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Abstract

Functional magnetic resonance imaging (fMRI) is a recent, non-invasive technique that
allows the measurement of brain metabolism while a subject is performing specific motor
or cognitive tasks. The practical difficulty is that the signal changes are very small and
the noise is relatively high. To enhance the activation signal, conventional methods,
such as SPM, apply a Gaussian filter to the data and perform a statistical analysis at
the pixel-level. Gaussian filtering obviously suppresses high frequency information. To
avoid this loss of resolution, we propose instead to apply a wavelet transform and to
perform the statistical analysis in the wavelet domain. Our statistical analysis relies on
a conservative decision strategy which ensures that the false detection rate is kept well
under control.

In the first chapter, we introduce the fMRI technique and compare it with other
modalities. We then characterize the noise of fMRI data and introduce the statistical
tools for our analysis. Next, we describe different types of wavelet transforms and show
how those can be applied to the analysis of fMRI data.

Different wavelet bases offer different compromises. To determine the wavelet prop-
erties that are the most beneficial for the detection of activation patterns in fMRI data,
we develop a test procedure for the objective evaluation of analysis methods. This pro-
cedure allows us to compare various brands of wavelet transforms, including Daubechies
wavelets (real and complex) and the newly-defined fractional splines. We observe that
one of the transforms—dual fractional spline of degree 1.2—usually outperforms the oth-
ers. We establish an interesting theoretical connection between this particular wavelet
transform and the Gaussian filter recommended by SPM.

Traditional, separable wavelets are constrained to dyadic scale progressions (powers of
two). To allow for finer scale progressions, we define new 2D and 3D fractional wavelets
which use quincunx sampling. We propose an FFT-based implementation that turns
out to be surprisingly fast. We also present some experimental examples where these
quincunx wavelets offer some benefits.





Version abrégée

L’imagerie par résonance magnétique (IRM) est une récente technique non-invasive qui
permet de mesurer des activités cérébrales lorsqu’un patient est soumis à une stimulation
externe. En effet, les images obtenues sont très bruitées et les fluctuations des signaux
à détecter sont habituellement très faibles. Pour augmenter la limite de détection, des
méthodes conventionnelles telles que SPM appliquent un filtre Gaussien et une analyse
statistique sur le niveau des pixels détectés. Mais le filtre Gaussian génère une perte des
informations de hautes fréquences.
Dans ce travail, nous proposons d’appliquer une transformation en ondelettes ainsi
que de faire l’analyse statistique sur les coefficients obtenus afin d’éviter cette perte
d’information et d’augmenter la sensibilité de résolution. En effet, notre analyse statis-
tique est basée sur une stratégie de décision conservatrice, ce qui assure que le nombre
de fausses détections reste sous contrôle.
Après une introduction de l’IRMf et une comparaison avec les autres modalités, une
caractérisation du bruit des données brutes obtenues ainsi que l’introduction des outils
statistiques pour notre analyse vont être présentés. Les différents types de transforma-
tions par ondelettes ainsi que la manière avec laquelle elles peuvent être appliquées pour
une analyse des images IRMf seront évalués.
En effet, les différentes bases d’ondelettes offrent chacune leurs inconvénients et leurs
avantages et par conséquent, une analyse des différents compromis est nécessaire pour
déterminer lesquels sont le mieux adaptés à notre problème, c’est-à-dire la détection
des activations cérébrales. Pour évaluer les différentes performances, une procédure
de test a été développée et nous permet de définir très clairement les bases les plus
adaptées à l’analyse des données IRMf. Cette procédure nous permet de comparer des
types d’ondelettes différentes, comme celles de Daubechies (complexes et réelles) et les
nouvelles ondelettes splines fractionnaires. Nous observons que l’une d’elles —la trans-
formation en ondelettes splines fractionnaires de degré 1.2 (type “dual”)—donne des
performances nettement plus élevées que les autres ondelettes. On met en évidence une
connection théorique intéressante entre cette transformation particulière et le filtrage
Gaussian recommandé par SPM.
Les ondelettes séparables sont contraintes à une progression d’échelle dyadique et par
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conséquent, pour permettre une progression plus fine, nous proposons l’utilisation de
nouvelles base d’ondelettes fractionnaires à 2 et 3 dimensions. Ces dernières, développés
par nos soins, utilisent un échantillonnage en quinconce et leur implémentation dans une
base de l’espace de Fourier permet un traitement de l’image de manière étonnamment
rapide. L’avantage de notre procédé sera finalement démontré à travers différents exem-
ples.



Chapter 1

Introduction

1.1 Motivation

The brain is the most complex organ of a human being. Some authors have even claimed
that it is the most complex entity in the universe. For several thousand years humans—
philosophers, poets, musicians and more recently scientists—have been trying to disclose
the secret of the function of the brain. The question is: what is the relationship between
the brain and mental functions, including perception, memory, thought and language ?
Today, we are in the exciting phase of starting to understand how the brain works. A
crucial role is played here by imaging techniques such as functional Magnetic Resonance
Imaging (fMRI). Several brain areas which are activated by physiological stimuli have
already been discovered. Now, more diffuse connections are being investigated. Scientists
are starting to study neural correlates of many emotional states. One example, which
recently made headlines, is the investigation of the neural basis of romantic love. The
activity in the brains of 17 subjects who were deeply in love was scanned using fMRI
while they viewed pictures of their partners. It was compared with the activity produced
by viewing pictures of three friends of similar age, sex and duration of friendship as
their partners [12]. The authors found a unique network of areas which is responsible for
evoking this affective state.
Another example is the perception of music. Music plays a crucial role in every culture.
It has been discovered that different types of music—or composers—affect different areas
of the brain.
Another strong incentive to monitor the function of the brain is the search for better
diagnostic tools and treatment planning. There are several neurological diseases such as
epilepsy for which the last treatment, when the patient does not respond to medication, is
neurosurgery. To minimize the potential risk of such an invasive treatment, neurosurgery
relies on a precise delineation of the structural and functional aspects of the brain. fMRI
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is becoming the method of choice for such individualized maps of brain functions. Further
medical examples where fMRI is playing an increasing role are: the localization of regions
with increased metabolism (tumors) for planning radiation therapy, the assessment of the
effects of stroke, trauma, or degenerative diseases for guiding therapy and patient follow-
up.
One of the practical problems with fMRI is that the signal differences between active
areas and less-active areas are very small (1-5%). The detection of such small differences
requires the use of signal processing techniques to enhance the signal-to-noise ratio of
the data and the development of sophisticated statistical analyses to obtain reliable
results. fMRI has typically a better spatial resolution than other functional imaging
techniques (PET, SPECT, and MEG). Unfortunately, some of this resolution is lost in
standard statistical analysis, which applies a Gaussian blurring filter to reduce the effect
of the noise. Here, we investigate an alternative wavelet-based approach which has the
capability of preserving the high-frequency content of the image.

1.2 Overview of the thesis

This thesis is organized as follows:

Chapter 2 Brief description of functional Magnetic Resonance Imaging (fMRI). We de-
scribe the problem, give an overview of the existing fMRI-data analysis meth-
ods and situate our work in this larger context.

Chapter 3 The necessary statistical tools for our analysis. In particular, we give an
introduction to hypothesis testing which is a non-standard topic for a signal
processing audience. One part of this chapter is also devoted to the charac-
terization of the noise in fMRI data and to the application of the statistical
tools to the fMRI problem.

Chapter 4 Foundations of the wavelet transform. We present a brief review of wavelet
theory with an emphasis on fractional splines which have the advantage of
being tunable. We also consider complex and quincunx wavelet variants,
the possibility of separable and nonseparable downsampling, and complex
wavelets. Then, we present our implementation in Java of the fractional
spline wavelet transform and of the quincunx wavelet transform.

Chapter 5 Design and investigation of a new family of 2D and 3D wavelets appropriate
for quincunx sampling. These new wavelets are orthogonal, symmetric and
have a continuously-adjustable order parameter. We propose also a fast FFT-
based implementation. The linear and nonlinear approximation properties
of the separable and nonseparable wavelet transforms are compared.
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Chapter 6 Description of a first approach to analyze fMRI data based on orthogonal
filterbanks.

Chapter 7 Descriptions and evaluations of the wavelet-based approach for the analysis
of fMRI data. We present test data that were created to find out which
properties of the wavelet transform are preferable for fMRI. We present also
the validation of our algorithm on real data and the comparison of the results
with Statistical Parameter Mapping (SPM).

Chapter 8 General conclusion and recommendations for possible extensions.

1.3 Contribution of this thesis

The contribution of this thesis is twofold:

1. Design of new wavelets and efficient implementation.

→ Development of a new family of 2D and 3D quincunx wavelets with fractional
order.

→ FFT-based fast algorithm of the quincunx transform. Implementation in Mat-
lab for 2D and 3D and in Java for 2D. This algorithm is almost as efficient as
the standard Mallat algorithm.

→ Demonstration that the quincunx wavelets have good energy-compaction
properties for linear and nonlinear approximation.

2. fMRI analysis.

→ A first proposal to use orthogonal filterbanks for noise reduction as an alter-
native to the Gaussian filtering that is used in SPM (the reference technique
in the field).

→ Development of wavelet-based algorithms for the statistical analysis of fMRI
data.

→ Assessment of quality depending on different aspects of the wavelet transform
for a large collection of activation patterns.

− Fractional splines: evaluation of different types and order parameters.
Fast and exact implementation in Matlab for 2D and 3D and in Java for
2D.

− The proposal to analyze fMRI data using complex wavelets in conjunction
with a multivariate test (Hotelling’s T 2) which opens new possibilities for
multiple comparisons. The motivation is to have a transform that is more
nearly shift-invariant.
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− Finer scale progression and less directionality of the wavelets: quincunx
in fMRI.

→ Validation of the multiresolution approach on real data.

→ Improvements over the widely used standard method SPM.



Chapter 2

Functional Magnetic Resonance
Imaging (fMRI)

2.1 A brief historical view

Before functional Magnetic Resonance Imaging (fMRI), there was only one way to access
the functionality of the human brain: One had to study the brains of ill people after
they had died and compare them to healthy ones. This way many brain discoveries were
made from the examination of injuries or malformations. In 1861, the French surgeon
Paul Broca had a patient who could speak only one sound: “tan”, after suffering a stroke.
Following the death of this patient, Broca examined his brain and discovered a damaged
spot on the front left side. He suspected that this area controlled speaking ability [23].
He was right. “Broca’s area” was the first recognized link between brain function and
its localization.

In 1890 C.W. Roy and C.S. Sherrington, in their paper On the regulation of blood
supply of the brain, suggested that neural activity was accompanied by a local increase
in cerebral blood flow [119]. The possibility of imaging this effect started in 1946, when
Felix Bloch at Stanford, studying liquids, and Edward Purcell at Harvard, studying
solids, described—independently of each other—the nuclear magnetic resonance phe-
nomenon [19, 112]. They discovered that certain substances are able to absorb and emit
radiofrequency electromagnetic radiation, when they are placed in a magnetic field. The
absorption and emission was related to the substance being studied. This new technique,
Nuclear Magnetic Resonance (NMR), was used for chemical and physical molecular anal-
ysis between 1950 and 1970. Bloch and Purcell were awarded the Nobel prize for physics
in 1952 for this discovery, but it was not until 1973 that NMR was used to generate
images from inside the body. It was in 1971, when Raymond V. Damadian showed that
the nuclear magnetic relaxation times of healthy and cancerous tissues differed, that sci-
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entists started to consider magnetic resonance for the detection of disease [40]. In 1973,
a chemist, Paul Lauterbur, improved the technique significantly. He succeeded in getting
from the one-dimensional spatial representation to a complete two-dimensional scan [87].
But the human body is three-dimensional and it was Peter Mansfield who developed the
three-dimensional technique [96]. The basis of the current Magnetic Resonance Imag-
ing (MRI) technique was finalized by Anil Kumar, Dieter Welti, and Richard R. Ernst
at ETH Zürich [83]. They applied Fourier reconstruction techniques to encode spatial
information in the phase and frequency of the NMR signal.

MRI is tuned to image the hydrogen nuclei of water molecules. In functional MRI,
Blood Oxygenation Level Dependent (BOLD) effects are measured for mapping brain
functions. Until 1990 there was no non-invasive way of measuring the flow of blood
in cortical areas. Ogawa and Lee at the AT & T Bell Laboratories and Turner at
the National Institutes of Health (NIH), working independently on laboratory animals,
discovered that the oxygenation level of blood acts as a contrast agent in MR images [108,
142]. This discovery led to the technique of fMRI as it is in use today [41, 98].

In the past few years, the interest in fMRI has increased continuously, as indicated
by the number of papers published in this area (cf. Figure 2.1).

96 97

# papers
for fMRI

150

50

-1992 93-94 95 98 99 20012000 year

100

Figure 2.1: Papers published in the last few years related to the subject of functional Magnetic
Resonance Imaging (from the INSPEC database only).
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2.2 Principle of Magnetic Resonance Imaging

A modern MRI scanner, from which we get our fMRI images, is depicted in Figure 2.2.
In this section we describe briefly the underlying principles of fMRI [6, 14, 53, 63, 24, 90,
139, 126].

Figure 2.2: Example of a magnetic resonance scanner with a magnet of 1.5 tesla. It belongs to
the Siemens “MAGNETOM Symphony Maestro Class” range [127].

2.2.1 Relaxation phenomena

The MR signal in its classical clinical use is predominantly a signature from the protons
of tissue water in humans. The technique of Nuclear Magnetic Resonance (NMR) is
based on the fact that atoms of hydrogen H1, but also elements like sodium (Na23) and
phosphorus (P31), have a nuclear spin, which is proportional to the angular momentum
of the nucleus (the proportionality constant is the gyromagnetic ratio). In general, atoms
which have an odd atomic number or an odd atomic weight have a resulting nuclear spin.
Such a nucleus can be seen as a rotating electrically charged object causing a magnetic
moment. In human tissue, we deal with a large number of such nuclei. At a macroscopic
level these magnetic dipoles form an ensemble and the sum of their magnetic moments,
the nuclear magnetization, is equal to zero provided there is no exterior magnetic field.
When such nuclei are immersed in a static magnetic field ~B0 = (0, 0, B0) in the z-

direction, the total magnetic moment, the nuclear magnetization ~M , is oriented in the
direction of the applied field ~B0 (parallel or anti-parallel heading). In MRI a very strong
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constant magnetic field (in medical MRI between 0.2 and about 3 tesla) is applied. As a
point of reference, the magnetic field of the earth is only about 5 · 10−5 tesla.
In order to excite the nuclear magnetization in the tissue, a pulse of radiofrequency
magnetic field ~BRF of small amplitude and oscillating at a well-defined frequency is su-
perposed, perpendicular to ~B0. In consequence ~M changes the alignment from being
parallel to ~B0. The magnetization ~M is then divided into a transverse component ~Mxy

and a longitudinal component ~Mz. The resulting angle between the magnetization vec-
tor and the z-axis is called the RF flip angle. After excitation, the vector belonging to
~Mxy precesses at a resonance frequency, the Larmor frequency, which is nucleus-specific,
and decreases exponentially with a time constant T ∗

2 . This vector induces an oscillating,

decaying voltage signal in a receiver coil. The realignment rate of ~Mz is described by
a longitudinal relaxation time T1, also called spin lattice relaxation time, which is also
nucleus-specific (Figure 2.3). The relaxation time of the vector ~Mxy, perpendicular to
~B0, is named the transverse relaxation time T2 or spin-spin relaxation time. This vector
decreases since, in addition to the rotation, the magnetization starts to dephase, because
each spin packet rotates at its own Larmor frequency. This process of transverse relax-
ation is illustrated in Figure 2.4. Note that there is no direct correlation between the
decreasing transverse and the increasing longitudinal magnetization, and it always holds
that T2 ≤ T1. In contrast, the relation between T2 and T ∗2 is described by 1

T∗
2

= 1
T2

+ 1
T ′
2
,

where T ′2 describes the time decay of dephasing due to field inhomogeneity.
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M z
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Figure 2.3: The recovery of the longitudinal magnetization component ~Mz, which is related to
the longitudinal relaxation time T1.

2.2.2 MR imaging

In order to localize the MR signal, a second magnetic field 4 ~B0 is added to ~B0. 4 ~B0

is parallel to ~B0 but inhomogeneous in space. The resonance frequency of the nuclei
depends now on ~B(x, y) = ~B0 +4 ~B0(x, y) and changes within the space. A frequency
coding system is achieved when the signal is recorded in the presence of the magnetic field
~B(x, y). A phase coding system results by applying this gradient field before recording
the signal, because the arising temporary frequency change involves a spatial variation
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Figure 2.4: The decrease of the transverse magnetization component ~Mxy of the spins in a
molecule, which is related to the transverse relaxation time T2.

of the phase. The space coding of two orthogonal axes is usually achieved by applying
these two methods.

The imaging effect of the contrast parameters T1 and T2 can be suppressed or en-
hanced in a specific experiment by another set of parameters, such as repetition time
(TR), echo time (TE), and flip angle (α) [90]. This distinction allows certain structural
components to be emphasized. Water for example has very similar T1 and T2 times.
In cerebrospinal fluid (CSF) T1 is larger than T2, and in white matter the difference is
even greater. Therefore, T1-weighted imaging is an effective method to obtain images of
a good anatomical definition and T2-weighted imaging is a sensitive method for disease
detection, since many disease states are characterized by a change of the tissue’s T2 value.
Figure 2.5 shows an example of T1- and T2-weighted images.

a) b)

Figure 2.5: a) T1-weighted head image. b) T2-weighted head image: the tumor is more visible.
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2.2.3 Fast MR imaging

fMRI of a human brain, must be performed rapidly. One reason is that the movements of
the patient increase with time; another is that the images of the whole volume of the brain
should be acquired within the same activation condition. Furthermore, the patient can
perform most of the cognitive tasks of interest only for a few minutes without habituation
or fatigue. Two such faster methods are Fast Low Angle SHot (FLASH) and EchoPlanar
Imaging (EPI). FLASH uses a small interval between the RF pulses to reduce the flip
angle and therefore also T1 [74], while EPI uses smaller RF pulses that excite only a
fraction of the protons, which reduces relaxation time. EPI requires a strong gradient
field, which was not available when FLASH was invented. EPI, invented by Mansfield
et al. [133], acquires a complete image in less than 100 ms. It is currently a widely
deployed method. However, this technique suffers more than others from distortion and
signal loss arising from magnetic field inhomogeneities in the brain. Nevertheless the
experiments with real data described in this thesis were all performed with EPI, since it
is at present the most commonly used technique. Further description of (noise) artifacts
of rapid imaging methods can be found in Section 3.3.1.

2.3 BOLD contrast in fMRI

In fMRI experiments, we alternate between an activation state where the patient per-
forms a certain task and a rest state where no task is performed. The task involves
changes of neuronal activation during an activation state in the brain. With fMRI, we
cannot measure directly the neuronal activities, but their related effects. Ogawa [107] and
Turner [142], working with laboratory animals, observed independently in 1990 that MRI
image contrast changes around the blood vessels could be obtained by the modification of
the oxygenation state of the blood. This effect arises from the fact that deoxyhemoglobin
is more paramagnetic than oxyhemoglobin, which itself has almost the same magnetic
susceptibility as tissue. Thus deoxyhemoglobin can be seen as nature’s own contrast
agent. Neuronal activity is related to changes of the oxygenation state because neurons
need oxygen to function, since they are cells. This oxygen is carried to the neurons by
oxyhemoglobin within the red blood cells, the erythrocytes. The oxygen uptake by the
neurons causes a deoxygenation of the oxyhemoglobin, which becomes deoxyhemoglobin.
In addition, neurons need glycogen for their metabolic processes during electrical activity,
which is also carried by the erythrocytes. The need for oxygen and glucose of the neurons
during electrical activity causes an increased blood flow and perfusion in the capillar-
ies. But the oxygen consumption increases only slightly during activation, therefore the
relation between oxyhemoglobin and deoxyhemoglobin changes. This relative decrease
in the concentration of paramagnetic deoxyhemoglobin indicates activation, which can
be measured by the fMRI method. Since the resulting image contrast depends on the
oxygen content of the blood, this method is called Blood Oxygenation Level Dependent
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(BOLD) contrast [110, 53].
There is also a more recent alternative contrast mechanism for visualizing functional

activation in the brain that provides direct measurement of cerebral blood flow (CBF)
using MRI. This technique, called arterial spin labeled (ASL) perfusion MRI, utilizes
electromagnetically labeled arterial blood water as endogenous tracer for measuring CBF
[45, 49].
Perfusion contrast has some advantage over the BOLD technique. In particular, it im-
proves the independence of the observations in time under the hypothesis that no ac-
tivation is present, whereas BOLD-data signals can be correlated. However, perfusion
contrast has a poorer temporal resolution and is less sensitive than the BOLD contrast
method [4].

2.4 Different imaging modalities

We will now briefly discuss the two other competing functional imaging methods, PET
(cf. Figure 2.6) and SPECT, which are older than fMRI.

Figure 2.6: Example of a Positron Emission Tomograph. It belongs to the Siemens “ECAT
EXACT” range and is the most widely used PET scanner [127].

2.4.1 Positron Emission Tomography (PET)

The history of PET began in the early 1950s, when the medical imaging possibilities of
a particular class of radioactive substances were first realized. By the mid-1980s, PET
had become a tool for medical diagnosis and for dynamic studies of human metabolism.
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PET imaging begins with the injection of a metabolically active tracer into the pa-
tient. The tracer is built by a biological molecule that carries a positron-emitting isotope
(known as the radioactive tag), such as 11C (carbon-11), 18F (fluorine-18), 15O (oxygen-
15) or 13N (nitrogen-13), which have short decay times. Over a few minutes, the isotope
accumulates in an area of the body for which the carrier molecule has an affinity. For
example, glucose labeled with 11C accumulates in the brain or in tumors where glucose
is used as the primary source of energy. The radioactive nuclei then decay by positron
emission. Thus PET provides images of biochemical functions, depending upon the type
of molecule that is radioactively tagged. The emitted positron combines with an electron
almost instantaneously, and these two particles experience the process of annihilation.
The energy associated with the masses of the positron and electron is divided equally
between two photons that fly away from one another at a 180◦ angle. These high-energy
γ-rays emerge from the body in opposite directions and are detected by an array of cir-
cular γ-ray detectors that surround the body of the patient [24]. These detectors have
a series of scintillation crystals, each connected to a photomultiplier tube. The crystals
convert the γ-rays to photons, which the photomultiplier tubes convert to electrical sig-
nals and amplify. These electrical signals are then processed by the computer to generate
images. Figure 2.7 shows such an image.

Figure 2.7: PET image from a slice of the human brain.

There are some limitations of PET. Higher order cognitive processes increase regional
Cerebral Blood Flow (rCBF) by only about 5%. This small amount can only be detected
when multiple subjects are used and this relates to the problem of anatomical variation
between the subjects. Another limitation are the spatial and temporal resolutions, which
are lower than for fMRI, i.e., 3 mm and 60 s, respectively, compared to ∼ 1.5 mm and 100
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ms for fMRI. PET scanners are also less available than fMRI scanners, since they must
be located near a cyclotron device that produces the short-lived radioisotopes used in the
technique. Further advantages of fMRI over PET are lower costs, reduced invasiveness,
structural and functional information, and a larger signal-to-noise ratio. On the other
hand, PET shows a greater sensitivity in certain aspects, such as soft auditory and overt
speech stimulation [124, 79], since the loud noise of the fMRI scanner can interfere with
the auditory tasks. (Today, however, good hearing protection is available, so that more
and more auditory tasks can also be done with an fMRI scanner.) When performing
an experiment with PET and fMRI, the activation zones detected were mostly identical.
However the activation zones are slightly larger in the case of fMRI, probably due to the
better signal-to-noise ratio.

2.4.2 Single Photon Emission Computed Tomography (SPECT)

Single Photon Emission Computed Tomography (SPECT) is a technique similar to PET.
But the radioactive substances used in SPECT (xenon-133, technetium-99, iodine-123)
have longer decay times than those used in PET, and emit single instead of double γ-rays.
SPECT can provide information about blood flow and the distribution of radioactive
substances in the body. Its images have less sensitivity and are less detailed than PET
images, but the SPECT technique is less expensive than PET. Also SPECT centers
are more accessible than PET centers because they do not have to be located near a
cyclotron.

2.5 Description of typical fMRI data

The first step in an fMRI experiment is the set-up of the experimental design by a
neurologist. The task succession must be chosen in order to find the relation between
the brain activation and a certain motor or cognitive task and to filter out inappropriate
actions. For example, a cognitive task meight be listening to a specific sound or to music
or viewing a screen displaying different pieces of information or images.
During the fMRI experiment a volunteer lies in an MRI scanner, his head fixed with
a helmet-like device to avoid strong movement artifacts. A sequence of images of the
volunteer’s brain is acquired while he performs the specified tasks. The spatial resolution
of the obtained images (slices) is typically 2–3 mm and the thickness of one slice is usually
3–10 mm. An example of an acquired volume is given in Figure 2.8. Using the fast EPI
technique, 3–10 images per second can be acquired [63].
The experimental design can be based on a block paradigm or an event-related fMRI,
which we will explain below. All of the real data investigated in this thesis are based on
the block paradigm. We received our data through collaborations with the Inselspital
Bern and the Hôpital Cantonal Universitaire de Genève (HCUG).
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Figure 2.8: Example of some slices of a volume of raw data. The inplane number of pixels is
128 × 128, the number of slices in a volume is 30. Thus the resolution along the z-axis is lower
than in the xy-plane.

2.5.1 Block paradigm

In the case of the block paradigm, fMRI data consist of repetitions of alternating A and
B epochs. Symbol A stands for the brain volume with activation (the subject performs a
certain task) and B for the brain volume in the rest state. An epoch contains a sequence
of several repetitions under the same condition. A cycle contains one epoch under each
condition [17]:

A A A A B B B B︸ ︷︷ ︸
cycle

A A A A︸ ︷︷ ︸
epoch

B B . . .

A time sequence of one voxel of an activated area is shown in Figure 2.9. It is
obvious that a lot of noise is present in the data; the underlying signal, which should
follow the periodic activation pattern, is hardly recognizable even though the voxel is
taken from a strongly activated region (upper limit of the signal-to-noise ratio). The
difference image of two slices (A–B) is shown in Figure 2.10. The amount of noise makes
it almost impossible to detect any activation with only one realization. Thus the fMRI
algorithms are based on averaging over several realizations. Some activation zones are
visible by averaging only, see Figure 2.10. However, the limiting factor in averaging is
the volunteer’s ability to stay that long time in the scanner and to perform identical
tasks without moving insight the scanner. Even with few repetitions the images may be
corrupted by movement artifacts.

2.5.2 Event-related fMRI

An alternative to the block paradigm is the Event-Related experiment protocol (ER-
fMRI), which involves a different stimulus structure. Event-related protocols are charac-
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Figure 2.9: A time sequence of an activated voxel. The upper plot is the sequence of the raw
data (64 voxels). The lower plot gives the periodic rate of activated (up) state and rest (down)
state.

A−B A−B

Figure 2.10: Left hand side: average of the difference of one slice of activation and one slice in
a rest state. Middle: average of the difference of the activation state and rest state of eight
realizations. Right hand side: in the upper image, some activation area is already visible by
averaging only; but due to the repetition some movement artifacts could also be interpreted as
activation (lower image).
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terized by rapid, randomized presentation of stimuli. This is analogous to the technique
of Event-Related Potentials (ERPs), which uses electric brain potentials that are mea-
sured by electrodes on the scalp or implanted in the skull [115]. The disadvantage of
ERPs is their bad spatial information, although their time resolution is excellent.
The event-related experiment combines the advantage of time information of ERP and
the advantage of good spatial resolution of fMRI. The time information is important
for determination of the Hemodynamic Response Function (HRF), which represents the
regional BOLD effect signal change after a short stimulus. The time between two stimuli
(Inter-Stimulus Interval (ISI)) can be chosen randomly. This has the advantage that the
volunteer does not get used to the experiment, which implies that the HRF does not
change its shape or decrease in amplitude. This is necessary in order to be able to sum
over several realizations [27]. Other advantages, such as the possibility of post hoc cate-
gorization of an event, are reported in [75, 80, 149]. However, for steady-state analysis,
the block paradigm is still the most effective one.

2.6 Preprocessing

We call preprocessing all processes which are prior to the statistical analysis and the
possible image transformations of the data.
In the case of the block paradigm, the common practice is to omit the first volume of
each block (Figure 2.11) or to shift the paradigm by one or even two volumes. This is
because the volumes at the beginning of a block contain a transition signal that would
make the steady-state analysis more difficult. Another possibility is to keep this first
transition measurement by introducing a hemodynamic function in the model [11, 113].
We restricted ourselves to the first approach as presented in Figure 2.11, which was
proposed by our collaborators and enabled us to compare the methods. Also a hypothesis
need only be made about the length of the transition signal and not about the shape of
the hemodynamic function.

�A A A A �B B B B �A A A A �B B B B . . .

Figure 2.11: Typical ordering of the fMRI data with suppression of the first volume.

Another very important preprocessing step is motion correction. Getting data with
the fewest possible head movements is a requisite. But head motions cannot be com-
pletely avoided. A movement of one tenth of a voxel may produce 1–2% signal changes,
which is not negligible. In comparison, fMRI BOLD effects are very small: 1–5% signal
changes [37, 71]. This calls for the use of accurate image registration algorithms [140, 65].
The first step in registration is to determine parameter values for the transformation of
the images toward a reference image, the target image, which is often the first acquired
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image. The images are transformed by resampling according to the determined geome-
try, which is evaluated by optimizing some criterion that expresses the goodness of the
matching [8]. In order to realign our data, we used mainly the method proposed in SPM
[65], see Section 2.8. We also analyzed data realigned with the Automated Image Regis-
tration (AIR) method [153, 154]. The third realignment, which we used, is a high-quality
realignment procedure developed in our group [140]. Figure 2.12 illustrates the influence
of realignment.

a) without realignment b) with realignment

Figure 2.12: Example of the influence of realignment. The activation in the brain was caused
by a visual task. a) Detection of activation based on raw data with the algorithm developed in
this work. Some of these detected areas are caused by movement artifacts, in particular the one
on the border in the upper brain region. b) Detection of activation based on data which were
realigned with SPM99. Most of the detected areas which were caused by movement artifacts
disappear.

