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ABSTRACT

We investigate the learning of a convex patch-based synthe-
sis model for the reconstruction of images. In essence, we
propose to learn a dictionary via bilevel optimization for de-
noising. Using implicit differentiation, we find a closed-form
formula of the derivative of the minimizer of an objective with
respect to the atoms of the dictionary. We also propose a
novel way to handle the mean of each patch of the predictions,
which improves our model when it is applied to other inverse
problems. For minimizing the objective involving the learnt
dictionary, we propose an early stopping criterion to further
improve the performance of the model for denoising. Finally,
we assess our model in a compressed sensing MRI inverse
problem and show that, despite being trained on denoising
only, our model yields good reconstruction performances.

Index Terms— Optimization, dictionary learning, de-
noising, image reconstruction

1. INTRODUCTION

This work aims at the learning of a synthesis model for the
resolution of linear inverse problems [1]. Specifically, we
consider the variational formulation

x∗ = argmin
x∈C

∥Hx− y∥22 +R(x), (1)

where H ∈ Rm×n denotes the measurement operator, y ∈
Rm denotes the associated data, R : Rn → R+ is a regular-
izer that has to be specified, and C ⊆ Rn imposes constraints
on the (unknown) reconstruction x∗. Among the many possi-
ble choices for R, we pursue a synthesis-based approach [2],
essentially assuming that each overlapping patch of the recon-
struction x∗ has a sparse representation in some dictionary.
Note that, for this setting, the regularization in (1) can be also
studied from an analysis perspective [3, 4] (see [5] for an in-
depth discussion of the relation between the two approaches).

The research leading to these results was supported by the European Re-
search Council (ERC) under European Union’s Horizon 2020 (H2020), Grant
Agreement - Project No 101020573 FunLearn and by the Swiss National Sci-
ence Foundation, Grant 200020 184646/1.

Within the context of learned synthesis models (see [6, 7]
for a survey), there are several approaches to find the dic-
tionary in an unsupervised way, such as patch-based dictio-
nary learning [8, 9, 10] and convolutional dictionary learn-
ing [11, 12]. While the former approaches usually extract
patches from the image and enforce that these should have
some sparse representation, the latter ones directly define the
whole image in terms of a convolution of a dictionary with
a sparse vector of coefficients. Even though the patch-based
methods have substantially more parameters, they actually re-
sult in a more compact dictionary.

In recent years, data-driven approaches for solving inverse
problems have become increasingly popular [13, 14]. There, a
dictionary is usually learned in a supervised way such that the
solution x∗ of (1) minimizes an empirical loss over a dataset.
In principle, this requires one to determine the derivative of
x∗ with respect to the dictionary, a feat which is not easy to
achieve a priori. To the best of our knowledge, the supervised
approaches in the literature are all convolutional, and they all
rely on unrolling techniques to learn the dictionary [15, 16].

In this work, we present a scheme for the learning of a
convex patch-based synthesis model. It relies on a combina-
tion of unrolling and deep equilibrium (DEQ) [17]. Moreover,
we handle the mean of each patch of x in a novel way, which
improves the performance of our model. Once the dictionary
is learned, we evaluate the model using different optimization
algorithms on denoising and compressed sensing MRI (CS-
MRI). We also compare our results with CRR [4], a learned
convex analysis model. The code is available on Github1.

2. METHOD

The matrix Pk extracts a patch of the image x at a given loca-
tion. We seek to learn a dictionary of zero-mean atoms D ∈
Rd×p such that any minimizer (x∗, {α∗

k}Nk=1) ∈ C × (Rp)N

of the convex objective

JD,y(x,α) = ∥Hx− y∥2 +
N∑

k=1

βSD,k(x,αk) + λ∥αk∥1

(2)
1https://github.com/StanislasDucotterd/Dictionnary Learning
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with

SD,k(x,α) = min
c∈R

1

2
∥Pkx−Dα− 1c∥2 (3)

corresponds to a high-quality reconstruction x∗ of the data y.
For a given x, it holds that c∗k = 1

d1
TPkx. Hence, we replace

Pk by P̃k = (I− 1
d11

T )Pk to get SD,k(x,α) = ∥P̃kx −
Dα∥2. While this approach is similar to the usual strategy
that sets c = 1

d1
TPkH

Ty when H = I [10, 18], it leads
to very different results when the task differs from a basic
denoising. Throughout this paper, we denote every method
that uses our novel handling of the mean with the suffix ++.

