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Purpose: In the context of fluorescence diffuse optical tomography, determining the optimal way to
exploit the time-resolved information has been receiving much attention and different features of
the time-resolved signals have been introduced. In this article, the authors revisit and generalize the
notion of feature, considering the projection of the measurements onto some basis functions. This
leads the authors to propose a novel approach based on the wavelet transform of the measurements.
Methods: A comparative study between the reconstructions obtained from the proposed wavelet-
based approach and the reconstructions obtained from the reference temporal moments is provided.
An inhomogeneous cubic medium is considered. Reconstructions are performed from synthetic
measurements assuming Poisson noise statistics. In order to provide fairly comparable reconstruc-
tions, the reconstruction scheme is associated with a particular procedure for selecting the regular-
ization parameter.
Results: In the noise-free case, the reconstruction quality is shown to be mainly driven by the
number of selected features. In the presence of noise, however, the reconstruction quality depends
on the type of the features. In this case, the wavelet approach is shown to outperform the moment
approach. While the optimal time-resolved reconstruction quality, which is obtained considering the
whole set of time samples, is recovered using only eight wavelet functions, it cannot be attained
using moments. It is finally observed that the time-resolved information is of limited utility, in
terms of reconstruction, when the maximum number of detected photons is lower than 105.
Conclusions: The wavelet approach allows for better exploiting the time-resolved information,
especially when the number of detected photons is low. However, when the number of detected
photons decreases below a certain threshold, the time-resolved information itself is shown to be of
limited utility. © 2010 American Association of Physicists in Medicine.
#DOI: 10.1118/1.3431571$
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I. INTRODUCTION

Traditional approaches in fluorescence diffuse optical tomog-
raphy !FDOT" can be broadly classified into three groups: !i"
continuous wave !CW", !ii" frequency domain !FD", and !iii"
time-resolved !TR" techniques. These three approaches differ

in the modes of excitation and detection. Specifically, CW
FDOT is based on the measurement of the attenuation of a
steady-state excitation light.1–5 Frequency-domain FDOT is
based on the measurement of the phase and demodulation of
an amplitude-modulated excitation.6,7 TR FDOT is based on
the temporal measurement of the distortion of an excitation
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light pulse.8–14 The CW and FD approaches are inexpensive
and easy to develop. TR FDOT, on the other hand, is more
costly and requires careful handling. It, however, allows one
to separate absorption and diffusion,15 to derive fluorescence
lifetime,16 and to better reconstruct deeply embedded
markers.8 FD FDOT, unlike CW FDOT, also offers this ad-
vantage. However, in practice, the FD measurements can
only be performed for few modulation frequencies. Thus, the
information content of the TR measurements, which contains
all frequencies, is richer than the FD measurement one.

An important aspect is to know how to select useful in-
formation contained in the TR signals. This issue is more
commonly known as the problem of selecting data features
or data types. Initial developments focused on early-arriving
photons of temporal signals.9 This approach, however, suf-
fers from low signal-to-noise ratio !SNR" and provides poor
depth resolution. A more recent trend has been to exploit the
global features of time-resolved signals.10–13,17 Specifically,
the Laplace transform of the TR signals12 and above all the
temporal moments of the fluorescence signals have been in-
tensively studied and employed.10,11,13,18,19 The moment ap-
proach is of particular interest since it allows for a physical
interpretation of the features, in terms of the number of pho-
tons and their time of flight, while being easy to calculate.20

The moment approach is the most studied one and is there-
fore often recognized as the gold standard. As an alternative,
local features have also been proposed, with particular atten-
tion on photon counts within time windows21,22 as well as on
the photon peak value and time.14

While various types of data features have been introduced
and are used in practical applications, few studies have com-
pared their performances. The first contribution in this direc-
tion is by Grosenick et al.,21 who compared reconstructions
from photon counts within different time windows in the
context of TR-DOT. Comparisons of reconstructions ob-
tained from moments of different orders have been provided
by Gao et al. in the context of TR DOT !Ref. 23" and by
Lam et al.11 in the context of TR FDOT. Riley et al.14

showed that local features such as the photon peak value and
time can be superior to moments in terms of noise robust-
ness. Recently, we established that the domain of interest of
the moments approach in FDOT is mainly determined by the
SNR of the measurements.19 When photonic noise is consid-
ered, the SNR of a measurement depends on the number of
detected photons; the more photons detected, the better the
SNR. When enough photons can be detected, the moments-
based approach outperforms the classical CW approach. Be-
low a certain threshold, however, the moments-based ap-
proach is severely limited by the low SNRs of the
measurements and it is then comparable to the CW approach
in terms of reconstruction quality. Since it can be experimen-
tally difficult to collect many photons, especially when thick
or highly absorbing media are considered, features allowing
for exploiting the TR information at lower SNRs are desir-
able.

