (which conjecturally 
reaches the optimal polynomial-time per-
formance) can be analytically studied in 
the high-dimensional limit with a set of 
tools known as state evolution [16], [35]. 
On one hand, these allow us to estab-
lish the theoretical solid lines in Figure 3, which agree very 
well with finite-size simulations of AMP. On the other hand, 
the spectral methods described in the “Spectral Methods” 
section can be tackled more directly using tools of random-
matrix theory, and the authors of [12] derive analytical for-
mulas for the asymptotic performance achieved by a wide 
class of spectral methods. Finally, gradient-based algo-
rithms (see the “Gradient-Based Optimization” section) can 
also be analyzed in high dimension. For instance, [S3] 
strikingly explained how overparameterization greatly 
enhances their performance in phase retrieval. Another 
avenue to understand the trajectories of (stochastic) gradi-
ent descent in general settings is dynamical mean field the-
ory [14], [S4].

We summarize in Table S1 these performance analyses 
in the specific case of noiseless complex-valued phase 
retrieval with the Gaussian/independent identically distrib-
uted model R.1. Note that many of these results have been 
extended to more general noise and measurement models.

Despite missing pieces and several simplifying assumptions, 
theoreticians have reached a very precise understanding of 
the performance of phase-retrieval algorithms. Nevertheless, 
almost all of these studies rely on high-dimensional random 
models that, even though they can be quite refined, fail to 
describe many practical setups, such as coded diffractive 
imaging with structured Fourier matrices or low-dimensional 
configurations. In particular, the theory of Bayesian methods 
and of spectral methods has been empirically shown to fail 
when the eigenspaces of A are very structured (e.g., with 
vanilla Fourier matrices). In this sense, theoretical asymptotic 
guarantees for structured matrices are still an open problem.

References
[S3] S. Sarao Mannelli, E. Vanden-Eijnden, and L. Zdeborová, 
“Optimization and generalization of shallow neural networks with quadrat-
ic activation functions,” in Proc. Adv. Neural Inf. Process. Syst., 2020, vol. 
33, pp. 13,445–13,455.

[S4] M. Celentano, C. Cheng, and A. Montanari, “The high-dimensional 
asymptotics of first order methods with random data,” 2021, arXiv:2112.07572.

Asymptotic Guarantees: Can We Characterize the Performance of Reconstruction Algorithms?

Table S1. Asymptotic guarantees for the performance of recovery algorithms in the  
high-dimensional limit for the Gaussian independent identically distributed model R.1  
in noiseless complex-valued phase retrieval. 

Algorithm 
Weak 
Recovery Perfect Recovery 

Analytic Characterization 
of the Performance

(Stochastic) gradient 
descent 

— dO ( )n L )  Yes [14], [50], [49] 

PhaseLift and PhaseCut — logn d dL  [10], [30] —

Optimal spectral method 
T(M *)

/n d 1$ /n d " 3  Yes [12] 

T(M *)  + gradient 
descent 

/n d 1$ /n d 4L  (Figure 2) Yes (combination of 
[12], [14], and [50]) 

AMP /n d 1$ / .n d 2 027L  (Figure 3) Yes [16] 

*The result requires informed initialization.
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speckle correlation imaging for nonline-of-sight imaging or com-
plex media imaging [19], [20]. Ultimately, while the Fourier phase 
was the first physical model of phase retrieval, it remains a chal-
lenging computational problem.

Coded-illumination phase retrieval
More advanced imaging techniques were developed to over-
come the overly restrictive assumptions of Fourier phase 
retrieval. A solution to lift the phase ambiguity consists of 
shining different illuminations onto the object of interest to 
capture multiple images after far-field propagation. Each im-
age corresponds to a slightly different view of the same object. 
This provides the algorithm with complementary and partially 
redundant information and improves its convergence at the ex-
pense of a more involved experimental setup and longer mea-
surement time. This is the general principle underlying coded-
illumination phase retrieval. Here, the linear operator A is a 
vertical concatenation of operators :Al

	 , ,l L1forA FDl l f= = � (3)

where Dl  is a diagonal matrix that corresponds to the coded 
illumination, ,n Ld=  and the oversampling ratio a  is equal 
to the number L of images. A variety of imaging applications 
based on coded illuminations are listed as follows:

■■ Coded-diffraction imaging relies on a modulation near the 
object plane [21]. This modality allows ample flexibility on 
the choice and implementation of the modulation scheme, 
which explains its application in many different imaging 
settings. Gratings, masks, and tilted wavefronts all repre-
sent solutions for structured illumination.