The learning of the dictionary D can be achieved via
bilevel optimization. More precisely, given some training
samples (xl,yl) ∈ Rn ×Rm, we minimize the reconstruc-
tion loss

L(D) =
∑
l

∥xl − x∗
l ∥1, (4)

where
x∗
l ∈ argmin

x∈C

(
min
α

JD,yl
(x,α)

)
. (5)

This task consists of two subproblems:

• the inner problem (5), namely a search for the optimal
(x∗, {α∗

k}Nk=1) with classical optimization algorithms;

• the outer problem (4), which consists of the learning of
the dictionary D.

Note that [19] considers an objective very similar to (2), but
relies on unrolling to learn the dictionary D instead.

2.1. Training of the Model—Inner Optimization

We minimize (2) by successive coordinate descent as;

α
(m+1)
k = argmin

α∈Rp
SD,k(x

(m),α) +
λ

β
∥α∥1 (6)

x(m+1)= argmin
x∈C

∥Hx−y∥2+β

N∑
k=1

SD,k(x,α
(m+1)
k ). (7)

The solutions of (6) and (7) are computed with FISTA [20].
Specifically, the coefficients α(m+1)

k are the fixed points of

f1(α) = S λ
βL1

(
α− 1

L1
∇αSD,k(x

(m),α)
)
, (8)

k = 1, . . . , N , while the image x(m+1) is the fixed point of

f2(x) = PC

(
x− 1

L2
∇xJD,y(x,α

(m+1))
)
. (9)

Here, Sλ denotes the soft-thresholding function and is the
proximal operator of the ℓ1 norm, PC denotes the projec-
tion onto the set C, L1 = ∥DTD∥2, and L2 = ∥HTH +

β
∑N

k=1 P̃
T
k P̃k∥2. The fixed-point iterations for (8) and (9)

are run until the relative difference in the norms of the iterates
is smaller than 10−4 and 10−6, respectively.

2.2. Training of the Model—Outer Optimization

Let dk denote the kth column vector of D. During optimiza-
tion, the dictionary is constrained to be in

B =
{
D ∈ Rd×p : ∥D∥2 = 1, ∥dk∥ = ∥d1∥ ∀1 ≤ k ≤ p

}
.

(10)
In this way, we do not have to deal with the Lipschitz constant
L1 in the inner optimization. Moreover, this ensures that all
atoms have the same norm.

As outlined in the DEQ framework, we can differentiate
any α

(m+1)
k with respect to D for any x(m) through the im-

plicit differentiation. More precisely, we obtain

∂α
(m+1)
k

∂D
=

(
I− Jf1(α

(m+1)
k )

)−1 ∂f1
∂D

(11)

with the Jacobian

Jf1(α
(m+1)
k ) = I− (I−DTD)V (12)

of the function (8), and where V is a diagonal matrix whose
values are S′

λ/β(α
(m+1)
k −DT (Dα

(m+1)
k − P̃kx

(m))). Un-
like most DEQ models, which use Anderson iterations to ap-
proximate (11), we rely on a closed-form solution instead. To
update the dictionary D, we run two iterations of the coor-
dinate descent (6)-(7). Hence, computing the gradient with
respect to D involves computing the inverse of the Jacobian
(12) twice. During the training, we set C = Rn. This al-
lows us to obtain the minimizer of (7) with respect to α

(m+1)
k

in terms of a simple linear operator and makes the training
simpler than using an implicit differentiation step instead.