We introduce in this paper a new kind of localized analy-
sis based on the wavelet decomposition of the TR FDOT
signal. The success of wavelet algorithms for a large number

of applications in biomedical imaging mainly lies in the mul-
tiresolution capabilities and the ease with which regulariza-
tion criteria can be incorporated.24 Specific applications to
the field of DOT/FDOT are that of Zhu et al., who demon-
strated a reduction in the computational costs for the same
reconstruction quality,25,26 and Kanmani et al.27 and Frassati
et al.,28 who employed wavelets in the forward problem of
DOT and FDOT, respectively.

In this paper, we present a novel wavelet-based technique
for the exploitation of the TR information; i.e., primarily as a
tool to aid in the choice of the data features. We evaluate, in
terms of reconstructions quality, the benefit of the proposed
wavelet-based approach and provide a comparative study
that shows its advantage over the temporal moments ap-
proach.

This paper is organized as follows. In Sec. II, we briefly
review the different models involved in the theory of FDOT.
In Sec. III, we introduce a general formalism that describes
the notion of a data feature/type. The wavelet decomposition,
which fits naturally in this formalism, is then introduced as
well as the procedure adopted to solve the new inverse prob-
lem. Section IV contains the presentation of our numerical
simulations. This presentation comprises the description of
the chosen phantom, the setting of the number of detected
photons, as well as the implementation of the forward model,
wavelet transform, and reconstruction procedure. In Sec. V,
we present the results of the numerical simulations for a
specific reconstruction configuration. We also define quanti-
tative criteria to facilitate the comparison of the reconstruc-
tion. Finally, we evaluate the influence of the number of
detected photons.

I.A. Notations

We consider real-valued continuously defined functions
f!t", t!R. The time-domain convolution of the two func-
tions f and g is written as f !g and is defined as !f !g"!t"
=%−!

+!f!""g!t−""d". The Fourier transform of f!t" is denoted
by f̂!#" and is defined as f̂!#"=%−!

+!f!t"exp!−j#t"dt, j being
the square root of $1. The moment of order k of the function
f is given by %f!t"tkdt.

Matrices are denoted in upper-case bold letters, while vec-
tors are marked with lower-case bold letters. Vectors are seen
as column matrices: x= !x1 , . . . ,xn"T. The notation & · & de-
notes the !2 norm defined by &x&= !xTx"1/2. The weighted !2
norm induced by the positive-definite matrix Q is denoted as
&x&Q= !xTQx"1/2.

II. FDOT THEORY

We consider an absorbing and diffusing medium % that
embeds fluorescence markers. Let "% be the boundary of %.
FDOT consists of exciting the medium with a laser beam at
some positions s!"% and exploiting the fluorescence light
measured at some positions d!"% to infer the internal
structure of the medium. As shown in Fig. 1, the underlying
principle of FDOT can be explained by a three-step process.
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It involves light propagation at excitation wavelength &x,
fluorescence of the markers, and propagation at fluorescence
wavelength & f.

II.A. Underlying physical models

II.A.1. Light propagation

Light propagation within biological tissues is strongly
dominated by absorption and scattering of light. Among the
different models of light propagation developed for the so-
called turbid media, the deterministic models are obtained by
solving partial differential equations !see Secs. II.D–II.F of
Ref. 29 for an overview of the different models". Although
general models such as the telegraph equation30 or the radia-
tive transfer equation31 can be used, the light propagation in
FDOT is classically assumed to follow the diffusion equa-
tion. Within this framework, the photon density '
!photons s−1 cm−2, refer to Sec. II.C of Ref. 29 for the defi-
nition" at position r!% and time t satisfies the following
derivative equation:29

'− #( 1

3(s!!r"
#) +

1
)

"

"t
+ (a!r"*'x!r,t" = S!r,t" , !1"

where (a !cm−1" is the absorption coefficient, (s! !cm−1" is
the reduced scattering coefficient, ) !cm s−1" is the speed of
light within the medium, and S !photons s−1 cm−3" is the
source term. Typically, the source model consists of placing a
virtual source at position s!!%, typically chosen at 1 /(s!
beneath the physical source position s!"%.32 Thus, we have

S!r,t" = N0*!r − s!"*!t" , !2"

where N0 is the number of injected photons.
To complete the description of light propagation, note that

boundary conditions must be incorporated into Eq. !1" !refer
to Refs. 29 and 33 for details on the treatment of bound-
aries". As recommended in Ref. 34, the photon density is
considered as the measurable quantity.

II.A.2. Fluorescence

Let us consider a fluorescent marker concentration c!r"
!(M" within an infinitesimal volume d3r centered at position
r. The fluorescence marker is characterized by its fluores-

cence lifetime " !ns", quantum yield + !dimensionless", and
cross section , !cm2". The fluorescence pulse response f in
both space and time !cm−1 s−1" is given by

f!r,t" = e!t"c!r"*!r"d3r , !3"

where

e!t" = +,/" exp!− t/"" . !4"

More complicated multiexponential decays could also be in-
corporated but this level of sophistication is generally not
necessary in FDOT.