■■ Ptychography is arguably the most successful implementa-
tion of coded-illumination phase retrieval [22]. It records 
the diffraction pattern of the object while it is scanned by 
an illumination probe with finite support. Oversampling is 
linked with the overlap between two consecutive illuminat-
ed areas—the higher the overlap, the easier it is to solve 
the phase-retrieval problem. It has been successfully used 
with a broad range of electromagnetic waves, from X-rays 
to the THz regime, as well as for electron microscopy.

■■ Fourier ptychography is a variant of ptychography in Fourier 
space where a sequence of tilted plane waves is sent on the 
sample [4], [5]. In this case, the object x)  is defined as the 
Fourier transform of the object transmission function, and the 
diagonal matrix Di  corresponds to a finite-support probe that 
is translated in Fourier space. This technique is used in optical 
microscopy to achieve high resolution on a large field of view.
Imaging scientists have developed specialized algorithms for 

each of these applications. For example, the ptychographic itera-
tive engine [22] is a popular projection algorithm, while gradient-
based methods are also routinely used. However, the structure 
present in these sensing matrices prevents a thorough establish-
ment of theoretical results for now.

Coded-detection phase retrieval
Acting on the illumination in the proximity of the object may 
not always be feasible, for instance, in astronomical observa-

tions. Nevertheless, multiple images can be obtained upon 
modulation on the detection side, leading to coded-detection 
phase retrieval. This can be done by taking several shots at dif-
ferent defocused positions—a technique derived, again, from 
astronomy and called phase diversity [23] but applied to other 
imaging fields as well, such as lensless imaging [6].

There are many ways to describe defocus via free-space wave 
propagation, and all rely on various degrees of approximation of 
Maxwell’s equations. Using the angular-spectrum method, the 
operator A is now the vertical concatenation of

, , ,i L e1fo with DiagrA FD F Dl l l
iz 1H ul

2

f= = = ; ;-^ h� (4)

where u denotes normalized coordinates in Fourier space, and 
the unitless curvature zl  is proportional to the defocus distance. 
Interestingly, this class of phase retrieval also appears outside 
of imaging for computer-generated holography [7]. There, one 
wants to produce a 3D hologram—a volumetric intensity pat-
tern. This target defines a set of equations at multiple planes, 
such that a phase mask is optimized to satisfy these constraints 
and applied with a wavefront-shaping device.

More general coded-detection strategies may be designed to 
simplify the phase recovery by using the diversity of the diagonal 
matrices Dl  in Fourier space. For example, one can add higher 
order optical aberrations beyond defocus or a physical aperture. 
Once again, a thorough theoretical understanding of this phase-
retrieval class is still lacking. It would especially benefit from 
more results regarding solvability and algorithm choice.

Random phase retrieval
In random phase retrieval, A is a random matrix. A common 
setting is the Gaussian model, in which each element of A is 
drawn from an i.i.d. complex Gaussian distribution. Such an 
operator A may be seen as a generic linear operation: each 
sampling vector is independent from the others and adds a little 
bit of information on the unknown .x)  Contrary to expecta-
tions, random phase retrieval arises in practical applications, 
too, such as imaging in complex media [24]. There, the random 
linear operator comes from multiple light scattering or random 
input patterns synthesized by a programmable device.

Distinct from the previous models, randomness greatly facili-
tates theoretical studies and allows one to derive asymptotic 
results on recovery guarantees and to characterize the typical 
behavior of algorithms. These advances are recent and will be 
described in more details later in the article. The bottom line is 
that phase retrieval in the random setting is quite well under-
stood, with active research still ongoing.