2.3. Full Minimization

At inference, we minimize the objective (2) up to numerical
precision using the iPALM algorithm [21] with the updates

β
(m)
k = α

(m)
k +

m− 1

m+ 2

(
α

(m)
k −α

(m−1)
k

)
(13)

α
(m+1)
k = S λ

βc1

(
β
(m)
k − 1

c1
∇αSD,k(x

(m),β
(m)
k )

)
(14)

z(m) = x
(m)
k +

m− 1

m+ 2

(
x
(m)
k − x

(m−1)
k

)
(15)

x(m+1) = PC

(
z(m) − 1

c2
∇xJD,y(z

(m),α(m+1))
)
, (16)

where c1 = 1.01L1 and c2 = 1.01L2. This approach is or-
ders of magnitude faster than coordinate descent (6)-(7). The
convergence of iPALM is guaranteed by [21, Theorem 4.1].

3. EXPERIMENTS

3.1. Denoising

We learn the dictionary D based on denoising. The training
dataset consists of 238400 patches of size (40 × 40) taken

2032
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from the BSD500 dataset [22], which consists of images with
values in [0, 1]. For our experiment, we add Gaussian noise
with σ = 5/255, 25/255, we use 128 atoms of size (10×10),
and we set C = [0, 1]n. We report the performance of three
different algorithms.

• 2-Step Unrolling: two steps of the coordinate descent
(6)-(7);

• Early Stopping: coordinate descent until the relative
difference in the norms of the iterates is less than 10−4;

• Full Minimization: iPALM (13)-(16) until the relative
difference in the objective value (2) is less than 10−8.

The 2-step unrolling is also used for learning D, and the
full minimization finds a global minimum of the associated
objective (2) up to numerical precision. Indeed, we observe
no change in objective value or peak signal-to-noise ratio
(PSNR) if we continue the optimization after the convergence
criterion is met. Refinements of our simple early stopping
strategy will be considered in future research. The inference
time on GPU for the 2-step unrolling and the full minimiza-
tion is in the order of seconds, and in the order of minutes
for the early stopping. We compare the results with TV reg-
ularization (using the algorithm proposed in [23]), and the
learned convex analysis model CRR [4]. The regularization
parameters β and λ are tuned on the BSD validation set of
12 images via a grid search, and the denoising performances
are then reported on the BSD68 test set in Table 1. The same
is done for the hyperparameters of the competing methods.
Surprisingly, despite of it being trained on two unrolled steps
of coordinate descent, the model performs better if we run
more steps at inference. However, the performance eventu-
ally decreases if we push the optimization all the way to the
minimum. For illustration purposes, we plot the PSNR of
x(m) as a function of the objective value for the coordinate
descent and the iPALM algorithms on the boat image from
the BSD validation dataset in Figure 1. Despite reaching the
same minimum, the two algorithms have a very different re-
lation between objective value and PSNR. A similar behavior
was observed for the remaining test images. The analysis
CRR model perfoms better by 0.1 dB on the higher noise
level but is outperformed by 0.2 dB on the lower one.

3.2. Compressed Sensing MRI

We now look at the CS-MRI recovery of an image x ∈ Rn

from its measurements y = MFx + n ∈ Cm, where M is
a subsampling mask (identity matrix with some missing en-
tries), F is the discrete Fourier transform, and n is a complex
Gaussian noise with variance σ2

n (not to be confused with σ,
the noise variance used for the denoising) for both the real and
imaginary parts. To reconstruct x, we minimize the objective
(2) with H = MF using the dictionary D learned for the de-
noising. The involved regularization parameters β and λ are

160170180190200210220230
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Fig. 1. Relation between objective value and PSNR. The
markers correspond to 5 iterations of the algorithm. For better
visualization, we only show the end of the optimization pro-
cess, where coordinate descent iterations decrease the PSNR.

tuned for each image via a grid search. The same is done for
the hyperparameters of the competing methods.