II.B. Forward model

In what follows, the spatial dependence of a function is
systematically indicated as a subscript. With this convention,
the light measured at detection point d resulting from exci-
tation at source point s is denoted by us,d!t". The medium %
is discretized into N voxels of volume vn, centered at posi-
tions rn, n! +1, . . . ,N,. Considering a constant marker con-
centration within voxels, we have

us,d!t" = -
n=1

N

cnvnNx#gs,rn
! e ! grn,d$!t" , !5"

where cn is the local marker concentration at position rn, and
gs,rn

and grn,d are the Green’s function for Eq. !1" at position
rn, considering the Dirac source functions located in s and d,
respectively.

Considering a distribution of S source point +s, and D
detector point +d,, a set of S-D measurement pair
+s j ,d j, , j! +1,2 ,3 , . . . ,S-D, is formed. Considering any
measurement on the model of Eq. !5", we obtain the follow-
ing matrix system:

u!t" = W!t"c . !6"

The vector u!t"= #u1!t" ,u2!t" , . . . ,uSD!t"$ is the measurement
vector. The vector c= #c1 ,c2 , . . . ,cN$ is the concentration vec-
tor. The matrix W!t" of size SD-N, which maps the con-
centration vector onto the measurement vector, is referred to
as the weight matrix. Its !j ,n"th entry is given by wj,n!t"
=vnNx#gsj,rn

!e!grn,dj
$!t". Note that the Green’s functions for

any other light propagation equation could have been used in
Eqs. !5" and !6".

s

d

µa, µs’

∂W

W

rn

s

µa, µs’

rn

s

µa, µs’

r

a) b) c)

rn

laser beam

∂W

W

∂W

W

d d

acquisition
set-up

FIG. 1. Illustration of the mechanism of FDOT. !a" Excitation: The light emitted by the source at position s propagates through the medium. !b" Fluorescence:
The fluorescent marker absorbs a fraction of the excitation light and then emits light at a higher wavelength. !c" Emission: The light emitted by the fluorescent
marker at position rn propagates through the medium; the fluorescent marker thus acts as a secondary source of light.
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II.C. Noise model

Due to the quantum nature of light, light measurements
are intrinsically corrupted by Poisson noise. Consequently,
the variance of a set of light measurements equals the mean
value of this set. This was observed by Selb et al.35 in ex-
perimental situation. However, on the basis of CW FDOT
measurements, Hyde et al.36 observed the noise variance to
be rather proportional to the mean value of the measurement.
Riley et al.14 found the standard deviations of TR FDOT
measurements to be proportional their mean values. The ex-
planation for the last two observations is unclear but has
been attributed to the presence of some nonphotonic sources
of noise.

In this study, the number of detected photons is hypoth-
esized to be large enough to neglect any nonphotonic sources
of noise. Subsequently, the classical Poisson noise model can
be used. Moreover, since the number of detected photons is
assumed to be large, the Poisson distribution is approximated
by a Gaussian distribution whose variance equals the mean.
Hence, the noisy version of the measurement us,d!t", denoted
by ũ, is given by

ũs,d!t" = us,d!t" + N+( = 0,.2 = us,d!t", , !7"

where N!( ,.2" denotes a Gaussian distribution of mean (
and variance .2.

III. BASIS FUNCTIONS

In this section, we refer to data types,17 which are also
referred to as measurement types37 or data features12 in lit-
erature. All these terms are used to describe the transforma-
tions applied to the TR measurements in order to reduce the
redundancy, the computational cost of the inverse problem,
and possibly the computational cost of the forward model.
As Schweiger and Arridge17 already suggested in their pio-
neering work, a good data type should possess the following
properties:

• Efficiency: Maximize the information captured from the
TR measurements in order to yield high-accuracy re-
constructions, both in terms of sensitivity and reso-
lution.

• Sparseness: Provide a parsimonious representation.
• Robustness: The quality of reconstruction must be ro-

bust and any performance degradation with respect to
noise must be at an acceptable level.

Here, the concept of data types is formalized by consid-
ering the projections of the TR measurements on some TR
functions, referred to as basis functions !BFs". Let u!t" de-
note a TR measurement and p!t" a BF. The data feature of
u!t" associated with p!t" is defined by the dot product:
.u , p/=%u!t"p!t"dt. In the following, we make the distinction
between data features, which are projection coefficients, and
data types, which describe a type of BFs.

Note that within this BF-based framework, the classical
kth order temporal moments of the measurements are easily
obtained, considering a nonorthonormal basis of monomial,
i.e., choosing p!t"= tk, as illustrated in Fig. 2.

III.A. Temporal wavelet transform

In this paper, we introduce a new data type, choosing the
BFs as wavelet bases. The motivation for this choice is to
benefit from the well-known data compression and noise re-
duction properties of the wavelet bases. The proposed ap-
proach results in a temporal multiresolution analysis !MRA",
wherein a given function is projected onto translated and
dilated versions of the so-called scaling function /!t" !which
yields smooth approximations" and wavelet function 0!t"
!which gives rise to the detail coefficients".38

A large number of wavelet bases are available. In this
study, the Haar wavelets are considered. On top of its imple-
mentation simplicity, this choice offers a natural link be-
tween the new Haar features and the classical features based
on the number of photons detected within time windows. In
the Haar case, the scaling function / is a B-spline of degree
zero. The scaling function /i at scale i is given by

/i!t" = h!t" − h!t − 2iTe" , !8"

where h!t" is the Heaviside unit-step function and Te is the
time step. Thus, the analysis is performed at a coarser scale
as i increases. The finest scale is obtained for i=0. The wave-
let 0i at scale i is given by

0i+1!t" = /i!t" − /i!t − 2iTe" . !9"

The approximation coefficients at scale i are given by ai#k$
= .u!t" ,/i!t−k2iTe"/ and the corresponding detail coefficients
are given by di#k$= .u!t" ,0i!t−k2iTe"/.