Some imaging applications exhibit pseudorandom models, 
such as coded-diffraction imaging with random masks or pty-
chography with a random probe [22]. They emulate random 
models, but residual correlations are present between rows of 
A. This variable amount of randomness makes it challenging 
to derive precise theoretical guarantees on performance but, to 
some extent, motivates the use of the latest algorithms designed 
for the fully random setting.

These observations motivate further work to bridge the gap 
between experiments and theory. Indeed, to illustrate current 
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efforts, a few theoretical results have recently been general-
ized beyond the i.i.d. random setting [16]. We can distinguish 
between two classes of random models, R.1 and R.2, for which 
strong theoretical results have been reported:

■■ R.1 (i.i.d. random): The matrix components of A satisfy 
[ ] ,PA ,

. . .i i d
i k +  with P a complex (centered) probability distri-

bution with finite moments of all orders (for simplicity).
■■ R.2 (right unitarily invariant): A is a random matrix with 

probability distribution ( ),P A  and ( ) ( )P PA AU=  for 
every unitary matrix U. Equivalently, the right eigenvectors 
of A are completely delocalized.

As a final remark, the observed robustness of random phase 
retrieval may inspire new ideas to introduce randomness in ex-
perimental settings.

Reconstruction algorithms
A large number of reconstruction algorithms have been pro-
posed to tackle the diversity of phase-retrieval models. We 
present them here, together with some intuitive explanation 
and indications on when to use them in practice. The purpose 
of this overview is to illustrate the inspiring creativity that 
researchers deployed while designing phase-retrieval algo-
rithms. Dedicated surveys cover more technical descriptions 
of the recent developments [9], [27].

Projection algorithms
Projection algorithms were the first strategy proposed to solve 
the phase-retrieval problem. They provide a direct and intuitive 
way to exploit prior information or several intensity measure-
ments. Thanks to their ease of implementation and flexibility, 
projection algorithms are still widely used today.

More precisely, each intensity image or prior knowledge 
corresponds to a constraint labeled from 1 to N. The earliest 
implementation is the Gerchberg–Saxton algorithm [18], which 
uses the intensity at two measurement planes as constraints in 
the object and Fourier planes. The error-reduction algorithm 
resorts to a modulus constraint in the Fourier plane and a sup-
port constraint in the object plane [2]. Other techniques, such 
as ptychography [22], [28], Fourier ptychography [4], [5], or 
phase diversity perform projections onto more than two sets 
to exploit even more information to recover the missing phase.

Each constraint is satisfied by a set of vectors ,x Cd!  and 
one is aiming to find the intersection of such sets. One, thus, 
projects on all of the sets sequentially to hopefully converge to 
a suitable solution. The initial estimate is x( )0t  and the iterations 
proceed according to

	 ( )x x( ) ( )k
N

k1
1% %gP P=+t t � (5)

where lP  denotes the projection operators on the solution set 
of constraint , , .l N1 f=

For example, we can write the projector of a modulus con-
straint for an intensity image y A xl l

2; ;= )  that corresponds to an 
invertible linear operator Al  as

	 ( ) .Diagu A
A u

y
A ul l

l

l
l

1

; ;
P = - e o � (6)

This operator effectively replaces the square modulus of A ul  
by the one obtained from the measurements .yl  Similarly, the 
projector of a support constraint c  sets all of the values outside 
the support to zero: 1( ) ( ) ,Diagu uP = c  where 1c  denotes the 
indicator function of .c

While this class of algorithms is widely used in practice, it 
unfortunately does not necessarily converge to the set of solu-
tions. More advanced algorithms have been suggested for bet-
ter convergence, such as the hybrid input–output algorithm [2] 
that uses relaxed projections for Fourier measurements with 
support constraint. Another strategy replaces the sequential 
projection with an average to avoid being stuck in loops. When 
applied to ptychographic algorithms, these concepts gave rise 
to the difference map and relaxed averaged alternating reflec-
tions algorithms [22].

