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ABSTRACT Microscopy imaging often suffers from limited depth-of-field. However, the speci-

men can be “optically sectioned” by moving the object along the optical axis. Then different areas
appear in focus in different images. Extended depth-of-field is a fusion algorithm that combines
those images into one single sharp composite. One promising method is based on the wavelet
transform. Here, we show how the wavelet-based image fusion technique can be improved and
easily extended to multichannel data. First, we propose the use of complex-valued wavelet bases,
which seem to outperform traditional real-valued wavelet transforms. Second, we introduce a way
to apply this technique for multichannel images that suppresses artifacts and does not introduce
false colors, an important requirement for multichannel optical microscopy imaging. We evaluate
our method on simulated image stacks and give results relevant to biological imaging. Microsc. Res.

Tech. 65:33—42, 2004. o 2004 Wiley-Liss, Inc.

INTRODUCTION

Limited depth-of-field is a common problem in bio-
logical imaging with conventional light microscopy. Of-
ten, the specimen’s profile covers more than the attain-
able depth-of-field. Portions of the object’s surface out-
side the optical plane appear defocused in the acquired
image plane. This becomes worse as the magnification
M increases because the numerical aperture NA in-
creases, too:

M = const. NA, (1)
NA = n sin(a), (2)

and therefore the depth-of-field d becomes smaller:
d = M(n sin*(0), 3

where \ is the wavelength of the illumination, n the
refractive index of the medium in front of the lens, and
o the angular semi-aperture on the objective side (Born
and Wolf, 1987; Goldsmith, 2000).

Consequently, each acquisition will be compromised
and show certain parts of the specimen in and out of
focus. One common approach to image the whole spec-
imen is by taking multiple images corresponding to
different object planes. The challenge then becomes to
select from each slice the area that is focused in order
to reconstruct an image projection that is sharp every-
where. In this way, it is possible to extend the apparent
depth-of-field without the physical limitation of the
numerical aperture of the objective lens (see Fig. 1).

Numerous articles have been written on image fu-
sion and some solutions have proven to be more effi-
cient than others. An overview can be found in Li et al.
(1995) and Valdecasas et al. (2001, 2002).
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There are three different approaches for image fu-
sion:

1. Point-based image fusion: Pixels p(x,y;z) with the
same coordinates (x,y) are compared in all z images
of a stack. A maximum or minimum selection rule is
applied to select the slice in focus (see also Pieper
and Korpel, 1983; Sugimoto and Ichioka, 1985).

2. Neighborhood-based image fusion: For selecting the
slice in focus at coordinate (x,y), a neighborhood of
each pixel is taken into account. One example is the
variance method, which we discuss below. Further
examples may be found in Tympel (1996) and Gold-
smith (2000).

3. Multiresolution-based methods: The guiding princi-
ple for this approach is the assumption that in-focus
parts contain many details and thus many high-
frequency components. The first multiresolution-
based approaches for image fusion were provided by
Burt and Kolezynski (1993) and Li et al. (1995);
however, not for microscopy images.

Among the multiresolution methods, one of the bet-
ter-performing is based on the wavelet transform. For
this method, we propose two extensions. Basically, our
approach computes the discrete complex-valued wave-
let transform of each image slice of the object, and
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Fig. 1. Microscopic imaging system, depth-of-field. [Color figure
can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

builds up the wavelet coefficients of the composite im-
age by a maximum-absolute-value selection rule. The
final composite image is obtained after computing the
inverse complex wavelet transform. For successful ap-
plication to multichannel images, we propose an
adapted multichannel conversion and recovery as a
pre- and postprocessing step. In essence, this method
compensates for the increase in dynamic range of the
image obtained after fusion and avoids the introduc-
tion of false colors (Forster et al., 2004). We propose a
quantitative validation procedure that allows us to
compare our method with other approaches and to
evaluate its performance. We also present results ob-
tained with real specimens.

MATERIALS AND METHODS
In Focus Criterion

To extend the depth-of-field, we first have to define
an in-focus criterion. Typically, an image that is in-
focus has a maximal number of visible details. On the
other hand, defocused images are blurred by the point-
spread-function of the microscope. Therefore, we sup-
pose that the areas of an image that are focused con-
tain more high-frequency components than the out-of-
focus areas.