III.B. Inverse problem within the BF framework

We consider a set of P BFs +p1!t" , . . . , pP!t",. Projecting
both sides of the time-resolved forward model u=Wc #see
Eq. !6"$ on this set of BFs leads to the following time-
featured forward model:

tTe

i = 0 i = 1 i = 2

j0

2Te 4Te

j1 j2

y1 y2

t t

t t

t

t

a)

b)

k = 0

k = 1

t

k = 2

k = 3

t

FIG. 2. Basis functions. Any data type can be conceived as the projection of
the measurements on such functions. !a" BFs corresponding to the moments
and !b" BFs corresponding to the Haar wavelet decomposition. Moments are
nonlocalized data features, whereas the wavelet features are localized one.
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y = Ac . !10"

In Eq. !10", y is the time-featured measurement
vector, of size SDP-1, such that y= #.ũ1,1 , p1/ , . . . ,
.ũ1,1 , pP/ , . . . , .ũI,J , pP/$T. The matrix A is the featured
weight matrix of size IJP-N. Its nth column is given by
an= #.w!1,1",n , p1/ , . . . , .w!1,1",n , pP/ , . . . , .w!I,J",n , pP/$T.

The reconstruction procedure used in this study to invert
the featured forward model was introduced in a previous
work.19 It is chosen here for its ability to provide fairly com-
parable reconstructions. This reconstruction procedure be-
longs to the Tikhonov regularization framework.39 The regu-
larized solution c1

! is thus chosen as

c1
! = arg min

c
&y − Ac&Q

2 + 1&c&2, !11"

where Q is the matrix that allows for down-weighting some
measurements and 1 is the regularization parameter. The
choice of 1 is crucial since the solution c1

! dramatically de-
pends on its value. It is even more crucial if, as we intend to
do, one is interested in getting fairly comparable solutions
from the inversion of different forward models—i.e., ob-
tained from the projection of Eq. !6" on different sets of BFs.
Here, as justified in Ref. 19, the choice of 1 is based on the
variability parameter V of the reconstruction, which is de-
fined as

V!1" =
&.#c1

!$&
&E#c1

!$&
, !12"

where E#c1
!$ and .#c1

!$ are two vectors corresponding to the
mean and standard deviation of the components of c1

! . The
regularization parameter 1 is chosen such that the variability
parameter V of the solution satisfies a prescribed value.

IV. NUMERICAL SIMULATIONS

IV.A. Description of the phantom

We consider the synthetic phantom depicted in Fig. 3.
This synthetic phantom is a cube of 4-4-4 cm3, whose
optical properties are inhomogeneous. The background ab-

sorption coefficient (a is set to 0.2 cm−1, the background
reduced scattering coefficient (s! to 10 cm−1, and the refrac-
tive index n to 1.4. The choice of these values is based on
experimental measurements of breast-tissue properties.40 We
consider two inhomogeneities depicted in Fig. 3. The first
inhomogeneity is a cylinder with a diameter of 1 cm, whose
absorption coefficient is 10% higher than the background.
The axis of this cylinder lies in the plane z=2 cm and inter-
sects the borders of the cube at positions #$2,0,2$ and #0,2,2$
cm. The second inhomogeneity is a sphere with a diameter of
1 cm, whose reduced scattering coefficient is 10% higher
than the background. The center of the sphere is located at
position #1,$1,2$ cm. The described optical properties are
assumed to be the same at both excitation and fluorescence
wavelengths.

The absorbing and diffusing medium is excited by S=13
point sources and probed by D=13 detectors. The sources
and detectors are uniformly arranged onto two grids of side 3
cm placed 5 cm apart. The medium lies between the detec-
tion and the excitation planes, in the so-called transmission
geometry.

We consider a unique fluorescent marker type with a life-
time " of 0.3 ns. The fluorescent markers concentrate prefer-
entially around the three positions r1= #−1.125,−1.125,
2.125$, r2= #0.875,0.875,2.875$, and r3= #0.875,0.875,
1.125$, which are referred to as fluorescence inclusions 1, 2,
and 3, respectively !see Fig. 3 for illustration". The marker
concentration is set to 1 (M at the center of the inclusions.
Away from the center, the concentration decreases. A Gauss-
ian distribution, whose standard deviation . can be adjusted
to tune the spatial extent of the inclusion, is used to account
for the decrease in the concentration. Here, inclusion 1 is
chosen to be narrower than inclusions 2 and 3. Specifically,
the standard deviations of inclusions 1, 2, and 3 are .1
=0.15 cm, .2=0.2 cm, and .3=0.2 cm, respectively. To
simulate the autofluorescence of the tissue—natural fluores-
cence in the absence of markers—as well as the unperfect
uptake of the marker, a fluorescent background, i.e., a homo-
geneous distribution of markers within the medium, is also
considered. The concentration of the background is set to
0.01 (M.