Gradient-based optimization
Gradient-based iterative methods are the methods of choice to 
optimize nonlinear objective functions in machine learning. 
This class of algorithms is very flexible, with many variations 
and acceleration strategies. They have been used to solve the 
phase-retrieval problem [11], [29], with applications ranging 
from ptychography and coded-diffraction imaging to defocus-
based implementations.

One wants to find an estimate xt  that minimizes a loss function 
( , ),x yL  for instance, the square loss .( , )x y y AxL2

2 2
; ;= -  

At each iteration k, a step of size kh  toward the negative gradi-
ent of L  is taken to refine the solution, leading to the process

	 ( , ).yxx x L( ) ( ) ( )k k
k

k1
xdh= -+t t tt � (7)

The choice of the loss function is of crucial importance since 
it determines the performance of the algorithm. An educated 
guess of a suited loss function can be made if the noise sta-
tistics are known. Typical noise models are Poissonian (for 
shot-noise limited measurements) or additive Gaussian [5]. 
In this case, the loss function corresponds to the negative log-
likelihood function .log p y Ax 2

out ; ;;- )^ ^ hh  Typically, the loss 
function L2  corresponds to the negative log-likelihood of the 
additive Gaussian noise case.

As the optimization is nonconvex, gradient descent may get 
stuck in local minima or saddle points. Many acceleration strat-
egies are at our disposal to circumvent these difficulties, from 
conjugate gradient and Nesterov acceleration to second-order 
methods. Another classical technique in machine learning to 
escape local minima is stochastic gradient descent, in which the 
gradient of the loss function at each iteration is computed using a 
partial dataset only. Intensity images are often used one at a time, 
akin to sequential projection algorithms, although this introduces 
noise in the gradient descent updates.

Gradient descent represents a preferred tool to solve the 
phase-retrieval equation. Nevertheless, the theoretical bases of 
gradient-based algorithms still represent an active research topic. 
For example, the choice of the initial estimate greatly impacts the 
performance: in the “Spectral Methods” section, we describe 
algorithms that yield informed initializations.
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Convex relaxations
In contrast to gradient descent, which is a universal optimiza-
tion technique, convex relaxations exploit the quadratic form 
of the phase-retrieval equation. Convex relaxations recast the 
phase-retrieval problem using auxiliary variables. We seek 
a slightly different, or relaxed, formulation of the problem, 
which makes it convex. Convex optimization then provides a 
large variety of algorithms, with stronger convergence guaran-
tees. For instance, PhaseLift [10] replaces the unknown vec-
tor x Cd!)  by the matrix ( ) .X x x Cd dH!=) ) ) #  The quadratic 
equation (2) then becomes linear in the components of X)  
since one now has 

	 , , .y i n1fora X ai i i
H f= =) � (8)

In its original form, the phase-retrieval equation would require 
one to seek a rank-one solution. As this rank constraint is itself 
nonconvex, PhaseLift looks for a minimal-trace solution in-
stead, leading to the convex program

	
( ),

, , .y i n

0

1

minimize Tr subject to and

for

X X

a Xai i i
H f

$

= =
�

(9)

Written in this form, the problem falls into the category of 
semidefinite programming, where one can readily use an 
off-the-shelf solver. The output is then given by the leading 
eigenvector of the final estimate X. Other convex relaxations 
have been developed [30], [31]; a detailed list is reviewed in [9].

The issue associated with semidefinite programming lies in 
its computational complexity, as one needs to build a matrix in 

.Cd d#  To illustrate this issue, consider a 100 100#  image, which 
would correspond to .d 104=  Standard convex-relaxation tech-
niques would then require one to perform optimization on a 
d d 10 -8# = dimensional space. For this reason, semidefinite-
programming strategies have only been used as a proof of concept 
in real imaging settings, although promising sketching methods to 
keep the computation tractable have been proposed recently [32].