Sometimes it is desirable to compare the analysis of different subjects or even ana-
lyze across different subjects. In such cases spatial normalization is applied to the data
between the subjects. Subjects can even be spatially normalized according to their Eu-
clidian coordinate within a standard space [62]. The most commonly adopted coordinate
system within the brain imaging community is that described by Talairach and Tournoux
[137]. Matching here is only possible on a coarse scale, since there is not necessarily a
one-to-one mapping of the cortical structures between different brains. Consequently,
the images are smoothed prior to the matching [8].
No such processing was required in our work since we did not engage in inter-subject
studies.

Almost every fMRI scanner acquires the slices of a volume in succession. Slice timing
correction shifts each voxel’s time series so that all voxels in a given volume appear to
have been captured at exactly the same time [131].

Spatial filtering with a smoothing kernel is often applied to the data to increase the
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signal-to-noise ratio. But this will only work if the activation zone is larger than the size
of the smoothing kernel. Smoothing decreases the resolution, whereas the MRI-scanner
technique is constantly upgraded to produce higher resolution data.

Global intensity normalization, also known as time normalization, is applied to the
data, when the intensities of the voxels drift over time [25, 68]. For this purpose, the mean
value of each volume in time is measured, taking only voxels above a certain threshold
into account which represents the intracerebral voxels. Then the intensities are adjusted
such that each volume has the same mean value. This treatment is more necessary for
PET data than for fMRI data, since in the first case the amount of radioactivity in
the brain can change during acquisition. Global intensity normalization can affect the
detection results when the activation is sufficiently large and very significant such that
the mean value is strongly influenced by this activation. It is therefore only useful when
there are big changes in global intensity.

The data may include slow, repetitive physiological signals related to the cardiac cycle
or to breathing. With a temporal filter, in this case a high-pass filter, these periodic
signals can be avoided. Also, scanner-related drifts are suppressed with such a filter.

2.7 An overview of fMRI postprocessing methods

By postprocessing methods, we mean the statistical analysis and possible image trans-
formations; i.e., all treatments that are used to find the activation loci. At this stage,
the data have already been preprocessed, e.g., realigned.

2.7.1 Real space methods

An early developed and still often used method is the correlation analysis introduced
by Bandettini et al. [11]. The key to this approach is the formation of the correlation
coefficient, cc, for each pixel:

cc =

∑N
n=1 (fi − µf ) (ri − µr)√(∑N

n=1 (fi − µf )
2
)(∑N

n=1 (ri − µr)
2
) . (2.1)

fi (i = 1 . . .N) is the time-course function at a fixed spatial location. It can be considered
to be an N dimensional vector. ri is a reference waveform or vector. This reference may
be an experimental time-course function f for some particular pixel or an average of the
f ′s of several experiments, which is then correlated with the time-course function f of
other pixels. Alternatively, it is a signed sequence (1 1 1 –1 –1 –1 . . . ) coding for the
paradigm [152]. µf and µr are the average values of the vectors f and r, respectively.
The value of cc always varies between +1 and −1. A threshold value TH between 0 and
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+1 is selected and data in each pixel where

cc < TH

are rejected, i.e., set to zero. A value of 0.7 for TH is a typical threshold [11]. In order to
further distinguish between time courses, the application of additional procedures (e.g.
amplitude threshold [15] or cluster-size threshold [61]) is advantageous.
Another more powerful statistical approach is the use of a generalized linear model [100]
pioneered by Friston et al. [67] which was used for PET studies first and has then been
adapted to fMRI; it is called Statistical Parameter Mapping (SPM) and is freely available
as a software tool (SPM99). Since SPM is largely used by neurologists and is the de facto
standard in the field, we devote a whole section to this method (see Section 2.8). We
will also compare our results with the results of SPM (cf. Chapter 7).
The analyses discussed so far need prior knowledge about the succession of activation (A)
and rest state (B). Among the methods that do not require prior knowledge at all, the
earliest are Principal Component Analysis (PCA) [150] and Factor Analysis (FA) [10].
However, these do not work so well for evaluating fMRI data because the total variance
of the data is dominated not by the activation changes but by (physiological) noise which
is then partitioned into uncorrelated components [13].
Fuzzy Clustering Analysis (FCA) is another technique which is paradigm-independent,
fast and reliable [122, 55]. It attempts to find a partition of a dataset X of n feature
vectors (x1, x2, . . . , xn) by producing, for a preselected number of clusters c, c vectors in
a feature space Rp, called cluster centroids or prototypes. They represent points around
which the data are concentrated. For each datum, a membership vector uk measures
the similarity of the point to each cluster centroid and indicates how well the point is
classified. But often, this classification suffers from the high amount of noise present in
the data. We believe that a multiresolution approach for classifying could reduce this
problem.
For completeness sake, we also mention the existence of other less popular methods that
are briefly described and compared to each other in [85]. The conclusion of this author is
that a pluralistic empirical strategy coupled formally with substantive prior knowledge
of the data set is better than employing a single method only. In [73] different soft-
ware tools for analyzing fMRI data are described and compared. These software tools
are AFNI 2.01 (Analysis of Functional NeuroImages) [38, 36]; SPM96 (Statistical Pa-
rameter Mapping) [66]; STIMULATE 5.0 [136]; Yale [128]; MEDIMAX 2.01, conceived
by the Infographics Group in 1995; FIASCO (Functional Imaging Analysis Software-
Computational Olio) [50]; MEDx 2.0, a commercial multimodality brain imaging pro-
cessing and analysis software by Sensor Systems; and FIT (Functional Imaging Toolkit)
(unpublished). The software BrainVoyager1, a commercial software-tool conceived by
Brain Innovations B.V., offers various possibilities, such as time-course analysis of fMRI.
BrainVoyager is easier to handle than SPM96 and is thus being used more and more

1http://www.brainvoyager.de/
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by medical doctors and scientists for analyzing fMRI data. The authors of SPM and
BrainVoyager are collaborating on the creation of an interface between these two image
analysis environments.

2.7.2 Wavelet methods

The use of the wavelet transform for the analysis of functional Magnetic Resonance Imag-
ing (fMRI) of the brain was pioneered by Ruttimann et al. [120]. Their statistical test
consists of a two-stage approach: first all subbands are tested with a χ2-test globally, to
detect the presence of a signal. When the energy in the subband is too low, the subband
is discarded. In the second stage, the coefficients of the remaining subbands are thresh-
olded individually via a two-tailed z-test. These authors used orthogonal cubic-spline
wavelets.
In [116], Raz et al. perform an analysis of variance (ANOVA) in the wavelet domain by
thresholding the wavelet coefficients according to their score in a statistical test. The test-
ing is done per block. At the coarsest level, each block consists of 16 coefficients; at finer
levels the block contains all its child coefficients at those levels. They used Daubechies
least asymmetric wavelets with 8 filter coefficients, also called “symmlets” [43]. For
multiple comparisons correction, they proposed to use the False Discovery Rate (FDR),
which is much less conservative than the Bonferroni correction applied by Ruttimann et
al.
There have also been some attempts to apply wavelets to the analysis of PET data: Rut-
timann et al. [121], Unser et al. [146] and Turkheimer et al. [141]. In [141], the problem
of estimation of the spatial dimension is solved by applying the wavelet transform to each
scan of the dynamic PET sequence and then performing the kinetic modeling and statis-
tical analysis in the wavelet domain. These authors used a Translation-Invariant Discrete
Wavelet Transform (DWT-TI) introduced by [33], which does not imply a unique inverse
transform.
In another work [26, 54], the wavelet transform of fMRI time signals is used to remove
temporal autocorrelations.
In [102, 101], F. Meyer demonstrates that, with a wavelet-based estimation, a semi-
parametric generalized linear model of fMRI time-series can remove drifts in time that
cannot be adequately represented with low degree polynomials.
In [151], wavelet denoising is performed as an alternative to Gaussian smoothing. The
statistical testing (FDR) is done in the space domain. The authors chose to use the
symmetric orthonormal spline of degree α = 5.
For our part, we have also contributed to this research by extending the statistical testing
to the non stationary case [57] and by searching for objective criteria for comparing the
performance of various wavelet transforms [59].
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2.8 Statistical Parameter Mapping (SPM)

Statistical Parameter Mapping (SPM) is a method that performs the whole analysis pro-
cess for fMRI as well as for PET and SPECT. A software package is freely available,
SPM96 and SPM99 (released in 2000), which is widely used by researchers analyzing
functional images of the brain. SPM is also the acronym for the statistical parametric
map that is calculated by most fMRI statistical analysis packages.
The main process of the data transformation in SPM is illustrated in Figure 2.13. The
first part includes the preprocessing step: realignment of the time series data, normal-
ization of the data to compare different subjects analysis and the Gaussian smoothing
for reducing the noise. This part is described briefly in Section 2.8.1. The second part
contains the model specification and the parameter estimation that are based on a gen-
eral linear model. The general linear model is defined through a design matrix, which
can be modelled by the user. The result is a statistical parametric map. This part is de-
scribed in Section 2.8.2. The third part consists in thresholding the statistical parameter
map based on the theory of Gaussian random fields, which is described in Section 3.2.6.
We compare our method with the part of SPM that includes smoothing and statistical
analysis only.

Figure 2.13: An overview of the SPM process, reproduced from K. Friston [64].
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2.8.1 Data preprocessing in Statistical Parameter Mapping

Spatial transformation of images

SPM contains an automatic, non landmark-based registration algorithm. By registra-
tion, we mean the determination of the geometric transformation (typically rigid body)
parameters that map the image onto a reference. To apply the spatial transformation,
it is necessary to resample the image. SPM gives different choices of interpolation meth-
ods for resampling to the user. The proposed one is the “sinc interpolation”, which
is the most accurate but also the most time consuming method. For speed considera-
tions a rough approximation using nearest neighbor interpolation is also available. For
the transformation method, SPM differentiates between different cases. The first case
is the within modality images co-registration. It is the case where images of the same
subject are transformed. To minimize the difference of two such images, a rigid body
transformation, which is defined by six parameters in 3D, is used. The between modality
image co-registration describes the matching between images of different modalities like
PET and fMRI, but of the same subject. This algorithm is based on matching homol-
ogous tissue classes together. The tissues are classified as gray matter, white matter or
Cerebro-Spinal Fluid (CSF). This method also does not need a preprocessing step or
landmark identification, but employs template images of the same modalities and prob-
ability images of the different tissue types. First, the affine transformations that map
images to the templates are determined by minimizing the sum of squares differences.
Then the images are segmented using the probability images and a modified mixture
model algorithm. Finally, the image partitions are co-registered using the parameters
from the mapping between the images and the templates as a starting estimate.
The affine spatial normalization allows for the registration of images from different sub-
jects. Here, prior information about the variability of head sizes is used in the optimiza-
tion procedure. Also zooms and shears are needed to register heads of different shapes
and sizes. A Bayesian framework is used, such that the registration searches for the
solution that maximizes the a posteriori probability of it being correct [65]. Nonlinear
spatial normalization corrects large differences between head shapes, which cannot be
resolved by affine transformation alone. These nonlinear warps are modelled by linear
combinations of smooth basis functions [9].

Spatial smoothing

To increase the signal-to-noise ratio and to condition the data so that they conform more
closely to a Gaussian-field model, SPM uses a Gaussian kernel for spatial smoothing.
The amplitude of a Gaussian, j units away from the center, is defined by

g[j] =
1√

2πs2
e−

j2

2s2 . (2.2)
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The standard deviation s is defined by FWHM/
√

8ln(2), where FWHM is the Full Width
at Half Maximum of the Gaussian. The main disadvantage of smoothing the data is the
loss of spatial resolution (suppression of high-frequency components).

2.8.2 The general linear model

SPM treats each voxel independently in its statistical analysis. Thus the response variable
Yj is a random variable that represents a voxel value for a certain observation (scan) j in
time, where j = 1 . . . J . The predictor variables—also called the explanatory variables—
are denoted by xjl, where l = 1 . . . L, (L < J) indexes this variable. xjl can also be
called an independent variable. It is used to predict the data in the response variable
yj in terms of a linear combination (linear regression). This variable might consist of
information about the task that the volunteer has to perform. In the case of the block
paradigm, it might consist simply of the activation and nonactivation statements, like
the lower plot in Figure 2.9. The unknown parameters, which have to be worked out and
which define the relation between the predictor variables and the response variables, are
denoted by βl and correspond to the L predictor variables. They fit the model such that
the residuals εj are minimized. Ideally, they are independent and identically distributed
normal random variables with zero mean and variance σ2, εj ∼ N (0, σ2). Thus the
general linear model is expressed by

Yj = xj1β1 + · · ·+ xjlβl + · · ·+ xjLβL + εj . (2.3)

The matrix formulation of this model is given by

Y = Xβ + ε, (2.4)

where Y is the column vector of observations (of voxel values), X is the design matrix
of size J ×L, β is the column vector of unknown parameters and ε is the column vector
of residual terms.

The task now is to find the estimates for β in such a way that the model provides a
good fit to the observations Y. This is performed by least squares minimization. The
estimates of β are denoted by β̃ and the resulting fitted values are denoted by Ỹ, which
results in Ỹ = Xβ̃. The difference between the observed value Y and the predicted
value Ỹ is given by the residual error e, thus e = Y − Ỹ = Y −Xβ̃. The least squares
estimates β̃ are obtained by minimizing

S =
J∑

j=1

e2
j (2.5)

=

J∑

j=1

(Yj − xj1β1 − · · · − xjLβL)
2
. (2.6)
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The minimum is reached by β = β̃, which satisfies

∂S

∂β̃l

= 2
J∑

j=1

(−xjl)
(
Yj − xj1β̃1 − · · · − xjLβ̃L

)
= 0, (2.7)

for every j = 1 . . . J . In matrix notation, (2.7) is equivalent to

XT Y = (XT X)β̃ (2.8)

and is called the normal equation.
When the design matrix X is of full rank, the least squares estimates, denoted by β̂, are

β̂ = (XT X)−1XT Y. (2.9)

The resulting parameter estimates β̂ are normally distributed with E{β̂} = β and

Var{β̂} = σ2(XT X)−1. (2.10)

The least squares estimates also correspond to the maximum likelihood estimates if one
assumes that the input data are corrupted by additive white Gaussian noise. The residual
mean square σ̂2 is the estimation of the residual variance σ2 and is given by

σ̂2 =
eT e

J − p ∼ σ
2
χ2

J−p

J − p, (2.11)

where p = rank(X). Furthermore, β̂ and σ̂2 are independent.
The task now is to test the effects, i.e. the predictor variables. We might want to test

only for one effect βl, taking into account the other effects, or we might want to test one
effect of one condition (e.g. activation paradigm) against another condition (e.g. control
paradigm). Thus SPM introduces a contrast weight vector c, simply called the contrast
of a model, to choose the desired test, where each weight corresponds to an effect. In
practice, SPM allows to define and test for different contrasts. When we test for one
effect the contrast might be cT = [0 . . . 0 1 0 . . .0], and when we test two effects against
each other, the contrast might be cT = [0 . . . 0 1−10 . . . 0].
Thus (2.10) changes to

cT β̂ ∼ N
(
cTβ, σ2cT (XT X)−1c

)
. (2.12)

The corresponding null hypothesis (cf. Chapter 3) is given by H0 : cT β̂ = cTβ and the
test statistic is given by

T =
cT β̂ − cTβ√
σ̂2cT (XT X)−1c

. (2.13)
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Under the null hypothesis H0, T follows a Student’s t-distribution with J − p degrees of
freedom and can therefore be tested with a Student’s t-test (cf. Section 3.2).

The majority of the statistical models used for testing are special cases of the general
linear model. One example is the two-sample t-test: two groups of different conditions
are compared (e.g. activation condition against rest state). Then the response variable
Y 1j , which stands for the activation state, and Y 2j , which stands for the rest state, are
assumed to be two independent random variables, with n1 and n2 realizations, respec-
tively, where Y 1j ∼ N (µ1, σ

2) and Y 2j ∼ N (µ2, σ
2). They can be rearranged into one

variable, where Yj , j = 1, . . . , n1 represents Y 1j and where Yj , j = n1 + 1, . . . , n1 + n2

represents Y 2j . We assess the null hypothesis:

H0 : µ1 = µ2. (2.14)

Thus the parameter vector takes the value β = (µ1, µ2)
T which has to be tested. The

design matrix X contains two columns of dummy variables. The first column represents
the membership of the group Y 1j , containing n1 1’s and n2 0’s; the second column
contains n1 0’s and n2 1’s. The general linear model of (2.3) yields

Yj = xj1µ1 + xj2µ2 + εj (2.15)

and the null hypothesis of (2.14) is equal to H0 : cTβ = 0 with ~c = (1,−1)T , since we
test if there is a difference between the samples’ mean values. Thus the t-test of (2.13)
results in

T =
µ1 − µ2√

σ̂2
(

1
n1

+ 1
n2

) , (2.16)

with n1 + n2 − 2 degrees of freedom, since (XTX) =

(
n1 0
0 n2

)
and cT (XTX)−1c =

1
n1

+ 1
n2
.

One-way analysis of variance (ANOVA)

Assuming we have different groups of samples or observations, their mean values are
ȳ1, ȳ2, . . . ȳc. There are two components contributing to the variations of those observa-
tions. One can measure the variability between the group means or the variation within
each group. These two components are then measured by means of an F-test.
The combined estimate of σ2 from the variation within groups is given by

s2 =
c∑

i=1

s2i
c

=
c∑

i=1

J∑

j=1

(yij − ȳi)
2

c (J − 1)
. (2.17)
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s2 has c(J − 1) degrees of freedom. The observed variance of the group means is given
by

c∑

i=1

(yi − ȳ)2
c− 1

, (2.18)

where ȳ is the mean value of the group means. Thus

s2G = n

c∑

i=1

(yi − ȳ)2
c− 1

(2.19)

is an unbiased estimate of σ2 based on c − 1 degrees of freedom. If the hypothesis H0,
which assumes that there is no difference between the groups, is true, both s2 and s2G
are estimates of σ2 and thus the ratio F = s2G/s

2 will follow an F-distribution with c− 1
and c(J − 1) degrees of freedom. When there is a difference between the groups, s2G will
be increased by the group differences and thus the F-ratio increases as well. If this ratio
is significantly large, the null hypothesis H0 is rejected and the alternative hypothesis
that there is a difference between the groups is accepted [28].
In the case of fMRI data the different groups might represent the voxel acquisitions under
different patient conditions.

2.8.3 SPM: further considerations

While the general linear model and ANOVA of SPM are applied to the spatial domain
(preprocessed data) directly, it is perfectly conceivable to also apply these techniques in
the wavelet domain as is proposed in this thesis.

The major difference in procedure is the way in which one deals with the correction
for multiple testing, i.e. the specification of an appropriate threshold on the statistical
parameter map provided by the estimation module.

In the case of SPM, the situation is complicated by the use of the Gaussian prefilter
which correlates the data and renders a standard Bonferroni correction much too con-
servative to be of much practical use. SPM gets around the difficulty by applying a
threshold for Gaussian “correlated” data derived from the theory of Gaussian random
fields (see Section 3.2.6).

2.9 Human brain anatomy

A short introduction to human brain anatomy is given here for reference and for a better
understanding of the results obtained with real data in Section 7.4.
An adult human brain weighs about 1.5 kilos and can be divided into five major parts
(see also Figure 2.14):
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→ Brain stem: regulates autonomic functions like breathing, circulation and digestion.
It also controls paradoxical sleep and is responsible for auditory and visual startle
reflexes.

→ Thalamus: routes auditory, visual, and tactile sensory input to appropriate regions
of the cerebral cortex.

→ Cerebellum: controls voluntary movements, balance and motor coordination.

→ Cerebrum: it is the main mass of the brain, comprising 85% of its weight. The
cerebrum is divided into two halves, the left and the right hemispheres. The top
2–4 mm of the cerebrum is the cerebral cortex, the gray matter of the brain. Under
the cortex is the white matter, composed of neuronal fibers linking different areas of
the cortex and of brain stem and cortex. In humans, the cerebral cortex is strongly
convoluted, with ridges (termed gyri) and valleys (termed sulci).

→ Corpus callosum: links the left and right hemispheres of the cerebrum through a
bundle of nerves.

Figure 2.14: The five major parts of the brain [1].

The cerebral cortices of each hemisphere are divided into four lobes (see also Figure 2.15):

→ Frontal lobe, which is the center of consciousness, and deals with planning, judge-
ment, emotional responses, and memory for habitual motor skills (in the motor
cortex). It contains also Broca’s area, which controls speaking ability (cf. Sec-
tion 2.1). Through collaboration with Arto Nirkko from the Inselspital Bern, we
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have obtained data which result from activation in the motor task. One of the
tasks was finger tapping, which is the most typical task for fMRI analyses since
it causes a relatively strong signal; a typical example of detection result with our
method is shown in Figure 7.46.

→ Parietal lobe, which processes mainly information about movement and body
awareness (in the sensory cortex, see Figure 2.15).

→ Temporal lobe, which processes auditory information and deals with memory acqui-
sition and object categorization. It also contains Wernicke’s area, which is responsi-
ble for the ability to understand language. When this area is damaged, the patient
can speak clearly but the words that are put together make no sense. This is in
contrast to a damage in Broca’s area, in which case the patient can still understand
language but cannot produce speech. One of our processed data sets corresponds to
a task where the subject has to listen to bi-syllabic words: see results of activation
in Figure 7.57.

→ Occipital lobe, which processes visual information. Through different collabora-
tions, we obtained data which contained activation in the occipital lobe. One task
was just switching on and off a light source. Activation results with our method
are shown in Figure 7.56.

Figure 2.15: The four lobes of the cerebral cortices [1].
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Further literature devoted to the understanding of the functional activity of the brain
can be found in [132].
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Chapter 3

Statistical Processing of fMRI
Data

3.1 Statistical tools

acquisition

data
preprocessing

identity

Gaussian filter

standard

approach

wavelet

transform

statistical

analysis

Figure 3.1: Order of the procedures before the statistical analysis.

The statistical tools that are used for the algorithm in this work are described in
this section. The application to fMRI can be found in Section 3.3. The block diagram
of Figure 3.1 shows where the statistical processing is situated in the analysis of fMRI.
In our case, the statistics is applied in the wavelet domain on the wavelet coefficients.
In SPM, a Gaussian filter is applied and the detection is done at the pixel level. In
principle, the statistics are also applicable to the unprocessed pixels directly, but the
SNR is usually too low for this direct method to yield some detection. The statistical
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analysis, proposed in this section, is generic and applicable in all three cases.

3.1.1 Random variables

In our statistical process of fMRI-data, we have to deal with hypothesis tests, probability
distributions, and thus with random variables. To introduce these topics, we shortly
describe the tools which are necessary for their understanding.

A random variable is in our case simply the numerical variable under consideration.
For each trial, a real (discrete) signal x[.] is obtained as a realization of the random
process X [.]. The random variable is represented with a capital letter and its realization
with a lower-case letter. An example of a random process is the game of dice, where the
random variable represents the outcomes of the dice. Since the outcome is stochastic,
only a probability that the random variable X may take a certain value x can be given.
The probability function of X [.] is a function pX(x) which assigns probabilities to all
possible outcomes. That is

pX(x) = P (X = x). (3.1)

A probability function must satisfy the following properties:

(i) pX(x) ≥ 0, for all x ∈ A,

(ii)
∑

x∈A pX(x) = 1,

with A the domain of values that X can take. In the continuous case, the random variable
is described by the probability density function pX , defined on the domain A. It satisfies
the following properties:

(i) pX(x) ≥ 0, for all x ∈ A,

(ii)
∫

x∈A
pX(x)dx = 1,

(iii) for any interval [a, b] ∈ A,

P (a ≥ X ≥ b) =

∫ b

a

pX(x)dx.

A proposition x ≥ a—like we make it for a hypothesis test—for the random variable
X and a proposition y ≥ b for a random variable Y are independent, if and only if
P (x ≥ a ∧ y ≥ b) = P (x ≥ a)P (y ≥ b) for all a and b. Intuitively, X and Y are
independent if any information about one variable doesn’t tell anything about the other
variable; otherwise

P (x ≥ a ∧ y ≥ b) = P (x ≥ a|y ≥ b)P (y ≥ b). (3.2)
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In general, we have

P (x ≥ a ∨ y ≥ b) = P (x ≥ a) + P (y ≥ b)− P (x ≥ a ∧ y ≥ b), (3.3)

and when X and Y are mutually exclusive, we obtain P (x ≥ a ∨ y ≥ b) = P (x ≥
a) + P (y ≥ b).

A discrete stochastic process is stationary when the random vectors
(X [0], X [1], . . . , X [n − 1]) and (X [i], X [i + 1], . . . , X [i + n − 1]) have the same
probability density for each n ∈ Z+ and each i ∈ Z. In other words, when the stochastic
process is observed through a (time) window of length n, then the observed statistics
doesn’t depend on the location (i) of the window. All the statistical properties of a
stationary stochastic process are time-independent. One example of a stationary random
variable is an independent and identically distributed (i.i.d.) random variable. For
an i.i.d. process, all random variables X [k], k ∈ Z, have the same probability density
and are independent. Thus an i.i.d. process is statistically fully described by only one
probability distribution for one random variable, for example X [0].
If a discrete random variable X can take values x1, x2, . . . , xn, with probabilities
p1, p2, . . . , pn, then the expected value is defined as

E[X ] =

N∑

i=1

xipi. (3.4)

In the continuous case, we obtain

E[X ] =

∫ ∞

−∞
xp(x)dx. (3.5)

The variance of X is given for µ = E[X ] by

var[X ] = E
[
(X − µ)2

]
(3.6)

= E
[
X2
]
− (E[X ])

2
. (3.7)

A discrete stochastic process X [.] is weakly stationary or wide-sense stationary, when
both E[X [i]] and E[X[i+k]X[i]] for k ∈ Z are independent of i.

In the following section some properties of the expected value are given, for the proof
see [28]:
If X is any random variable then

E[bX + c] = bE[X ] + c, (3.8)

when b and c are constants.
If X and Y are any two random variables then

E[X + Y ] = E[X ] +E[Y ]. (3.9)
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If X and Y are independent random variables, then

E[XY ] = E[X ]E[Y ] (3.10)

and

var[X + Y ] = var[X ] + var[Y ]. (3.11)

For any random variable X , it holds that var[cX ] = c2var[X ] and var[X + c] = var[X ].
A stochastic process X [.] is called white noise with variance σ2, when X [.] is weakly
stationary, E[X [i]] = 0 and

RX [k] = E[X [i+ k]X [i]]

= σ2δ[k], (3.12)

where RX [.] is the autocorrelation function of X [.].

3.1.2 Multivariate random variables

Suppose we have n p-dimensional observations X[1],X[2], . . . ,X[n]. Then each X[i] =

(X1[i], . . . , Xp[i])
T denotes a random vector of dimension p, where p random variables

X1[i], . . . , Xp[i] are defined on a sample space. The mean vector of X, denoted by X̄, is
given by:

X̄ =
1

n

n∑

i=1

X[i]

=




X̄1

...
X̄p


 . (3.13)

The empirical scatter covariance matrix S of the n p-variate random vectors X[i] is a
p× p matrix

S =
1

n− 1

n∑

i=1

(X[i]− X̄)(X[i]− X̄)T (3.14)

The expected value of S is the covariance matrix defined by

E[S] =




var[X1] cov[X1, X2] . . . cov[X1, Xp]
cov[X2, X1] var[X2] . . . cov[X2, Xp]

...
...

. . .
...

cov[Xp, X1] cov[Xp, X2] . . . var[Xp]


 . (3.15)
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Univariate Multivariate

Normal Multivariate normal
Variance Covariance (dispersion) matrix
χ2-distribution Wishart’s distribution
Student’s t-distribution Hotelling’s T 2

Fisher’s z-distribution Ratio of two covariance-type determinants
Maximum likelihood estimation Maximum likelihood estimation
Analysis of variance (ANOVA) Multivariate analysis of variance (MANOVA)

Table 3.1: Correspondence between univariate and multivariate statistics [78].

The covariance matrix can as well be expressed by:

S = XX
T − X̄X̄T . (3.16)

Table 3.1 provides a brief summary of some results in multivariate theory that are a
generalization of standard notations in the univariate statistical theory [78, 89].

3.1.3 Probability density distributions

We now briefly describe some probability distributions that will be relevant in the context
of fMRI.

z-distribution

Let x be a normally distributed random variable with mean µ and standard deviation σ.
Then, the normalized variable

z =
x− µ
σ

is Gaussian with mean = 0 and standard deviation = 1.
It has a so-called z-distribution (normalized Gaussian), which is given by

F (z) =
1√
2π
e−

1
2 z2

,

in one dimension. In several dimensions; i.e., x = (x1, ..., xD), we have

F (x) =
1

(2π)
D
2
√

detA
e−

(x−µµµ)T
A
−1(x−µµµ)

2 , (3.17)

where µ = E[x] and A = E[(x− µ)
T

(x− µ)].
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Figure 3.2: Probability density for the normal distribution for µ = 0 and σ = 1.

χ2-distribution

Let x1, . . . ,xn be n independent normal z-distributed random variables with variance
σ2 = 1. Then ξ =

∑n
i=1 x

2
i follows a χ2-distribution with n degrees of freedom. The

χ2-distribution density is given by:

F (ξ) =
1

2n/2Γ(n
2 )
ξ

n
2 −1e−

ξ
2 , (3.18)

where Γ(x) = (x − 1)! with x ∈ N is Euler’s Gamma function which generalizes the
factorial. Note that 1

σ2

∑n
k=1(xk − x)2 follows a χ2 distribution with n − 1 degrees of

freedom.

Student t-distribution

If the random variable X is N(0,1), Y is χ2 with ν ∈ Z degrees of freedom, and X and Y
are independent, then the random variable

t =
X√

Y
ν

is t-distributed with ν degrees of freedom.
The t-distribution density is given by

F (t) =
Γ
(

ν+1
2

)
√
νπ Γ

(
ν
2

)
(

1 +
t2

ν

)− ν+1
2

.
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Figure 3.3: Probability density of the χ2-distribution for several degrees of freedom.

In particular:
√
n− 1

x−E[x]√∑n
k=1 (xk − x)2

follows a t-distribution with n− 1 degrees of freedom.

