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ABSTRACT

We present a new family of 2D orthogonal wavelets which
uses quincunx sampling. The orthogonal refinement filters have
a simple analytical expression in the Fourier domain as a func-
tion of the order α, which may be non-integer. The wavelets have
good isotropy properties. We can also prove that they yield wavelet
bases of L2(R

2) for any α > 0. The wavelets are fractional in the
sense that the approximation error at a given scale a decays like
O(aα); they also essentially behave like fractional derivative op-
erators. To make our construction practical, we propose an FFT-
based implementation that turns out to be surprisingly fast. In fact,
our method is almost as efficient as the standard Mallat algorithm
for separable wavelets.

1. INTRODUCTION

The great majority of wavelet bases that are currently used for im-
age processing are separable. There are two primary reasons for
this. The first is convenience because wavelet theory is most devel-
oped in 1D and that these results are directly transposable to higher
dimensions through the use of tensor product basis functions. The
second is efficiency because a separable transform can be imple-
mented by successive 1D processing of the rows and columns of
the image. The downside, however, is that separable transforms
tend privilege the vertical and horizontal directions. They also
produce a so-called “diagonal” wavelet component, which does
not have a straightforward directional interpretation.

Non-separable wavelets, by contrast, offer more freedom and
can be better tuned to the characteristics of images [1, 2]. Their
less attractive side is that they require more computations. The
quincunx wavelets are especially interesting because they can be
designed to be nearly isotropic [3]. In contrast with the separa-
ble case, there is a single wavelet and the scale reduction is more
progressive: a factor

√
2 instead of 2. The preferred technique

for designing quincunx wavelets with good isotropy properties is
to use the McClellan transform to map 1D biorthogonal designs
to the multidimensional case [4]. Since this approach requires the
filters to be symmetric, it has been applied mainly to the biorthog-
onal case because of the strong incentive to produce filters that are
compactly supported [5, 6, 7, 8]. One noteworthy exception is the
work of Nicolier et al. who used the McClellan transform to pro-
duce a quincunx version of the Battle-Lemarié wavelet filters [9].
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However, we believe that their filters were truncated because they
used a representation in terms of Tchebycheff polynomials.

In this paper, we construct a new family of quincunx wavelets
that are orthogonal and have a fractional order of approximation.
The idea of fractional orders was introduced recently in the con-
text of spline wavelets for extending the family to non-integer de-
grees [10]. The main advantage of having a continuously-varying
order parameter—not just integer steps as in the traditional wavelet
families—is flexibility. It allows for a continuous adjustment of
the key parameters of the transform; e.g., regularity and localiza-
tion of the basis functions. The price that we are paying for these
new features—orthogonality with symmetry as well as fractional
orders—is that the filters can no longer be compactly supported.
We will make up for this handicap by proposing a fast FFT-based
implementation which is almost as efficient as Mallat’s algorithm
for separable wavelets [11].

2. QUINCUNX SAMPLING AND FILTERBANKS
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Fig. 1. The quincunx lattice (a) and its corresponding bandwidth
(b).

First, we recall some basic results on quincunx sampling and
perfect reconstruction filterbanks [12]. The quincunx sampling lat-
tice is shown in Fig. 1. Let x[�k] denote the discrete signal on the
initial grid. Then, its quincunx sampled version is

[x]↓D[�k] = x[D�k] where D =

(
1 1
1 −1

)

Our down-sampling matrix D is such that D2 = 2I. The Fourier-
domain version of this formula is

[x]↓D[�k] ←→ 1

2

[
X
(
D−T �ω

)
+ X

(
D−T �ω + �π

)]
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where �π = (π, π).
The upsampling is defined by

[x]↑D[�k] =

{
x[D−1�k] if k1 + k2 even
0 else where

and its effect in the transform domain is as follows:

[x]↑D[�k] ←→ X
(
DT �ω

)
If we now chain the down-sampling and up-sampling operators,
we get

[x]↓D↑D[�k] =

{
x[�k] if k1 + k2 even
0 else where

�
1

2
[X (�ω) + X (�ω + �π)] (1)

Since quincunx sampling reduces the number of image samples by
a factor of two, the corresponding reconstruction filterbank has two
channels (cf., Fig. 2). The lowpass filter H̃ reduces the resolution
by a factor of

√
2; the wavelet coefficients correspond to the output

of the highpass filter G̃.

xi[�k]

G̃ (�ω) ✍✌
✎�D

↓
yi+1[�k]

H̃ (�ω) ✍✌
✎�D

↓
xi+1[�k]

xi[�k]

✍✌
✎�D

↑ G (�ω)

✍✌
✎�D

↑ H (�ω)

Fig. 2. Perfect reconstruction filterbank on a quincunx lattice.