Classical frequency analysis, using the Fourier
transform, does not provide any spatial localization.
The discrete wavelet transform, by contrast, seems to
be the ideal high saliency detection, since it allows a
local analysis of the image’s frequency content. Unlike
windowed Fourier transforms, this type of multireso-
lution automatically adapts to various sizes of details.
Moreover, the discrete wavelet transform is nonredun-
dant and invertible.

Image Fusion Algorithm

The image fusion algorithm proposed in this article
relies on two conditions prior to processing. The first is
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Fig. 2. Image fusion algorithm. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]

that the images must be aligned throughout the stack
and the second is that at least the in-focus areas must
be at the same magnification level. Both conditions are
met if the original images are taken by a traditional
light microscope with the specimen being translated
along the optical axis z to obtain the slices. For best
visual results, however, the whole specimen should be
recorded with translation steps Az smaller than the
real depth-of-field. Transparent specimens may lead to
visually unusual fusion results, since details at differ-
ent heights in z-direction appear on the same plane.
Therefore, for best performance, we suggest working
with images of opaque specimens.

The flowchart outlining our procedure is shown in
the block diagram of Figure 2. It consists of five steps:

1. Vector-to-scalar conversion: multichannel
color image) data is converted to one channel.
Complex-valued discrete wavelet transform.
Applying the selection rule and consistency checks.
Inverse complex-valued discrete wavelet transform.
Scalar-to-vector conversion: reassignment to obtain
multichannel data.

(e.g.,

Ou

The core of the algorithm consists of steps 2 and 4,
the complex-valued discrete wavelet transform, and
step 3, the selection rule and consistency checks. These
steps are explained in the following sections. Steps
1 and 5 are described in the section Pre- and Postpro-
cessing Steps.

Complex-Valued Wavelet Transform
for Image Fusion

In the past decade, the wavelet transform has be-
come an important tool for many biomedical image
analysis applications, which aim at the detection and
analysis of image features (for reviews, see Aldroubi
and Unser, 1996; Unser and Aldroubi, 1996; Laine,
2000). A comprehensive introduction to wavelets was
written by S. Mallat (1998), who also provides an ex-
haustive list of references on this topic. Further aspects
on wavelet theory may be found, e.g., in Daubechies
(1992).

For image fusion, it is essential to detect image areas
where sharp features and details are present. This can
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Fig. 3. Scheme of the complex-valued wavelet transform. For the
decomposition of an image s, all rows and columns of the image are
filtered with a low-pass filter h and a high-pass filter g, and sub-
sampled thereafter. The resulting coefficient matrix ¢ is complex-
valued and contains coarse scale information c,,;, resulting from the
low-pass filtering, as well as detail information ¢, cy,, ¢y, resulting
from the high-pass filtering. The reconstruction step consists of up-
sampling and filtering.

be performed using the wavelet transform, which al-
lows for the decomposition of an image into subbands
that contain details of various sizes. A short review of
the wavelet transform is presented in the Appendix.

The wavelet transform can yield some useful infor-
mation on the underlying signal. For instance, the
presence of large wavelet coefficients in some neighbor-
hoods serves as an indication for pronounced details at
this point, which in our case is characteristic for an
in-focus part of the image.

The multiresolution transforms and especially the
discrete wavelet transform were proposed for image
fusion previously (Burt and Kolczynski, 1993; Li et al.,
1995) and then refined by several authors (see Valde-
casas et al., 2001, for an overview). The proposed wave-
let transforms are bi- or orthonormal basis decomposi-
tions, meaning that the information in the different
wavelet subbands is unique and nonredundant. More-
over, the discrete wavelet transform is a perfect recon-
struction transform that has a fast algorithm (Mallat,
1998).

However, not all wavelets have the same perfor-
mance. Here, we choose the complex Daubechies wave-
let bases that were independently designed by Lawton
(1993) and by Lina and Mayrand (1995; Lina, 1997).
These yield a complex-valued wavelet transform by
filtering with finite-length complex low and high pass
filters, h and g, and downsampling thereafter. Figure 3
shows the scheme of the respective algorithm for 2D
images.