F -distribution

If Y1 and Y2 are independent χ2-distributed random variables with ν1, ν2 degrees of
freedom, then the random variable

F =

Y1

ν1

Y2

ν2

is F -distributed. The F -distribution is given by

F (t) =
Γ
(

ν1+ν2

2

)

Γ
(

ν1

2

)
Γ
(

ν2

2

)ν
ν1
2

1 ν
ν2
2

2

t
ν1−2

2
+

(ν1t+ ν2)
ν1+ν2

2

.

Hotelling’s T 2-distribution

If x and M are independently distributed as N (µ,Σ) and Wp(Σ,m), respectively, then

m(x− µ)T M−1(x− µ) ∼ T 2(p,m), (3.19)
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Figure 3.4: Probability density of the Student t-distribution.
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Figure 3.5: Probability density of the F -distribution.
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where Wp(Σ,m) is defined as follows:
if M is a matrix of (p×p)-dimension and can be written as M = XT X, where X is of size
(m× p) and is N (0,Σ) distributed, then M is said to have a Wishart distribution with
scale matrix Σ and degrees of freedom of m. The Wishart distribution is the multivariate
version of the χ2-distribution (cf. Table 3.1) and is written as M ∼ Wp(Σ,m).

Moreover,

T 2(p,m) = m
χ2

p

χ2
m−p+1

=
mp

m− p+ 1
Fp,m−p+1 (3.20)

(3.21)

For derivations and proofs, see [97].
If x̄ and S are the mean vector and covariance matrix of a sample of size n from

Np(µ,Σ) than

(n− 1)(x̄− µ)T S−1(x̄− µ) ∼ T 2(p, n− 1). (3.22)

Central limit theorem

Let X1, X2, . . . be independent, identically distributed (i.i.d.) random variables with
expected value E[Xi] = µ and variance var[Xi] = σ2 < ∞ for i ∈ N. Then for every
t <∞, it holds that

lim
n→∞

P

(∑n
i=1(Xi − µ)

σ
√
n

≤ t
)

=
1√
2π

∫ t

−∞
e−

x2

2 dx. (3.23)

This theorem states that the distribution of the sum X1 +X2 + · · ·+Xn can be approx-
imated by a normal distribution with expected value E[X1 + · · · +Xn] = nE[Xi] = nµ
and variance var[X1 + · · ·+Xn] = nvar[Xi] = nσ2, when n is large.

3.2 Hypothesis testing

In this section, we describe the validation or rejection of a hypothesis, based on a finite
number of realizations of some random variables. We consider data that can be described
by a probability distribution. In particular, one of its statistical parameter µ is unknown.
We propose a particular value µ0 for µ and we want to be able to decide from a set of
measurements whether the hypothesis µ = µ0 is trustworthy or must be rejected. A
numerical method for testing such a hypothesis or theory is called hypothesis test or sig-
nificance test. In any such situation, the experimenter has to decide, if possible, between
two rival possibilities. The hypothesis we want to test is called the null hypothesis, and is
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denoted by H0. Any other hypothesis is called the alternative hypothesis, and is denoted
by H1. Thus, such a hypothesis test could be:

1. Null hypothesis H0: µ = µ0,

2. Alternative hypothesis H1: µ > µ0.

The standard procedure is to summarize the data by a test statistic y that depends on
the value µ0. Under the null hypothesis, the distribution for this statistic is known. Even
when H0 is true, we cannot expect that µ matches µ0 exactly. Thus we have to think of
an expected bound, which should not be exceeded. If y exceeds this expected bound, the
null hypothesis is rejected and the alternative hypothesis H1 is accepted; the decision
is made by setting a threshold. Thus, with such a hypothesis test, we can never state
that H0 is true, only that it is trustworthy. On the other hand, we can state that H0 is
wrong, with high evidence whenever we reject the null hypothesis.

Given some probability value α, we compute the threshold t such that the probability
that y exceeds t is equal to α, assuming that H0 is true:

P (y ≥ t) = α.

In other words, α is the probability of observing higher values than t by chance, given
that the null hypothesis is true. This probability α is called the level of significance of
the test.

The p-value is the probability that a test statistic is at least as extreme as the one
observed, given that the null hypothesis is true. The smaller the p-value, the stronger
the evidence against H0. If the level of significance of the test statistic is less than 5 %,
we say that the result is significant at the 5 % level. This is generally considered as a
reasonable evidence that H0 is not true.
The test on the set of data has to be adapted to its distribution, which transforms the
values into p-values.

3.2.1 Two-tailed test

In the section above, the alternative hypothesis to H0 is defined as H1: µ > µ0. Any
such test where the alternative hypothesis tests for values only higher than µ0 or only
lower than µ0, the test is called one-tailed or one-sided. But H1 can also be defined as
H1: µ 6= µ0, where the departure of the null hypothesis in both directions is of interest.
This means that we are interested in significantly high or low results, which is called
appropriately a two-tailed test [28].

3.2.2 z-test

Here, a random sample with size n is taken from a normal distribution with unknown
mean µ (cf. Section 3.1.3). We want to test if the sample mean is equal to a particular
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value µ0 or not. Thus the null hypothesis is given by

H0 : µ = µ0. (3.24)

If the variance σ2 is constant over the whole set of samples and is known, then x̄ =
1
n

∑n
i=1 xi follows a normal-distribution, and a z-test may be applied:

y =
x̄− µ0

σ√
n

. (3.25)

If a two-tailed test is appropriate, the level of significance is obtained by calculating the
threshold t such that

α = P (|y| ≥ |t|) (3.26)

= 2P (y ≥ |t|); (3.27)

i.e., t is the p-value, related to the significance level α.

3.2.3 Student’s t-test

If the variance σ2 is unknown, we apply a t-test (see Student’s t-distribution in Section
3.1.3) with n−1 degrees of freedom. The corresponding test statistic with x̄ = 1

n

∑n
i=1 xi

is

y =
x̄− µ0

s√
n

(3.28)

where µ0 = E[x̄] and where

s2 =
1

n− 1

n∑

i=1

|xi − x̄|2. (3.29)

Two sample t-test

The t-test described above is a one sample t-test. In the case of a two sample t-test, the
means of two samples of data are compared. The sizes of the two samples are n1 and n2,
respectively, with unknown statistical means µ1 and µ2, respectively and same standard
deviation σ. The first sample mean (measured mean) will be denoted by x̄1 and the
second one will be denoted by x̄2. The problem now is to test the null hypothesis

H0 : µ1 = µ2. (3.30)

The alternative hypothesis is expressed in the case of a two-tailed test by

H1 : µ1 6= µ2. (3.31)



42 Chapter 3. Statistical Processing of fMRI Data

The test statistic is, according to (3.28), obtained by

t =
x̄1 − x̄2

s
√

1
n1

+ 1
n2

. (3.32)

The unbiased estimate s2 of σ2 is given by

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
, (3.33)

where the standard deviation s1 is obtained by

s21 =

n1∑

i=1

(x1[i]− x̄1)
2

n1 − 1
(3.34)

and the standard deviation s2 is given by

s22 =

n2∑

i=1

(x2[i]− x̄2)
2

n2 − 1
. (3.35)

Note, that in the case where n1 = n2, the estimate of σ2 is given by

s2 =
s21 + s22

2
. (3.36)

The paired t-test

This test is applied when the experiments are carried out in pairs. Here, the difference
between each pair is of interest.
Let us assume we have n pairs x1[i] and x2[i] for i = 1, . . . , n, which are independent
observations of populations with means µ1 and µ2. Then the null hypothesis is described
as

H0 = µ1i
= µ2i

for all i = 1, . . . , n. (3.37)

The difference of the pairs is given by

di = x1[i]− x2[i] i = 1, . . . , n, (3.38)

where di is a sample of size n with mean zero. The average difference is denoted by
d̄ =

∑n
i=1 di and the standard deviation is denoted by s. Then the test statistic is given

by

y =
d̄
s√
n

, (3.39)

where the standard deviation is obtained according to (3.29).
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3.2.4 F -test

This hypothesis test is mostly used to compare different variance estimates. Let s2
1 and

s22 be two sample variances of a normal distribution with sizes n1 and n2. When s21 and
s22 are both estimates of the same quantity σ2 and we take repeated pairs of samples, it

can be shown that the ratio y =
s2
1

s2
2

follows an F -distribution. The estimates s21 and s22
must be independent. The distribution depends on two parameters ν1 and ν2, which are
the degrees of freedom of s21 and s22, respectively. In the case described here, we have
ν1 = n1−1 and ν2 = n2−1. In general, a random variable which follows an F -distribution
can be obtained from two independent χ2 random variables, see Section 3.1.3. With an
F -test, often the hypothesis that s21 and s22 are both estimates of the same variance σ2 is
tested. Thus, when s21 and s22 are independent estimates of σ2

1 and σ2
2 , the null hypothesis

H0 : σ2
1 = σ2

2 = σ2 will be tested.

3.2.5 Hotelling’s T 2-test

The Hotelling’s T 2-test is the multivariate version of the univariate Student’s t-test (Sec-
tion 3.2.3). We have to deal here with multivariate random vectors X1, . . . ,Xi, . . . ,Xn

of dimension p.
Suppose that x1, . . . ,xn represents the sample from a p-variate distribution with the
mean vector µ = (µ1, µ2, . . . , µp)

T ∈ Rp, then we want to test the hypothesis

H0 : µ = µ0, (3.40)

where µ0 is called the hypothetical mean vector. Let x̄ be the sample mean (see equation
3.13) and S denote the sample covariance matrix (see equation 3.14), respectively. Anal-
ogous to the univariate test based on the univariate sample standard distance (x̄− µ in
equation (3.28)), we can base a test of the hypothesis (3.40) on the multivariate standard
distance between x̄ and µ0:

D(x̄,µ0) =
[
(x̄− µ0)

T S−1(x̄− µ0)
] 1

2 , (3.41)

which is well defined, provided the sample covariance matrix S is positive definite. The
corresponding test statistic is:

T 2 = nD2(x̄,µ0)

= n(x̄− µ0)
T S−1(x̄− µ0). (3.42)

The random variable n(x̄ − µ0)
T S−1(x̄ − µ) follows the T 2-distribution under the as-

sumption that the samples x1, . . . ,xn is from a p-variate normal distribution. Further,
under the assumption that S is positive definite and n > p, the random variable

y =
n

n− 1

n− p
p

(x̄− µ)T S−1(x̄− µ) (3.43)
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follows an F -distribution with p and (n− p) degrees of freedom (p degrees of freedom in
the numerator and n− p degrees of freedom in the denominator) [7, 60].

3.2.6 Multiple testing

We have different possibilities to set the threshold t for the hypothesis test. Some of
them are discussed below.

Bonferroni-correction

The above reasoning of setting the threshold does not apply anymore if we look at several
test statistics jointly. In the case of 5 % of the test statistics, H0 would be rejected by
error, when no multiple correction is applied. Thus we have to correct for multiple testing.
Since we don’t want to have more than α% of wrong rejections of H0 globally, we have
to divide α by the number of test statistics. This is known as Bonferroni-correction [21]
for multiple testing:

α′ =
α

N
, (3.44)

where N = number of test statistics.
It is almost exact, when no correlation is present, otherwise still correct but perhaps
too conservative. It is exact (and not only almost exact) with (1 − α′)N = 1 − α, i.e.,
α′ = 1 − (1 − α)N ' α

N (cf. Paragraph “Probability of the maximum”). Bonferroni’s
correction is the most conservative (=safe) approach to deal with multiple tests.

Binomial law

Another possibility for multiple correction is to determine the number of false rejections
of H0 (n0) that is expected from our significance level α. The probability to observe n0

false rejections in a random field with noise only follows a binomial distribution:

P (n = n0) =

(
N

n0

)
pn0(1− p)N−n0 , (3.45)

with p = P (y > t) and N = number of test statistics. Equation (3.45) holds when
no correlation between the test statistics is present. Since we know how many wrong
rejections we should expect, we are able to compare them with the effectively observed
ones. If there are significantly more than expected, then we have a significant result
within the samples of test statistics. Yet, we have not localized it, because this is a
global test only.
In the case of Bonferroni-correction, n0 = 0 and the mean value E[n] of appearance of a
false rejections is equal to Np = α′ (usually α′ = 0.05). Consequently the approach is
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very conservative.

Probability of the maximum

Another way of dealing with multiple test statistics is to look at the maximum of a
vector. We choose the threshold by computing the probability that only the maximum
of N random variables is greater or equal to this threshold and without any hypothesis
one has:

P (max(|xn|) ≥ t) ≤ P (|x1| ≥ t) + P (|x2| ≥ t) + · · ·+ P (|xn| ≥ t)
≤ N · p (3.46)

where
p = P (|x0| ≥ t).

It follows that p ≥ α
N ; the lower bound is the same result as with Bonferroni. When the

data are independent, the lower bound is approximately attained, since P (max(|xn|) ≤
t) = (1−p)N ⇒ P (max(|xn|) ≥ t) = 1−(1−p)N ' Np. This means that the approach of
the probability of the maximum and the Bonferroni-correction are essentially equivalent.
For correlated data, one could in principle find a p > α

N , which would yield a lower
detection threshold t.

Probability of a Gaussian Random Field

This section describes a method for setting a threshold for “Gaussian correlated” data.
This is the approach used in SPM where the data is smoothed with a Gaussian kernel
to increase the signal-to-noise ratio (SNR). This correlates the voxels with their spatial
neighbors (cf. Section 2.8). For this reason the Bonferroni correction, which treats voxels
as if they were independent, is not adequate anymore—it would be too conservative.
Thus a different approach must be taken to determine the threshold for the statistical
parameter map. In SPM, the Random Field Theory (RFT) is used for this approach.
This formulation is made in the continuous domain even though the data is discrete.
Specifically, one uses the theory of Gaussian Random Fields (GRF) to find the maximum
of a Gaussian-correlated continuous random field. The first step to proceed with RFT is
to define how many resolution elements (RESELS) are present in the questioned image
or volume. This number can be roughly seen as the number of independent observations
within the volume and is defined as

RESELS =
V

∏D
i=1 FWHMi

, (3.47)

where FWHMi represents the smoothness in the volume with the measure of full width
of half maximum in the i’th direction of D dimensions.
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The next step is to calculate the expected Euler characteristic E[χt] of the statistical
parameter map. E[χt] is used to approximate the probability that the maximum value
on the map (zmax), when no activation is present, is greater than a given threshold t
under the null hypothesis H0. χt is a geometrical measure that counts the number of
isolated regions on a volume map after thresholding with t, provided the excursion set
contains no holes and doesn’t touch the boundary of the search volume (approximation
for a rather high t) [2, 3, 156]. For such a t, it holds that

P (zmax ≥ t) ≈ P (χt ≥ 1) ≈ 1− eE[χt] ≈ E[χt]. (3.48)

Moreover the clusters over such a high threshold t are independent and their number Ct

follows approximately a Poisson distribution with mean E[χt]:

P (Ct = x) =
1

x!
(E[χt])

xe−E[χt] = Υ(x,E[χt]). (3.49)
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Figure 3.6: Expected Euler characteristic for smoothed image with 256 RESELS, corresponding
to equation (3.50).

The expected Euler characteristic is given by:

E[χt] = λ(V )
√
|Λ|(2π)−

D+1
2 HeD

(t)e−
t2

2 , (3.50)

where λ(V ) represents the volume and HeD
(t) is the Hermite polynomial of degree D in

t. t represents here the value to test, the local maximum of a potential activation.
√
|Λ|

is a smoothness factor which allows to obtain an estimation of the smoothness in the
volume, where Λ represents the variance covariance matrix tested in D dimensions. It is
shown that ([156])

λ(V )
√
|Λ| = RESELS(4 loge 2)

D
2 . (3.51)
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For a volume, (3.50) becomes:

E[χt] = λ(V )
√
|Λ|(2π)−2(4t2 − 2)e−

t2

2 . (3.52)

Several assumptions have to be made for equations (3.48) and (3.50) to hold: the
threshold t must be sufficiently high, the volume V must be large compared to resolution
elements in the map, and finally the discrete statistical parameter map must approxi-
mate a continuous zero-mean univariate homogeneous smoothed Gaussian Random Field
(GRF). In other words, the autocorrelation function of the field must be a Gaussian. An-
other assumption is the spatial stationarity which, in our view, is a wrong assumption.
These assumptions are discussed more exhaustively in [111].

In addition to testing for the intensity of an activation, SPM also tests for the sig-
nificance of its spatial extent, and for the significance of a set of regions. For the corre-
sponding theory, we refer to [111].

SPM99 takes care of two aspects which can be formulated more precisely and are de-
scribed in [157]. The first improvement concerns the Euler characteristics, which depends
not only on the number of RESELS anymore, but also on the shape of the volume. This
precision is especially effective when the volume in which the RESELS are contained is
small. In contrast, when the volume is large, the two approaches give similar results.
The second improvement concerns the degrees of freedom. In the case of few degrees of
freedom, the SPM scores, which are based on z-statistics, are not adequate anymore using
the random field theory. Thus the new approach generates thresholds for the t-statistics,
from which the z-scores are derived [69, 155, 63].

3.3 fMRI applications

In this section, we briefly discuss fMRI noise and then describe the statistical procedure
of our fMRI analysis algorithm.

3.3.1 Noise in fMRI data

Since fMRI-data are extremely noisy, we devote a section to the analysis and modelling
of this particular noise.

Origin

The noise in fMRI data originates from several sources. There is the noise of the mea-
surement instrument (e.g., the scanner), in particular, due to hardware imperfections
[94], but there is also noise arising from the patient’s body, which is the main source of
disturbance in an image [51]. Some of the main sources are:
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Thermal noise. The most dominant source of thermal noise is the one arising from the
patient in the scanner. Thermal vibrations from ions and electrons induce noise
in the receiver coil. Since the noise level depends on how many ions and electrons
are contributing to the signal, it is important to adjust the size of the receiver
coil to the object which is imaged. For this reason, MRI has different coils for
different regions of interest, like the head or the spine. The disadvantage is that
some small coils have an image intensity which is non-uniform over the region of
interest. Other sources of thermal noise are quantization noise in the A/D devices,
preamplifier/electronic noise, and finally thermal noise in the RF coils [106, 24].

Motion of the subject. Even when fixing the head of the patient during acquisition,
head motion cannot be completely avoided. Such head motions can arise, for exam-
ple, from respiration. Task-correlated head movements are especially disturbing,
since these movement effects can look like task activation. Motion of the order of
1
10 voxel may produce 1−2% signal changes, which is not negligible. In comparison,
fMRI BOLD effects are very small: 1− 5% signal changes with a magnetic field of
1.5 T [37, 25]. This calls for the use of accurate image registration algorithms in a
preprocessing stage (cf. Section 2.6).

Noise due to physiological activities. The cardiac cycle causes vessel pulsations,
cerebrospinal fluid movements, and tissue deformations, which all produce fMRI
signal variations [39]. The approaches to mitigate cardiac effects are to record the
cardiac cycle, to estimate its influence on the fMRI signal a posteriori, and to fi-
nally remove it.
Respiratory variations also induce signal changes in the head. Respiration causes
blood pressure changes that may result in slight modifications of the size of the
CSF and venous blood spaces in the brain. A special possible respiration effect for
some subjects is the unconsciously gating of their breathing to the task, especially
when this task is very regular. A subject may hold off breathing until his response
to a trial [106, 109, 18].

Low frequency drift. Low frequency drifts (0.0-0.015 Hz) and trends are often re-
ported in fMRI data. It is one of the most poorly understood source of signal
variations. Investigations by Smith et al. [130] suggest that scanner instabilities
and not motion or physiological noise may be the major cause of the drift.

Spontaneous neural and vascular fluctuations and behavior variations. There
are a variety of neuro- and vascular physiological processes that lead to fluctuations
in the BOLD signal intensity. In addition to this background processes, there are
also variations in the way in which subjects perform tasks from trial to trial [106].

Artifacts in Rapid Imaging Methods. The main disadvantages and artifacts of
rapid imaging methods are [106]:
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I Limited spatial resolution.

I Ghosting (affects mostly EPI) [30, 123, 32].

I Susceptibility distortions: differences in magnetic susceptibilities between air
and watery tissue in the head result in non-uniformities in the magnetic fields,
which causes artifacts. In the EPI technique, these artifacts result mainly in
geometric distortions [84]. The distortions can be a shift, shear, stretch, or
squish of the object; in most cases these effects are local. Fat is an example
that can cause artifacts like shifting and therefore rapid imaging techniques
use “fat suppression”. All the fMRI-data used in this work were acquired
under fat suppression.

Characterization

To get a better understanding of the statistical nature of our data, we try to determine
the main properties of the noise. This step is crucial since we are aiming at an accurate
and rigorous statistical analysis of the results of fMRI experiments.
We make the general hypothesis that the noise follows a Gaussian distribution. This
assumption is certainly reasonable when working with averaged finite energy data (due
to the central limit theorem, cf. Section 3.1.3), as is the case here. The key question to
be answered concerns the covariance structure of the noise (independence, stationarity
over space and time).

Time variance over space. We question whether the variance is homogeneously dis-
tributed over space, or whether the variance differs significantly within the volume. The
hypothesis for the following calculation is that the time sequence of each voxel is inde-

pendent and normally distributed with variance σ; then, defining s2k =
∑n

τ=1
(xk(τ)−xk)2

n−1

with xk = 1
n

∑n
τ=1 xk(τ), we know that

s2
k

σ2 follows a χ2 distribution with n − 1 degrees
of freedom (see Section 3.1.3), where k is a 3D integer index locating the voxel in the
volume.

Therefore, we may write a confidence interval for this estimate as

P (a ≤ (n− 1)
s2k
σ2︸ ︷︷ ︸

ξ

≤ b) = α, (3.53)

where P is the χ2 cumulative probability, see Section 3.1.3; this means, that (n − 1)
s2

k

σ2

will fall within the interval [a, b] with probability α.
“a” and “b” are to be computed in such a way as to obtain the smallest interval, depending
on the confidence interval probability α. Let us denote by a(α) and b(α) those optimal
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values. Then we get an interval for σ2:

(n− 1)
s2k
b(α)

≤ σ2 ≤ (n− 1)
s2k
a(α)

. (3.54)

To get the smallest interval for σ2, we minimize
(

1
a − 1

b

)
under the condition of P (a ≤

ξ ≤ b) = α. Using Lagrange multipliers, we define the auxiliary function

f(a, b, λ) =
1

a
− 1

b
− λP (a ≤ ξ ≤ b). (3.55)

Taking the partial derivatives, we get

∂f(a, b, λ)

∂a
= − 1

a2
+ λp(a)=0 (3.56)

∂f(a, b, λ)

∂b
=

1

b2
− λp(b) =0, (3.57)

since P (a ≤ ξ ≤ b) =
∫ b

a p(ξ)dξ. From equation (3.56) and (3.57), we obtain the
optimality condition:

a2p(a) = b2p(b). (3.58)

Below is the code that determines the smallest interval by an iterative process which
converges to a solution where (3.53) and (3.58) are satisfied.

N := degree of freedom;
a(1) := 0;
for i := 1 to 100 step 1 do

b(i) = chi2inv(α+ chi2cdf (a(i), N), N);
a(i+ 1) = a(i) + 0.1 ∗ (b(i)2 ∗ chi2pdf (b(i), N)− a(i)2 ∗ chi2pdf (a(i), N));

end,

We observe that, on a logarithmic scale, the intervals have a constant size

log(σ2)− log(s2k) ∈ [min,max]︸ ︷︷ ︸
∆

, (3.59)

where

min = log

(
n− 1

b(α)

)
,

max = log

(
n− 1

a(α)

)
,
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∆

Figure 3.7: Equidistant confidence intervals on logarithmic scale. s2k and s2k′ are significantly
different.

which suggests a natural quantization step for the representation of the variance data
s2k. Since we look at the whole image, the value α is corrected for multiple testing with
the Bonferroni method.

We thus obtain for each log(s2k) an uncertainty interval ∆, wherein the true log(σ2)
lies with the probability α (chosen to be close to 1). If two intervals are not adjacent,
then we can assert that the corresponding estimates for σ2 are significantly different.

Applying this to one slice of different data-set, we get the result as depicted in Fig-
ure 3.8. From experiments such as these, we conclude that the variance is generally not
constant over space, contrary to what has often been stated in the literature [120, 52].
The variances, however, appear to be strongly correlated over space—in other words,
their variation is usually small within the neighborhood of a pixel.

Stationarity and time-independence. We take the time sequence of the rest state (B)
for each voxel and compute the variances of the first and second half of the time sequence.
Then, applying an F-test (see Section 3.2.4), we can check if the variances differ signifi-
cantly, in which case at least one of our hypotheses (stationarity or time-independence)
will fail:

ρk =

∑n
2 −1
τ=0 (xk(τ) − ξ0)2

∑n
2−1
τ=0 (xk(τ + n

2 )− ξ1)2
(3.60)

where

ξ0 =
1
n
2

n
2 −1∑

τ=0

xk(τ)

ξ1 =
1
n
2

n
2−1∑

τ=0

xk(τ +
n

2
).

We note that most statistical methods developed so far in the fMRI literature make the
assumption of stationarity and time-independence.
We applied this test to several of our data sets. Most of the slices show no detection.
However, in some cases the number of detections exceeds the false detection rate of the



52 Chapter 3. Statistical Processing of fMRI Data

(a) (b)

Figure 3.8: Variance estimation for three different slices: a) plot of log(sk). b) quantization of
(a) so that the classification error is as low as 0.0003% (Bonferroni correction). Obviously the
variance is significantly nonuniform.



3.3. fMRI applications 53

Figure 3.9: Slices of one data set which show some detections. The threshold of the test is
Bonferroni-corrected. We believe the false detections arose mostly from motion artifacts.

Bonferroni-correction. Those detected pixels are mostly on the border of the brain or
around the eyes. Thus we have some indications that the cases of false detections are
due to motion artifacts which could not be prevented by the realignment procedure (cf.
Figure 3.9).

3.3.2 Deterministic model

In order to make a statistical inference, we first need to specify a model. Three possible
data models at pixel k are being considered, from the simplest to the more complex.

Gaussian white noise assumption

Model 1: In some studies, the noise has been assumed to be white Gaussian [120, 52].
The corresponding model is

xk(τ) = µk(τ) + ek(τ) · σ,
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where µk is the average hemodynamic function, ek is an i.i.d. normalized noise (E[ek] =
0, E[e2k] = 1).
The hypothesis is that µk = µ1 during A and µk = µ2 during B. Thus, the detection of
activation uses a statistical test applied on a pixel by pixel basis to determine whether
or not µ1 and µ2 are different.
The white noise hypothesis has the advantage of simplicity. However, we found it to be
inappropriate for our data (cf. Section 3.3.1).

Time-independent, but space-non-stationary white noise

Model 2: In the second model, we assume to have whiteness (over time), but space-varying
(non stationary) Gaussian noise:

xk(τ) = µk(τ) + ek(τ) · σk ,

where the variance σk varies over the pixels, but changes only slightly, see Section 3.3.1.
We use this model which is consistent with our finding in Section 3.3.1.

General linear model

Model 3: In the third model we include components that also vary over time (hemody-
namic function or periodic disturbances). They are represented as a weighted sum of c
different functions:

xk(τ) =

c∑

i=1

αk,igi(τ) + σkek(τ),

where gk(τ) is the explanatory variable and represents an activation function. This
approach offers no extension on the noise description. But its deterministic model offers
the possibility of refinements, e.g., including baseline drifts. The General Linear Model
(GLM) is used among others by SPM, see also Section 2.8.2.

3.3.3 Hypothesis testing for activation

In the case of our algorithm, the sample of the data set to test is the time sequence of
a voxel and we want to decide whether this voxel is activated or not. This procedure is
repeated for all voxels at locations k = (i, j, l) in the volume. To simplify matters, we
will describe the two-dimensional case, where we consider all the pixels k = (i, j) in a
slice. The derivation of the samples to test is as follows: spatial noise is reduced either by
filtering or wavelet transformation in which case the testing is performed in the wavelet
domain. To find the activation, we calculate the pairwise difference between activation
and rest states yielding the sequence difference images xDτ

(i, j) = xAτ
(i, j)− xBτ

(i, j),
where the symbol A stands for the activation state and the symbol B for the rest state.
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Figure 3.10: Definition of significance level for the two-tailed t-test.

To decide which pixel is activated, we denote the null hypothesis —the pixel under
consideration is not activated—by H0. Under this hypothesis, µ0 = E[x̄D(i, j)] = 0 and
the distribution for the mean value of each pixel relative to its standard deviation is
known. The corresponding test statistic y(i, j) on the distribution has to be adapted to
the set of data, which transforms the pixel values into p-values. Which test statistic y is
implemented for fMRI data is discussed later in Section 3.3.5. If a test statistic exceeds
some expected bound for x̄D(i, j), the null hypothesis is rejected and the alternative
hypothesis H1 is accepted: we conclude that the pixel (or, eventually, wavelet coefficient)
is activated:

1. Null hypothesis H0: E[x̄D(i, j)] = 0 (no activation).

2. Alternative hypothesis H1: E[x̄D(i, j)] 6= 0 translates to |x̄D(i, j)| ≥ t, where t is
our significance threshold as explained in Section 3.2.6.

Given the level of significance (see Section 3.2) α = 0.05, we compute the threshold t
such that the probability that |y(i, j)| exceeds t is less than or equal to α, assuming that
H0 is true.

P (|y(i, j)| ≥ t) = α.

In the hypothesis test of our algorithm, the alternative hypothesis H1 is defined as
E[x̄D(i, j)] 6= 0, as we saw above. Thus we perform a two-tailed test (see Section 3.2.1).
A two-tailed test is chosen, since in the wavelet domain, the high-pass includes possible
significant high and low coefficients, which are of interest. The low-pass is tested with



56 Chapter 3. Statistical Processing of fMRI Data

a two-tailed hypothesis test as well. Here, when a significantly low-pass coefficient is
detected, one can think of the negative activation, also called deactivation, such as a
relative decrease of oxyhemoglobin; A deactivation can happen for two reasons: it may
reflect decrease of synaptic activity during the task of interest, or it may reflect an active
increase during the rest task [86].

3.3.4 z-test

If the variance σ2 is constant over the whole set of samples in the image and is known,
then E[x̄D(i, j)] follows a normal-distribution, and a z-test (Section 3.2.2) may be applied
as in [120]:

z(i, j) =
x̄D(i, j)− µ0

σ√
n

. (3.61)

Here a two-tailed test is appropriate too.