Applying the relation (1) to the blockdiagram in Fig. 2, it is
easy to derive the conditions for a perfect reconstruction:




H̃ (�ω) H (�ω) + G̃ (�ω)G (�ω) = 2

H̃ (�ω + �π) H (�ω) + G̃ (�ω + �π)G (�ω) = 0

(2)

where H and G (resp., H̃ and G̃) are the transfer functions of
the synthesis (resp., analysis) filters. In the orthogonal case, the
analysis and synthesis filters are identical up to a central symmetry;
the wavelet filter G is simply a modulated version of the lowpass
filter H .

3. FRACTIONAL QUINCUNX FILTERS

To generate quincunx filters, we will use the standard approach
which is to apply the diamond McClellan transform to map a one
dimensional design onto the quincunx structure.

As starting point for our construction, we introduce a new one-
dimensional family of orthogonal filters:

Hα(z) =

√
2(z + 2 + z−1)

α
2√

(z + 2 + z−1)α + (−z + 2 − z−1)α

=

√
2(2 + 2 cos ω)

α
2√

(2 + 2 cos ω)α + (2 − 2 cos ω)α
(3)
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Fig. 3. Frequency responses of the orthogonal refinement filters
for α = 1, . . . , 100.

which is indexed by the continuously-varying order parameter α.
These filters are symmetric and are designed to have zeros

of order α at z = −1; the numerator is a fractional power of
(z + 2 + z−1) (the simplest symmetric refinement filter) and the
denominator is the appropriate orthonormalization factor. By vary-
ing α, we can adjust the frequency response as shown in Fig. 3. As
α increases, Hα(z) converges to the ideal half-band lowpass filter.
Also note that these filters are maximally flat at the origin; they
essentially behave like Hα (ω) = 1 + O(ωα) as ω → 0. Their
frequency response is similar to the Daubechies’ filters with two
important differences: (1) the filters are symmetric, and (2) the
order is not restricted to integer values.

We can prove mathematically that these filters will generate
valid 1D fractional wavelet bases of L2 similar to the fractional
splines presented in [10]. The order property (here fractional) is
essential because it determines the rate of decay of the approxima-
tion error as a function of the scale. It also conditions the behav-
ior of the corresponding wavelet which will act like a fractional
derivative of order α; in other words, it will kill all polynomials of
degree n ≤ 	α − 1
.

Applying the diamond McClellan transform to the filter above
is straightforward; it amounts to replacing cos ω by 1

2
(cos ω1

+ cos ω2) in (3). Thus, our quincunx refinement filter is given
by

Hα(ω1, ω2) =
√

2(2 + cos ω1 + cos ω2)
α
2√

(2 + cos ω1 + cos ω2)α + (2 − cos ω1 − cos ω2)α
(4)

This filter is guaranteed to be orthogonal because the McClel-
lan transform has the property of preserving biorthogonality. Also,
by construction, the αth order zero at ω = π gets mapped into a
corresponding zero at (ω1, ω2) = (π, π); this is precisely the con-
dition that is required to get a two dimensional wavelet transform
of order α.

The orthogonal wavelet filter is obtained by modulation

Gα(ω1, ω2) = ejω1Hα(−ω1 − π,−ω2 − π) (5)

The corresponding orthogonal scaling function ϕα (�x) is de-
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fined implicitly as the solution of the quincunx two-scale relation:

ϕα (�x) =
√

2
∑

�k∈Z2
hα[�k]ϕα

(
D�x − �k

)
.

Since the refinement filter is orthogonal with respect to the quin-
cunx lattice, it follows that ϕα (�x) ∈ L2(R

2) and that it is or-
thogonal to its integer translates. Moreover, for α > 0, it will
satisfy the partition of unity condition, which comes as a direct
consequence of the vanishing of the filter at (ω1, ω2) = (π, π).
Thus, we have the guarantee that our scheme will yield orthogo-
nal wavelet bases of L2(R

2). The underlying orthogonal quincunx
wavelet is simply

ψα (�x) =
√

2
∑

�k∈Z2
gα[�k]ϕα

(
D�x − �k

)
.

4. IMPLEMENTATION IN FOURIER DOMAIN

xi[�k]

G̃ (�ω) ✍✌
✎�D

↓ • yi+1[�k]

H̃ (�ω) ✍✌
✎�D

↓ xi+1[�k]�
G̃ (�ω) ✍✌

✎�D

↓ • yi+2[�k]

H̃ (�ω) ✍✌
✎�D

↓ •xi+2[�k]

Fig. 4. Analysis part of the 2D QWT for two iterations.

xi[�k]yi+2[�k] • ✍✌
✎�D

↑ G (�ω)

xi+2[�k] • ✍✌
✎�D

↑ H (�ω)

�

yi+1[�k] • ✍✌
✎�D

↑ G (�ω)

xi+1[�k] ✍✌
✎�D

↑ H (�ω)

Fig. 5. Synthesis part of the 2D quincunx wavelet transform
(IQWT).