We have chosen this particular configuration of inclusions
in order to assess two of the weaknesses of FDOT: First, the
poor ability to detect an inclusion !here, inclusion 1" located
far away from the sources and the detectors, 41 and second,
the limited resolution between two inclusions !here, inclu-
sions 2 and 3" aligned along the z axis.23 It is of interest to
analyze how the TR approaches cope with these situations.

IV.B. Number of detected photons

When Poisson noise is considered, the SNR of a measure-
ment increases with respect to the value measured. Indeed, if
few photons are detected, the SNR of the measurement is
low, whereas if many photons are detected, the SNR of the
measurement is high. In the following, the SNR is tuned by
rescaling the TR measurements before applying the Poisson
noise. Specifically, we impose the value of the maximum

FIG. 3. Synthesized phantom. The red dots represent the source points, the
blue rings the detector points, and the thin black dots the mesh nodes !for
clarity, only those at the border are represented". On the left are represented
the optical properties of the medium. The background values are (a
=0.2 cm−1, (s!=10 cm−1, "=0.3 ns, and n=1.4. The absorbing homogene-
ity !*(a=0.02 cm−1" is depicted in green, and the diffusing inhomogeneity
!*(s!=1 cm−1" in brown. The marker concentration distribution is shown on
the right side.
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number of photons detected by one of the measurement
pairs. We denote by Cmax this number of photons. Increasing
the prescribed value for Cmax is experimentally equivalent to
increasing the integration time until Cmax photons are col-
lected by one of the detectors. In the present study, Cmax lies
in the range #105 ,109$, which is consistent with the assump-
tion made in Sec. II C concerning the number of detected
photons.

IV.C. Computation of the TR weight matrix

The time-varying entries wj,n!t"=vnNx#gsj,rn
!d!grn,dj

$!t"
of the weight matrix are computed as follows.

Step 1: Calculation of the product of the Fourier transform
of the Green’s functions: ĝsj,r

!#"ĝr,dj
!#".

The Green’s functions ĝsj,r
!#" and ĝr,dj

!#" are computed
by solving the Fourier transform of Eq. !1" by means of finite
element method. Specifically, we used the function toastSys-
mat.m !MATLAB package TOAST,42 see Ref. 43 for details" to
calculate the propagation operator

P!r" = −
1
3

# ' 1

(s!!r"
#* +

j#

)
+ (a!r"

and then inverse the systems P!r"gr,dj
=*!r−d j" and

P!r"gr,sj
=*!r−s j". This procedure is repeated for N#=128

frequencies chosen so as to get a time step Te of 125 ps over
an observation range of 16 ns. For this calculation, we used
a regular grid of 35,937 nodes with a voxel size of 0.125
-0.125-0.125 cm3. For a given frequency, the computa-
tion time of the propagation operator is less than 1 s, the
Green’s functions for any source and detector positions are
then obtained in 45 s, and their multiplications finally require
about 1 s !Dell precision workstation running LINUX 2.6.18

with 2.83 GHz Intel Xeon processor and 4 Gbyte RAM".
Step 2: The previous results are multiplied by the Fourier

transform of the decaying exponential,

ê!#" =
+,

1 + j#"
. !13"

Step 3: The ŵj,n’s are inverse-Fourier transformed.
At this point, the weight matrix is of size 169-35 937

-128. The discretization of the TR weight matrix along its
space and time dimensions has been chosen so as to limit
numerical errors. However, such precision is not necessary
for the purpose of forward modeling and reconstruction. As a
result, the two following operations were carried out. !1" The
TR weight matrix is subsampled to a coarser grid along its
space dimension. The coarser grid, which is fine enough with
regard to the resolution of FDOT, consists of 4096 voxels
with size of 0.25-0.25-0.25 cm3. !2" The weight matrix is
restricted to the Ne=32 time samples covering the range
#0.5;4.5$ ns. The value of the lower bound is chosen large
enough to ensure that the light propagation model does not
break down. The upper bound is chosen so as to reject time
samples of low value. As a result, the final TR weight matrix
is of size 169-4096-32.

IV.D. Computation of the wavelet transforms

The wavelet transform of the measurements along the
time axis is performed by means of the filter-bank implemen-
tation described by Mallat.44 This choice allows for signifi-
cantly alleviating the computational cost of the procedure.
The filter-bank implementation of the wavelet transform re-
lies on the iterative discrete filtering and downsampling of
the input signal. Two filters are used: The first one is a low-
pass filter whose outputs are the approximation coefficients;
the second one is a high-pass filter whose outputs are the
detail coefficients.