3.3.5 Student’s t-test

If the variance σ2 changes with (i, j), as was found to be the case with fMRI data in
Section 3.3.1, we apply a t-test (see Section 3.2.3) with n − 1 degrees of freedom. The
corresponding test statistic is

t(i, j) =
x̄D(i, j)− µ0

sD(i,j)√
n

, (3.62)

where x̄D(i, j) = 1
n

∑n
τ=1 xDτ

(i, j) and where

s2D(i, j) =
1

n− 1

∑

τ

|xDτ
(i, j)− x̄D(i, j)|2. (3.63)

In our case, µ0 = E[x̄D(i, j)]. The t-test described above is a one sample t-test, since
we compute the difference of the two samples before testing. In the following section, a
method is described, where the number of the samples of the activation state and the
rest state are not the same. Also with SPM (see Section 2.8) one can choose between one
sample t-test, two sample t-test and paired t-test under the category of “basic models”.

Two sample t-test

This case is applied when the number of samples in the activation state and in the rest
state are not the same; in other words, when we cannot make the difference between
these two states before testing. The two samples size will be denoted by nA and nB ,



3.3. fMRI applications 57

respectively, with the unknown mean value µA and µB , respectively. The corresponding
samples mean are denoted by x̄A(i, j) and x̄B(i, j), respectively. The null hypothesis is

H0 : µA = µB . (3.64)

Since we choose a two-tailed test, the alternative hypothesis is expressed by

H1 : µA 6= µB . (3.65)

The test statistic is, obtained from equation (3.28):

t(i, j) =
x̄A(i, j)− x̄B(i, j)

sAB(i, j)
√

1
nA

+ 1
nB

. (3.66)

The unbiased estimate s2AB of σ2 is given by

s2AB(i, j) =
(nA − 1)s2A(i, j) + (nB − 1)s2B(i, j)

nA + nB − 2
, (3.67)

where the standard deviation estimates sA and sB are obtained by:

s2A(i, j) =

nA∑

τ=1

(xAτ
(i, j)− x̄A(i, j))2

nA − 1
(3.68)

s2B(i, j) =

nB∑

τ=1

(xBτ
(i, j)− x̄B(i, j))2

nB − 1
. (3.69)

The paired t-test

This test can be applied when there is a natural pairing in the trials (see Section 3.2.3).
The n pairs are denoted as xAτ

(i, j) and xBτ
(i, j) for τ = 1, . . . , n with means µAτ

(i, j)
and µBτ

(i, j). Then the null hypothesis is described by

H0 = µAτ
(i, j) = µBτ

(i, j) for all τ = 1, . . . , n. (3.70)

The difference of the pairs is given by

xDτ
(i, j) = xAτ

(i, j)− xBτ
(i, j) τ = 1, . . . , n, (3.71)

where xDτ
(i, j) is a sample of size n with mean zero. The average difference is denoted

by x̄D(i, j) and the standard deviation is denoted by sD(i, j). Then the test statistic is
given by

t(i, j) =
x̄D(i, j)
sD(i,j)√

n

, (3.72)

where the standard deviation is obtained accordingly to equation (3.29).
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3.3.6 F -test

Instead of applying a two-tailed t-test to our data, we could also compare the different
estimates of x̄2

A and x̄2
B and apply an F-test (see Section 3.2.4).

3.3.7 Hotelling’s T 2-test

As reported in Section 3.2.5, the Hotelling’s T 2-test is the multivariate version of the
univariate Student’s t-test. In our case, the complex wavelets (see Section 4.4) make the
statistics bivariate. Like in the univariate case, to find the activation, we calculate the
difference between activation and rest states pairwise to produce the sequence difference
images xDτ

(i, j) = xAτ
(i, j) − xBτ

(i, j), where xAτ
(i, j) and xBτ

(i, j) ∈ C. Thus, we
have to deal with bivariate random vectors (p = 2) X[1], . . . ,X[τ ], . . . ,X[n], where one
dimension of the random vectors represents the real part of the wavelet coefficients, while
the second dimension represents the imaginary part.
The variables x[1], . . . ,x[τ ], . . . ,x[n] represent the samples from one wavelet location
with the mean vector µ = (µ1, µ2)

T . Then we want to test the hypothesis

H0 : µ = µ0, (3.73)

where the hypothetical mean vector µ0 equals in our case to (0, 0)T . The sample mean
vector and the sample covariance matrix are denoted by x̄D(i, j) and SD(i, j), respec-
tively. The corresponding test statistic with x̄D(i, j) = 1

n

∑n
τ=1 xD(i, j)[τ ] is:

T 2(i, j) = nx̄T
D(i, j)S−1

D (i, j)x̄D(i, j), (3.74)

where

SD =

(
s11 s12
s21 s22

)
, (3.75)

with

s11 =
1

n− 1

n∑

τ=1

(x1(i, j)[τ ]− x̄1(i, j))
2

s22 =
1

n− 1

n∑

τ=1

(x2(i, j)[τ ]− x̄2(i, j))
2

s12 =
1

n− 1

n∑

τ=1

(x1(i, j)[τ ]− x̄1(i, j)) (x2(i, j)[τ ]− x̄2(i, j))

s21 = s12.
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The hypothesis H0 is accepted, when

n− 2

(n− 1)2
T 2(i, j) ≤ f, (3.76)

where f is the (1−α) quantile of the F-distribution with 2 and (n−2) degrees of freedom.
Otherwise H0 is rejected.

3.3.8 Determining the significance level

In our algorithm, we correct for multiple comparisons with Bonferroni (cf. Section 3.2.6):

α′ =
α

N
,

where N = number of wavelet coefficients in the image.
When the noise is white and the wavelet transform is orthogonal, the data remains
independent (cf. Section 6.4) and the Bonferroni-correction is in this case exact (i.e. non
conservative). When the data is locally correlated, there is no reason to restrict ourselves
to orthogonal transformation only. In fact, the transformation may even improve the
situation by acting as a whitening operator. The testing remains safe as long as we
apply the Bonferroni correction.

When applying the hypothesis test and the correction for multiple comparisons with
Bonferroni to the data directly, we usually hardly detect any activation. This is simply
because the level of noise in the data set is too high for this kind of straightforward
detection. A typical example of such behavior in 2D is shown in Figure 3.11.

To set the threshold, we could also apply the binomial law (see Section 3.2.6). In that
case the probability to observe n0 false detections in a random field without activation
follows the binomial equation (3.45) with parameters p = P (tk > t) and N = number
of pixels in the image. This is a global test, but we may also want to know the location
of the detection. Since it is most probable that the activation appears in clusters while
the false positives appear scattered, one could check for clusters of a given size after the
global testing.

The SPM method uses the correction of probability of a Gaussian Random Field
(see Section 3.2.6) to test for activation. Its continuous formulation of the problem is
not optimal, since in the fMRI problem the data are discrete. The Gaussian random
field theory is not adequate when the correlation length is of order of the pixel size. We
have evidence that, the threshold value is too conservative (more than Bonferroni), when
there is no correlation at all, and that it is too optimistic for moderate correlation, which
corresponds to the case of our data.
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a) b) c)

Figure 3.11: Detecting activation of a visual task: a) applying a two-paired t-test to the pixel
data without multiple correction to realigned fMRI data. b) Like a) but with Bonferroni-
correction. Only few pixels are detected. c) Applying a wavelet transform and using a t-test with
Bonferroni-correction. We detect the regions that are clustered in a). The wavelet transform
reduces the noise sufficiently so that the Bonferroni-correction does not seem to be penalizing.



Chapter 4

Wavelets

4.1 Introduction

The Fourier basis consists of sines and cosines, which are perfectly localized in the fre-
quency domain, but not in space. In contrast, wavelets decay to zero as t → ±∞ while
retaining some level of localization in frequency domain. It is thus likely that wavelets
are better suited to represent functions that are localized both in space and frequency.

4.1.1 Definition of a multiresolution analysis

We now consider the space of Lebesgue square-integrable functions:

L2(R) =

{
f(x) : x ∈ R,

∫ ∞

−∞
|f(x)|2dx < +∞

}
. (4.1)

Note that the L2 space is considerably larger than the Shannon’s conventional space of
band-limited functions Bπ. We define approximation spaces Vj , which have the following
structure:

∗ Vj ∈ L2

∗ f ∈ Vj ⇔ f
(
2jt
)
∈ V0.

The subspace of functions that contain signal information down to scale 2j is denoted by
Vj . The first requirement of the MultiResolution Analysis (MRA) is that the information
in Vj must also be contained in finer resolution space, Vj+1; thus Vj ⊂ Vj+1. It follows
that Vj+1 can be decomposed as

Vj+1 = Vj ⊕Wj , (4.2)
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where Wj is called the detail space (there are several choices for Wj , one of them being
the ⊥ complement of Vj). Iterating equation (4.2) gives

Vj+1 = ⊕j
k=−∞Wk . (4.3)

The second requirement for an MRA is that all functions in L2(R) are included at the
finest resolution and only the zero function at the coarsest level. Hence, due to (4.1), we
have limj→−∞ Vj = {0} and limj→∞ Vj → L2(R). Hence, letting j → +∞ gives

L2(R) = ⊕∞k=−∞Wk. (4.4)

The last requirement for an MRA is that there exist a function φ such that {φ(t−k)}k∈Z

forms a Riesz basis for V0.
To summarize, a multiresolution analysis of L2(R) is a nested sequence of subspaces

{Vj}j∈Z such that

i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R) (4.5)

ii)
⋂

j

Vj = {0},
⋃

j

Vj = L2(R) (4.6)

iii) f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj+1 (4.7)

iv) There exists a function φ(t), called the scaling function,

such that {φ(t− k)} is a Riesz basis of V0. (4.8)

Consequently: f(t) ∈ V0 =⇒ f(t− k) ∈ V0

φ(t) is defined to be a valid scaling function of L2 if and only if:

i) A ≤∑k∈Z

∣∣∣φ̂(ω + 2πk)
∣∣∣
2

≤ B (Riesz basis) (4.9)

ii) φ(t) =
√

2
∑

k h[k]φ(2t− k) (two-scale relation) (4.10)

iii)
∑

k∈Z
φ(t − k) = 1 (partition of unity) (4.11)

Under slight constraints, these three conditions are equivalent to the four conditions
which define an MRA.
(4.11) implies that

∫∞
−∞ φ(t)dt = 1. Thus with the two scale relation (4.10) we obtain

∑

k

h[k] =
√

2. (4.12)

If φ is orthonormal, then

∑

k

|h[k]|2 = 1 and
∑

k

h[k]h∗[k + 2l] = 0, l 6= 0. (4.13)
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The detail space W0 has also a Riesz basis {ψ(t− k)}k∈Z, called the wavelet basis. The
function ψ(t) is referred to as the mother wavelet. Since W0 ⊂ V1, ψ(t) can be written
as a superposition of the basis functions for V1:

ψ(t) =
√

2
∑

k

g[k]φ(2t− k), (4.14)

which is called the wavelet equation. From the requirement that
∫∞
−∞ ψ(t)dt = 0, we

obtain
∑

k

g[k] = 0. (4.15)

All these relations can be expressed in the Fourier domain. With φ̂(ω) =∫∞
−∞ φ(t)e−jωtdt and H(ω) = 1√

2

∑
k h[k]e

−jkω and correspondingly ψ̂(ω) =∫∞
−∞ ψ(t)e−jωtdt and G(ω) = 1√

2

∑
k g[k]e

−jkω, we obtain

φ̂(ω) = H
(ω

2

)
φ̂
(ω

2

)
(4.16)

ψ̂(ω) = G
(ω

2

)
φ̂
(ω

2

)
. (4.17)

The orthogonality conditions can also be expressed in the frequency domain. It is equiv-
alent to claim that {φ(t− k)} is orthonormal and to have:

∞∑

l=−∞
|φ̂(ω + 2πl)|2 = 1. (4.18)

To orthogonalize a basis function which is not orthogonal, we divide its Fourier transform
by the square root of the left hand side of (4.18):

φ̂ortho(ω) =
φ̂(ω)√∑∞

l=−∞ |φ̂(ω + 2πl)|2
. (4.19)

It can be verified that for φ to be orthogonal, it is necessary and sufficient that

|H(ω)|2 + |H(ω + π)|2 = 1. (4.20)

This relation is derived simply by inserting (4.16) into (4.18). Similarly, {ψ(t − k)} is
orthonormal if

∞∑

l=−∞
|ψ̂(ω + 2πl)|2 = 1 (4.21)



64 Chapter 4. Wavelets
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Figure 4.1: Analysis part of the 1D discrete wavelet transform (DWT) for two iterations.

or

|G(ω)|2 + |G(ω + π)|2 = 1. (4.22)

We can also derive the condition that {ψ(t − k)} and {φ(t − k)} are orthogonal
(
∫∞
−∞ φ(t)ψ∗(t)dt = 0),

∞∑

l=−∞
φ̂(ω + 2πl)ψ̂∗(ω + 2πl) = 0. (4.23)

Using (4.16) and (4.17) and rewrite the above equation, we get the condition of orthog-
onality between {ψ(t− k)} and {φ(t− k)} dependent on H and G:

H(ω)G∗(ω) +H(ω + π)G∗(ω + π) = 0. (4.24)

4.1.2 1D filterbank

Wavelet decomposition can be also expressed in terms of subband filtering, a term that is
used in signal processing. The connection between the multiresolution analysis described
in the previous section and filterbank described here builds the filter H(ω) and G(ω).
A filterbank is a set of down- and up-sampled filters. The Discrete Wavelet Transform
(DWT) can be implemented using an iterated dyadic filterbank. Figure 4.1 represents
the analysis part for two iterations and Figure 4.2 represents the synthesis part where
H̃ and G̃ (resp., H and G) are the transfer functions of the analysis (resp., synthesis)
filters. In the orthogonal case, the analysis and synthesis filters are identical up to a
time-reversal; the wavelet filter G is simply a modulated version of the low-pass filter H :

G(z) = −z−1H∗(−z−1) (4.25)

and in the time domain:

g[k] = (−1)kh∗[1− k]. (4.26)
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Figure 4.2: Synthesis part of the 1D discrete wavelet transform (IDWT) for two iterations.

Let x[k] denote a one dimensional discrete signal. Then its down-sampled version
with 2 is

[x]↓2[k] = x[2k]. (4.27)

The Fourier-domain version of (4.27) is

[x]↓2[k]←→
1

2

[
X
(
z

1
2

)
+X

(
−z 1

2

)]
.

The up-sampling is defined by

[x]↑2[k] =

{
x[l] k = 2l, k even
0 k odd

and its effect in the transform domain is as follows:

[x]↑2[k]←→ X
(
z2
)
.

If we now chain the down-sampling and up-sampling operators, we obtain

[x]↓2↑2[k] =

{
x[k] k even
0 k odd

l
1

2
[X (z) +X (−z)] . (4.28)

The low-pass filter H̃ reduces the resolution by a factor of 2; the wavelet coefficients
correspond to the output of the high-pass filter G̃. Applying the relation (4.28) to the
block diagram in Fig. 4.3, it is easy to derive the conditions for a perfect reconstruction:





H̃ (z)H (z) + G̃ (z)G (z) = 2 no distortion,

H̃ (−z)H (z) + G̃ (−z)G (z) = 0 alias cancellation.

(4.29)
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Figure 4.3: Perfect reconstruction filterbank.

4.2 Separable real wavelets

By separable wavelets, we mean here separable filters and separable sampling. In the
two-dimensional case, the filters are obtained through the scaling function

φ(x, y) = φ(x)φ(y). (4.30)

In the two-dimensional case, we obtain this way three basic wavelets,

ψ1(x, y) = φ(x)ψ(y)

ψ2(x, y) = ψ(x)φ(y)

ψ3(x, y) = ψ(x)ψ(y).

Sampling in multiple dimensions is represented by a lattice, the set of all vectors generated
by Dk, k ∈ Zn, where D is the matrix characterizing the sampling process. D is not
unique for a given sampling pattern [48]. A separable lattice is a lattice that can be
represented by a diagonal matrix. In two dimensions, the dyadic sampling matrix has
the expression

D =

(
2 0
0 2

)
.

The separable 2D wavelet transform has four outputs: one low-pass and three high-pass
branches.
The advantage of using a separable wavelet transform is twofold. First, it is simpler since
the 1D approach can be extended to higher dimensions through the use of tensor product
basis functions. The second reason is that separability is computationally more efficient,
since the transform can be implemented by treating the rows and columns separately.
The tensor product solution has the disadvantage that the filters obtained in this way
have a constrained design (nonseparable filters of size N1 × N2 would offer N1N2 free
design variables versus N1 + N2 in the separable case). The second drawback is that
only rectangular divisions of the spectrum are possible. It is usually the case that other
divisions may better capture the signal energy [148].
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4.2.1 Fractional splines

We describe here the discrete wavelet transform that arises from a multiresolution anal-
ysis generated by fractional splines. Fractional splines are a generalization of B-splines
to fractional orders. B-splines are constructed from the (n − 1)-fold convolution of a
rectangular pulse β0

+ [144]:

β0
+(x) =

{
1, 0 < x < 1
0, otherwise

(4.31)

βn
+(x) = β0

+ ∗ β0
+ ∗ · · · ∗ β0

+(x)
︸ ︷︷ ︸

(n+1) times

. (4.32)

For n integers, these functions have a central axis of symmetry around n+1
2 , and can be

re-centered to yield the symmetric B-splines:

βn
∗ (x) = βn

+

(
x+

n+ 1

2

)
. (4.33)

Likewise there are two flavors of fractional splines: the causal ones, denoted by βα
+, which

are a linear combination of the one-sided power functions

(x− n)α
+ =

{
(x− n)α, x ≥ n
0, x < n

; (4.34)

and the symmetric ones, denoted by βα
∗ , which are a linear combination of the radial

power functions |x − n|α if α is any non-even real number, and of |x − n|α log |x − n| if
α is even. For each version, the degree α of the splines is assumed to be strictly greater
than − 1

2 , in order to ensure a valid MRA [135].
These functions have a simple expression in the frequency domain:

β̂α
+(ω) =

(
1− e−jω

jω

)α+1

(4.35)

and β̂α
∗ (ω) = |β̂α

+(ω)|. They satisfy two-scale difference equations whose scaling filters
are given, respectively, by

Bα
+(z) =

√
2

(
1 + z−1

2

)α+1

(4.36)

for the causal spline, and by

Bα
∗ (z) =

√
2

∣∣∣∣
1 + z−1

2

∣∣∣∣
α+1

(4.37)
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for the symmetric one.
The autocorrelation filter of a B-spline of degree α is given by

Aα(ejω) =
∑

n

∣∣∣β̂α
∗ (ω + 2nπ)

∣∣∣
2

. (4.38)

Letting Bα = Bα
+ or Bα

∗ , the discrete Fractional Spline Wavelet Transform (FSWT) is
implemented using the analysis and synthesis filters given in Table 4.1. Note that the

b
b

bbfilter

type
bspline ortho dual

H(z) Bα(z) Bα(z)

√
Aα(z)

Aα(z2)
Bα(z−1)

Aα(z)

Aα (z2)

G(z) −z−1Bα(−z−1)Aα(−z) −z−1Bα(−z−1)

√
Aα (−z)
Aα (z2)

−zBα(−z)
Aα (z2)

H̃(z) Bα(z−1)
Aα(z)

Aα (z2)
Bα(z−1)

√
Aα (z)

Aα (z2)
Bα(z)

G̃(z)
−zBα(−z)
Aα (z2)

−zBα(−z)
√
Aα(−z)
Aα(z2)

−z−1Bα(−z−1)Aα(−z)

Table 4.1: Analysis and synthesis filters for the wavelet transform.

dual type is obtained by exchanging the analysis- and synthesis-part of the bspline case.
In Figure 4.4, the low-pass filter H(z) of the symmetric orthogonal fractional spline is
presented for different order parameters α. With increasing α, the filter is less local in
space but more frequency selective.

Implementation in Fourier

We have worked out a fast and exact implementation of the FSWT in 2D and 3D in the
Fourier domain based on [20]. The MATLAB files are freely available on our website1.

We have also an FFT-based implementation of the FSWT in Java 2.0 [70]. The
principal advantage of Java over C++ is portability; indeed, there are now widely avail-
able virtual Java machines for most workstations including Mac, PC, and Sun. The
final form of the algorithm is a plugin implemented in Java for ImageJ [114], a Java
free-software available on the site of the National Institute of Health (NIH). The other
final form is an applet, which makes it possible to run the algorithm over the Inter-
net. A screen-shot of this applet is presented in Figure 4.5 and is available on the site
http://bigwww.epfl.ch/demo/jwavelet/index.html. The performance of the algorithm is as

1http://bigwww.epfl.ch/blu/fractsplinewavelets/
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Figure 4.4: a) Impulse response of the orthogonal fractional spline dependent on α. b) Frequency
response of the orthogonal fractional spline.

follows (Pentium 500 MHz): an image of size of 512× 512, 32-bits takes for one iteration
1.10 s and for nine iterations 1.30 s. The implementation has been conceived to minimize
the number and size of FFT’s. In the present version, the calculation of the FFT and
the IFFT takes up 50 % of the time.

The algorithm is implemented in a separable fashion and the intermediate results are
stored in floating point format. The first step is to perform the FFT of the signal (row
or column):

xi[k]
FFT←→ Xi[n] (4.39)

where k ∈ [0, N − 1] and n ∈ [0, N − 1]. Down-sampling in Fourier domain is achieved
by

Xi[n]↓2 = 1
2

(
Xi[n] +Xi[n+ N

2 ]
)
, (4.40)

where n ∈ [0, N
2 − 1].

Thus, the two down-sampled filtered components in the Fourier domain (Xi+1[n] and
Yi+1[n], cf. Figure 4.3) are computed as

Xi+1[n] = 1
2

(
Xi[n]H̃ [n] +Xi[n+ N

2 ]H̃[n+ N
2 ]
)

(4.41)

Yi+1[n] = 1
2

(
Xi[n]G̃[n] +Xi[n+ N

2 ]G̃[n+ N
2 ]
)
, (4.42)

where n ∈ [0, N
2 − 1]. The corresponding N

2 -point signals in Figure 4.3 are obtained by
inverse FFT.
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Figure 4.5: Applet of the Fourier based implementation of the separable wavelet transform and
the fractional splines, available on the site: http://bigwww.epfl.ch/demo/jwavelet/index.html.
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Figure 4.6: Approximation of the scaling function φ(ω) and the wavelet function ψ(ω) of order 2,
approximated with 10 iterations.

Conversely, the up-sampling is given by

Xi+1[m]↑2 =
1

2





Xi+1[n] m = 0, . . . , N
2 − 1

Xi+1[n] m = N
2 , . . . , N − 1.

(4.43)

The reconstruction formula in the Fourier domain is

Xi[m] = 1
2 (Xi+1[m]↑2H [m] + Yi+1[m]↑2G[m]) , (4.44)

where m ∈ [0, N − 1].

In this implementation, the analysis of RGB-images and of a stack of images is pos-
sible.

4.2.2 Daubechies wavelets

The Daubechies wavelets are widely used for many applications, also for fMRI. We de-
scribe here shortly the real Daubechies wavelets, since we are comparing their perfor-
mance for the detection of activation patterns with other wavelets. The Daubechies
wavelets are orthogonal and compactly supported. They are the shortest, orthogonal
wavelets with N vanishing moments (

∫∞
−∞ tlψ(t)dt = 0 for l = 0, 1, . . . , n − 1). Their

refinement filter is given H(z) = (1 + z)NQ(z), where Q(z) is the shortest polynomial
such that the orthogonality relation (4.13) is satisfied and degQ ≤ N − 1. The exact
formulation can be found in [43].
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4.3 Nonseparable wavelets: quincunx

The quincunx transform will be described in more detail in Chapter 5. Quincunx wavelets
have some advantageous features that make them well suited for our application (Sec-
tion 7.2.2). The quincunx wavelet algorithm has been also implemented in Java [77]. A
screen-shot of the applet is presented in Figure 4.7.

Figure 4.7: Applet of the Fourier based implementation of the quincunx wavelet transform,
available on the site: http://bigwww.epfl.ch/demo/jquincunx/index.html.

4.4 Complex wavelets

Recent wavelet development has primarily focused on real-valued wavelet bases. However,
complex wavelet bases offer a number of potential advantageous properties [159]:
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Figure 4.8: Complex Daubechies filters. The solid line represents the real part, the dashed line
represents the imaginary part. a) h[k] for complex Daubechies of order 3. b) g[k] for complex
Daubechies of order 3.

− Daubechies has shown that all compactly supported, real orthogonal wavelet bases
and their associated conjugate quadrature filter (CQF) filterbanks are neither sym-
metric nor antisymmetric, except for the Haar transform [43, 42]. Lawton [88] and
Lina et al. [93] showed that symmetry could be regained by using complex scaling
functions. This led then to the definition of the Complex Daubechies wavelets,
which are symmetric, orthogonal and of minimum length. These wavelets have
been used in image coding applications in [16] and showed better compression per-
formance than asymmetric wavelets.

− Another advantage is the near shift-invariance of the complex wavelet transform
without significant increase of the complexity of the algorithm [118, 29]. The price
to pay is that the complex wavelet transform is redundant by a factor of two when
the input signal is real.

We also used the complex symmetric Daubechies wavelets for our fMRI application and
implemented the filters like described in [91, 92]. We implemented the order n = 3, 5, 7, 9.
The first order wavelet is the Haar wavelet. Note that the amplitude responses for the
complex real Daubechies filters are the same, see Figure 7.20. The filter coefficients h[k]
and g[k] for the order n = 3 are illustrated in Figure 4.8.

4.5 Applications

The wavelet transform is a powerful tool for many applications. Its space-frequency
localization property and the existence of fast algorithms make it attractive for the anal-
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ysis of non-stationary signals. The space-frequency localization property motivates new
algorithms for example for image denoising applications, where the wavelet transform is
able to preserve boundaries better than, for example, the Fourier transform [5, 72].
Another advantage of the wavelet transform as compared to the Fourier transform, is
that the analyzing wavelet can be specifically tailored to the application. The Windowed
Fourier Transform (WFT) circumvents the lack of time localization of the Fourier trans-
form, however, it remains the problem of the fixed size of each shifted window, whereas
for the wavelet transform we have different scales.
But also the scale specific non-redundant information of the wavelet coefficient makes the
wavelet transform attractive. For detection problems like fMRI or microcalcifications in
mammography, where the size of the feature to detect is not known a priori, the multires-
olution properties of the wavelet transform give access to signal information at different
resolution levels. This allows for the separation of signal components of various sizes
including high frequency noise. Another example than fMRI of successful application is
the detection of microcalcifications [158, 35].
The wavelet transform also de-correlates the signal, which results in a concentration of
power into a smaller number of coefficients. This makes the wavelet transform espe-
cially attractive for the compression of signals or images. Wavelets have already been
incorporated into the new JPEG2000 algorithm; they tend to be quite flexible and yield
subjectively better results than the standard DCT-based JPEG, at especially high com-
pression ratios.
Here, we will apply the wavelet transform to fMRI data.



Chapter 5

Orthogonal Quincunx Wavelets
with Fractional Orders

In this chapter, we present a new family of 2D and 3D orthogonal wavelets which uses
quincunx sampling. The orthogonal refinement filters have a simple analytical expression
in the Fourier domain as a function of the order λ, which may be non-integer. We can
also prove that they yield wavelet bases of L2(R

2) for any λ > 0. The wavelets are
fractional in the sense that the approximation error at a given scale a decays like O(aλ);
they also essentially behave like fractional derivative operators. To make our construction
practical, we propose an FFT-based implementation that turns out to be surprisingly
fast. In fact, our method is almost as efficient as the standard Mallat algorithm for
separable wavelets.

5.1 Introduction

The great majority of wavelet bases that are currently used for image processing are sep-
arable. There are two primary reasons for this. The first is convenience because wavelet
theory is most developed in 1D and that these results are directly transposable to higher
dimensions through the use of tensor product basis functions. The second is efficiency be-
cause a separable transform can be implemented by successive 1D processing of the rows
and columns of the image. The downside, however, is that separable transforms tend to
privilege the vertical and horizontal directions. They also produce a so-called “diagonal”
wavelet component, which does not have a straightforward directional interpretation.

Non separable wavelets, by contrast, offer more freedom and can be better tuned
to the characteristics of images [82, 103]. Their less attractive side is that they require
more computations. The quincunx wavelets are especially interesting because they can
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be designed to be nearly isotropic [56]. In contrast with the separable case, there is a
single wavelet and the scale reduction is more progressive: a factor

√
2 instead of 2. The

preferred technique for designing quincunx wavelets with good isotropy properties is to
use the McClellan transform to map 1D biorthogonal designs to the multidimensional
case [99]. Since this approach requires the filters to be symmetric, it has only been
applied to the biorthogonal case because of the strong incentive to produce filters that
are compactly supported [31, 81, 125, 138].

In this chapter, we construct a new family of quincunx wavelets that are orthogonal
and have a fractional order of approximation. The idea of fractional orders was intro-
duced recently in the context of spline wavelets for extending the family to non-integer
degrees [145]. The main advantage of having a continuously-varying order parameter—
not just integer steps as in the traditional wavelet families—is flexibility. It allows for
a continuous adjustment of the key parameters of the transform; e.g., regularity and
localization of the basis functions. The price that we are paying for these new features—
orthogonality with symmetry as well as fractional orders—is that the filters can no longer
be compactly supported. We will make up for this handicap by proposing a fast FFT-
based implementation which is almost as efficient as Mallat’s algorithm for separable
wavelets [95].

5.2 Quincunx sampling and filterbanks

k1

k2

(a)

−π ω1

ω2
π

(b)

Figure 5.1: The quincunx lattice (a) and its corresponding bandwidth (b).

First, we recall some basic results on quincunx sampling and perfect reconstruction
filterbanks [148]. The quincunx sampling lattice is shown in Fig. 5.1. Let x[~k] with
~k = (k1, k2) ∈ Z2 denote the discrete signal on the initial grid. The 2D Fourier transform

of x[~k] is denoted by X(~ω) =
∑

~k∈Z2 x[~k]e
−j〈~ω,~k〉 with ~ω = (ω1, ω2). Then, its quincunx
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sampled version is

[x]↓D[~k] = x[D~k] where D =

(
1 1
1 −1

)
. (5.1)

Our down-sampling matrix D is such that D2 = 2I. The Fourier-domain version of (5.1)
is

[x]↓D[~k]←→ 1

2

[
X
(
D−T ~ω

)
+X

(
D−T ~ω + ~π

)]
,

where ~π = (π, π).
The upsampling is defined by

[x]↑D[~k] =

{
x[D−1~k] if k1 + k2 even
0 else where

and its effect in the transform domain is as follows:

[x]↑D[~k]←→ X
(
DT ~ω

)
.