Spectral methods
To enhance the performance of the possibly expensive methods 
described in the previous sections, practitioners often require 
an “informed” initialization ,x( )0t  preferably one that is close to 
the optimum. Recently proposed, algorithms in this privileged 
class to obtain such initializations at a low computational cost 
are spectral methods [11]. These methods build an estimate xt  as 
the principal eigenvector of a weighted covariance matrix, de-
fined from the intensities yi" , and the sampling vectors ai" , as

	 ( ) .
n

y1M a aT T
i

n

i i i
1

H=
=

^ h / � (10)

Intuitively, since ,y a xi i
2H; ;= )  this scalar measurement is mini-

mal when ai  and x)  are orthogonal, while it increases when 
the two vectors are correlated. For any increasing preprocess-
ing function ,T  the matrix in (10), thus, gives “more weight” to 
those sampling vectors ai  that are more aligned with x)

The performance of a given spectral method heavily depends 
on the choice of the preprocessing function .T  Various choices 

have been considered in the literature, for example, the trimming 
scheme 1( )y y y tT ; ; #= " , (with possibly ,t 3=  meaning, in 
this case, that T  is the identity). Interestingly, an optimal prepro-
cessing method has been derived for the random models R.1 and 
R.2 and any type of noise [12], [33]. In particular, in a noiseless 
setting, it reads ( )y y1T 1= -* -  assuming the scalings 1x 2< < =)  
and / /( ) .n d1 1Tr AAH =6 @  

In practice, the simplicity of spectral methods ensures that 
their computational cost remains very low. The leading eigenvec-
tor can basically be recovered with power iterations or its accel-
erated variants. For instance, [12] and [33] show that the largest 
eigenvalue of M T *^ h concentrates on 1maxm =  when recovery 
is possible, so that one can use very efficient inverse iterations, 
i.e., power iterations on .IM T

1
-*

-^ ^ h h  Importantly, the con-
vergence toward the leading eigenvector is ensured, a guarantee 
that is missing in many other nonlinear optimization strategies. 
Unlike convex-relaxation methods, spectral methods do not 
involve a lifting process either, thus simplifying their adoption 
in imaging settings such as ptychography [34]. The solution esti-
mated via spectral methods is then typically refined with an itera-
tive optimization algorithm, such as gradient descent.

In Figure 2, we illustrate the performance of some imple-
mentations of spectral methods in the noiseless phase-retrieval 
problem with A being a complex Gaussian matrix. The optimal 
spectral method M T *^ h yields almost perfect correlation with 
the true solution ,x)  even without subsequent refinement by 
gradient descent. Results are also compared with bare gradient 
descent reconstructions. They show how all of these theoretical 
findings transfer very well to the recovery of a real image.

Bayesian algorithms
Bayesian estimators are a widely used and powerful ensemble 
of algorithms that leverage the properties of the posterior dis-
tribution, which is given by Bayes’ law:

	 ( , )
( )

( ) ( )
.

p p
x y A

y A
y Ax x

P
P

2
0out

;
;

; ;;
= � (11)

Here, y are the observations; pout  is the likelihood; and p0  is 
a prior distribution, typically Gaussian if one does not want to 
enforce any particular structure on the reconstructed image. 
Bayesian algorithms are not based on the minimization of a loss 
function but, rather, on the computation of estimates defined 
from the posterior distribution. Thus, they can potentially exploit 
more efficiently the available information in the measurements. 
A typical Bayesian estimator is the minimal mean-square error 
estimator ,argminx x x y AE 2

MMSE x x < < ;= - =llt 6 @  , .x y AE ;6 @  
However, the computation of such estimators—defined on the 
posterior distribution—is a hard problem in general since sam-
pling from the posterior is often an exponential-time procedure 
with classical Monte Carlo–Markov chain approaches.