Complex wavelet bases of various orders of smooth-
ness are available, and thus an adjustment of the order
of smoothing performed by the transform is possible.
Here, we selected the complex Daubechies wavelets
with four vanishing moments, i.e., of order 3, and 6/6
taps filters, because they provide an orthonormal de-
composition, which is useful for an additional denoising
step, and because they have an adequate smoothness.

Thus, the first step of our algorithm is to perform a
2D separable complex wavelet transform CWT:

CWT: s(x,y;z) = {c/n,m;z)}; (4)
for each slice s(.,.;z) of the stack {s(x,y;2)},, which yields
complex-valued coefficients c; for each scale j and all z.

We found that the complex-valued transform adds
robustness to the selection rule and consistency check
algorithms. This is due to the fact that the selection
operator only takes into account the absolute value of
the coefficients, and keeps the phase unchanged. As
mentioned in Lina (1997), the phase of the wavelet
coefficient may be interpreted as the carrier of detail
information, whereas the amplitude rather weights
this information. Our experiments in Evaluation and
Results for Simulated Date (below) confirm our obser-
vations on improved performance with the complex-
valued wavelet transform.

Selection Rule and Consistency Checks

The largest absolute value of the coefficients in the
subbands correspond to sharper brightness changes
and therefore to the most salient features. A good in-
tegration rule consists of selecting the slice with the
largest absolute value of the wavelet coefficients at
each point:

d,(n,m) = ¢,(n,m;arg max,|c;(n,m;z)|) . (5)

The fused transform based on the combined complex
coefficients can thereafter be inverted in order to ob-
tain a composite image. We store the number of the
selected slice per pixel in a separate map M. It may be
used for spatial consistency checks or topological visu-
alization.

There are several approaches on consistency checks
for the choice of the coefficients. They can be performed
on the wavelet coefficients, but also on the map M,
which contains the number slice the pixel is chosen.

® A typical consistency check on the wavelet coeffi-
cients is the subband consistency check: If two out of
three corresponding subband coefficients are attrib-
uted to the same slice, then the third one is taken
from that slice, too.

® As spatial consistency check on the map, we consider
the following rule: If the majority of neighboring
numbers in a 3 X 3 window in the map M are from a
different slice k£#j, then the number M(n,m) = j is
changed to M(n,m) = k, and the respective coefficient
is adapted: d; ,o,(n,m) = c;j(n,m;k).

Inverse Complex Discrete Wavelet Transform

We compute the inverse complex wavelet transform
on the fused coefficient matrix to get an intermediate
fused image:

CWT ™ {di(n,m)};—p(x,y) . ©)

In general, the pixels of the reconstructed image are
complex numbers. We considered two schemes for map-
ping these back to real values: 1) Calculating the ab-
solute value of the complex number per pixel; 2) Taking
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Fig. 4. One slice of a stack showing Peyer plaques from the intes-
tine of a mouse. Multichannel conversion with principal component
analysis (upper image), and with fixed weights (lower image). Princi-
pal component analysis gives more contrast.

the real part of each pixel. We found the second ap-
proach to perform better.

Pre- and Postprocessing Steps

Preprocessing: Multichannel Conversion. Hav-
ing at our disposal a scalar fusion method based on the
wavelet transform, one would be tempted to apply the
algorithm to multichannel data by treating each chan-
nel independently. Such an approach could be useful
for multichannel data where the details are not corre-
lated across channels. However, if the channels jointly
contribute to details, this method will cause saturation
and false colors (see also Lucchese and Mitra, 2004).
Moreover, we would have to perform the whole algo-
rithm several times, which would increase the compu-
tation time and storage space. Here, we propose in-
stead to convert color images to grayscale in order to
apply the algorithm once only.

The traditional method to perform color conversion
from RGB images to grayscales consists of computing
the luma, which is a fixed weighted average of the
three colors (ie., Y = 0.30 Red + 0.59 Green +

Fig. 5. Mouse epidermis. Reassignment (upper image) diminishes
ringing effects (lower image).