If we now chain the down-sampling and up-sampling operators, we get

[x]↓D↑D[~k] =

{
x[~k] if k1 + k2 even
0 else where

l
1

2
[X (~ω) +X (~ω + ~π)] . (5.2)

Since quincunx sampling reduces the number of image samples by a factor of two, the
corresponding reconstruction filterbank has two channels (cf. Fig. 5.2). The low-pass

filter H̃ reduces the resolution by a factor of
√

2; the wavelet coefficients correspond to
the output of the high-pass filter G̃.

xi[~k]

G̃ (~ω) �

��D

↓
yi+1[~k]

H̃ (~ω) �

��D

↓
xi+1[~k]

xi[~k]

�

��D

↑ G (~ω)

�

��D

↑ H (~ω)

Figure 5.2: Perfect reconstruction filterbank on a quincunx lattice.

Applying the relation (5.2) to the blockdiagram in Fig. 5.2, it is easy to derive the
conditions for a perfect reconstruction:
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



H̃ (~ω)H (~ω) + G̃ (~ω)G (~ω) = 2

H̃ (~ω + ~π)H (~ω) + G̃ (~ω + ~π)G (~ω) = 0,

(5.3)

where H and G (resp., H̃ and G̃) are the transfer functions of the synthesis (resp.,
analysis) filters. In the orthogonal case, the analysis and synthesis filters are identical up
to a central symmetry; the wavelet filter G is simply a modulated version of the low-pass
filter H .

5.3 Fractional quincunx filters

To generate quincunx filters, we will use the standard approach which is to apply the
diamond McClellan transform to map a one dimensional design onto the quincunx struc-
ture.

5.3.1 A new 1D wavelet family

As starting point for our construction, we introduce a new one-dimensional family of
orthogonal filters:

Hλ(z) =

√
2(z + 2 + z−1)

λ
2

√
(z + 2 + z−1)λ + (−z + 2− z−1)λ

=

√
2(2 + 2 cosω)

λ
2

√
(2 + 2 cosω)λ + (2− 2 cosω)λ

, (5.4)

which is indexed by the continuously-varying order parameter λ.
These filters are symmetric and are designed to have zeros of order λ at z = −1; the

numerator is a fractional power of (z+2+z−1) (the simplest symmetric refinement filter)
and the denominator is the appropriate orthonormalization factor. By varying λ, we can
adjust the frequency response as shown in Fig. 5.3. As λ increases, Hλ(z) converges to
the ideal half-band low-pass filter. Also note that these filters are maximally flat at the
origin; they essentially behave like Hλ (ω) /

√
2 = 1 + O(ωλ) as ω → 0. Their frequency

response is similar to the Daubechies’ filters with two important differences: (1) the
filters are symmetric, and (2) the order is not restricted to integer values.

We can prove mathematically that these filters will generate valid 1D fractional
wavelet bases of L2 similar to the fractional splines presented in [145]. The order property
(here fractional) is essential because it determines the rate of decay of the approximation
error as a function of the scale. It also conditions the behavior of the corresponding
wavelet which will act like a fractional derivative of order λ; in other words, it will kill
all polynomials of degree n ≤ dλ− 1e.
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Figure 5.3: Frequency responses of the orthogonal refinement filters for λ = 1, . . . , 100.

5.3.2 Corresponding 2D wavelet family

Applying the diamond McClellan transform to the filter above is straightforward; it
amounts to replacing cosω by 1

2 (cosω1 + cosω2) in (5.4). Thus, our quincunx refinement
filter is given by

Hλ(ω1, ω2) =

√
2(2 + cosω1 + cosω2)

λ
2

√
(2 + cosω1 + cosω2)λ + (2− cosω1 − cosω2)λ

. (5.5)

This filter is guaranteed to be orthogonal because the McClellan transform has the
property of preserving biorthogonality. Also, by construction, the λth order zero at ω = π
gets mapped into a corresponding zero at (ω1, ω2) = (π, π); this is precisely the condition
that is required to get a two dimensional wavelet transform of order λ.

The orthogonal wavelet filter is obtained by modulation

Gλ(ω1, ω2) = ejω1Hλ(−ω1 − π,−ω2 − π). (5.6)

The corresponding orthogonal scaling function ϕλ (~x) is defined implicitly as the
solution of the quincunx two-scale relation:

ϕλ (~x) =
√

2
∑

~k∈Z2

hλ[~k]ϕλ

(
D~x− ~k

)
.

Since the refinement filter is orthogonal with respect to the quincunx lattice, it follows
that ϕλ (~x) ∈ L2(R

2) and that it is orthogonal to its integer translates. Moreover, for
λ > 0, it will satisfy the partition of unity condition, which comes as a direct consequence
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of the vanishing of the filter at (ω1, ω2) = (π, π). Thus, we have the guarantee that
our scheme will yield orthogonal wavelet bases of L2(R

2). The underlying orthogonal
quincunx wavelet is simply

ψλ (~x) =
√

2
∑

~k∈Z2

gλ[~k]ϕλ

(
D~x− ~k

)
.

5.4 Implementation in Fourier domain

xi[~k]

G̃ (~ω) �

��D

↓ �

��D

↑
z1z2 �


��2I

↓ j

�

��2I

↓
h+ r zi+1[~k]

H̃ (~ω) �

��D

↓ �

��D

↑
x′i+1[

~k]

y′i+1[
~k]

↑

↑

G̃p (~ω) �

��2I

↓ • yi+2[~k]

H̃p (~ω) �

��2I

↓ •xi+2[~k]

Figure 5.4: Analysis part of the 2D QWT for two iterations.
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Figure 5.5: Formation of quincunx coefficients for 4 iterations.

The major objection that can be made to our construction is that the filters are not
FIR and that it may be difficult and costly to implement the transform in practice. We
will see here that we can turn the situation around and obtain a very simple and efficient
algorithm that is based on the FFT, following the idea of [117]. Working in the frequency
domain is also very convenient because of the way in which we have specified our filters



5.4. Implementation in Fourier domain 81

y1

y2 y3

y4 x4

Figure 5.6: Other possible formation of quincunx coefficients for 4 iterations.

(cf. Eqs. (5.5) and (5.6)). A first such implementation has been done by [104]. Our
algorithm is an other variation, which minimizes the number and size of FFT’s and seems
to be faster.

Here, we will only describe the decomposition part of our algorithm which corresponds
to the block diagram presented in Fig. 5.4 where we have pooled together two levels of
decomposition. The initialization step is to evaluate the FFT of the initial input image
x[~k] and to precompute the corresponding sampled frequency responses of the analysis

filters H̃ [~n] and G̃ [~n] using (5.5) and (5.6).

Assuming that the current image size is N × N , the input variable, following a 2D
FFT, is

Xi [~n] =
∑

~k

xi[~k]e
−j 2π〈~k,~n〉

N for n1, n2 = 0 . . .N − 1.

Globally, at the end of the process, the output variables are the quincunx wavelet
coefficients y1[~k], y2[~k], ..., yJ [~k] and xJ [~k] (see Fig. 5.5). Their Fourier transforms for
the odd iteration are derived from the auxiliary N ×N signals:

X ′
i+1 [~n] =

∑

~k

x′i+1[
~k]e−j 2π〈~k,~n〉

N ,

Y ′
i+1 [~n] =

∑

~k

y′i+1[
~k]e−j 2π〈~k,~n〉

N n1, n2 ∈ [0, N − 1]2. (5.7)

Down- and upsampling with D in the first iteration step (see Figure 5.4) introduces
zeros in the space domain and preserves size (Y ′

i+1[~n]); however, it implies some symme-
try/redundancy in frequency domain. Only half of the coefficients need to be computed

which saves operations. This reduced signal Y ′
i+1[

~k] and its corresponding low-pass signal
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is obtained by

Y ′
i+1 [m1, n2] = 1

2

(
G̃ [m1, n2]Xi [m1, n2] (5.8)

+G̃
[
m1 +

(
N
2

)
, n2 +

(
N
2

)]
Xi

[
m1 +

(
N
2

)
, n2 +

(
N
2

)])

X ′
i+1 [m1, n2] = 1

2

(
H̃ [m1, n2]Xi [m1, n2]

+H̃
[
m1 +

(
N
2

)
, n2 +

(
N
2

)]
Xi

[
m1 +

(
N
2

)
, n2 +

(
N
2

)])
,

where m1 ∈ [0, N
2 − 1], n2 ∈ [0, N − 1].

To generate the signal yi+1[~k] of (5.7) in the way that is depicted in Figure 5.5 with
every second row shifted by one pixel, we separate the image in even (yi+1,even) and odd
(yi+1,odd) rows already in the Fourier domain, using the auxiliary variable Z[~m]:

Z[~m] = Y ′
i+1[~m] + Y ′

i+1

[
~m+

(
0, N

2

)]

+j
(
Y ′

i+1[~m]− Y ′
i+1

[
~m+

(
0, N

2

)])
ej

2π(m1+m2)
N

l
zi+1[~k] = yi+1,even[~k] + jyi+1,odd[~k]. (5.9)

The sum in the real part (Y ′
i+1[~m] + Y ′

i+1[~m+
(
0, N

2

)
]) represents downsampling by two,

keeping all the even rows, whereas the sum in the imaginary part represents the odd
rows.
In the space domain, we alternate the rows yi+1 [k1, 2k2 + 1] = Re

{
z[~k]

}
and

yi+1 [k1, 2k2] = Im
{
z[~k]

}
. Since z[~k] is four times smaller than y′i+1[

~k], we save compu-

tations with the reduced-size IFFT.
Instead of rotating the frequency variables after each iteration, we calculate a rotated
version of the filters H̃ [~z] → H̃p[~z] and G̃[~z] → G̃p[~z], which we apply at all even itera-
tions. In this way, we also save two rotations per iteration in the frequency domain.

The Fourier transforms of the output for the even iterations are:

Yi+2 [~m] =
∑

~k yi+2[~k]e
−j 2π〈~k, ~m〉

N
2 for m1,m2 = 0 . . . N

2 − 1.

Its source is:

Xi+2 [~m] = 1
2

(
H̃p [~m]X ′

i+1 [~m] + H̃p

[
~m+

(
0, N

2

)]
X ′

i+1

[
~m+

(
0, N

2

)])
(5.10)

Yi+2 [~m] = 1
2

(
G̃p [~m]X ′

i+1 [~m] + G̃p

[
~m+

(
0, N

2

)]
X ′

i+1

[
~m+

(
0, N

2

)])
,
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where H̃p [~m] = H̃ [D~m mod (N,N)] and G̃p [~m] = G̃ [D~m mod (N,N)]. The process
is then iterated until one reaches the final resolution. When the last iteration is even,
we lower the computation costs with the FFT by utilizing its imaginary part: z[~k] =
∑

~m (Xi+2[~m] + jYi+2[~m]) e
j 2π〈~m,~k〉

N
2 , where xi+2[~k] = Re

{
z[~k]

}
and yi+2[~k] = Im

{
z[~k]

}
.

Obviously, as one gets coarser, the Fourier transforms of the filters need not be recalcu-
lated; they are simply obtained by down-sampling the previous arrays.

The synthesis algorithm operates according to the same principles and corresponds
to the flow graph transpose of the decomposition algorithm using up-sampling instead.
For instance, the synthesis counterpart of (5.10) is:

X ′
i+2

[
m1,m2 +

(
N
2

)]
= Xi+2 [m1,m2]

Y ′
i+2

[
m1,m2 +

(
N
2

)]
= Yi+2 [m1,m2]

Xi+1 [m1, n2] = X ′
i+2[m1, n2]Hp[m1, n2] + Y ′

i+2[m1, n2]Gp[m1, n2].

5.5 Experiments

5.5.1 Benchmark and testing

We have implemented the algorithm in Matlab and report computation times below
0.85 sec for four iterations and for a 256×256 image on an aging Sun Ultra 30 workstation;
the decomposition is essentially perfect with an (RMS) reconstruction error below 10−12.
The method is generic and works for any set of filters that can be specified in the frequency
domain.

Two examples of fractional quincunx wavelet decompositions with λ =
√

2 and λ = π
are shown in Fig. 5.7. Note how the residual image details are more visible for the lower
value of λ. The larger λ reduces the energy of the wavelet coefficient, but this also comes
at the expense of some ringing. Thus, it is convenient to have an adjustable parameter
to search for the best tradeoff.

An advantage of the present approach is that the filters for small λ are nearly isotropic;
this is the reason why the wavelet details in Fig. 5.7 do not present any preferential
orientation. The degree of isotropy of the various filters can be visualized in Figure 5.8.
The shape of the contour-plots of the low-pass filter H(~ω) confirms that the degree of
isotropy is the best for small values of λ. At the other extreme, when λ → ∞, H(~ω)
tends to the diamond-shaped ideal filter.

Another nice feature of the algorithm is that the computational cost remains the same
irrespective of the value of λ.
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input image (256× 256)

λ =
√

2 λ = π

(a) (b)

Figure 5.7: Quincunx wavelet transforms with four iterations: (a) λ =
√

2, (b) λ = π.
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λ = 1 λ =
√

2

λ = π λ = 14

Figure 5.8: Contour-plot of the low-pass filter H(~ω) for different order parameters.
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5.5.2 Dependence of the order parameter

The usefulness of a tunable order parameter is demonstrated in the following experiment:
we apply the quincunx transform to an image (“cameraman”) and reconstruct the image
with only 15 % of the largest coefficients and measure then the SNR depending on
the order parameter. The graph 5.9 shows the SNR dependence on λ; the optimum is
achieved with λ = 2.1.
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order parameter λ
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R

Figure 5.9: Relation between the order parameter λ and the SNR of the reconstructed image
with only 10000 of the largest coefficients. The reconstruction with λ = 2.1 reaches the highest
SNR.

5.5.3 Approximation properties

The main differences between the quincunx (quin) and the conventional algorithm (sep)
is the finer scale progression and the nonseparability. To test the impact that this may
have on compression capability, we compared the approximation of quin and sep. Since
the wavelet transform is orthogonal, the approximation error (distortion) is equal to
D2 = ‖x− x̂‖2 = ‖y − ŷ‖2, where y are the wavelet coefficients, x is the input, x̂ and ŷ
is the estimated image. Also D2 in the space domain is equivalent to the sum of squares
of discarded wavelet coefficients [143].

Linear approximation

In classical rate-distortion theory, the coefficients are grouped into channels and coded
independently. In the orthogonal case, D2 is equivalent to the difference between the
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original of “cameraman”

λ = 2.1 λ = 14

(a) (b)

Figure 5.10: Reconstruction of the “cameraman” with the 10000 largest coefficients with an
order parameter a) λ = 2.1 and b) λ = 14.
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signal’s energy and the energy of the reconstructed signal: ‖x − x̂‖2 = ‖x‖2 − ‖x̂‖2 =

‖x‖2 −
(
‖x̂J‖2 +

∑J
j=1 ‖ŷj‖2

)
. The distortion across J channels with variance σi is

D = J · C · 2−2R̄ · ρ2,

where C is a constant, R̄ is the mean rate and ρ is the geometric mean of the subband
variances:

ρ =

(
J∏

i=1

σ2
i

) 1
J

.

When ρ is smaller, the distortion is smaller as well. What this means qualitatively is that
the wavelet transform which has the larger spread in the variances will achieve the better
coding gain [148]. The linear approximation subband coding gain for sample-by-sample
quantization (PCM) is described by:

GPCM =
DPCM

DSBC
=

1
J

∑J
i=1 σ

2
i

(∏J
i=1 σ

2
i

) 1
J

.

In Figure 5.12 a) we compare the energy packing properties of quin and sep for linear
approximation. “Energy packing” refers to the property that the more the first coeffi-
cients contain energy, the better the DWT yields compression. We decomposed an image
I(x, y) for the maximal possible iteration J . The image I(x, y) is depicted in Figure 5.11;
its decompositions for quin and sep are shown on the right hand side. We start to sum
up the energy of the subbands with the lowest resolution. Each step of the stairs repre-
sents a subband. The first subbands of quin report higher energy than sep, as shown
in the Graph in Figure 5.12. Its coding gain for quin is GPCM = 77.9 and for sep

GPCM = 75.6. For the majority of images we considered, quin yielded better energy
packing than sep. However, we did also encounter one notable counter example, “Lena”,
(cf. Fig. 5.13), which seems to be better suited for a separable treatment.
Since the branches are orthogonal, the transformation that provides the maximum en-
ergy compaction in the low-pass channel is also the one that results in the minimum
approximation error [143]. Since most images have a power spectrum that is roughly
rotationally-invariant and decreases with higher frequencies, separable systems are usu-
ally not best suited for isolating a low-pass channel containing most energy and having
high-pass channels with low energy. In contrast, a quincunx low-pass filter will retain
more of the original signal’s energy [148].

Nonlinear approximation

A more recent trend in wavelet theory is the study of nonlinear approximation. In this
case we don’t take the “n-first” coefficients, but the “n-largest” coefficients to approxi-
mate a signal with n < N coefficients. This yields better energy packing, since in the
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I(x, y) quin sep

Figure 5.11: I(x, y) has the size 256×256. Left hand side: I(x, y) is decomposed for the maximal
possible iteration J .
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(a) (b)

Figure 5.12: Comparison of energy-compaction property between quin and sep of image I(x, y)
(Figure 5.11): a) linear approximation depending on number of subbands (in log), b) nonlinear
approximation depending of the n largest coefficients (in log). In both cases quin reports better
energy packing.
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linear approximation nonlinear approximation

a)
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Figure 5.13: a) represents the approximation curves of the “cameraman”. It is again an example,
where quin is better than sep. b) represents the curves of “Lena”. This is an example where
both, the linear approximation and the nonlinear approximation are better for sep than for
quin.
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k1

k2

k3

Figure 5.14: 3D-FCO (face-centered orthorhombic) lattice, corresponding to the sampling matrix
(5.11).

wavelet domain the “n-first” coefficients are not necessarily the largest one, especially
along the position-indices [47]. The distortion is described by [46]:

D2 = ‖y − yN(T )‖2 =
∑

|y|<T

|y[n]|2.

Moreover, it can be shown that

D ∝ C · (N (T ))−
γ
2 ,

when the smoothness of y is measured by its inclusion in some critical Besov space
Bγ

q (Lq(I)) with 1
q = γ

2 + 1
2 , roughly when y is a function with γ derivatives in Lq(I).

For the nonlinear approximation, quin also yields a better approximation than sep for a
small n in many cases. Figure 5.12 b) represents the energy depending on the n largest
coefficients (in log). Further examples of (non-) linear examples are shown in Figure 5.13.

5.6 Extension to 3D

The extension of quincunx sampling to 3D is straight forward. The quincunx sampling
lattice for 3D is shown in Fig. 5.14. Let x[~k] denote the discrete signal on the initial grid.
Then, its quincunx sampled version is

[x]↓D[~k] = x[D~k] where D =




1 0 1
−1 −1 1
0 −1 0


 . (5.11)
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Our down-sampling matrix D is such that D3 = 2I and | detD| = 2. The Fourier-
domain version of this formula is similar to the case in 2D:

[x]↓D[~k]←→ 1

2

[
X
(
D−T ~ω

)
+X

(
D−T ~ω + ~π

)]
,

where ~π = (π, π, π).
The implementation for 3D is as follows:
The output variables are the discrete Fourier transforms of the wavelet coefficients

Yi+1 [~n] =
∑

~k

yi+1[~k]e
−j

2π〈~k,~n〉
N for n1, n2, n3 = 0 . . .N − 1

Yi+2 [~n] =
∑

~k

yi+2[~k]e
−j 2π〈~k,~n〉

N for n1, n2, n3 = 0 . . .N − 1

Yi+3 [~m] =
∑

~k

yi+3[~k]e
−j

2π〈~k, ~m〉
N
2 for m1,m2,m3 = 0 . . .

N

2
− 1

The coefficients themselves are recovered by inverse FFT. The Fourier transforms after
the first level of filtering are given by

Xi+1 [~n] =
1

2

(
H̃ [~n]Xi [~n] + H̃

[
~n+

(
N

2
,
N

2
,
N

2

)]
Xi

[
~n+

(
N

2
,
N

2
,
N

2

)])

Yi+1 [~n] =
1

2

(
G̃ [~n]Xi [~n] + G̃

[
~n+

(
N

2
,
N

2
,
N

2

)]
Xi

[
~n+

(
N

2
,
N

2
,
N

2

)])
.

After the second level of filtering, we have:

Xi+2 [~n] =
1

2

(
H̃p [~n]Xi+1 [~n] + H̃p

[
~n+

(
0,
N

2
, 0

)]
Xi+1

[
~n+

(
0,
N

2
, 0

)])

Yi+2 [~n] =
1

2

(
G̃p [~n]Xi+1 [~n] + G̃p

[
~n+

(
0,
N

2
, 0

)]
Xi+1

[
~n+

(
0,
N

2
, 0

)])
.

Note that these are computed at the resolution of the input. The size reduction only
takes place during the third step:

Xi+3 [~m] =
1

2

(
H̃pp [~m]Xi+2 [~m] + H̃pp

[
~m+

(
N

2
, 0, 0

)]
Xi+2

[
~m+

(
N

2
, 0, 0

)])

Yi+3 [~m] =
1

2

(
G̃pp [~m]Xi+2 [~m] + G̃pp

[
~m+

(
N

2
, 0, 0

)]
Xi+2

[
~m+

(
N

2
, 0, 0

)])
,
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where H̃p [~m] = H̃ [D~m mod (N,N,N)] and H̃pp [~m] = H̃
[
D2 ~m mod (N,N,N)

]
.

Analogously, we have that: G̃p [~m] = G̃ [D~m mod (N,N,N)] and G̃pp [~m] =

G̃
[
D2 ~m mod (N,N,N)

]
.

It is still possible to optimize this implementation, especially for the calculation of FFT’s.
Also the redundancy for the second iteration may be removed. For reason of calculation
time, the computation of Hp, Hpp, Gp and Gpp as well the corresponding analysis filters
are implemented in C.

5.6.1 Approximation properties in 3D

We compared the compression capability for quin and sep for 3D-images, similar to
what is described for 2D in Section 5.5.3. An example is the volume V (x, y, z) depicted in
Figure 5.15 (human head). In Figure 5.16 are the graphs which represents the percentage
of the energy of V (x, y, z) (y-axis) corresponding to the number of coefficients, which
approximate V (x, y, z) (x-axis). Another example of this issue is shown in Figure 5.17.

(a) (b)

Figure 5.15: Volume V (x, y, z): a) surface of V (x, y, z) b) one slice of V (x, y, z).

5.7 Conclusion

We have introduced a new family of orthogonal wavelet transforms for quincunx lattices.
A key feature is the continuously-varying order parameter λ which can be used to adjust
the bandpass characteristics as well as the localization of the basis functions.

We have also demonstrated that these wavelet transforms could be computed quite ef-
ficiently using FFTs. This should help dispel the commonly held belief that non separable
wavelet decompositions are computationally much more demanding than the separable
ones.
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Figure 5.16: Comparison of energy-compaction property between quin and sep of a volume
V (x, y, z) (Figure 5.15): a) linear approximation depending on number of subbands (in log), b)
nonlinear approximation depending of the n largest coefficients (in log).

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.5

0.6

0.7

0.8

0.9

1

Number of coefficients

N
or

m
al

iz
ed

 e
ne

rg
y

quin α=8
sep α=8 

(a) (b)

Figure 5.17: a) One slice of a spine. b) Corresponding nonlinear approximation. quin reports
better energy packing with few coefficients.
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Because of their nice properties and their ease of implementation, these wavelets
should present a good alternative to the separable ones that are being used in a variety
of image processing applications (data compression, filtering, texture analysis etc.).
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Chapter 6

Analysis of fMRI Data using
Orthogonal Filterbanks

In this chapter, we propose to analyze the data using an orthogonal filterbank as an
alternative to the traditional approach which uses Gaussian spatial filtering to reduce
measurement noise. This procedure is intended to simplify and eventually improve the
statistical analysis. The system is designed to concentrate the signal into a fewer number
of components thereby improving the signal-to-noise ratio. Thanks to the orthogonality
property, we can test the filtered components independently on a voxel-by-voxel basis;
this testing procedure is optimal for i.i.d. measurement noise. The number of components
to test is also reduced because of down-sampling. This offers a straightforward approach
to increase the sensitivity of the analysis (allowing a lower detection threshold) while
applying the standard Bonferroni correction for multiple statistical tests. We present
experimental results to illustrate the procedure. In addition, we discuss filter design
issues. In particular, we introduce a family of orthogonal filters which are such that any
integer reduction m can be implemented as a succession of elementary reductions m1 to
mp where m = m1 . . .mp is a prime number factorization of m.

6.1 Introduction

Our first approach to simplify the statistical analysis, compared to the method of SPM, is
to use a filterbank with downsampling for spatial noise reduction as an alternative to the
Gaussian filtering of SPM. The general idea is that smoothing suppresses high-frequency
components so that the data may as well be represented with less samples. In addition,
we try to preserve the independence of the noise as much as possible in order to simplify
subsequent statistical analyses.
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Our solution is to apply an orthonormal filter, which has the property of transforming
white noise into white noise. Here, we assume independent (over time and space), but
(non-stationary) Gaussian noise. The corresponding data model is given in Section 3.3.2.
We will show that the independence assumption in this model remains approximately
valid, under the assumption that the local standard deviation, σ2

i , changes only slightly
over space.

The orthonormal filterbank is applied to the pairwise difference between activation
and rest states IDτ

(x, y) = IAτ
(x, y)−IBτ

(x, y). The result is a data set, which is reduced
in the x- and y-coordinate according to the down-sampling factor.
Subsequently, a statistical testing is applied to the reduced images. A hypothesis test is
performed as described in Section 3.3.5. The reduction of the image in the down-sampling
process is of advantage for our multiple correction method, the Bonferroni-correction,
since this approach is less conservative for fewer pixels. The simplified statistical analysis
also makes the whole method more transparent.
For visualizing the results, the detected pixels are superposed to the mean fMRI-slice in
the background. The detected pixels have a meaningful p-value, marked in gray scales
(black large p-value, white small p-value). It is also customary in the field, to use colored
maps (yellow large p-value, red small p-value).

6.2 Orthonormal filterbank

The downsampled filter is shown in Figure 6.1; hm[k] is symmetric, orthonormal, and
the downsampling factor is m.

This sequence of operations can be expressed as a discrete inner product

y[l] =
∑

k

x[k]hm[ml − k]

:= < x[.], hm[ml − .] > . (6.1)

The definition of orthogonality is:

< hm[.], hm[.−ml] >= δl ⇔
m−1∑

l=0

|Hm(ejω−j 2πl
m )|2 = m,

where Hm(z) =
∑

k hm[k]z−k is the z-transform of hm.
If the object to filter is of dimension p, we build the corresponding p-D filter by tensor
product.

For our application, the requirements on the filters are:

i) symmetry: needed in order to avoid phase distortion when localizing activated
voxels.
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ii) approximation order λ (which implies the reproduction of polynomials of degree
≤ n = λ−1). This property is beneficial for a better approximation of signals with
most energy in the low frequency part.

iii) all possible integer decimation factors.

iv) consistent family with respect to chaining (for the simplicity of the design → mod-
ular library of transforms):

x hm ��
��m

↓ y ⇐⇒ x hm1 ��
��m1

↓ hm2 ��
��m2

↓ y

Figure 6.1: Signal flow diagram, where m = m1m2.

We will use the orthonormal fractional spline filters of degree α, which are given by

Hm(ejω) =

∣∣∣∣
sin(mω

2 )

m sin(ω
2 )

∣∣∣∣
α+1

√
A(ejω)

A(ejmω)
(6.2)

A(ejω) =
∑

k∈Z

∣∣∣∣
sin(ω

2 )

(ω
2 + kπ)

∣∣∣∣
2(α+1)

(6.3)

Proposition 6.1 The spline family satisfies the requirements i)—iv).

Proof. ii) This property is valid, where λ = bα + 1c in (6.2) because splines satisfy
the Strang-Fix conditions [134].
iv) We start from the right-hand signal flow diagram in Figure 6.1. In the first step, we
exchange the decimation factor m1 with the filter hm2 and apply a noble identity [148]
to get the system in Figure 6.2. The equivalent filter G(z) is:

x G(z) ��
��m1m2

↓ y G(z) = Hm1(z)Hm2(z
m1)

Figure 6.2: Signal flow diagram after the exchange.
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G(ejω) =

∣∣∣∣
sin(m1

ω
2 )

m1 sin(ω
2 )

∣∣∣∣
α+1

√
A(ejω)

A(ejm1ω)

∣∣∣∣
sin(m1m2

ω
2 )

m2 sin(m1
ω
2 )

∣∣∣∣
α+1

√
A(ejm1ω)

A(ejm1m2ω)

=

∣∣∣∣
sin(m1

ω
2 )

m1 sin(ω
2 )

sin(m1m2
ω
2 )

m2 sin(m1
ω
2 )

∣∣∣∣
α+1

√
A(ejω)

A(ejm1ω)

A(ejm1ω)

A(ejm1m2ω)
. (6.4)

After cancellation of common factors, we get:

G(ejω) =

∣∣∣∣
sin(m1m2

ω
2 )

m1m2 sin(ω
2 )

∣∣∣∣
α+1

√
A(ejω)

A(ejm1m2ω)

= Hm1·m2(e
jω). (6.5)

The proof that an orthogonal filter preserves the white noise is given in Section 6.4.
We also show that the “model 2” given in Section 3.3.2 remains approximately valid: If
the variance varies only slightly over the size of the filter, then the noise is still reasonably
independent.

6.3 Comparison of Gaussian versus orthogonal filter

Given an orthogonal filter with a decimation factor of m, we want to determine an
“equivalent” Gaussian filter which has exactly the same noise reduction power. The
notations are as follows:

i) x[.] : input signal, white noise with σ2 = 1 and µ = 0 (N (0, 1)).

ii) g[.] : filter coefficients.

iii) y[.] : output signal after filtering.