In this regard, an important class of iterative Bayesian algo-
rithms is approximate message passing (AMP) [35], which is 
based on high-dimensional asymptotics of the belief-propagation 
algorithm [36]. The power of this class of algorithms arises from 
several insights. First, AMP is known to be optimal among a large 
class of polynomial-time algorithms for many random models 
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FIGURE 2. The correlation , xx; ;G H)t  achieved by spectral methods in noiseless phase retrieval with a complex Gaussian matrix for the recovery of an 
image. The optimal spectral method (OS) is compared with the trimming method with different values of .t  Gradient descent is initialized with the OS, 
showing zero error already at .4La  Finally, a comparison with randomly initialized gradient descent (GD) is shown, which does not achieve a positive 
correlation at any .5#a  In the last two columns, the optimal spectral method was chosen.

[37] and is conjectured to be so for many more. Moreover, it 
is well understood, in the sense that one can analytically track 
its performance in the high-dimensional limit. However, AMP 
is computationally heavy compared to simpler algorithms, such 
as spectral methods or gradient-based optimization procedures. 

More generally, the main limitation of Bayesian algorithms is 
that they assume the knowledge of the generative model (i.e., of 
the model of the noise present in the observations and of the 
distribution of the random sensing matrix). While algorithmic 
procedures such as AMP can be used off the shelf beyond these 
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assumptions (e.g., for a nonrandom A), their performance and 
convergence properties are no longer guaranteed. For example, 
while AMP achieves optimal polynomial-time performance in 
phase retrieval with random unitary matrices A, it performs very 
poorly when A is a vanilla Fourier matrix [16].

We show in Figure 3 the performance of AMP in noise-
less phase retrieval with a complex Gaussian matrix. We 
obtain a very good agreement with the theory (see “Asymp-
tomatic Guarantees: Can We Characterize the Performance 
of Reconstruction Algorithms?”) and, as for the spectral 

1

0.8

0.6

0.4

0.2

0

C
or

re
la

tio
n

| 〈x
, x

∗ 〉
|

!

Impossible Hard Easy

1.9 1.95 2 2.05

0.8 1 1.2 1.4 1.6 1.8 2
α = n /d = Number of Samples/Number of Dimensions

α = 0.99 α = 1.6

α = 2 α = 2.2

IT AMP (Asymptotic)

AMP (Synthetic, d = 5,000) AMP (Image)

FIGURE 3. The correlation ,x x; ;G H)t  achieved by AMP in noiseless phase retrieval with a complex Gaussian matrix. We compare the theoretical prediction, 
known as state evolution (blue curve), with actual runs of the algorithm. The results are very consistent whether the signal x)  is synthetic (i.e., random) 
or an actual image, achieving perfect recovery for ..2 03La  The inset of the left column compares the performance of AMP with the information theo-
retic (IT) performance, which is the optimal error that any algorithm can reach, no matter its running time. We uncover a computational gap (or “hard 
phase”) for . ,2 0321 Ka  for which AMP is not able to reach the IT performance [16]. We use an efficient modular implementation of AMP in a wide 
class of inference procedures (including phase retrieval), publicly available in [38].
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methods [33], a very consistent performance for the recovery 
of real images.

Regularization in the deep learning era

Conventional regularization
When faced with a difficult phase-retrieval problem, an ap-
propriate regularization can be an efficient solution to enhance 
recovery of the desired images. It introduces prior informa-
tion on the class of images to recover, which will help the re-
construction algorithm. This concept has long been associated 
with phase retrieval since the first projection algorithms were 
based on support and positivity constraints.

Most regularization approaches can be formulated as the opti-
mization problem

	 ( , ) ( ) .argmin x y xL R
x Cd

+
!

" , � (12)

The first term enforces consistency with the intensity mea-
surements y (the data-fidelity term). It corresponds to the met-
ric in the gradient-based reconstruction algorithms discussed 
in the “Gradient-Based Optimization” section. The second 
term penalizes unrealistic estimates to favor suitable proper-
ties on x. In the Bayesian setting of (11) with maximum-like-
lihood estimation, the two terms correspond to ( )p y Ax 2

out ; ;;  
and ( ),p x0  respectively. In the “Bayesian Algorithms” sec-
tion, the prior was set to a generic Gaussian distribution, but 
it can be modified to introduce other prior information on the 
recovered image.