0.11 Blue) (Poynton, 1996). This is a universal color to
grayscale transformation that has been optimized for
natural images. However, in microscopy images a par-
ticular color might be highly present (e.g., a specimen
stained using a colorant), or different channels than
the traditional RGB might be available (e.g., in mixed
fluorescence/brightfield image acquisition).
Therefore, we apply a vector-to-scalar conversion

{s®P(x,y;2)h = {s(x,y;2)}, (7)

where s(x,y;2) = 3, w, s®(x,y;2) is a weighted linear
combination of data coming from the % different chan-
nels. The weights are obtained from a principal com-
ponents analysis (Parkkinen et al., 1989; Vrhel et al.,
1994; Maloney, 1999; Ramanath et al., 2004) with the
Karhunen-Loeve transform (KLT). This choice corre-
sponds to the direction in the multichannel space hav-
ing maximum variance.

In this way, a predominant color will be given more
weight during the subsequent fusion algorithm. The
grayscale images created preserve more saliency and
contrast than by simply using fixed weights (see Fig. 4).
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Fig. 6. Screenshot of our software package, which is freely avail-
able as a plug-in for the Imaged Java Image Processing Framework.

Postprocessing: Reassignment. Fusion in the
wavelet domain yields results that are “nonconvex”
combinations of the pixel values of the input images; a
consequence of retaining the maximal absolute value
coefficient. For typical images, ~30% of the pixels are
over or under the original dynamic range of all images.
Such an increase of dynamic range boosts the global
energy of the image, the noise level, and the amount of
saturation.

To at least avoid the nonconvexity errors, we propose
a “reassignment” algorithm that selects the closest
available value according to the grayscale data. Mul-
tichannel reassignment for each channel k can be ex-
pressed as:

q®(x,y) = s"W(x,y;arg min,|p(xy) — s@xy;2)) . (8)

This procedure eliminates outliers and diminishes
ringing effects (see Fig. 5). Moreover, it can be applied
to “restore” the multichannel pixel data, without false
color effects. In this way, the final image is made up of
(multichannel) pixel values that are present in the
initial data.

Software Package

We implemented our method in Java as an Imaged
plug-in. The Imaged general-purpose image processing
package is a widely used multiplatform public domain

Fig. 7. Construction of a simulated data stack by projecting a
Brodatz texture on a surface. The volume is discretized using linear
interpolation along the z-direction. To simulate the optical system,
the volume is convolved with a Gaussian blur for each slice with
increasing width as defocus increases.

Fig. 8. Brodatz textures (upper row) and histological tissue used
for the generation of the artificial stacks.

software for the analysis of biological images. Our al-
gorithm is freely available and can be downloaded from
our web site (http:/bigwww.epfl.ch/demo/edf/). It al-
lows the fusion of a stack of images with a single mouse
click (Fig. 6).

The software assumes that the images in the stack
are registered, which can easily be attained by fixing
the specimen on the object table and moving the object
table in the axial direction for each image acquisition.
For best results, the step between two acquired images
should be less than the depth-of-field. The software is
suited for multichannel data. It converts color stacks
into grayscale stacks, applies the complex wavelet
transform for fusion in the wavelet domain, and per-
forms an optional denoising step and reassignment.
The resulting fused image can be easily stored in var-
ious image formats by the standard methods supplied
by the Imaged software.

RESULTS

In this section, we compare the performance of our
complex wavelet method with more standard schemes,
including the classical real-valued wavelets and the
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TABLE 1. Average performance gain of the real and the complex wavelet method with preprocessing and consistency checks
compared to the variance method

Performance gain compared to

Complex Daubechies

variance method Spline 3 Complex Daubechies 6 6 compared to spline 3
No manipulations 2.49 dB 3.21 dB 0.72 dB
Reassignment 2.87 dB 3.51 dB 0.64 dB
Spatial check 3.55 dB 3.67 dB 0.12 dB
Spatial check, reassignment 3.74 dB 3.89 dB 0.15 dB
Subband check 4.14 dB 4.50 dB 0.36 dB
Subband check, reassignment 4.33 dB 4.70 dB 0.37 dB

The experiments were performed on four artificial stacks generated with Brodatz textures. The left columns give the average difference of the SNRs with respect to
the variance method. The right column gives the SNR’s average differences of the complex wavelet method and the real one. The SNRs of both wavelet methods

without manipulations range between 23.7-26.9 dB.