In general: y[n] =
∑

k g[n− k]x[k] with
∑

n g[n] = 1. The variance is:

E
[
y2[n]

]
=

∑

n

∑

k

g[k]x[n− k]
∑

l

g[l]x[n− l]

=
∑

k

∑

l

g[k]g[l]
∑

n

x[n− k]x[n− l]

=
∑

k

∑

l

g[k]g[l]δ[k − l]

=
∑

k

g2[k] (6.6)
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• orthonormal filter:

∑

k

g[nM − k]g[n′M − k] =
1

M
δ[n− n′] (6.7)

⇒
∑

k

g2[k] =
1

M
(6.8)

Equation (6.8) follows from equation (6.7) because of the Strang-Fix condition of
order 1.

• Gaussian filter is normalized such that:
∑

n g[n] = 1 with g[n] = Ce
−n2

2σ2 . The
constant C is determined as follows:

∑

n

e
−n2

2σ2 '
∫
e
−x2

2σ2 dx

∼= σ
√

2π (6.9)

⇒ C ' 1

σ
√

2π

∑

n

g2[n] = C2
∑

n

e
−n2

σ2 ' C2

∫
e
−x2

σ2 dx = C2σ
√
π =

1

2σ
√
π

• identification of the energies: σ = M
2
√

π

M = 2 : σ = 0.564
M = 4 : σ = 1.128
M = 8 : σ = 2.257

SPM recommends a Full Width of Half Maximum (FWHM) between 2 and 3. Since

FWHM = 2σ
√

2 log 2 and M =
√

π√
2log(2)

FWHM, the range for the scaling factor is

3.0 ≤M ≤ 4.5 and we obtain for M = 4 : FWHM = 2.66.

6.4 Decorrelation property

We prove here that an orthogonal filter transforms decorrelated noise into noise that is
essentially decorrelated as well. In particular, this means that it preserves white noise.
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Theorem 6.4.1 Assume that the signal x[n] can be expressed as the sum of a deter-
ministic part, µ[n], and a non-stationary uncorrelated part b[n]. Let y[n] be the filtered
version of x[n], i.e., y[n] = h[n] ∗ x[n], where h[n] is orthonormal. If the fluctuations of
the standard deviation of b[n] are sufficiently small, then y[n] = h[n] ∗ µ[n] + z[n], where
E(z[n]z[n′]) ∼= σ2δ[n− n′].

Proof.
input signal: x[n] = µ[n] + σ[n]e[n], where E [e[n]] = 0 and E [e[n]e[k]] = δ[n− k]
output signal: y[n] =

∑
k h[nM − k]x[k]

y[n] =
∑

k

h[nM − k]µ[k]

︸ ︷︷ ︸
ŷ[n]

+
∑

k

h[nM − k]σ[k]e[k]

z[n] = y[n]− ŷ[n]

E[z[n]] = 0

E [z[n]z[n′]] = E

[
∑

k

h[nM − k]σ[k]e[k]
∑

k′

h[n′M − k′]σ[k′]e[k′]

]

=
∑

k

∑

k′

h[nM − k]h[n′M − k′]σ[k]σ[k′]E [e[k]e[k′]]︸ ︷︷ ︸
δ[k−k′ ]

=
∑

k

h[nM − k]h[n′M − k]σ2[k]

First case: uniform variance: σ[k] = σ:

E [z[n]z[n′]] = σ2
∑

k

h[nM − k]h[n′M − k]
︸ ︷︷ ︸

1
M

δ[n−n′], if h[n] is orthonormal

Second case: close to uniform variance: σ[k] = σ(1 + ε[k]), ε[k]� 1

E [z[n]z[n′]] =
∑

k

h[nM − k]h[n′M − k]σ2(1 + ε[k])2

= σ2δ[n− n′] + σ2
∑

k

h[nM − k]h[n′M − k](2ε[k] + ε[k]2)

︸ ︷︷ ︸
r
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We bound the second term as follows:

r ≤
∑

k

|h[nM − k]h[n′M − k]|(sup 2|ε[k]|+ sup ε[k]2)

≤
√∑

k

h[nM − k]2
∑

k

h[n′M − k]2

︸ ︷︷ ︸
= 1

M

(sup 2|ε[k]|+ sup ε[k]2) (Cauchy-Schwartz)

≤ 1

M

(
sup 2|ε[k]|+ sup ε[k]2

)
.

So that
E [z[n]z[n′]] = σ2(δ[n− n′] + ρ[n, n′]),

where

|ρ[n, n′]| ≤ 2

M
sup |ε[k]|+ sup ε[k]2 � 1.

Thus, in both cases, z[n] remains essentially uncorrelated.
This theorem implies that the noise remains uncorrelated in every homogeneous zones

(σ = constant). However, the correlation property is not valid anymore on the border
of zones, like the border of the brain against the background, over a band that has the
width of the “efficient” length of the filter G.

6.5 Results

To illustrate the technique, we present some examples of real data analysis (cf. Figures 6.3
to 6.4). The data set is obtained from HUG and has the specification described in
Table 7.4. The task was watching a moving checker board of colors. After orthogonal
filtering and applying the Bonferroni-correction, we detect activity in the occipital lobe
(cf. Section 2.9). We also applied SPM [156] with a σ corresponding to the smoothing
factor of the orthogonal filter (Figure 6.3). The difference between our detection and
SPM is not negligible. The activation of the right hemisphere of the brain seems to be
comparable. However, in the left hemisphere, we detect an additional activation on the
border (cf. Figure 6.4). Applying a Gaussian filter of the same width as in SPM and
performing a t-test with Bonferroni-correction, we could confirm this detection. It is
unclear why SPM did not detect this pattern.

6.6 Conclusion

We have proposed a first approach that simplifies the statistical analysis of the data, as
compared to SPM. The idea is to continue “orthogonal” smoothing with down-sampling
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Gauss & Bonferroni SPM

Figure 6.3: On the left hand side, the image is filtered with a Gaussian filter with σ = 1.128.
Subsequently a t-test is performed with Bonferroni-correction. The significance level is α = 0.05.
Since the data are correlated, the Bonferroni-correction is too conservative here. On the right-
hand side, we applied SPM, with a Gaussian filter of σ = 1.128, i.e., a FWHM corresponding
to our scaling factor of 4. The detected pixels have different gray-scales, because they are
represented here as p-values.

scale 2 scale 4

Figure 6.4: On the left hand side, the image is obtained by filtering and downsampling with the
orthogonal spline filter with scale 2 and order 3. The significance level is α = 0.05 (Bonferroni-
corrected). On the right hand side, we filtered and downsampled with scale 4 (same order).
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which preserves the independence of the noise in the transformed domain. Additional
advantages of our decimated orthogonal filterbank approach are speed and straightfor-
ward control of resolution. Here, we use decimation as an alternative to SPM’s not-so-
straightforward notion of RESEL.
However, the disadvantage of both methods is the loss of resolution. In our final algori-
thm we eliminate this problem by keeping the high-pass of the filterbank which amounts
to using wavelets (see Chapter 7).
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Chapter 7

Analysis of fMRI Data using
Wavelets

7.1 Introduction

The use of the wavelet transform for the analysis of functional Magnetic Resonance
Imaging (fMRI) of the brain was pioneered by Ruttimann et al. [120]. The advantages
of this method over the more conventional spatial approaches are twofold. First, the
wavelet transform has a compression effect because it tends to pack the signal of interest
into a relatively few number of large coefficients. On the other hand, the noise gets
diluted evenly in the wavelet domain (provided the wavelet is close to orthogonal). This
results in an increase of the signal-to-noise ratio for those coefficients where the signal
is concentrated and subsequently improves the detection rate. Moreover, the wavelet
transform is a one-to-one representation without any redundancies, which permits to
apply a conservative decision strategy to keep the false-detection rate well under check
(Bonferroni correction for multiple testing). This also means that the procedure remains
valid—albeit sub-optimal—even when the basic hypothesis of noise independence breaks
down.
The method of Ruttimann et al. was restricted to stationary noise. We propose here to
relax this constraint by replacing their z-score calculation in the wavelet domain by a
series of t-tests. This algorithm is presented in [58].
A key point when applying the wavelet transform is the appropriate choice of the wavelet,
the order of the transform and the iteration depth. Different basis functions offer dif-
ferent compromises. The iteration depth controls the accuracy and the sensitivity. The
order, depending on the basis functions, has a great influence on the number of detected
coefficients and consequently on the sensitivity and specificity. Ruttimann made use of
the Battle-Lemarié wavelets. Brammer, in a more recent study [22], applied Daubechies
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wavelets. Both studies didn’t justify their choice of basis functions with respect to fMRI.
Moreover, they did not compare different filters nor discuss the effect of varying the
transform parameters (order and iteration depth). These choices are usually dealt with
in an ad hoc fashion because it is difficult to assess objectively the quality of the detection
since the “true” location of the activation is not known a priori.
Our contribution in this area is to provide a test procedure, which assesses the quality
objectively [59] and has shown to make the findings coincide with reasonable activation
loci. Thanks to this paradigm, we are able to identify the properties of the basis functions
that are most beneficial for fMRI analysis. The properties to be considered are:

• orthogonality versus bi-orthogonality

• frequency selectivity vs. spatial localization

• symmetry vs. causality

• FIR vs. IIR

• scale factor: is a dyadic scale progression (powers of two) adequate ?

• directionality: does the separability of the standard wavelet transform privilege
horizontal or vertical patterns ?

• does the shift-variance of the wavelet transform degrade the detection accuracy ?

• does redundancy benefit the analysis ?

To explore these various dimensions, we consider a large class of wavelets, the newly-
designed fractional spline wavelet transforms (FSWT) [145]. These are indexed by a
continuously-varying degree parameter α. This offers the potential for a much finer
tuning of the transform between frequency selectivity and spatial localization. And as
we will see, the possibility of having a fractional degree is advantageous.
To address the question of the scale progression, we compare the standard dyadic
transform with the Quincunx-transform presented in Section 5, which offers a scale
progression that is half of that of the separable transform. The quincunx transform also
offers the possibility of applying more isotropic filters.
To answer the question if the shift-variance lowers the detection rate, we implemented
a more shift-invariant transform. Since wavelet frames would require too conservative a
statistics, we chose the complex wavelet transform, which is a newly-developed promising
transform. In order to adjust the statistical part to the complex wavelet transform, we
implemented a multivariate Hotelling’s T 2 test.
A summary of our detection results depending on the different wavelets is presented in
Table 7.2, at the end of Section 7.3.
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7.2 Description of the algorithm

The overview of the whole system is shown in Figure 7.2. The input is a series of
time measurements (slices or volumes) falling within the activation (A) or rest (B) states
(standard block paradigm); these image sequences are denoted by IAτ

(x, y) and IBτ
(x, y)

respectively, where τ is a time index. After the preprocessing step (Section 7.2.1), the
Discrete Wavelet Transform (DWT) is applied. Statistical testing is then performed
in the wavelet domain considering each coefficient individually (Section 7.2.3). We only
keep the detected coefficients on the mean difference image. The resulting image is called
Iest,W , on which we apply the Inverse Discrete Wavelet Transform (IDWT). The signal
is then reconstructed, yielding Iest and superimposed onto to the corresponding slice
of the brain for visualization purposes. The signal reconstruction includes a threshold
which is proportional to the noise level in the data. Typical slices of a brain are shown
in Figure 7.1. These correspond to the examples that will be used to illustrate each step
of the algorithm.

Figure 7.1: Transversal slices taken from the same volume that are used to illustrate the different
steps of the algorithm. A light source was switched on (A) and off (B) while the images of the
brain of a volunteer looking at the light source were acquired. For such a task, the activation is
known to be located in the occipital lobe (cf. Section 2.9).

7.2.1 Preprocessing

During the preprocessing step, the data are aligned with a reference volume using a 6
parameters 3D rigid-body transformation [65, 68] (refer to Section 2.6). Note that the
motion correction is usually small with respect to the spatial resolution. An example of
realignment for the data set of Figure 7.1 with ”Statistical Parameter Mapping” (SPM)
(Section 2.8.1) is given in Figure 7.3: the degree of translation and rotation of the data
set is given, dependent on the time sequence. In Figure 7.4 the activation of two slices
of this data set before and after realignment is depicted. Drifts in time are also removed
using the standard procedure SPM99 (further description of SPM in Section 2.8). Then,
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Figure 7.2: Block diagram of the algorithm.

the pairwise difference between activation and rest states are computed to produce the
sequence of difference images IDτ

(x, y) = IAτ
(x, y)− IBτ

(x, y) .

7.2.2 Discrete wavelet transform

The application of the Discrete Wavelet Transform (DWT) to IDτ
(x, y) yields the de-

composed fMRI-data IWτ
(x, y), where “W” stands for “wavelet domain”, as described

below. The DWT is implemented through an iterated filterbank [95] (refer to Chapter
4). Note that, due to the linearity of the transform, the Gaussian hypothesis for the
noise is preserved in the wavelet domain. The advantage of a wavelet transform for an-
alyzing fMRI data is that not only the low-pass contents is processed for the detection
of the activation, but also the band-pass components which contribute to increase the
resolution of the detected regions. In our test procedure, the DWT can be seen as a
module where different wavelets are considered for evaluating their advantages to detect
activation patterns. We have chosen the fractional splines, which provide a large vari-
ety of filters and Daubechies wavelets as real separable wavelets. We also considered
nonseparable quincunx wavelets and finally the Complex Daubechies Wavelets. These
different wavelets are defined through their order, which we denote by α+1 for fractional
splines, where α is the degree, λ for quincunx and by their order of approximation n for
Daubechies. Note that for fractional splines the order of approximation is α + 1. As
further parameter, we consider the iteration depth J of the wavelet transform.

→ Fractional splines. Even though, in full generality, the synthesis and analysis
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without realignment with realignment

Figure 7.4: Example of detected regions (Iest) before realignment and after realignment of the
data set described in Figure 7.1. The corresponding realignment parameter are given in Fig-
ure 7.3. The activation pattern outside of the brain in the upper images originates from a
ghosting-artifact, see references in Section 3.3.1.
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filters are bi-orthonormal, they are mostly chosen orthonormal in the literature,
i.e., H̃(z) = H(z−1) and G̃(z) = G(z−1); this is in particular the case for the
Daubechies filters [43]. For such filters, which are automatically half-band, there
remains only one tradeoff between the sharpness of the frequency cutoff and the
spatial localization. Because we want to optimize our detection scheme with respect
to orthonormal and bi-orthonormal transforms, we use as first choice the new class
of scaling functions and wavelets that provide this flexibility: the fractional splines
[145] (Section 4.2.1).

→ Complex wavelets. The discrete real wavelet transform is quite sensitive to a
shift of the input signal due to down-sampling. This effect is significantly reduced
when considering the coefficient magnitudes of the Complex Wavelet Transform
(CWT). An additional advantage of the CWT for 2 dimensions is that it offers six
angle-selective subbands rather than three in the case of real DWT. Furthermore,
the computational cost of the CWT is the same as two real DWT [118, 29].

→ Quincunx wavelets. The use of such wavelets is interesting because of some
advantages it offers over separable wavelets (e.g. fractional splines and Daubechies
wavelets):

i) The scale reduction of the separable scheme progresses by powers of 2. Quin-
cunx has a finer scale progression—by powers of

√
2—and can thus detect

more accurately very fine/capillary activation patterns or can better provide
the adequate iteration depth for noise reduction.

ii) The separable wavelets have a strong directionality. Activation patterns which
are expanded in horizontal or vertical directions are better detected than diag-
onal expanded patterns. Quincunx has the advantage of providing an analysis
that is more isotropic.

7.2.3 Activation detection by statistical testing on the wavelet coef-
ficients

Because of the noise present in the data, it is almost impossible to detect any activation
without resorting to statistical analysis. This analysis requires a model of noise [57];
here, we assume that IDτ

(x, y) follows a spatial Gaussian distribution. Thanks to the
wavelet transform, simple statistics can be applied, which makes the analysis fast and
straightforward. Thus, a statistical testing on each coefficient of IWτ

(x, y) will be applied
to determine whether it is activated or not (refer to Section 3.3.5). In the case of real
wavelets, a Student t-test is applied as described in Section 3.3.3. At this stage, all
non-significant wavelet coefficients are set to zero, keeping only those that have been
labeled as “activated”. This yields the W-estimated activation Iest,W(x, y) (WEA). An
example of Iest,W(x, y) for the data of Figure 7.1 is presented in Figure 7.5. In the
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case of complex wavelets, Hotelling’s T 2 test has to be applied (see Section 3.3.7), since
the complex wavelets turn the statistics into a bivariate statistic, taking the real part
and the complex part of the wavelet coefficients into account. The resulting W-estimated
activation WEA is a complex valued image or volume: Iest,W(x, y) ∈ C. The new method
of testing with Hotelling’s T 2 opens up new possibilities for testing multiple coefficients in
a multivariate sense, also in the case of real wavelets. Several coefficients can be grouped
together, such as neighboring coefficients or related coefficients from different band-pass
channels.

IWτ=1(x, y) Iest,W(x, y)

Figure 7.5: Example of intermediate results, before applying the statistics (IWτ=1(x, y)) and
after the statistics (Iest,W). The slices are taken from the same data set than the one of Figure
7.4.

7.2.4 Signal reconstruction

Once the wavelet coefficients of IW(x, y) have been flagged either as significantly acti-
vated or not, the estimation of the activation pattern is achieved by zeroing out all non
significant samples and performing an inverse wavelet transform on Iest,W(x, y). Since
the generality of the developed algorithm allows also synthesis filters which are of infi-
nite length, a decision has to be made as to what constitutes a valid activation pattern.
Specifically, a threshold is applied to the reconstructed activation pattern that takes into
account the amount of noise: when this noise is very low, the quantization level of the
initial data is simply chosen; if the noise in every realization of ID has a non-negligible
standard deviation σ, the threshold level is set at level = σ/

√
n; i.e., the noise level of

the average image ID = 1
n

∑
τ IDτ

. Without this threshold, the best wavelets seem to
be the shortest one. With threshold, the detection quality gain increases strongly and
longer wavelets yield good results.

We provide a test procedure to validate this value, which is presented in Figure 7.6:
Given a data set with an activation pattern (real data or synthetic data) and a noise level
of σ, detection is performed, which yields the estimated activation pattern in the wavelet
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domain Iest,W (x, y) and the estimated activation pattern Iest(x, y) after applying the
threshold level to the output of the synthesis part. A data set is then reconstructed by
adding a noise of level σ (N (0, σ)) to Iest(x, y) . Detection is performed again yielding an
estimated activation pattern Ĩest,W (x, y). When the value of level is chosen adequately,

Iest,W (x, y) and Ĩest,W (x, y) should match. A distance map to measure the matching

error between Iest,W (x, y) and Ĩest,W (x, y) is evaluated :

dest,W =





0, (x, y) is in the same activation state in Iest,W and in Ĩest,W

1, otherwise

This process is repeated r-times by adding each time a different realization of noise to
Iest(x, y). The final measure is given by:

d(Iest,W , Ĩest,W ) =
∑

x,y

1

r

r∑

i=1

d
(i)
est,W (x, y) (7.1)

N (0, σ)

Ĩest,W (x, y)

Al

AhSh

SlAl

Ah

level

Iest(x, y)

Iest,W (x, y)IDτ
(x, y)

Figure 7.6: Scheme of a test procedure to ensure the consistency of the threshold level. Al and
Ah represent the analysis part of the wavelet transform and the statistical testing of the wavelet
coefficients. The output of these branches is Iest,W (x, y). Sl and Sh represent the synthesis
part of the wavelet transform, which is applied to Iest,W (x, y). The output of the synthesis
part is then thresholded above “level” which yields Iest(x, y). Adding noise with variance σ2

to Iest(x, y) creates a new data set. The thresholding procedure is consistent whenever, on
the average over all possible realizations of the resynthesized noise, Iest,W (x, y) and Ĩest,W (x, y)
match. In practice, we average over 130 realizations.

7.3 Which properties of the wavelet transform are prefer-

able for fMRI?

In order to investigate the influence of the structure parameters of the algorithm —its (bi-
) orthogonality, symmetry / causality, its order of approximation, its iteration depth J
etc.— an error measure must first be defined between the true activation and that which
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n
. We observe that d(Iest,W , Ĩest,W ) is flat around its

minimum, over a wide range of values of β. Moreover, β = 1 usually achieves or is close to
achieving this minimum, which indicates that our choice for level, σ√

n
, makes our algorithm

nearly consistent.
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is detected with the proposed method (see Section 7.3.2). Our strategy is to generate
synthetic data (see Section 7.3.1) for which the activation is known a priori. By processing
such data, the detection of the activation pattern can be evaluated quantitatively. Such
an error measure allows to compare different structure parameters, especially the different
wavelets, in an efficient way. Not only does it give information on the performance of the
different wavelets, but it also allows to identify the most significant structure parameters;
i.e. those that are likely to influence the quality of the detection.

7.3.1 Test data

Various test data I(x, y) were used, with known activated area A, defined as
{(x, y)|I(x, y) 6= 0}. The complementary region Ac is defined by {(x, y)|I(x, y) = 0}. As
primary test pattern, we used thresholded ellipse-shaped Gaussian activation patterns,
which are suitable for testing the possible lack of rotation invariance of our detection
schemes. The test-data were generated by adding n = 20 realizations of white Gaussian
noise. We changed the scale and ellipticity of the pattern, its orientation and position,
and the variance of the noise. An example of such an activation pattern is presented
in Figure 7.8. In addition to elliptic shapes, we also tested activations with more high
frequency contents.

Figure 7.8: Example of test activation pattern. 10 ellipses are randomly placed in an image
which contains 128 × 128 pixels. The intensity of the ellipses follows a Gaussian distribution
and is thresholded at half-maximum amplitude. The image is quantized to 8 bit. The size of
the ellipses are chosen in the range of possible real activations.

7.3.2 Error measures with prior knowledge of the activation pattern

Two kinds of errors were considered:

• the number of false detections, i.e., errors of type I (E1), relative to the number of
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activated pixels:

E1 =
Card

(
{(x, y) : I(x, y) = 0 and Iest(x, y) 6= 0}

)

Card(A)
(7.2)

• the number of missed detections, i.e., errors of type II (E2), relative to the number
of activated pixels:

E2 =
Card

(
{(x, y) : I(x, y) 6= 0 and Iest(x, y) = 0}

)

Card(A)

Thus the relation (1−E1) is the percentage of pixels correctly detected as non-activated,
which determines the specificity. In theory, this value can be negative, but in practice,
negative values rarely occur. The relation (1 − E2) is the percentage of pixels which
were properly detected, and determines the sensitivity. The error types E1 and E2 are
illustrated in Figure 7.9. Our global error criterion to minimize is, by definition, the
total error, which is the sum of the two types of errors: E = E1 + E2. Note that
even though this quantity provides a fair control on the localization of the activation
zone, it cannot give clues on the amplitude mismatch. Obviously, the activation pattern
needs to be known to compute E. A related measure, first applied to the analysis of

(missed detections)

Error Type II (= E2)

(false detections)

Error Type I (= E1)A

Iest

Ac

Figure 7.9: Example of a schematic detection of a quadratic pattern. The global error criterion
is defined as E = E1 +E2.

fMRI processing techniques by [34], is the Receiver Operator Characteristic (ROC). With
ROC, the relationship between the true-positive ratio (proportion of correctly detected
activations to all true activations) and the false-positive ratio (proportion of pixels that
were incorrectly recognized as active in all pixels without true activations) is measured,
depending on a parameter that controls the sensitivity of the detection procedure [129].
In our case this parameter would be the threshold in the wavelet t-domain (which we set
to the value that ensures less than 5% of false detections). Compared to the measures
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E1 and E2, the true-positive ratio is equal to (1 − E2) and the false-positive ratio is
proportional to E1. It is the denominator of the definition of these measures that makes
the difference: compare (7.2) with:

false positive ratio = E1
Card(A)

Card(Ac)
(7.3)

Thus, the ROC-curve, compared to our measures is:

ROC(γ) =

(
1−E2(γ)

E1(γ) Card(A)
Card(Ac)

)
where γ ∈ [0%, 100%]. (7.4)

We believe that it is more reasonable to express the false detections (E1) relative to A,
rather than Ac because then: (i) the quantity E1 and E2 are comparable (ii) E1 does
not depend on the image size and (iii) a larger activation zone is likely to cause more
false activations. In Figure 7.10 such a ROC curve is illustrated in terms of E1 and E2.
Minimizing E amounts to maximizing 1 − E, i.e., the distance between the ROC-curve
and the locus of random detection, which represents 1−E = 1−E2−E1 = 0. When the
curve lies below the locus of random detection, the minimal error is the minimal distance
of the ROC-curve to this diagonal. A field where these error measures are intensively

40%

1− E = 0

E1

80%40%20%0%

0%

20%

1− E

60%

80%

EER

1
−

E
2

ROC

E1 = E2

Figure 7.10: Comparison of Receiver Operator Characteristic (ROC), the Equal Error Rate
(EER) and our error measure (E).

studied is biometrics, the field of automatic identity verification methods, such as voice,
face, eyes or fingerprint identification. They cope with the False Rejection Rate (FRR),
which is equal to our E2 and with False Acceptance Rate (FAR) which is equal to the
false positive ratio. In this field, the Equal Error Rate (EER), given by E1 = E2 on the
ROC-curve, is often used as a performance measure; see the position compared to the
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other measures in Figure 7.10. Our global error criterion E is related to their Total Error
Rate (TER), the sum of FA and FR, divided by their total number of tested units.

7.3.3 Other measures with unknown activation pattern

We now present three other quantities which, unlike the error measure E defined above,
are applied directly on the noisy data. For them, the “true” activation pattern does not
have to be known a priori. They are presented as following:

i) Wavelet count C: the number of wavelet coefficients that are detected as activated
in our statistical procedure. It is thus defined by C = Card

(
Iest,W 6= 0

)
.

ii) Information measure: the average information content of the detected wavelet co-
efficients is defined by

I = − 1

Card
(
Iest,W

)
∑

(x,y)∈Iest,W

log2 p
(
t(x, y)

)
,

where t(x, y) is defined by (3.28) and p(t) is Student’s distribution density.

iii) Kullback-Leibler information: the map t(x, y) follows the experimental density
(histogram) pdata(t), while the statistical model—in the absence of activation—is
described by Student’s t-distribution, p(t). The similarity between these densities
is computed using Kullback-Leibler information:

I(pdata, p) =

∫ ∞

−∞
log2

{pdata(t)

p(t)

}
pdata(t) dt (7.5)

Even though this is not a true distance between probability densities, the Kullback-
Leibler information has the important property that I(p1, p2) is always strictly
positive, except when p1 = p2, where I(p1, p2) vanishes.

The drawback of the information and the Kullback-Leibler measure is the small and
mostly non-significant variation when an activation is present in the data. This is because
activation is only marginally perturbating these global information measures, and this
drawback gets even more prominent as the size of the activation is smaller.

7.3.4 Fractional spline wavelets

With fractional splines, we have a variety of different filters which can be applied to
the data. Orthogonality versus bi-orthogonality; symmetry versus causality; frequency
selectivity versus spatial localization can be explored. In the bi-orthogonal case, strong
frequency selectivity on the analysis side versus strong frequency selectivity on the syn-
thesis side can be tested.
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Here the three types of analysis-synthesis systems for the Fractional Spline Wavelet
Transform (FSWT) are recalled (further description of FSWT in 4.2.1), whose filters
are exemplified in Figure 7.11. Its main characteristics and typical performance with
different noise levels is described in the following section:

• the dual type: it is characterized on the analysis side by a strongly selective scaling
filter which ensures a higher pixel-wise signal-to-noise ratio in the wavelet domain.
This generally leads to a high wavelet count C and thus fewer missed detections
in the low-pass. The filter is all the more selective as α is large. However, on the
reconstruction side, the badly localized scaling filter (which even worsens when α
increases) is responsible for a higher number of false detections. Thus a compromise
on α must be found. Because it is more robust to noise, this type is expected to
be the best performer when the level of noise is high.

• the bspline type: it is characterized by a strongly localized synthesis scaling filter,
which ensures fewer false detections. This behavior is enhanced as α increases.
However, on the analysis side, the badly selective scaling filter (which gets even
more prominent as α increases) is responsible for a bad signal-to-noise ratio, and
thus misses more detections. Because it has a better localization property and
because it is more sensitive to noise, this type is expected to be the best performer
when the level of noise is low.

• the ortho type is characterized by the same space-frequency behavior on the anal-
ysis and synthesis sides. By adjusting α, the frequency selectivity and the spatial
localization of the filter can be controlled as summarized below:

α

〈
large α

〈
good frequency selectivity
bad spatial localization

small α

〈
bad frequency selectivity
good spatial localization.

We expect the performance of the ortho type of transform to be optimal for inter-
mediary noise levels.