When Haar wavelets are considered, the wavelet coeffi-
cient at scale i reduces to sums and differences of the ap-
proximation coefficients at scale i−1. Specifically, the ap-
proximation and detail Haar wavelet coefficients at scale i
are given by

ai#q$ = 1
2 !ai−1#2q − 1$ + ai−1#2q$", q ! +1, . . . ,2−iNe,

!14a"

and

di#q$ = 1
2 !ai−1#2q − 1$ − ai−1#2q$", q ! +1, . . . ,2−iNe, .

!14b"

To initialize the algorithm, the approximation coefficients at
scale 0 are chosen to equal the time samples. Thus, a0#q$
=u!qTe". The wavelet decomposition of the TR weight ma-
trix up to scale 5 is performed in 2 s.

IV.E. Computation of the solution of the inverse
problem

The reconstructed concentration c1
! is calculated for 50

noise realizations of the measurements u!t". So as to down-
weigh measurements, the resulting features with low SNR, Q
is chosen as a diagonal matrix whose jth component is the
inverse of the variance of the jth component of y. This is
equivalent to choosing Q as the inverse of the covariance
matrix of the featured measurements y, keeping only the di-
agonal entries. The retained 1 is chosen so as to respect a
stability of 10% !V=0.1", which is observed to be an accept-
able level. The regularization parameter 1 is calculated itera-
tively. The variability V is first evaluated for 1=10 and 1
=1000. Then, 1 is obtained by the bisection method since the
variability monotonically decreases with respect to the regu-
larization parameter. Typically, this iterative process con-
verges to the prescribed value of V, with an accuracy of
0.01%, in less than 20 iterations.

The reconstruction time mainly depends on the size of the
featured weight matrix, i.e., on the number of the chosen
BFs. The reconstruction time is 1.6 s for 1 BF, 2.7 s for 2
BFs, 6.3 s for 4 BFs, 25 s for 8 BFs, 201 s for 16 BFs, and
1675 s for 32 BFs.

V. RESULTS

We present now fluorescence marker concentrations re-
constructed from the following data features:
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• Moments up to the order k! +0,1 ,3 ,7,. Higher-order
moments are sensitive to noise and of limited use in
reconstruction.18 Hence, reconstructions obtained from
moments up to order 7 can be considered as the best
reconstructions achievable. In the following, we use
m0→k to denote the set of moments from order 0 to
order k.

• Haar MRA from scale i=0 !the finest" to scale i=5 !the
coarsest". Precisely, the Haar MRA at scale i consists of
the set of Haar approximation coefficients at scale i, i.e.,
the set hi= +ai#q$, ,q! +1, . . . ,2−iNe,.

The three following remarks are important for interpreting
the results. !1" The Haar MRA at scale i=5 is equivalent to
the moment at order n=0. Thus, m0=h5. !2" When the TR
signals are restricted to their Haar MRA at scale i=5 !or,
equivalently, to their 0th order moments", the TR FDOT re-
duces to the CW FDOT. !3" The Haar MRA at scale i=0 is
equivalent to directly considering the TR signal !all the
samples are regarded". Thus, reconstructions based on Haar
MRA at scale i=0 are considered as the best reconstructions
achievable with TR measurements.

V.A. Performance metrics

In order to quantitatively characterize the quality of a re-
construction c!, we use the following performance metrics:

• Reconstruction error 2r: This is a global measure that
depends on the distance between the phantom concen-
tration cp and the reconstructed concentration c!. The
normalized definition of this metric is

2r =
&c! − cp&2

2

&cp&2
2 . !15"

The closer to zero this metric is, the better is the quality of
reconstruction.

• Reconstruction energy Er: This global measure accounts
for the ability of preserving the energy of the concen-
tration during the reconstruction process. Indeed, be-
cause of the ill-posedness of the inverse problem, the
energy of the reconstructed concentration can be se-
verely reduced so as to preserve its stability. The recon-
struction energy is defined by

Er =
&c!&2

2

&cp&2
2 . !16"

The closer to one this metric is, the better is the
reconstruction.

We also introduce local criteria, based on the reconstruc-
tion accuracy of the three inclusions. Specifically, the recon-
structed inclusion concentrations c1

!, c2
!, and c3

! are calculated
by searching the positions of the local maximum concentra-
tions r1

!, r2
!, and r3

! in the vicinity of the three ground-truth
positions r1, r2, and r3, respectively. The three reconstructed
inclusion concentrations are then defined by ci

!=c!ri
!" , i

! +1,2 ,3,. After that, the two following criteria can be
evaluated.

• z-axis sensitivity zS: This criterion assesses the ability of
reconstructing an inclusion located far away from
sources and detectors. This criterion is important since
inclusions are hardly detectable in such zones. The
z-axis sensitivity zS is defined by

zS =
c1

!

cp!r1
!"

. !17"

The closer to one the z-axis sensitivity is, the better the re-
construction is.

• z-axis contrast zC: This is a measure of the ability to
resolve two adjacent inclusions along the z axis. It is
defined as

zC =
cpeak − cvalley

!cpeak
2 + cvalley

2 "1/2 , !18"

where cpeak is the peak concentration chosen as the mean
of the concentration of inclusions 2 and 3, thus cpeak= #c2

!