TABLE 2. Average performance gain of the real and the complex wavelet method with preprocessing and consistency checks
compared to the variance method

Performance gain compared to
variance method for the

experiment with histologic tissue Variance method

Spline 3 compared to
variance method

Complex Daubechies
6 compared to
variance method

Complex Daubechies
6 compared to spline 3

No manipulations 26.79 dB
Reassignment

Spatial check

Spatial check, reass.

Subband check

Subb. check, reass.

—0.58 dB 0.64 dB 1.22 dB
0.26 dB 1.16 dB 0.90 dB
-0.19dB 0.89 dB 1.08 dB
0.54 dB 1.48 dB 0.94 dB
2.24 dB 2.95 dB 0.71 dB
2.54 dB 3.41dB 0.87 dB

The experiments were performed on an artificial stack generated from histological tissue.

variance method. First, we evaluate our method using
simulated microscopy data, which allows us to compare
the reconstructed image with the ground truth. Next,
we present results using real-world data.

Classical Approach

The variance method is based on the assumption
that the larger variations of intensity occur in the
regions of the image that are in-focus. The variance
over a 3 X 3 window is calculated in order to determine
whether the center pixel is in a focused area. The pixel
along the z-axis with the highest variance is chosen for
the composite image. This algorithm has the advantage
of computational simplicity (Yeo et al., 1993).

Evaluation and Results for Simulated Data

For testing purposes, five simulated stacks were con-
structed as illustrated in Figure 7. Four different Bro-
datz textures (D18, D22, D23, D112) (Brodatz, 1966)
and an example of histological tissue (cam21ih) (Slo-
mianka, 2003) (Fig. 8) were mapped onto a surface and
discretized using linear interpolation along the z-direc-
tion. Next, each slice was convolved by a Gaussian
point spread function (PSF) with increasing width as
the defocus distance increases. The sum of the filters’
coefficients for the Gaussian PSF at each focal distance
is normalized, which corresponds to the case of Kéhler
illumination.

Gaussian PSFs are often used as an approximation
in situations where the physical PSF is difficult to
obtain (Kayargadde and Martens, 1994; Elder and
Zucker, 1998). In particular, the theoretical physical
PSF depends on many parameters that are typically
unknown for conventional light microscopy; e.g., the
light source’s spectrum, the distance of the specimen’s
surface to the coverslip (Gibson and Lanni, 1991), and
the through-focus image formation for a specimen

whose thickness cannot be neglected (Oliva et al.,
1999).

We compared the variance method, the real wavelet
method, and the complex wavelet method. We used the
real orthonormal spline wavelet of degree 3 and the 6/6
tap complex Daubechies wavelet, since they have the
same number of vanishing moments. Moreover, we
evaluated the influence of reassignment and of the
consistency checks. For all experiments we measured
the signal-to-noise-ration (SNR) with respect to the
ground truth. The results are given in Table 1 ex-
pressed as SNR gain, i.e., the differences in the SNR,
with respect to the variance method. We found that for
Brodatz textures both wavelet methods outperform the
variance method. The quality of the output image of
the variance method is quite poor. Problems occur es-
pecially when the focused area contains homogeneous
parts; often, artificial details are introduced. The com-
plex wavelet approach outperforms the real wavelet
method by about 0.7 dB. Reassignment adds about
0.3 dB for both wavelet methods. Consistency checks
improve the quality of the result, especially when they
are combined with reassignment. The subband consis-
tency check, in particular, gives a good improvement.

For the histological tissue experiment, the results
are given in Table 2. In this case, the real wavelet
transform without postprocessing performed worse
than the variance method. Combined with reassign-
ment and consistency checks, however, the real wave-
let transform gives good fusion results. The complex
wavelet transform performs best with and without
postprocessing.