Indicator functions may be used to enforce nonnegativity or 
support constraints. Another frequently studied regularization 
term is ,x 1< <  the L1  norm of x. It promotes sparsity in the final 
reconstruction and bears deep links with the field of compressed 
sensing. Sparsity in a transform domain can often be interesting 
for images, such as sparsity of ,Lx  with L the discrete gradi-
ent operator for total-variation regularization. To tackle these 
potentially nondifferentiable composite-optimization problems, 
proximal algorithms alternatively minimize the loss L and the 
regularization R  using gradients or projection operators. A large 
variety of algorithms have been designed for this task. We refer 
readers to the tutorial [27] on conventional regularization and 
sparsity for more details.

Machine learning algorithms and, in particular, convolution-
al neural networks (CNNs), have recently emerged as powerful 
new tools to analyze natural images. Remarkably, they achieve 
state-of-the-art performance on many image benchmarks, such 
as classification, object detection, denoising, or image gen-
eration. Not surprisingly, CNNs have also been deployed for 
image reconstruction, as they can provide a very strong prior 
for natural images. This prior consistently outperforms classi-
cal regularization on natural images. There are several ways to 
introduce it in our phase-retrieval algorithms.

Plugging in a denoiser
CNNs are remarkably effective for denoising—in other words, 
for the retrieval of an image from noisy observations. They are 

typically trained on a large dataset made of ground-truth images 
along with their corrupted versions, which corresponds to a self-
supervised learning scheme.

Denoising networks can then be deployed at each itera-
tion of an optimization framework. This applies in partic-
ular to plug-and-play (PnP) methods, which are a class of 
proximal algorithms commonly used to solve (12). These 
solvers alternate between two distinct steps: 1) decrease 
data-fidelity loss and (b) correct the current guess by enforc-
ing regularization. This class of algorithms is very flexible. 
For example, step 1 can represent a proximal operator of the 
data-fidelity term or a gradient descent iteration, leading to 
the alternating-direction method of multipliers and fast itera-
tive shrinkage-thresholding algorithm, respectively. As dis-
cussed in the “Conventional Regularization” section, step 2 
has traditionally been a proximal operator of a well-defined 
regularization term .R  PnP methods replace this step by the 
denoising CNN.

Even though convergence is, in general, not assured and can 
only be proven in restricted settings, PnP with a denoising net-
work is extremely flexible and has been used with great success 
in many applications. For instance, such an approach enables 
computationally efficient large-scale phase retrieval with state-
of-the-art performance [39].

Likewise, regularization by denoising [40] also exploits 
inner-loop denoisers to improve the quality of the reconstruc-
tions. However, the regularization term is now

	 ( ) ( ( ))fx x x xR H= - � (14)

where :f C Cd d"  is the denoiser. This formulation makes the 
regularization term differentiable, which offers an interesting 
alternative to PnP. See [41] for a more in-depth discussion.

Generative models
Generative adversarial networks (GANs) oppose two net-
works: a generator G  and a discriminator .D  The goal of 
the generator is to generate realistic images that follow the 
distribution of a dataset of natural images. It receives as in-
put a random vector z, also called the latent variable, and 
outputs ( ).x zG=  Then, the task of the discriminator is to 
choose whether a given image is from the real dataset or 
some output of the generator. In this adversarial scheme, the 
two networks are trained together. Throughout training, the 
generator learns a manifold of realistic images, while the 
discriminator gets better and better at discerning real and 
fake images.

To use such a generator for phase retrieval, one constrains 
the image x to be an output of the generator ( )x zG=  [42]. 
Gradient descent is performed directly on the latent variable z. 
This reparameterization constrains the search space to the 
learned manifold of generator outputs. With this point of view, 
one can not only produce a point estimate of the unknown 
signal but also perform a Bayesian sampling of the posterior 
distribution. This enables the computation of statistical esti-
mates, such as the spatial distribution of the variance of the 
final image [43].
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Deep image prior
The machine learning approaches of the “Plugging in a Denois-
er” and “Generative Models” sections rely on a dataset of images 
for training. This raises questions about overfitting: by design, 
the final image will resemble a realistic image from the train-
ing set, while crucial distinctive information may be discarded. 
Deep image prior (DIP) has been proposed to remove any de-
pendence on a training set. Here, one assumes that the estimates 
are generated from a CNN ( ),x zGw=  with w the weights of 
the network and z a random input. Optimization is then directly 
performed on the weights w of the CNN. DIP has been imple-
mented in several phase-retrieval applications [44], [45].