More specifically, the following trends have been found in simulations on test data:

→ Symmetry. In most cases, the causal FSWT has fewer errors than its symmetric
counterpart. The error E and the number of detected coefficients for the causal
fractional splines are depicted in Figure 7.13; the corresponding graphs for the
symmetric wavelets are shown in Figure 7.14. Both Figures are similar, the causal
splines showing a smaller error E than the symmetric splines. This may be due to a
better space localization for the causal splines (the integer degree causal splines are
even compactly supported), whereas their symmetric counterparts coincide with
the regular integer splines only for odd degrees.
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Figure 7.11: Example of frequency response of the low-pass (solid line) and high-pass (dashed
line) filters for the three types of FSWT. Note, that the filter for dual in the analysis part is
the same filter for bspline in the synthesis part.
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IDτ=1(x, y) :
I(x,y) SNR = -1.19 dB

(a) (b)

IDτ=1 (x, y) : IDτ=1(x, y) :
SNR = -7.2 dB SNR = -9.1 dB

(c) (d)

Figure 7.12: Example of test data. Used for the illustrations in this Section. a) Template image
I(x, y). b) Noise is added to the template image I(x, y), such that the average image ĪD(x, y)
has an SNR of 11.8 dB. c) The average image over 20 realizations ĪD(x, y) has an SNR of 5.8
dB. d) The average image ĪD(x, y) has an SNR of 3.9 dB.
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→ Type. The ortho and dual splines in general outperform the bspline type
FSWT, due to less missed detections. In Figure 7.15 the qualitative results of
detected activation patterns are shown for the different types, based on the test
data of Figure 7.12 c). Mostly, the type dual detects best. In this example, ortho
and dual show similar results. In Figure 7.13, the quantitative error is illustrated
for this example of test data. These curves are drawn for one realization of the
noise only; taking into account an infinite number of such realizations is likely to
give a “thickness” to these curves, making them smooth. For smaller patterns the
minimum of dual gets sharper and closer to α = 1.2. As a matter of fact, the
developed algorithm was always tested with large noise levels, which are typically
observed in practical data. But we surmise that with lower levels, the bspline

FSWT might be more competitive because false detections then become a more
important issue than missed detections. To summarize:

dual −→ large E1, small E2
ortho −→ E1 ∼ E2
bspline −→ small E1, large E2

→ Degree. The optimal spline degree varies widely in the ortho type. In the case
of +dual FSWT, the optimal α lies between 1.2− 1.6, or at least it builds a local
minimum. It is obviously a good compromise between a selective scaling filter at
the analysis side and a localized scaling filter on the synthesis side. Here, having
a fractional order parameter is of great use. In the case of *dual the best α varies
slightly more, and α = 1.6 is a suitable choice. Comparing the α of dual with
the Gaussian filter applied by SPM and its notion of RESELS, we obtained an
interestingly close range for α, see equation (7.21) and (7.22). Thus the dual type
optimizes strongly the control of E2 errors, whereas the E1 error increases when
α exceeds α = 2. On the contrary, when α tends to zero (where α = 0 represents
the Haar wavelet for +dual), the E1 error is as low as for the ortho, since then the
filters of +dual and of +ortho get similar. The optimal spline degree for bspline

lies between α = 0.2 and α = 0.6. The degree is low, since the selectivity of the
scaling filter is worse with high α.

→ Iteration depth. Less surprisingly, when the noise is higher, resp. when a smaller
voxel size is chosen to increase the resolution, more iterations are needed to detect
activated pixels in the wavelet domain. Indeed, we observe that, for lower noise
levels the optimal iteration depth is invariably 1, whereas when the variance of the
noise gets large (i.e., for the pattern in Figure 7.12 a) when the SNR < −5 dB for
IDτ

), this optimum is 2. This effect is counterbalanced by the size of the activation:
a smaller size can hardly be detected with more than one iteration. For this reason,
values of Jopt exceeding 2 were never encountered.
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Causal fractional splines

0 2 4 6
20

30

40

50

60

70

80

90

100

110

degree α

de
te

ct
io

n 
er

ro
rs

 E
(α

) 
in

 %

+dual   
+ortho  
+bspline

0 2 4 6
0

5

10

15

20

degree α

co
un

t(
α)

+dual   
+ortho  
+bspline

Figure 7.13: Presentation of the errors and the number of detections in the wavelet domain
(count) corresponding to the activation pattern I(x, y) in Figure 7.12 c) (SNR = −7.2 dB).
count increases with α for the type +dual, since the scaling filter gets more low-pass for a high
α and has a local maximum for α = 1.2 (star). In contrast, for +bspline, the number of counts
decreases as α increases, since the filter on the analysis side gets less low-pass (and thus filters
less the noise) with increasing degree parameter. +ortho is a compromise between the +dual

type and the +bspline type and doesn’t seem to depend strongly on the degree α. For the
bi-orthogonal filters, the error E has a minimum for some α and increases then for higher α’s.
In the case of dual, this increase of E results from false detections, whereas the low count in
the case of bspline yields errors of missed detections.
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Symmetric fractional splines
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Figure 7.14: Presentation of the errors for the symmetric fractional wavelets based on the data
set of Figure 7.12 c). The error E and the number of detections count behave very similarly as
for causal fractional splines.

→ Wavelet count C As already mentioned, dual causes the highest count with
increasing α and bspline the lowest. The number of detections in the high-pass
alone is exactly opposed, bspline shows more detections than dual. This comes
from the high frequency behavior of the dual spline (used on the analysis-side of
the bspline type transform). +dual often has a local peak for α = 1.2, which is
also the case in our example in Figure 7.13 and is marked with a star. This peak
coincides with the minimum of the error E.

→ Correlation E–C. For the bspline and ortho FSWT, the error criterion E is
always tightly (inverse) correlated with the number of detected wavelet coefficients,
i.e., the wavelet count C. This is extremely useful because, unlike the false+missed
detection error count E, the wavelet count does not require any prior knowledge of
the activation pattern. This suggest a direct application of the developed FSWT
optimization algorithm to real data: instead of minimizing E, a maximization of
the wavelet count for the structure parameters could be done. However, this would
theoretically require a correction of the threshold in the wavelet domain for multiple
testing.

By analyzing the situation in more details, we found that, for all types of FSWT
(i.e., including dual), the error type II is strongly correlated with C; i.e., the
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+bspline +ortho +dual

*bspline *ortho *dual

Figure 7.15: These are the detections with the FSWT corresponding to the graphs of Figures
(7.13) and (7.14), when α is chosen optimal. The detected pixels are shown in black. The
corresponding template image I(x, y) is shown in Figure 7.12 a), the realization of one difference
image is given in Figure 7.12 c). We observe that the causal splines perform qualitatively better
than the symmetric one: they miss less ellipses.
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Figure 7.16: Variations of the percentage of detection errors E and the wavelet count C in
function of the spline degree α for the causal ortho and bspline types. The corresponding test
data is given in Figure 7.12 d) and, due to the high noise level (−9.1dB for IDτ ), the analysis
needs 2 iterations. Note the sharp minima of E, especially for ortho, and the inverse correlation
between E and C. Their qualitative result for detection is shown in Figure 7.18.

product C × E2 remains approximately constant. As far as the bspline and
ortho types are concerned, it is thus because, the missed detections count is always
so much larger than the false detections E1 for high noise that we finally have
E ∝ 1/C. The higher the noise, the better the correlation. The relation between
E and C is evidenced in Figure 7.16. For this specific case, the optimal value of α
is 4.2 in the causal ortho type and 0.2 in the causal bspline; both are reached at
a depth of two iterations. The correlation coefficient between C and 1/E is close
to 0.94, out of a maximum of 1 for perfectly proportional functions as presented in
Figure 7.17. A bad SNR does not favor bspline: indeed, 80% of mainly missed
detections are due to its lack of denoising efficiency; this is to be compared to the
60% detection errors of ortho, which performs best among all the other wavelets.
Corresponding detection results are shown in Figure 7.18. Here, for α = 1.6 and 2
iteration steps, the causal dual FSWT is only slightly worse (by 1%) than ortho.

→ High-pass detections. Most of the band-pass coefficients of the wavelet trans-
form are usually left undetected when high noise is present, which questions the
utility of testing for them. However, for activations that have a high frequency
content, some of these coefficients can be detected even with a low SNR. The gain
over low-pass detection alone is then clear as exemplified in Figure 7.19.
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Figure 7.17: Scatterplot between the wavelet count C(α) and the inverse of the detection er-
ror percentage, 1
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for ortho. Same data as in Figure 7.16. The correlation coefficient
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Figure 7.18: Detections corresponding to the data of Figure 7.12 using the optimal value of α
for +bspline and for +ortho. Note that the high level of noise (-9.1dB) make useless and less
efficient to detect high-pass activation. In such a case, the method performs better by using
only the low-pass.
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I(x, y)

(a)
low-pass only low-pass and high-pass

(b) (c)

Figure 7.19: Detection of the high frequency activation I(x, y). b) Processing the low-pass
wavelet coefficients only. c) Processing both low-pass and high-pass wavelet coefficients.
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→ Translation invariance. Similarly to other real wavelets due to the down-
sampling operation, the fractional spline wavelets are not translation invariant.
In addition the causal fractional splines shift their center by α+1

2 .

→ Rotation invariance. Since the FSWT is a separable transform, it should not
exhibit any rotational invariance. However, the dual shows the best isotropy and
thus should yield the best rotation invariance.

To make a global choice over all FSWT, we propose to take +dual with α = 1.2− 1.6
and an iteration step of 1 or 2, depending on the amount of noise. When the noise level
is very high, the method performs better by using only the low-pass. +bspline performs
well for the degree parameter α = 0.2 − 0.6 when low noise is present. It controls the
error of false detections strongly.

7.3.5 Complex wavelets

The structure of the complex wavelets is described in Section 4.4. We recall here that
the CWT has the advantage of being closer to shift invariance than its real counterpart
while keeping the computational cost low.
The frequency response of the real Daubechies and of the complex Daubechies with low-
pass and with high-pass filters are presented in Figure 7.20 for the order parameter n = 3
and n = 7. The filters are orthogonal and compactly supported (in the complex case
[−n, n+ 1], n ∈ Z). In addition, the complex Daubechies filters are symmetric.

n = 3 n = 7

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

normalized frequency
0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

normalized frequency

Figure 7.20: Example of frequency response of the low-pass (solid line) and high-pass (dashed
line) filters for the complex Daubechies wavelets (complex), which are the same for the real
Daubechies.

→ Shift invariance. Figure 7.21 illustrates that the complex filters are more shift
invariant than the real Daubechies filters. Each plot shows the energy of the 1D
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Figure 7.21: Comparison of shift invariance between the Daubechies wavelets (dashed line) and
the complex Daubechies wavelets (solid line). The graphs show the band-pass energies of the
DWT of a Dirac pulse of varying positions. The first four iterations j = 1, . . . , 4 are shown here.
The complex Daubechies is more nearly shift-invariant than its real counterpart.
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wavelet coefficients along 16 different input signals. For the first iteration, the
Complex Daubechies stay invariant. For higher iterations, their shift invariance
decreases.

→ High noise. Another experiment, presented in Figure 7.24, shows the better shift-
invariance for the complex Daubechies by detecting ellipses which are at equally
spaced fixed positions (Figure 7.22). The shift-variance is more prominent as the
noise is larger (here −9.3 dB). The error E(n) = E1(n)+E2(n) is measured, which
depends on the order n of the wavelets. In Figure 7.24 this error is illustrated
quantitatively for all n for two different set of data, which differ only by a shift of
the ellipses. Obviously the results for daub change depending on the shift of the
ellipses. In the case of the complex Daubechies (complex) the results remain very
similar. However, the minimal error E(n) is only slightly better for the complex
case compared to the real Daubechies filter. Typically, for a very high noise like
in this example, the complex Daubechies do not perform better, although complex

detects more ellipses than daub, as it can be seen in Figure 7.23.

→ Medium level of noise. With lower amount of noise, 5dB ≤ SNR ≤ 10dB the
shift variance of the real wavelets loses its influence on the results of detection. A
remarkable result with lower amount of noise, same realization than in Figure 7.22
b), is the performance of complex for detection compared to daub. The complex
Daubechies outperform the real Daubechies by far, as shown in Figure 7.25 b).
But also compared to other wavelets like the fractional spline wavelets, presented
in Section 7.3.4, the complex Daubechies show good results, as presented in Fig-
ure 7.25. The larger the activation pattern, the better the result of complex.

→ Low level of noise. Very low noise, SNR > 10 dB for ĪD yields increased E1
errors and thus, the performance of complex decreases. However it still gives
results comparable to daub. In Figure 7.26 an example is presented where the
test data is illustrated in Figure 7.12 b). In this example, the complex Daubechies
and the dual fractional spline wavelets give the best result, see Figure 7.26 and
table in Figure 7.1. Independently of the noise level, the number of detected
wavelet coefficients count is always much higher than in the case of daub, as can
be seen in Figure 7.27 a). count for complex is often higher than for dual, when
the degree α of dual is less than 2. These many detections yield a low E2 error.
Thus complex tends to detect more pixels rightly, but at the cost of more false
detections than in the case of real Daubechies (compare Figure 7.27). Figure 7.28
shows these detection results qualitatively. The detection count in the high-pass
are also relatively frequent. complex detects more in the high-pass than daub and
also dual.
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I(x, y)

(a)

IDτ=1(x, y) : IDτ=1(x, y) :
SNR = -4.9 dB SNR = -9.3 dB

(b) (c)

Figure 7.22: To compare the shift-variance, these data and its shifted version of ellipses at equally
spaced positions are used for the illustrations in this Section. a) Template image I(x, y). b)
Noise is added to the template image I(x, y), so that the average image ĪD(x, y) has an SNR of
8.2. c) The average image ĪD(x, y) has an SNR of 3.7 dB.

type minE(α) resp. minE(n) argminα resp. argminn
complex 18.0 7
+dual 18.0 1
+ortho 22.1 1
daub 26.8 4

+bspline 32.0 0.6

Table 7.1: Quantitative results corresponding to Figure 7.26.
.
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daub complex

Figure 7.23: Detection of the pattern of Figure 7.22 c) using real and complex Daubechies. Here
the noise level is very high: −9.3dB. The complex Daubechies (complex) detect more ellipses
than the real Daubechies (daub).
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a) Standard activation pattern
(Figure 7.22)

b) Shifted activation pattern

Figure 7.24: Detection error percentage of the pattern corresponding to I(x, y) presented in
Figure 7.23. Note the periodic waveform of the error E depending on the order of Daubechies
wavelets. The results of a) and b) differ by a relative shift of the activation pattern for one
pixel: E(n) moves for daub with the order n, but E(n) for the case of complex remains similar.
Thus complex is more shift invariant than daub.
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Figure 7.25: Detection error percentage of the pattern of Figure 7.22 with the realization of noise
of Figure 7.22 b). For lower noise, the causal wavelets show less dependency on the shift (a) and
(b)). A typical result is the good detection performance for complex for middle amount of noise
like in this case. The detection quality of complex with respect to the error E is comparable to
the one of dual and outperforms daub by far.
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Figure 7.26: Performance of complex compared to daub and the FSWT when low noise is present
and the activation pattern are placed randomly. complex and daub give the best detection
results. The detection error when testing is performed on the raw data is marked with a star
(E=E2).

The iteration step never exceed 2 iterations for small activation patterns, which is the
case for images processed in Section 7.3.4.

7.3.6 Quincunx: comparison of separable with nonseparable trans-
form

The Quincunx wavelet transform is extensively described in Chapter 5. The advantages
of the quincunx wavelets over the separable ones are described in Section 7.2.2. We use
a new family of quincunx wavelets, see Section 5.3, which are orthogonal, symmetric and
have a fractional order of approximation. The advantage of a continuously varying order
parameter λ is the possibility of a continuous adjustment of frequency selectivity and
localization, similarly to the FSWT, see Section 7.3.4. To generate the quincunx filters,
we applied the diamond McClellan transform to map a one dimensional design Hλ(ω)
onto the quincunx structure. It is the separable transform based on this one dimensional
filter Hλ(ω) with which we compare the nonseparable transform; because Hλ(ω1)Hλ(ω2)
has similar behavior as the quincunx filter. This filter is also quite close to the symmetric
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Figure 7.27: Illustration of wavelet count C, E1 and E2 corresponding to the detection with the
same data like in Figure 7.26. count(α) is always higher for complex than for daub (a). For this
reason, the missed detections E2 are usually much smaller for complex (c). On the contrary the
false detections E1 are higher for complex (b).

orthogonal fractional spline filter Bα
∗ortho with α = λ− 1 as shown below:

Hλ(ω) =

√
2(2 + 2 cosω)

λ
2

√
(2 + 2 cosω)λ + (2− 2 cosω)λ

=

√
2
∣∣cos ω

2

∣∣λ
√∣∣cos ω

2

∣∣2λ
+
∣∣sin ω

2

∣∣2λ
(7.6)

whereas

Bα
∗ortho(ω) =

√
2

∣∣∣∣
1 + e−jω

2

∣∣∣∣
α+1

√
Aα(ω)

Aα(2ω)

=
√

2
∣∣∣cos

ω

2

∣∣∣
α+1

√
Aα(ω)

Aα(2ω)
. (7.7)

Call that the autocorrelation filter A(ω) satisfies ([135]) the two-scale relation:

A(2ω) =
1

2
|Bα

∗ (ω)|2A(ω) +
1

2
|Bα

∗ (ω + π)|2A(ω + π).

(7.8)
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daub complex

+bspline +ortho +dual

Figure 7.28: Detection of the activation pattern of Figure 7.12 b) with SNR = −1.19 dB. The
corresponding error and degree parameter α is given in the table of Figure 7.1. complex and
+dual detect obviously the best: there are not many visible missed detections.
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A way to compute A(ω) is to iterate the following process (ensured to converge if φ ∈ L2

and if φ is a Riesz basis):

Ai+1(2ω) =
1

2
|H(ω)|2Ai(ω) +

1

2
|H(ω + π)|2Ai(ω + π),

starting with A0(ω) = 1. The convergence speed of this scheme is directly given by the
Sobolev regularity of φ: higher regularity, faster convergence. The filter

√
Ai(ω)

Ai+1(2ω)
Bα
∗ (ω)

automatically satisfies the orthogonality relation and the first iteration gives (7.6) while
the infinite iteration gives (7.7) if we identify λ = α+ 1. For α = 0 and λ = 1 the filters
are exactly the same. For 0 < α . 2, their difference increases and for a higher degree
parameter (α ' 2) , the filters match again better, which illustrates Figure 7.29.

The frequency response of Hλ(ω), called sep is depicted in Figure 7.30 for the order
λ = 2 and λ = 6. The nonseparable filter for the quincunx transform is called quin and
is depicted in Figure 7.31.

In fMRI, the activation zones can be very small, compared to the size of the volumes
or images taken from the brain. This is illustrated in Figure 7.32. One limitation of
the separable wavelets is the scale progression by powers of 2 only. Thus the number of
coefficients of the low-pass which represents mainly the activation zones is reduced by 4
with every iteration, as presented in Figure 7.33 upper row. To detect more accurately
small patterns, a finer scale progression would be preferable.
The second drawback of the separable wavelets is the strong directionality of the filters.
Thus the separable wavelets detect more easily horizontal and vertical expanded pat-
terns, whereas the activation zones can have any directionality. To reduce this problem,
nonseparable wavelets are more appropriate.
The quincunx transform is a solution to these issues: the scale progresses by powers of√

2 and provides thus a bandpass of finer resolution than in the separable case; moreover,
the filtering is less directional, which was made possible because of the non-separability of
the filters. We developed a fast FFT-based implementation for two and three dimensions,
refer to Chapter 5.

→ Detection accuracy. We devised an experiment with a single pattern, scattered
over the size of the image, to which a noise of SNR = 2.5 dB for IDτ

(x, y), respec-
tively SNR = 15.5 dB for ĪD(x, y) has been added. The corresponding test image
I(x, y) is shown in Figure 7.34. Both algorithms, the quincunx transform with its
fractional filter quin and the separable algorithm with the corresponding separable
filters were applied to I(x, y). This is a typical example where quin detects more
accurately, even though the patterns have a rather horizontal extension, which
should favor separable wavelets. A qualitative detection is illustrated in Figure
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Figure 7.29: Frequency response of the filter Hλ(ω) (sep) and Bα
∗ortho(ω) (*ortho), where λ =

α+ 1. For large α, i.e., α ' 2 the filters are close.
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Figure 7.30: Example of frequency response of the low-pass (solid line) and high-pass (dashed
line) filters for the one dimensional design Hλ(ω) (sep).

|H|
ω2
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Hλ=1(~ω) Hλ=6(~ω)

Figure 7.31: Example of frequency response of the quincunx low-pass filter.
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Figure 7.32: Example of detection of activation in the primary motor area. This activation zone
is small compared to the size of the image.

sep

quin

Figure 7.33: Wavelet coefficients for the separable (upper row) and the quincunx transform
(lower row). From left to right, the number of iterations increases. Every second iteration, the
size of the low-pass (upper left corner) can be compared to one iteration of the separable case.
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I(x, y)

zoom of I(x, y) quin sep

(a) (b) (c)

Figure 7.34: I(x, y) contains several patterns to detect. The level of noise is SNR = 2.5dB for
IDτ . For each method the results are presented for the optimal order parameter λ, which causes
the smallest error E. The white pixels represent the pattern. In b) and c) the black pixels
represent the detection. b) Representation of the detection of one of those patterns for quin.
The errors are relatively few compared to the small size of the pattern. With this low level of
noise, one iteration is sufficient. c) Representation of the qualitative result for the separable
algorithm for the same zoomed pattern.
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7.34. The quantitative results of this example are given in Figure 7.35. Especially
for a larger order parameter λ, there is a big gap between the error E of quin and
sep. We have indications that the false detections E1 are much smaller for quin,
because of the finer scale progression. Even though the threshold level seems to be
adequate, the false detections E1 increases, when the iteration depth is chosen to
be higher. On the contrary, when we keep the iteration depth on a finer resolution
compared to the separable case, the noise is less reduced and thus in some cases
more E2-errors appear in the quincunx case (Figure 7.35). The advantage of the
quincunx transform is the more noticeable when the optimal iteration depth J is
in between the possible iterations of the separable algorithm, i.e., when J is odd.
An example of such a situation is given in Figure 7.36, where sep performs best
with two iterations and causes an error E = 58%, while quin performs best with
three iterations and causes an error E = 41% with λ = 2. Thus the gap between
both methods is almost 20%.
Another example, closer to real data is given in Figure 7.37. I(x, y) is extracted
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Figure 7.35: Error of detection of I(x, y) of Figure 7.34. Comparison of quin (solid line) and
sep (dashed line). For both methods the optimal iteration depth is one.

from a slice of real data and contains small shapes of different intensities. Like for
the other examples, no mask is applied, which would enhance the detection qual-
ity. Again, it is evident that quin detects more accurately. Thus the finer scale
progression of the quincunx transform offers more flexibility and leads to better
results.

→ count. It can be observed that quin typically detects more coefficients than sep.
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Figure 7.36: Detection error percentage of the data of Figure 7.22 b). quin detects with less
errors since it can take advantage of its odd iteration depth (J = 3). The better result is mainly
due to less false detections E1.

I(x, y) quin sep

Figure 7.37: I(x, y) is extracted from a slice of real data. The level of noise added to I(x, y)
results in an SNR = 14.8dB for ĪD. The order parameter λ for quin and sep is chosen such
that the error E is minimal.

This is reasonable insofar as the optimum iteration depth for quin is lower com-
pared to the separable case and thus the low-pass is of larger size. The graph of
the numbers of detected coefficients corresponding to Figure 7.37 is presented in
Figure 7.38. The number of detections in the high-pass depends highly on the order
λ. It could be observed with the experiments of ellipses that the lower the order
the more detections are obtained in the high-pass. This is due to the decrease
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Figure 7.38: quin detects more coefficients, also because of the higher resolution of the low-pass
for one iteration.

of the frequency selectivity for a lower λ, where detections of rather not so high
frequencies contained in the band-pass of low order parameters are more frequent.

→ Rotation invariance. To see whether the non-separability of the quincunx trans-
form leads to near rotation invariance, several test data with ellipses were created
which differ by rotation of the ellipses by the angle θ = [0◦, 15◦, ..., 90◦]. Two such
test images are shown in Figure 7.39. For each set of data, the minimal error E(λ)

θ = 0◦ θ = 30◦

Figure 7.39: Two examples of test images with rotated ellipses.

is calculated for the separable case sep and for quin. In Figure 7.40 the error E2
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and E are plotted depending on the angle θ. Obviously, the separable algorithm
has more difficulty with detection when the angle approaches to θ = 45◦ (Figure
7.40 a)). On the contrary, the nonseparable method doesn’t change much when the
angle θ varies, but detects slightly better diagonal expanded patterns, as expected.
Also the error E changes slightly less in the case of quin and again quin detects
better (see Figure 7.40 b)).
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Figure 7.40: Comparison of quin and sep regarding directionality. Detection errors of rotated
ellipses like in Figure 7.39, with the same level of noise added as in Figure 7.34. a) The missed
detections E2(θ) is less influenced by θ in the case of quin. b) E(θ) is less dependent on the
angle of the ellipses (θ) in the case of quin.

To conclude, it is especially the finer scale progression that brings advantages: de-
pending on the data set, the detection gain can be 20 %. However, compared to the
fractional splines, the quincunx transform presented in this work is not always superior,
since its nature is comparable with *ortho, which doesn’t perform as well as +dual, but
provides a good compromise between a selective analysis filter and a localizing synthe-
sis filter and is thus a more general approach. This calls for a ”dual” version of the
symmetric filters to be used in the quincunx transform.

7.3.7 Results

The results and observations of the whole series of experiments are summarized in Table
7.2.
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+bspline +ortho +dual quin complex daub sep *dual

min E −− +++ +++ ++ ++ ++ + +++
low noise:
+++

big shape:
min E2 −− ++ ++++ − +++ − − +++
(sensitivity) otherwise:

−

α→ 0 :
min E1 +++ ++ ++ +++ ++ ++ ++ −−

(specificity) otherwise:
−−

invariance
of α opti-
mal

++ −− +++ ++ − − + ++

argmin(E) 0.2-0.6 vary 1.2-1.6 2/5.8 3/5 vary vary 1.2-2
translation
invariance

++ −− ++ ++ ++ −− ++ ++

rotation in-
variance

? ? ? +++ ? ? −− ?

detection α→ 0 : α→ 0 :
when
low noise
present

++ ++ ++ ++ − −− −− −−

detection
when very
high noise
present

−− +++ +++ ++ −− − ++ +++

count −− ++ +++ ++ +++ ++ + +++
λ small:

count in +++ ++ −− ++ ++ −− ++ −−

highpass otherwise:
−−

Table 7.2: Summary of different methods. Notation: −− bad, − not optimal, + good, ++
very good, +++ excellent, ++++ the very best. The symmetric fractional bspline (*bspline)
behaves close to the causal bspline, especially for higher α and is thus omitted in the table. The
filters *ortho are close to sep and are also omitted for this reason.
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7.3.8 Discussion

A recent work [44] (2001) uses an algorithm which follows in general terms the one pro-
posed by Ruttimann and compares different wavelet decomposition schemes. A template
with only circular activation patterns is used. The conclusion of the authors is that
the Gabor transform performs the best, since it best fits the circular activation areas.
Obviously, their conclusions are only valid for such patterns. To carefully prevent this
problem, we used different non symmetric activation shapes [59] (2000). We also avoided
using different pattern sizes in the same image, since in this case the large patterns dom-
inate the error measure and no information is given for small activation patterns. The
signal reconstruction method of [44] seems to cause ringing and thus the false detection
errors get more prominent for wavelets as the length of the synthesis filters increase. This
explains why, in their experiments, wavelet transforms with very short synthesis filters
perform the best. To avoid this effect we applied a threshold on the reconstructed signal
which enhances the detection rate substantially, since this restriction of applying short
wavelets only is not necessary anymore. In addition, compared to [44], we validate our
findings with real data.
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7.4 Real data

In this section, we validate the results of the synthetic data (Section 7.3) with real data.
For this purpose, we considered several real data sets from different subjects and for
different tasks. For example, tapping with the left or right hand fingers was one of these
tasks. Other tasks were moving the shoulder, looking at a light source switching on and
off or listening to bi-syllabic words.
The orientation of the images is shown in Figure 7.41.
We also compare our method with SPM (Section 2.8).

Left

Posterior

Anterior

Right

Figure 7.41: Orientation of the brain in the images along this section.

7.4.1 Image acquisition

We obtained the data sets from different sources.

A. Inselspital of Bern The data sets acquired by Arto Nirkko from the Inselspital of
Bern have the following characteristics ([105]): The fMR-images were acquired on
a standard clinical 1.5 T whole body scanner (Siemens Magnetom Vision). Blood
Oxygenation Level Dependent (BOLD) (see Section 2.3) fMRI was achieved with an
Echo-Planar Imaging sequence (EPI) (see Section 2.2.3) with an Echo Time (TE)
of 62 ms and a Repetition Time (TR) of 6 s between whole brain data sets. A 128
pixel matrix and a 200 mm field-of-view resulted in an inplane pixel resolution of
1.56 mm×1.56 mm. Thirty 2-D slices of 5 mm thickness and 4 mm spacing between
slice centers were acquired. Since distortions in the phase-encoding direction cannot
be avoided completely, the phase-encoding direction was selected in the antero-
posterior direction, thus preserving brain symmetry. In total, 68 measurements
were acquired per experiment. The volunteer had to alternate between activation
(A) and rest (B) periods according to auditory cues. Cycles of A and B performance
(each with four data sets, equaling 24 s) were repeated eight times. The total of 68
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data sets per experiment was obtained in 6.8 min. The first four sets were discarded
in order to analyze only the data obtained with steady-state MRI signals and task
performance. The summary is given in Table 7.3.

Paradigm length A/B 4/4
Voxelsize 1.56 × 1.56 × 4 mm
# Voxels per volume 128 × 128 × 30
TR 6 s
# volumes 68

Table 7.3: Parameters of acquisition of the data acquired by the Inselspital
in Bern.

B. University Hospital of Geneva (HUG) The data sets acquired by Francois
Lazeyras from the University Hospital of Geneva have the following character-
istics: The fMR-images were acquired on a 1.5 T whole body scanner (Eclipse,
Marconi/Philips). Blood oxygenation level dependent (BOLD) fMRI was achieved
with a gradient echo, echo-planar imaging sequence (GRE, EPI) with an echo time
(TE) of 40 ms and a repetition time (TR) of 1.4 s between whole brain data sets.
The delay between two successive acquisitions were 2 s. A 128 pixel matrix and a
250 mm field-of-view resulted in an inplane pixel resolution of 1.95 mm× 1.95 mm.
Thirteen 2-D slices of 5 mm without gap were acquired. A flip angle of 80 degrees
was used. Cycles of A and B performance (with 10 data sets for A and 20 data
sets for B) were repeated five times. In total, 150 acquisitions were made.

Paradigm length A/B 10/20
Voxelsize 1.95 × 1.95 × 5 mm
# Voxels per volume 128 × 128 × 13
TR 1.4 s
# volumes 150

Table 7.4: Parameters of acquisition of the data acquired by HUG.

C. Wellcome Department of Imaging Neuroscience, University College London
These are publically available data. The experiments conducted by Geriant Rees
under the direction of Karl Friston and the Functional Imaging Laboratory
(FIL) method group [76] have the following characteristics: The images were
acquired with an echo-planar imaging sequence (EPI) on a modified 2 T Siemens
MAGNETOM Vision system. Each acquisition consisted of 64 contiguous slices
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with 64 × 64 × 64 voxels of 3 mm × 3 mm × 3 mm. The acquisition of the whole
volume took 6.05 s with a scan to scan repetition time (TR) of 7 s.
96 acquisitions were made in blocks of 6 volumes, giving 16 blocks of 42 s. The
condition for successive blocks alternated between rest and auditory stimulation,
starting with the rest-condition. The auditory stimulation was bi-syllabic words
presented binaurally at a rate of 60 per minute.