However, both consistency checks turned out to be
very costly with respect to storage space and computa-
tion time. For the processing of real microscopic stacks
(typical resolution of 1996 X 1450, about 40 images),
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Fig. 9. Some samples from the original stack imaging the Peyer
plaques of the intestine of a mouse.

we therefore set them aside and perform the complex
wavelet method with reassignment.

Results for Real Specimens

We discuss our results on two examples. The first is
a stack of images showing Peyer plaques from the

Fig. 10. The variance method (upper image), the real wavelet
method (center), and the complex wavelet method (lower image) with
reassignment. The variance method produces artificial patterns in the
boundary regions and the basins of the specimen. These artifacts do
not appear in images fused with the wavelet methods. The complex
wavelet method preserves edges and details more clearly, especially
in the boundary regions.
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Fig. 11. Some samples from the original stack imaging a pancre-
atic burgeon. The specimen is stained with peroxidase.

intestine of a mouse. Samples from the original Peyer
plaques stack are shown in Figure 9. The images were
taken with a Zeiss objective 40x/NA 0.75 with no im-
mersion. The mountant medium is Citifluor, a medium
with 50% PBS and 50% glycerol. The physical dimen-
sion of the object is 100 X 100 X 50 mm. A Jenoptik
ProgRes camera with a sensor CCD of 8.5 X 6.4 mm
and a resolution of 1996 X 1450 pixels was used. The
specimen is strongly stained with a red colorant.

The second stack shows images of a pancreatic bur-
geon of approximate size 300 X 300 X 300 mm. The
sample is stained with peroxidase. The images were
taken with a Zeiss objective 10x/NA 0.3. The z-distance
between subsequent images is 20 mm. The resolution is
1996 X 1450 pixels. Some sample images from the
stack are shown in Figure 11.

In Figures 10 and 12 the fusion results for the exam-
ple stacks are shown. For real-world data, we found
that the complex wavelet method with reassignment
proposed in this article outperforms the classical fusion
method in terms of subjective visual quality. It gives
more details in the boundary regions than the real
wavelet method and the variance method. Moreover,

Fig. 12. Image fusion results for the pancreas stack: The variance
method (upper image), the real wavelet method (center), and the
complex wavelet method (lower image) with reassignment. Also in
this case, the complex wavelet method outperforms the other
methods.
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both wavelet methods do not introduce artificial details
as the variance method does (Figs. 10, 12.

DISCUSSION AND CONCLUSION

We present a new method to extend the depth-of-
field of microscopic images. The strong point of our
method is its simplicity: The use of complex-valued
wavelets, and pre- and postprocessing steps such as a
smart multichannel conversion and consistency
checks, as well as reassignment, enhance the quality of
the resulting fused image.

Our method has several practical advantages over
other methods:

We do not need knowledge of the imaging parame-
ters, such as the point spread function or microscope
parameters. In tests, we found that, although our
method does not include imaging parameters, it is
more stable than classical deconvolution with an esti-
mated point spread function (Biemond et al., 1990).

With our fusion method, no special imaging tech-
niques or hardware are needed to extend the depth of
field, as, e.g., phase masks (Cathey and Dowski, 2002).
We get high-quality results even with image stacks
taken with standard light microscope equipment.

The multichannel conversion ensures that saliencies
from all channels are kept in proportion to their
strength. This preserves contrast, reduces artifacts,
and allows fusion of multichannel data by one single
fusion step.

Using both simulated microscopy data and images
acquired from real-world specimens, we showed that
our choice of a complex wavelet transform outperforms
real wavelets and the variance method. The introduced
phase information yields stability for the consistency
checks and better preserves image details during the
fusion step.

Reassignment assures that the pixels from the orig-
inal image stack are used to represent the fused image.
Thus, the original multichannel data is preserved,
which is important for the evaluation and biological
interpretation of the fused images. Moreover, artifacts
are suppressed.

However, our method has some requirements for the
image stacks. First, the magnification should be con-
stant for all images of the stack. Otherwise, there may
be artifacts generated by details appearing at various
sizes. Second, the specimen should be nonreflective and
nontransparent. This ensures that the in-focus point
for each z-position is unique. Third, for best color re-
production the illumination should be approximately
constant. This can easily be reached with Kohler illu-
mination. For best results, the z-distance between sub-
sequent images of the stack should be smaller than the
depth-of-field. This ensures that all parts of the speci-
men appear in focus on some image of the stack.