While both the GAN and DIP approaches rely on a generative 
network, their reparameterizations differ considerably. The for-
mer optimizes a low-dimensional latent vector z, while the sec-
ond tunes the CNN weights w. The dimension of w is typically 
larger than the dimension of x. As a result, DIP can overfit any 
input x, even random noise. Nevertheless, it has been observed 
that it naturally converges at first toward smooth natural images. 
Regularization comes from the architecture of the CNN itself but 
requires early stopping to avoid fitting noise. In the end, the exact 
principle behind DIP regularization remains an open question.

Discussion
Historically, the first attempts at the application of deep learn-
ing targeted a direct inversion of the phase-retrieval problem. 
From the intensity measurements y, they trained a network to 
output the desired image x and applied it to ptychography [46] 
or holography [25]. This strategy corresponds to an usual su-
pervised learning scheme. However, the algorithms following 
this strategy are specific to one particular imaging application 
with a specific forward model, noise level, or camera sampling. 
This greatly limits their range of applicability. The methods 
described in the “Plugging in a Denoiser,” “Generative Mod-
els,” and “Deep Image Prior” sections belong to a second gen-
eration of algorithms with increased robustness and flexibility.

All of these various strategies demonstrate how deep learn-
ing methods offer a powerful alternative to classical regular-
ization. They open new perspectives for solving the difficult 
nonlinear equation of phase retrieval. While our understanding 
is progressing fast, many of these methods remain black boxes 
that still need to be deciphered. In practice, one also needs to 
be aware of the notorious instabilities of neural networks [26], 
which can sometimes create artifacts (hallucinations) or remove 
certain features of interest. These issues are particularly trouble-
some and difficult to detect. The final result may look deceptive-
ly realistic (by reason of the regularization inherent with deep 
learning) even though the algorithm has actually failed.

From their inception, phase-retrieval algorithms have relied 
on prior information about the object to reconstruct. Regulariza-
tion has gone a long way and evolved substantially, from non-
negativity and support constraints to deep learning, but the full 
potential and limits of the most recent tools at our disposal are 
not yet clearly established. The majority of the network-based 
proposed works require a training dataset, which may impede 
certain applications, typically in medical setups. DIP and other 

unsupervised schemes offer an interesting alternative and may 
pave the way to powerful and controlled regularization strategies 
based on learning.

Conclusion
We have described the many facets of phase retrieval, a prob-
lem that is central to a broad range of applications in com-
putational optics. Various experimental configurations and 
reconstruction algorithms have been proposed to solve the 
missing-phase problem. To classify such a diversity of applica-
tions, we have outlined a unifying framework of many phase-
retrieval models. We have also provided a concise overview 
of the latest phase-retrieval algorithms to help practitioners 
choose one that fits their own application.

Viewed through the prism of machine learning, the links 
between phase retrieval and neural networks are twofold. First, 
the parallel between the defining equation (1) and single-layer 
neural networks has enabled the application of many theoreti-
cal machine learning studies, pushing forward our understanding 
of this nonlinear equation. Second, the unrivaled performance of 
neural networks when dealing with images brings strong prom-
ises for future applications but also comes with challenges on 
how to counteract unstability issues.

Regarding future developments, the introduction of more 
randomness in the illumination and/or detection could facilitate 
phase recovery in experiments by benefiting from the strong the-
oretical results obtained for the random setting. However, many 
realistic phase-retrieval models still remain unexplored from a 
theoretical viewpoint, calling for more studies. With this docu-
ment, we hope to promote a fruitful exchange between different 
disciplines, from applied physics to theoretical computer science.
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