We run the CS-MRI experiment on two images of size
(256 × 256) that take values between [0, 1]. Moreover, we
consider two subsampling masks (radial and Cartesian), each
with a subsampling ratio of 0.3 with σn = 10/255. The cor-
responding results are reported in Table 2 and a reconstruction
example is given in Figure 2. We see that our handling of the
mean improves the performance by 0.4 to 1.5 dB, depending
on the image and the mask. For the TV regularization, we get
the typical staircasing artifacts, which do not occur with our
learned synthesis approach. Further, note that our results are
comparable to the analysis-based CRR approach.

Unlike denoising, we achieved the best performances
while running the optimization until the global minimum of
(2) is reached. Hence, we only report the results of Full
Minization. Surprisingly, even though our models were
trained on denoising, the performance gap between TV reg-
ularization and our proposed method increases for image
reconstruction. The analysis CRR model performs better by
0.3 dB on the bust/radial problem (which is the simplest one)
and is outperformed by 0.15 dB on the brain/Cartesian one
(which is the hardest one). The performance metrics behave
similarly on the two other problems.

3.3. Visualization of the Atoms

We show the learned atoms of D in Figure 3. They look quite
different from the ones learned in an unsupervized way with
the ℓ0 regularizer in [8]. Most of the atoms for σ=5/255 seem
to only have structure in the middle of the patch, which is
surprising considering that the performances dropped when
using smaller patches. The atoms for σ=25/255 are surpris-
ingly noisy, which potentially allows to better fit some of the
noise in the training data. In summary, the atoms learned for
the two different noise levels are rather different.

2033
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Ground truth Zero-fill TV CRR Full Min. Full Min.++

Fig. 2. MRI reconstructions on the brain image with the Cartesian subsampling mask. The PSNR values are given in Table 2.

Noise level σ=5/255 σ=25/255
TV 36.41 27.48
CRR 36.96 28.11
2-Step Unrolling 36.91 28.01
2-Step Unrolling++ 36.86 27.93
Early Stopping 37.16 27.81
Early Stopping++ 37.16 27.99
Full Min. 36.82 27.56
Full Min.++ 36.83 27.64

Table 1. PSNR values for denoising the BSD68 dataset.

Subsampling mask Radial Cartesian
Image type Brain Bust Brain Bust
Zero-filling 24.01 25.32 21.66 23.55
TV 29.46 31.58 24.43 27.69
CRR (σ=5/255) 31.21 32.71 25.10 28.37
CRR (σ=25/255) 31.30 32.65 25.35 28.46
Full Min. (σ=5/255) 30.33 30.94 24.78 27.64
Full Min.++ (σ=5/255) 31.05 32.42 25.21 28.31
Full Min. (σ=25/255) 30.47 31.02 25.11 27.90
Full Min.++ (σ=25/255) 31.27 32.41 25.48 28.39

Table 2. PSNR values for MRI reconstruction.

4. CONCLUSION AND FUTURE WORK

We learned a convex patch-based synthesis model on a de-
noising task by using a combination of unrolling and deep
equilibrium. Remarkably, our novel mean handling improves
the performance of our model when it is applied to other tasks
than denoising, at no extra computational cost.

A future direction is to directly learn the atoms such that
the global minimum of (2) found with the iPALM algorithm
corresponds to the denoised image. Compared to the de-

σ = 5/255

σ = 25/255

Fig. 3. The learned atoms for two noise levels.

ployed unrolled coordinate descent, this is computationally
more expensive and involves a more challenging joint implicit
differentiation with respect to all the variables (x, {αk}Nk=1).
Another direction would be to complexify the regularizer. In
this paper, we worked with a very simple ℓ1 norm regularizer
that penalizes each atom the same way. An improved model
would be to adapt the penalization to each atom. To go even
further, one could learn the whole regularizer R with linear
splines as in the CRR analysis model [4].

2034
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