Since we use a maximum selection rule for the image
fusion in the wavelet domain, the noise level might be
enhanced. Therefore, a wavelet denoising operator (Do-
noho and Johnstone, 1994; Lina, 1997) can be applied
to the fused coefficient matrix. Depending on the
smoothness of the chosen wavelet, the resulting fused
image may appear slightly smoothed.

Our Imaged plugin is used in practice by biologists at
the ISREC cancer research facility in Lausanne. We
believe that it might be helpful for biologists in other

research laboratories working with microscopy images,
which is the reason why we are making our software
freely available on the web.

The algorithm can be applied to visualize and
present light microscopy images. Another application
is the reconstruction of a sharp DIC (differential inter-
ference contrast) image, containing structural informa-
tion of a biological specimen that is superposed with
fluorescence images. As an extension, we are working
on improving the height map for an estimation of an
elevation surface and for 3D reconstruction.
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APPENDIX
Wavelet Transform, a Short Review

We consider the space L?(R), which can be inter-
preted as the space of all functions /> R — C, which
have finite energy. A multiresolution analysis of L*(R)
is a sequence of closed subspaces:

{0}c---cvV,CcV,cV,C

-CL*R), 9)

that satisfy the following conditions:

(i) Inthelimit, these spaces generate the whole space
LA(R); i.e., the closure:
c(U;eV)) = L*R). (10)
This means that any f € L®(R) can be represented
as a series of functions from the union of spaces
(U;ezV)).
(ii) The spaces V; decompose L?(R) completely; i.e.,

only the function f = 0 is element of all V; and thus
element of their intersections:

(iii) The spaces V; are related through a scaling rela-
tion:
f(x) € V; ifand only if f(2x) €V}, (12)
(iv) The spaces V; are translation invariant:
flx — k) €V, ifandonlyiffix) €V,. (13)

(v) Moreover, V,, has a basis consisting of the trans-
lates of one single function ¢, the so-called scaling
function.

Multiresolution aims at decomposing:

L¥R) =V,® 2 W,

j=0

(14)

into a coarse scale space V, and detail spaces W;, where
Viii =V, ® W, for all j € Z. This fact allows the
interpretatlon tflat V.1 contains finer information
than V. The difference signal (or detail) is included in
the space W.. Afunction f € L2(R) can be decomposed in
its coarse part and details of various sizes by projecting
it onto the spaces V, and W, j = 0. To find such
decomposition exphc1tly, bas1s functions of these
spaces are needed. It is well known (see, e.g., Mallat,
1998, and references therein) that there exist scaling
functions ¢ and wavelets ¢ such that:

V; = cl span{g;, = 2¢(2x — k);k € Z} (15)

and

W, = cl span{ys;, = 2*6(2x — k);k €Z}  (16)
are both spanned by translates of dilated versions of
these functions. The scaling function and the wavelet
may be chosen such that {¢;,}, and {{5;,}, form or-
thonormal families. It should be noted that there also
exist biorthogonal wavelet bases that are not orthonor-
mal but essentially as easy and as convenient to work
with (Mallat, 1998). Since V, = V, ® W,, we can
express any function f € V, as:

f= E <f‘-P Jk>‘P Jrt E 2 <f¢;k>¢,k,

—J k

am

where the first term on the right-hand side represents
the low pass part, and the second term is a sum of
residuals from scale —J to —1.

Using the two-scale relation we find an iterative
scheme for calculating the coefficients:

(Fr0j-10) = 27 > h* ol 000 (18)
k

(folsjo1p) = 22 > g% -2l 058 » (19)
k

where * denotes the complex conjugate of correspond-
ing series A = {h.),c, and g = {g.),c~. This leads to the
fast wavelet decomposition algorithm (Mallat, 1989).
Practically, this means that the coefficients can be cal-
culated quite simply by filtering with low and high pass
filters h and g, and downsampling thereafter. For im-
age processing, we use tensor products to extend the
multiresolution scheme to 2D.