Paradigm length A/B 6/6
Voxelsize 3 × 3 × 3 mm
# Voxels per volume 64 × 64 × 64
TR 7 s
# volumes 96

Table 7.5: Parameters of acquisition of the data conducted by the Wellcome
Department of Imaging Neuroscience, University College London.

7.4.2 Relation between our algorithm and SPM

To enhance the signal-to-noise ratio (SNR), SPM filters the images with a Gaussian
kernel (see Section 2.8.1). Our approach consists of performing a wavelet transform,
where the low-pass contains the SNR-enhanced information. In this section, we show
that these approaches are related (if we choose a symmetric dual fractional spline wavelet
transform), with the difference that we keep the high-pass content and downsample after
filtering. It is the statistics of the two methods that exhibit the main difference. While
SPM defines the threshold based on the theory of Gaussian random fields (Section 3.2.6),
our method uses a t-test (Section 3.3.5), respectively a Hotelling’s T 2 test (Section 3.3.7),
and defines the threshold by a simple Bonferroni-correction (Section 3.2.6). The approach
with the wavelet transform requires signal reconstruction after the statistical part. Note
that despite this difference, the Gaussian random field statistics are roughly comparable
with a downsampling over the size of a RESEL to cancel the correlation in the space
domain and with a subsequent Bonferroni-correction.

Relation between the degree parameter α of the fractional spline *dual and the
FWHM of the Gaussian filter

We compare here the Gaussian filter with the symmetric dual fractional spline filter
*dual rather than +dual, since *dual is a symmetric filter like the Gaussian filter.
We have the following equivalence for *dual when α is large (which allows to consider
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only frequencies ω close to 0):
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Due to the Noble identity, the J iterations of the filter Bα
∗ (ejω) take the expression:

Bα
∗J(ejω) = Bα

∗ (ejω)Bα
∗ (e2jω) . . . Bα

∗ (e2
J−1jω) (7.10)

According to (7.9), (7.10) can be approximated by
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α+1
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≈ 2
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8 ω2 4J−1

3 . (7.11)

The Fourier transform of the Gaussian kernel is given by:
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2σ2
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2 . (7.12)

From equation (7.11) and (7.12) it follows that we can approximate the *dual filter with
a Gaussian filter of width:

σg ≈
√
α+ 1

2

√
4J − 1

3
(7.13)

The relation between the Full width of half maximum (FWHM) and σg can be obtained
by:

e
−

FWHM
2

x2

2σ2
g =

1

2

and is thus given by

FWHM = 2σg

√
2 ln (2). (7.14)

From equations (7.13) and (7.14) we thus get:

FWHM ≈
√

2 ln (2)
√
α+ 1

√
4J − 1

3
. (7.15)
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Figure 7.42: Comparison of the Gaussian filter (dashed line) with the *dual (solid line) in the
Fourier domain. For a larger α the approximation is closer (dotted line for Gaussian filter and
for *dual).
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Figure 7.43: Comparison of the Gaussian filter (dashed line) with the *dual (solid line) in the
time domain. For a larger α the approximation is closer (dotted line for Gaussian filter and for
*dual).
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The equivalence between the Gaussian filter and the *dual filter, when related parame-
ters are chosen, using equation (7.15), is presented in Figure 7.42 in the Fourier domain
and in Figure 7.43 in the time domain. It can be noticed that for an increasing degree
parameter α this equivalence is getting more exact. When applying both filters (the
Gaussian filter and the *dual filter) with comparable parameters to real data, we ob-
tain the same activation pattern, even after downsampling and applying a t-test with
Bonferroni-correction (see Figure 7.44).

gauss *dual

Figure 7.44: Zoom of the detection in the wavelet domain after applying the Gaussian filter or
the *dual filter. The result is the same for the Gaussian filter and the *dual filter.

The notion of RESELS (Section 3.2.6) of SPM is related to our number of iterations
J through the equation

RESELS =
V

2JD
, (7.16)

where 2JD is the low resolution wavelet sub-sampling factor. On the other hand, SPM
defines the number of RESELS by the expression:

RESELS ≈ V
∏D

i=1 FWHMi

, (7.17)

where V represents the volume of the dataset. Thus, assuming the same FWHM in each
dimension, we have

FWHM = 2J . (7.18)

With these equations we can derive a bound depending on the iteration depth J for
α and compare it to the best α found with the simulations in Section 7.3. When we
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a) FWHM=2× pixels b) FWHM=4× pixels

Figure 7.45: Results for two different resolutions using the standard possibility recommended
by SPM.

a) b)

Figure 7.46: Detection results using the downsampled low-pass of the symmetric fractional spline
(*dual): a) J=1 and α = 1.89; b) J=2 and α = 1.31.
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replace equation (7.15) in (7.18), we obtain

RESELS =
V

(√
2 ln (2)

√
α+ 1

√
4J−1

3

)D
. (7.19)

Finally, by equating (7.19) and (7.16) we find that

1 + α =
4J

2 ln (2) 4J−1
3

. (7.20)

For the first iteration (J = 1) we get from equation (7.20)

α =
2

ln (2)
− 1

' 1.885. (7.21)

Asymptotically, when J →∞

α =
3

2 ln (2)
− 1

' 1.164. (7.22)

Thus α doesn’t change much with the iteration and lies in the range of

1.164 . α . 1.885, (7.23)

which is very close to the “optimal” range found with simulations in Section 7.3: 1.2 .
α . 1.6.

We now present some experimental results that support these calculations. The data
set that is used for this purpose is acquired with the method described in Table 7.3.
The task that the volunteer had to perform was tapping with the left hand fingers. The
volunteer was a member of our group. In Figure 7.45, SPM is applied to real data using
the parameters obtained above. The results should be comparable to those of Figure
7.46. Indeed, the activation zones are similar, but there are visible differences, most
probably due the fact that the statistical analysis performed in the two methods are very
different, even though the filters are similar.

7.4.3 Control of E1−error

Obviously, we cannot measure the false detection errors E1 nor the missed detection
errors E2 as for the synthetic data, since the underlying true activation is unknown.
One possible approach is to control the false detection errors E1 with null-data; i.e., data
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which doesn’t contain any activation. In this case we know that all detected activations
are false.
For this experiment, our data set has the parameters of Table 7.3. The data have been
realigned. We analyzed the data with the 2D algorithm slice per slice and counted the
wavelet detections C. The number of detections, i.e., maximally one coefficient per 26
slices, lies in the range of false detections of the Bonferroni-correction, where we can
expect 5 false detections per 100 slices.

+bspline

α = 0.6
+dual

α = 1.2
complex

n = 3
daub n = 3

J = 1 J = 2 J = 1 J = 2 J = 1 J = 2 J = 1 J = 2
C 0 0 0 0 1 1 1 1

quin λ = 2 sep λ = 2
J = 1 J = 2 J = 1 J = 2

C 1 0 1 1

Table 7.6: Table of the number of detections in the whole volume (128× 128× 26) of realigned
null-data, i.e., data without activation. The number of detected coefficients lies in the range of
Bonferroni correction: 1 coefficient per 26 slices.

7.4.4 Algorithm validation with real data

The results are presented with the real data described in Figure 7.1. Two examples will
be shown, “example 1”, which contains a weak signal and “example 2”, which contains
a relatively strong signal.
With real data we cannot compare the different types of wavelets with respect to the
error E, but a possibility to assess the results is to compare them to the result of a pixel-
based analysis with a t-test and the Bonferroni-correction over a small window. The
pixel-based Bonferroni-correction depends on the number of tested pixels and therefore
we detect more activated pixels when we choose a window instead of testing the whole
image. The window can be defined a priori, since in our cases the locations of activation
are known before hand based on the experience of the neurologist.

Fractional splines

With synthetic data, we observed that the error measure E and the 1/count quantity
correlate for +dual only for a low degree parameter α, and for all α in the case of
+bspline and of +ortho. Thus another possibility to evaluate the results is to observe
the wavelet count C(α).
In this section we also investigate the usefulness of the high-pass in the analysis.
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→ High SNR. We observe many high-pass detections, already for one iteration depth
J = 1. For some α of +bspline there are even more detections in the high-pass than
in the low-pass. In Table 7.7 the counts are given for various degree parameters
for +bspline. For α = 0.6, C(α) is maximal, which supports the proposition in
Section 7.3.4 to choose a degree parameter between α = 0.2−0.6. According to our
findings with synthetic data comparing the result to +dual, +bspline is competitive
for low noise data, since it has good localization properties. It typically has lower
E1−errors and has a constant short range of best degree parameter α. Due to the
good detection-rate in the low-pass band, +dual is still preferable.
The symmetric fractional splines behave similarly to the causal fractional splines.

α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1 α = 1.2
count in
low-pass

34 36 34 32 33 31

count in
high-pass

33 34 39 35 34 27

all count 67 70 73 67 67 58

Table 7.7: Detection with +bspline. The type bspline controls the E1-error (false
detections). We saw in the experiments that the number of errors E correlates
inversely with count. We find the highest count for α = 0.6. This reinforces the
findings with the synthetic data, where we found the optimal α to be in the range
of α = 0.2 − 0.6. Notice that many coefficients are detected in the high-pass band.

They detect slightly less coefficients than the causal splines, which could be seen
also with synthetic data.

→ High-pass detections. The gain over low-pass detection alone and adding the
high-pass is illustrated for “example 1” in Figure 7.47 with +bspline. When adding
the high-pass, some low-pass detections are missed, since the threshold increases,
but more high-pass detections occur. In this example it seems to be worthy to add
the high-pass since some additional regions are detected whereas only few pixels
are lost compared to the “low-pass only” case. Also the number of detections in the
high-pass indicates their importance: for the chosen parameters, more high-pass
detections are made than low-pass detections. This tends to indicate that, with a
low-pass filter alone, the SPM method might fail to detect high frequency activa-
tions that are likely to be detected by our wavelet method. Also noticeable are the
finer contours. In Figure 7.48 the negative activations are illustrated (its mean-
ing is discussed in Section 3.3.3). With the high-pass we clearly detect more pixels
without losing pixels compared to the detection with the low-pass only. Comparing
against detecting with a pixel-based Bonferroni over a window, the detections due
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to the high-pass seem to be correct. Thus the high-pass is able to detect negative
activated regions, also when they bound positive activated regions, as is the case
in this example, see Figure 7.48 a).

Bonferroni over window

a)
+bspline +bspline

b) low-pass only c) low- and high-pass

Figure 7.47: Detected activation in “example 1”. a) pixel-based Bonferroni
over only the window. b) +bspline with low-pass only and a degree param-
eter of α = 0.6. c) +bspline low- and high-pass with α = 0.6.

Another advantage of the high-pass is illustrated in Figures 7.49 and 7.50. The
detected region gets clumpy with increasing iteration depth J when detecting only
with the low-pass, and eventually disappears completely (Figure 7.49). When
adding the high-pass for detection, the shape of the detected region gets better
preserved and eventually, when J →∞, remains constant, since the detections are
made with the high-pass only for higher iterations.
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Bonferroni over window

a)
negative activation negative activation

b) low-pass only c) low- and high-pass

Figure 7.48: Detected negative activation of “example 1”. a) Detection with testing for nega-
tive activation only and Bonferroni-correction over window. b) Negative activation (in black)
detected with +bspline with low-pass only and a degree parameter of α = 0.6 c) Negative
activation (in black) detected with +bspline low- and high-pass also with α = 0.6.
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1 iteration 2 iterations

3 iterations 4 iterations

5 iterations 6 iterations

Figure 7.49: Result of our method for +dual with α = 1.2 only with low-pass. Increasing
iterations, from the upper left image down to the lower right image. The detected region
becomes clumpy with increasing iteration, and eventually disappears.
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1 iteration 2 iterations

3 iterations 4 iterations

5 iterations 6 iterations

Figure 7.50: Result of method for +dual with α = 1.2 with low- and high-pass. Increasing
iterations, from the upper left image to the lower right image.
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Figure 7.51: count of the causal fractional splines for “example 2”. The star marks the degree
parameter for α = 1.2. The characteristics of these curves represent what we found also with
synthetic data.

→ Low SNR. When the signal is weak or when the noise is large, only few detections
are observed in the high-pass, which questions the utility of the high-pass in this
case. “Example 2” is an example of data with a weak signal. It can be observed
that the number of detected coefficients of the different types differ all the more as
the SNR decreases. dual detects in this case much more than ortho and bspline.

The qualitative detections only with statistics, but without Bonferroni corrections
(Figure 7.52 b)) give a reference of what should at least be detected in the re-
gion of interest, which is hard to see, since 5% of the pixels are falsely detected.
With a pixel-based Bonferroni-correction there is almost no detection at all (see
Figure 7.52 a)). Comparing the connectivity of the activation pattern without
Bonferroni-correction (i.e. the windows in Figure 7.52 a)), we detect most accu-
rately with +dual with a degree parameter α = 1.6 and applying the low-pass only.
With a lower degree parameter or with the high-pass, one connection of the acti-
vation pattern gets lost, even with one iteration. In order to exploit the high-pass
efficiently, two iterations (J = 2) seem necessary (Figure 7.52 d)).
To conclude, +dual performs the best, especially when high noise is present.



166 Chapter 7. Analysis of fMRI Data using Wavelets

a) b)

c) d)

Figure 7.52: a) Pixel-based detection with Bonferroni-correction. b) Pixel-based detection with-
out multiple corrections. The windows show two cases: one case where there is a connection,
another case where no connection is detected with an uncorrected test, this means that probably
there is effectively no connection or at least with little chance. c) For one iteration, +dual with
degree parameter α = 1.6 and with low-pass only gives a result that matches highly with the
detections observed in b). d) For two iterations, +dual and α = 1.2 with high-pass gives a
comparable result, but misses isolated activation regions.
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iteration J = 1 J = 2 J = 3
shift 1 2 3 mean of all shifts mean of all shifts

d(I0
est, I

shift
est ) for complex 0 0 0 139.8 176.2

d(I0
est, I

shift
est ) for daub 91 93 96 136.9 231.2

Table 7.8: Comparing shift-invariance (d(I0
est, I

shift
est ), see equation (7.24)) between real

Daubechies (daub) and complex Daubechies (complex), depending on the iteration depth J

and on the shift, where “1” stands for a shift of one pixel along the row, “2” stands for a shift
of one pixel along the column and “3” stands for a diagonal shift of one pixel. For the first iter-
ation, the complex Daubechies is completely shift invariant, whereas the Daubechies detection
changes with the shift. For more iterations, we show only the mean value of all shifts, since we
have more than three shifts in those cases.

Complex daubechies

→ Shift invariance. Real wavelets are shift-variant and thus are likely to give dif-
ferent results when the activation is shifted. We show in this section the influence
of shift-variance on an example and validate the shift-invariance of the complex
Daubechies. Thus we analyze “example 1” with all possible three shifts (for one
iteration)—one shift along the row, one shift along the column and one shift along
the diagonal—and compare it to the first analysis with no shift (marked with 0).
In Figure 7.53 the result of complex and the influence of shift-variance by daub

are presented. A distance map to measure the matching error between I0
est (the

non-shifted data set) and Ishift
est (shifted data set) is evaluated:

dest =





0, (x, y) is in the same activation state in I0
est and in Ishift

est ,

1, otherwise.

The final measure is given by

d(I0
est, I

shift
est ) =

∑

x,y

dest(x, y) (7.24)

and is illustrated in Table 7.8 for the order parameter 3 and for different iterations.
For the first iteration, the complex Daubechies (complex) show complete shift-
invariance, whereas real Daubechies (daub) distance measure is larger than zero.
For more iterations, complex is not shift-invariant anymore. For higher noise levels
(“example 2”) the visual difference between the detection of shifted images is even
larger for daub, whereas complex remains shift-invariant for the first iteration.

→ count. With synthetic data, the complex Daubechies (complex) detects more
coefficients than the real Daubechies daub (Section 7.3.5). With real data, we
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a) complex b) daub c) daub of shifted image

Figure 7.53: Detection map of “example 1” for complex and for daub. Comparing b) and c)
shows the influence of a shift-variant detection on the detection pattern.

low-pass high-pass low- and high-pass
complex 61 56 117
daub 33 22 55

Table 7.9: Data “example 1”: count for complex Daubechies and real Daubechies for the order
parameter n = 3 and one iteration.

observe that complex detects more in the low- and in the high-pass, as shown in
Table 7.9 for the data set “example 1”. The qualitative detections are illustrated
in Figure 7.53.

→ High SNR. The qualitative results resemble the one found for +dual, compare
Figures 7.50 and 7.53.

→ Low SNR. When the noise is relatively high, for the first iteration +daub seems to
perform visually better than complex, since one connectivity is missing in the case
of the complex Daubechies. For the second iteration, the results are very similar.

Quincunx

→ High SNR. For low noise, the best order parameter λ is difficult to determine.
However, λ = 2 gave good results with synthetic data. The resulting activation
regions are very close to the one found with +dual and +bspline. The contours
are finer, when only one iteration is used corresponding to less subsampling than in
the separable case. Thus with quincunx, we also seem to gain some more detected
coefficients compared to sep.
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Figure 7.54: Detection with quincunx for one iteration and the order parameter λ = 2.

→ Low SNR. When high noise is present, a large λ allows to detect more coefficients
in the low- and in the high-pass. Then, λ = 6 is a good choice when the SNR is
low. For λ = 6, quin detects some coefficients more for the first and the second
iteration than sep.

Comparison with SPM

We also analyzed “example 2” and “example 1” with SPM, the standard fMRI-method,
and, for control, with the two-sample t-test. We preprocessed the data with a Gaussian
kernel of the size of 2× the resolution and 3× the resolution, i.e., the lower and upper
bound of pre-smoothing, which is recommended by SPM [147]. Since these two extremal
analyses give a good indication of what happens in between these parameters, we have not
tried to find the optimal size of the Gaussian kernel. When we choose a large Gaussian
kernel, the large activations are spreading and close activation zones melt together. In
contrast, very small activation zones disappear. For even larger Gaussian kernels, all
activation zones disappear.
When specifying the design-matrix, we choose for the type of response the fixed response
(Box-Car), in order to be close to our previous analysis. We did not convolve with
a hemodynamic response function (HRF) and did not add temporal derivatives. To
estimate the specified model, we did not take advantage of the choice of removing global
effects, nor applied a high- or low-pass filter along the time dimension.

Figure 7.55 displays the results of SPM for “example 1”. We show here the results
of the analysis of the two-sample t-test, since the standard fMRI-method gives even less
detections. Comparing these results with the activation map of the method +bspline in
Figure 7.47, we notice that the results of SPM, which are in general close to ours, are much
poorer than the one of +bspline, which controls the false detections. One explanation
could be that the signal which contains substantial high-frequencies is suppressed by the
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Gaussian filter. The detected activation with Bonferroni of “example 1” and the results

a) 2× resolution b) 3× resolution

Figure 7.55: Result of “example 1” with SPM using the paired t-test method.

of Quincunx and Complex Daubechies are presented in Figure 7.56.

a) Pixel-based Bonferroni b) Quincunx c) Complex Daubechies

Figure 7.56: a) Result of pixel-based Bonferroni over the window. b) Quincunx: result with best
match with respect to the detections of a). c) Complex Daubechies: result with good match
with respect to a).

7.4.5 Validation of our 3D algorithm

The analyses which were done in two dimensions can also be done in three dimensions.
We have implemented a 3D algorithm for the different types of wavelets—fractional
splines, complex wavelets, and quincunx. This algorithm can be applied to volumes
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which have isotropic voxels, which is not the case of many datasets. The described data
set is acquired by the Wellcome Department of Imaging Neuroscience, University College
London, as described in Table 7.5. The patient’s task was to listen to bi-syllabic words.
In Figure 7.57, we compare the results obtained for +dual with the results obtained by
SPM. In general, the results are similar. Nevertheless, it can be observed that some
activation details are not detected with SPM, but are detected with the method +dual.
To decide whether this activation is false or right, we applied pixel-based Bonferroni over
a small window. When detected with this method, we can be sure that this activation
is true; when not detected it is still possible that this activation is true, but we cannot
ensure it. An example is the window of the left side of the brain in Figure 7.57. With
Bonferroni, we detect a line-like structure in the observation window; with +dual, the
detected pattern reaches almost the border; with SPM smoothed with 2× the resolution,
the activation is shorter and with a smoothing of 3× the resolution this extension is
missing. We seem to gain something with the method of +dual. However a little pattern
detected with SPM, but not with +dual at the right side of the brain, could not be
ascertained by pixel-based Bonferroni, which doesn’t mean that there is no activation,
but more probably that this activation is weak. We tested the different methods over 18
windows in this data set. Some results are very close to each other. However, by closer
comparisons, +dual, complex Daubechies with two iterations, followed by quincunx with
four iterations yielded good results with the fewest missed detections compared to pixel-
based Bonferroni over a window.

7.5 Conclusion

A critical issue for detection methods that only use the low-pass information is the fact
that not the whole region of a potentially low signal is detected with little smoothing.
By increasing the smoothing factor, a larger region of low signal gets better detected,
but small regions, possibly of strong signal, disappear. Therefore, a multiscale approach
is more appropriate.
Adding the high-pass information of the wavelet-transform requires the use of a higher
threshold to correct for multiple testing. However we could show that the gain of detec-
tion quality by keeping the signal details is in general worthwhile. Especially it avoids the
effect of clumpy regions or regions melting together when more smoothing is necessary
to increase the SNR by keeping smaller activation regions.
Not all wavelet bases lead to fully satisfactory detection results. Orthogonality—which
is usually used for detection—is not a necessary property; for instance, we found that
bi-orthogonal wavelets, in particular the causal dual fractional spline, led to especially
good results. Experiments with synthetic, real data, and theoretical considerations each
showed that a small range of the order parameter—α = 1.2 . . .1.6—yields the best re-
sults.
Another property, which improves the detection substantially, is the finer scale progres-
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Bonferroni +dual

spm 2x spm 3x

Figure 7.57: Analysis of a 3D data set. The detections in question are tested with pixel-based
Bonferroni over a window. The method +dual seems to be closer to the detections of Bonferroni
over a window than SPM.
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sion of the quincunx wavelet transform. It potentially leads to better results; in one case
study, we have observed as much as 20% improvement.
The redundant approach of the complex wavelet transform leads to better shift-invariance
and yields good results for fMRI as well. Here instead of a t-test, Hotelling’s T 2-test is
used.
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Chapter 8

Conclusion and Outlook

In this work, we applied recent multiresolution techniques to the fMRI problem. We
showed that the wavelet approach was promising and that the fact of retaining the finer
scale coefficients was generally beneficial.

The contributions of the thesis can be summarized as follows. First, we introduced
a new family of orthogonal wavelet transforms for quincunx lattices. A key feature
is the continuously-varying order parameter λ which can be used to adjust the band-
pass characteristics as well as the localization of the basis functions. We showed that
these quincunx wavelets have better approximation properties than comparable separa-
ble wavelets. We also demonstrated that these transforms can be computed efficiently
using FFTs. This should help dispel the commonly held belief that nonseparable wavelet
decompositions are computationally much more demanding than separable ones. Be-
cause of their nice properties and their ease of implementation, these wavelets present
a good alternative to the separable ones that are used in a variety of image processing
applications (data compression, filtering, texture analysis and so on).

Second, we investigated a wavelet-based approach for the analysis of fMRI. In par-
ticular, we identified, using various test data, the wavelet properties that are important
for the present application. For instance, we found that orthogonality—which is usually
used for detection—is not a crucial property. Our best results were obtained with bi-
orthogonal wavelets, especially with short and selective analysis filters such as B-spline
filters (corresponding to the “dual” fractional spline wavelet transform). Experiments
with synthetic, real data, and theoretical considerations all indicated that a small range
of the order parameter—α = 1.2 . . . 1.6—yields the best results.
Another property, which can improve the detection, is the finer scale progression of the
quincunx wavelet transform. It leads to either similar or better results.
The redundant approach of the complex wavelet transform gives better shift-invariance,
a property which improves the results for fMRI as well.
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Analyzing the noise of real data, we could show that a non-stationary model is more
appropriate for fMRI than the white-noise model which is often considered. In other
words, it seems to be more appropriate to use a t-test rather than a z-test. We further
proposed to apply Hotelling’s T 2-test, which yielded good results when applied to the
complex wavelet transform.

Outlook

The main possible extensions of this work are as follows:

• Our 3D algorithm of analyzing fMRI data could be adjusted to compute also ap-
propriately data with voxels of anisotropic size.

• Bi-orthogonality and causality proved to be properties which enhance the detection
results significantly. Since the quincunx properties yielded good results as well,
it would be appropriate to combine these properties by designing dual quincunx
wavelets. An extension to complex dual quincunx wavelets could be considered as
well.

• The statistical analysis could be enhanced by treating the low-pass and the band-
pass individually with an adaptive threshold.
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J’aimerais remercier tous mes collègues de l’institut d’optique appliquée (IOA), de-
venu depuis peu BIO-E, pour la très bonne atmosphère et pour leur support. Notamment
merci de m’avoir fait découvrir le valais.
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Abbreviations and Acronyms

ANOVA Analysis of Variance

ASL Arterial Spin Labelled perfusion MRI

BOLD Blood Oxygenation Level Dependent

CBF Cerebral Blood Flow

CQF Conjugate Quadrature Filter

CSF CerebroSpinal Fluid

CWT Complex Wavelet Transform

DWT Discrete Wavelet Transform

EER Equal Error Rate

EPI Echoplanar Imaging

ER-fMRI Experiment Protocol-fMRI

ERPs Event-Related Potentials

FA Factor Analysis

FAR False Acceptance Rate

FCA Fuzzy Clustering Analysis
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FCO Face-Centered Orthorombic

FDR False Discovery Rate

FFT Fast Fourier Transform

FIL Functional Imaging Laboratory

FIR Finite Impulse Response

FLASH Fast Low Angle Shot

fMRI functional Magnetic Resonance Imaging

FRR False Rejection Rate

FSWT Fractional Spline Wavelet Transform

FWHM Full Width of Half Maximum

GRE GRadient Echo

GRF Gaussian Random Field

HCUG Hôpital Cantonal Universitaire Genève

HRF Hemodynamic Response Function

IDWT Inverse Discrete Wavelet Transform

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

ISI Inter-Stimulus Interval

JPEG Joint Photographic Experts Group

MANOVA Multivariate Analysis of Variance
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MRA Multiresolution Analysis

MRI Magnetic Resonance Imaging

NIH National Institute of Health

NMR Nuclear Magnetic Resonance

rCBF regional Cerebral Blood Flow

RESELS Resolution Elements

RF Radio-frequency

RFT Random Field Theory

RMS Root Mean Square

ROC Receiver Operator Characteristic

PCA Principal Component Analysis

PCM Pulse Code Modulation

PET Positron Emission Tomography

SBC SubBand Coding

SNR Signal-to-Noise Ratio

SPECT Single Photon Emission Computed Tomography

SPM Statistical Parameter Mapping

TE Echo Time

TER Total Error Rate

TR Repetition Time

WEA Wavelet Estimated Activation
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WFT Windowed Fourier Transform
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[148] M. Vetterli and J. Kovačević, Wavelets and Subband Coding. Prentice-Hall, 1995.

[149] A. Wagner, D. Schacter, M. Rotte, W. Koustal, A. Maril, A. Dale, B. Rosen and
R. Buckner, “Building memories: remembering and forgetting of verbal experiences
as predicted by brain activity”, Science, vol. 21, pp. 188–191, 1998.



194 Bibliography

[150] J. Weaver, A. Saykin, R. Burr, H. Riordan and A. Maerlender. “Principal com-
ponent analysis of functional MRI of memory”. In Proceedings of the Society for
Magnetic Resonance, Second Annual Meeting, SMR, p. 808, 1994.

[151] A. Wink. “Denoising in SPM: comparing wavelets and Gaussian filters”. not
published yet, 2002.

[152] P. B. E. Wong, R. Hinks, R. Tikofsky and J. Hyde, “Time course EPI of human
brain function during task activation”, Magnetic Resonance in Medicine, vol. 25,
pp. 390–397, 1992.

[153] R. Woods, S. Grafton, C. Holmes, S. Cherry and J. Mazziotta, “Automated im-
age registration: I. general methods and intrasubject, intramodality validation”,
Journal of Computer Assisted Tomography, vol. 22, pp. 141–154, 1998.

[154] R. Woods, S. Grafton, J. W. N. Sicotte and J. Mazziotta, “Automated image
registration: II. intersubject validation of linear and nonlinear models”, Journal of
Computer Assisted Tomography, vol. 22, pp. 155–165, 1998.

[155] K. Worsley, “Local maxima and the expected Euler characteristic of excursion sets
of ξ2, t and F fields.”, Journal of Applied Probability, vol. 26, pp. 13–42, 1994.

[156] K. Worsley, A. Evens, S. Marrett and P. Neelin, “A three dimensional statistical
analysis for CBF activation studies in human brain.”, J. Cerebral Blood Flow and
Metabolism, vol. 12, pp. 900–918, 1992.

[157] K. Worsley, S. Marrett, P. Neelin, A. Vandal, K. Friston and A. Evans, “A uni-
fied statistical approach for determining significant signals in images of cerebral
activation”, Human Brain Mapping, vol. 4, pp. 58–73, 1996.

[158] S. Yu, S. Brown, Y. Xue and L. Guan. “Enhancement and identification of mi-
crocalcifications in mammogram images using wavelets”. In IEEE International
Conference on Systems, Man, and Cybernetics , vol. 2, pp. 1166–1171, 1996.

[159] X. Zhang, M. Desai and Y. Peng, “Orthogonal complex filter banks and wavelets:
Some properties and design”, IEEE Transactions on Signal processing, vol. 47,
no. 4, pp. 1039–1048, 1999.



Curriculum vitæ 195

Curriculum vitæ

Manuela Patricia FEILNER

BIG/BIO-E/STI

Swiss Federal Institute of Technology

CH-1015 Lausanne

Switzerland

Phone (home): (+41) 1 915 2991

Email: Manuela.Feilner@epfl.ch

Born on 7th May 1973 in Zürich, Switzerland.
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