+c3
!$ /2; cvalley is the valley concentration chosen as the

minimum concentration among the voxels joining the in-
clusion positions r2 and r3. The closer to one the z-axis
contrast is, the better is the reconstruction.

V.B. Noise-free case

We first consider noise-free scenario and present the 3D
reconstructed concentrations obtained from the different data
features. The reconstructions obtained from moments and
Haar MRA are depicted in Fig. 4. To facilitate the compari-
son of reconstructions obtained from the same number of
data features, the latter is placed along the same column. The
four performance metrics, evaluated for every data features,
are shown in Fig. 5!a". In this representation, the results are
grouped depending on the number of BFs used. For the Haar
MRA, the scale i=0 involves 32 BFs; the scale i=1, 16; the
scale i=2, 8; the scale i=3, 4; the scale i=4, 2; and the scale
i=5 only 1.

V.C. Noisy case

We next present the reconstruction results obtained from
the different data features in the presence of noise. The maxi-
mum number of detected photons is first set to Cmax=107. A
quantitative evaluation, based on the performance metrics
defined in Sec. V A, is available in Fig. 5. The reconstruction
profiles along the z axis, when the moments are considered
and when the Haar MRA is considered, are plotted in Figs.
6!a" and 6!b", respectively.

The influence of noise on the reconstructed concentration
is investigated next. To this end, we consider a maximum
number of detected photons Cmax varying from 105 to 1010.
The results are plotted in Fig. 7. The analysis focuses on the
z-axis sensitivity and contrast since these two local metrics
are of particular interest in practical applications. Moreover,
for clarity, the investigated data features are restricted to the
moments up to orders from 0 to 3 and to the Haar MRA at
scales for which the number of BFs is the same that for the
moments, i.e., scales i=3,4 ,5.

2896 Ducros et al.: A time-domain wavelet-based approach for FDOT 2896

Medical Physics, Vol. 37, No. 6, June 2010



VI. DISCUSSION

The discussion of the results presented in Sec. V is di-
vided into two parts. First, we compare and analyze the re-
constructions obtained from noise-free measurements. Then,
we focus on the reconstructions in the presence of noise.

VI.A. Noise-free case

In the noise-free case, the number of BFs used for the
reconstruction has a significant impact on the quality of re-
construction. As can be observed on the 3D fluorescence
marker reconstructions of Fig. 4, the reconstruction quality is
enhanced for increasing numbers of BFs. For instance, inclu-
sion 1 gets better resolved when more moments are consid-
ered. The separation between inclusions 2 and 3 also gradu-
ally improves. The same trend can be observed for Haar
MRA at finer scales. However, for a given number of BFs,
the reconstructions obtained from different types of BFs are
hardly distinguishable.

These visual observations are confirmed by the perfor-
mance metrics shown in Fig. 5!a". The global performance
metrics as well as the local ones indicate a significant im-
provement of the reconstruction quality for increasing num-
bers of BFs. All the previously mentioned points suggest
that, in the absence of noise, the TR information is able to
significantly improve the reconstruction quality, regardless of
the type of BFs chosen to analyze the signals.

VI.B. Noisy case

Comparing the performance metrics of the noisy recon-
structions to those of the noise-free reconstructions #compare
Fig. 5!a" with Fig. 5!b"$, it can be readily seen that the pres-
ence of noise on the measurements significantly degrades the
quality of reconstruction. This is not surprising since the in-
verse problem is ill-posed and thus the reconstruction is sen-

sitive to noise. As a result, the conclusions derived from the
noise-free case must be carefully rechecked in the presence
of noise.

First, it can be seen that the reconstructions obtained from
many BFs are severely penalized by the presence of noise on
the measurements, which limits the benefit of using the TR
information. A more accurate analysis, in terms of the influ-
ence of the data type, can be carried out from performance
metrics given by Fig. 5!b" together with the reconstruction
profiles in Fig. 6. Let us compare how the quality of recon-
structions is improved by incrementing the number of BFs.
The color code in Figs. 6!a" and 6!b" is the same when the
same number of BFs is considered, facilitating the compari-
son. Let us start with the reconstruction profiles obtained
from m0 and h5 that required the projection onto only one BF
and let us increase the number of BFs to 2. Comparing m0→1
to m0 and h4 to h5, an improvement of the reconstruction
quality is observed, notably for the reconstruction contrast
zC. A further improvement is observed, increasing the num-
ber of BFs to 4. Interestingly, the benefit is higher with the
Haar MRA approach !in Fig. 5 compare 2r and zC for h3, h4,
m0→3, and m0→1". While the quality of the Haar MRA-based
reconstruction is still improved using eight BFs, the mo-
ments approach provides little improvement !compare, for
instance, m0→7 to m0→3 on the reconstruction profiles of Fig.
6". The reconstruction quality is not further improved con-
sidering more BFs !Haar MRA with i32".

We observe that the optimal TR reconstruction quality,
which is obtained considering the Haar MRA at scale i=0, is
attained using a Haar MRA at scales i42. Therefore, it can
be concluded that the whole TR information is compressed,
in the reconstruction sense, using a Haar MRA at scale i=2.
However, the optimal TR reconstruction quality cannot be
reached using the moments approach.