The major objection that can be made to our construction is
that the filters are not FIR and that it may be difficult and costly
to implement the transform in practice. Following the proposal of
Nicolier et al. [9], we will see here that one can turn the situa-
tion around and obtain a very simple and efficient algorithm that
is based on the FFT. Indeed, Rioul et al. [13] have suggested early
on to use the FFT as an efficient tool for computing 1D wavelet
transforms when the filters are long. Working in the frequency do-
main is also very convenient for us because of the way in which
we have specified our filters (cf. Eqs. (4) and (5)).

Here, we will only describe the decomposition part of the algo-
rithm which corresponds to the block diagram in Fig. 4 where we
have pooled together two levels of decomposition. The initializa-
tion step is to evaluate the FFT of the initial input image x[�k] and
to precompute the corresponding sampled frequency responses of
the analysis filters H̃ [�n] and G̃ [�n] using (4) and (5). Conceptu-
ally, the proposed method is similar to the one described in [9].
However, we take advantage of symmetries and redundancies in

the Fourier domain which accelerates the evaluation of Xi+2[�m]
and Yi+2[�m] by at least a factor of two.

Assuming that the current image size is N × N , the input
variable is

Xi [�n] =
∑

�k

xi[�k]e−j
2π〈�k,�n〉

N for n1, n2 = 0 . . . N − 1.

The output variables are the discrete Fourier transforms of the
wavelet coefficients

Yi+1 [�n] =
∑

�k yi+1[�k]e−j
2π〈�k,�n〉

N for n1, n2 = 0 . . . N − 1

Yi+2 [�m] =
∑

�k yi+2[�k]e
−j

2π〈�k, �m〉
N
2 for m1, m2 = 0 . . . N

2
− 1

The coefficients themselves are recovered by inverse FFT. The
Fourier transforms after the first level of filtering (odd iteration)
are given by

Xi+1 [�n] = 1
2

(
H̃ [�n] Xi [�n]

+ H̃
[
�n +
(

N
2

, N
2

)]
Xi

[
�n +
(

N
2

, N
2

)])
Yi+1 [�n] = 1

2

(
G̃ [�n] Xi [�n]

+ G̃
[
�n +
(

N
2

, N
2

)]
Xi

[
�n +
(

N
2

, N
2

)])
Note that these are computed at the resolution of the input. The
size reduction only takes place during the second step (even itera-
tion):

Xi+2 [�m] = 1
2

(
H̃p [�m] Xi+1 [�m]

+H̃p

[
�m +

(
N
2

, 0
)]

Xi+1

[
�m +

(
N
2

, 0
)])

Yi+2 [�m] = 1
2

(
G̃p [�m] Xi+1 [�m]

+G̃p

[
�m +

(
N
2

, 0
)]

Xi+1

[
�m +

(
N
2

, 0
)])

where H̃p [�m] = H̃ [D�m mod (N, N)] and G̃p [�m]

= G̃ [D�m mod (N, N)]. The process is then iterated until one
reaches the final resolution. Obviously, as one gets coarser, the
Fourier transforms of the filters need not be recalculated; they are
simply obtained by down-sampling the previous arrays.

The synthesis algorithm operates according to the same prin-
ciples using up-sampling instead. It corresponds to the block dia-
gram in Fig. 5.

We have implemented the algorithm in Matlab and report com-
putation times below 1.2 sec for a 256 × 256 image on an aging
Sun Ultra 30 workstation; the decomposition is essentially perfect
with an (RMS) reconstruction error below 10−12. The method is
generic and works for any set of filters that can be specified in the
frequency domain. Based on the timings reported in [9], we es-
timate our implementation to be at least five times faster than the
one of Nicolier which is also coded in Matlab.

Two examples of fractional quincunx wavelet decompositions
with α =

√
2 and α = π are shown in Fig. 6. Note how the

residual image details are more visible for the lower value of α.
The larger α reduces the energy of the wavelet coefficients, but this
also comes at the expense of some ringing. Thus, it is convenient
to have an adjustable parameter to search for the best tradeoff.

An advantage of the present approach is that the filters’s are
nearly isotropic, especially for small values of α; this is the reason
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why the wavelet details in Fig. 6 do not present any preferential
orientation. Another nice feature of the algorithm is the computa-
tional cost remains the same irrespective of the value of α.

input image (256 × 256)

(a)

(b)

Fig. 6. Quincunx wavelet transforms with 4 iterations: (a) α =√
2, (b) α = π. The bandpass coefficients are on the left (first four

images) and the lowpass coefficients on the right.

5. CONCLUSION

We have introduced a new family of orthogonal wavelet transforms
for quincunx lattices with good isotropy properties. A key feature
is the continuously-varying order parameter α which can be used
to adjust the bandpass characteristics as well as the localization of
the basis functions.

We have also demonstrated that these wavelet transforms could
be computed quite efficiently using FFTs. This should help dispell
the commonly held belief that non-separable wavelet decomposi-
tions are computationally much more demanding than the separa-
ble ones.

Because of their nice properties and their ease of implementa-
tion, these wavelets should present a good alternative to the sep-
arable ones that are being used in a variety of image processing
applications (data compression, filtering, texture analysis etc.).
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