Now, let us inspect how the total number of detected pho-
tons Cmax—equivalently, the level of noise—affects the pre-

FIG. 4. Three-dimensional representation of the reconstructed fluorescence marker concentrations. No noise was considered. On the upper row moments up
to orders 0, 1, 3, and 7 considered. On the bottom row Haar MRA at scales i from 1 to 5 are considered. In a given column, reconstructions are obtained from
the same number of BFs !from left to right: 1, 2, 4, and 8".
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vious conclusions. In Fig. 7, we plot the z-axis contrast zC
and sensitivity zS with respect to Cmax ranging from 105 to
1010 photons. Both performance metrics exhibit almost the
same pattern.

First, we observe that the Haar MRA approach outper-
forms the moments approach, regardless of the number of
BFs chosen, on the whole range of Cmax even though the
benefit is more limited in terms of sensitivity for Cmax
3107 photons. Second, the Haar MRA at scale i=2 is
shown to provide reconstructions very close to those ob-
tained from the full TR signals within the whole range of
Cmax, which allows for substantially alleviating the recon-
struction cost. Third, it can be seen that the TR information is
increasingly more beneficial than the CW information for
increasing Cmax. The larger Cmax is—and thus the better the

signal-to-noise ratio of the measurements—the more benefi-
cial the TR information is. However, the TR information is
found to be of limited interest in terms of contrast for Cmax
3105 photons and in terms of sensitivity for Cmax3106. It
should be noted that the provided domains of interest a pri-
ori depend on different factors such as the optical properties
of the medium, the geometry of the medium, or the acquisi-
tion configuration.

VII. CONCLUSION

In this paper, we have addressed the problem of choosing
the best data features in time-resolved fluorescence diffuse
optical tomography. The data feature problem has been rein-
terpreted from the point of view of the projection of mea-
surements onto some basis functions and a wavelet approach
has been proposed. A time-resolved forward model and its
projection onto wavelet basis functions have been imple-

FIG. 5. Performance metrics for both moment-based and Haar-MRA-based
reconstructions. The red dash-line bars indicate the metrics of the moments;
the blue solid-line bars the metrics of the Haar MRA. Cmax is set to 107

photons. The performance metrics are plotted with respect to the number of
BFs used for the reconstruction. The use of 1 BF corresponds to either m0 or
h5, 2 BFs to either m0→1 or h4, 4 BFs to either m0→3 or h3, 8 BFs to either
m0→7 or h2, 16 BFs to h1, and 32 BFs to h0.
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FIG. 6. Fluorescence marker concentration profiles reconstructed from !a"
moments up to orders 0–3. !b" Haar MRA at scales 0–5. In both cases, the
maximum count number Cmax is set to 107 photons.
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mented. For reconstruction purpose, multiresolution approxi-
mations of the time-resolved signals have been considered at
different scales. The reference temporal moments of the sig-
nal, up to order three, have also been considered. Then, the
reconstruction of the marker concentration from the different
data features has been performed with a methodology that
ensures the comparability of the reconstructions.

For the particular configurations investigated in this paper,
our conclusions are the following:

• In the noise-free case, the reconstruction quality is im-
proved with respect to the number of basis functions,
regardless of the type of basis functions.

• In the noisy case, the number of basis functions is still
an important aspect but the type of basis function be-
comes important.

• In terms of reconstruction, the wavelet approach outper-
forms the moment approach for maximum number of
detected photons ranging from 105 to 1010. In particular,
the wavelet approach allows for extending the domain
of interest of the TR approach down to 105 photons in
terms of reconstruction contrast and down to
106 photons in terms of reconstruction sensitivity.

• The TR information is compressed with limited recon-
struction degradation using only few basis functions.
The TR information cannot be compressed, in terms of
reconstruction quality, using only temporal moments.

• Whatever the chosen basis functions, the TR approach
provides a reconstruction quality equivalent to the CW
one if the maximum number of detected photons re-
mains below 105.

With these conclusions, we provide theoretical domains of
interest for the use of the wavelet transforms of TR measure-
ments. We also derive the domain of interest of the TR mo-

dality with respect to the CW modality. Since the domains of
interest are expressed in terms of the number of detected
photons, they can be of interest from the experimental point
of view. In an experimental context, indeed, no benefit of the
wavelet or TR approaches can be expected if the number of
detected photons remains below the provided thresholds. It
should be noted that the experimental domains of interest are
most likely to be shifted to larger values of detected photons
due to the unavoidable presence of model mismatch and/or
extra sources of noise.

Finally, it is important to note that the domains of interest
derived here are not universal. Indeed, they have been ob-
tained for a particular acquisition geometry !the so-called
transmission geometry" and for a particular reconstruction
approach !the Tikhonov framework". Evaluating the domain
of interest of the wavelet approach, which comprises the full
TR approach, for other acquisition geometries !such as the
reflexion geometry or the transmission geometry rotating the
medium" and within other reconstruction frameworks !nota-
bly the sparse reconstruction one" could be some relevant
directions for further studies.
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