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ON THE RELATION BETWEEN FOURIER AND LEONT’EV COEFFICIENTS
WITH RESPECT TO SMIRNOV SPACES

B. Forster UDC 517.5

Yu. Mel’nik showed that the Leont’ev coefficients  κ λf ( )   in the Dirichlet series  f  ∼ 

κ λ
λ f ( )

∈∑ Λ
 

e

L

λ

λ

⋅

′( )
  of a function  f E Dp∈ ( ),  1 < p < ∞  ,  are the Fourier coefficients of

some function  F ∈ L
p
([ , ])0 2π   and that the first modulus of continuity of  F  can be estimated

by the first moduli and majorants in  f.  In the present paper, we extend his results to moduli of

arbitrary order.

1.  Introduction

Let  D   be a closed convex polygon with vertices  a1 , … , aN ,  N > 2,  let  D  be its open part, and let  ∂ D =

D D\   be the boundary of  D .  We assume that the origin belongs to  D.  As is customary, we denote by  E Dp( ),
1 < p < ∞  ,  the Banach space of all functions  f ( z )  analytic in  D  and satisfying the condition 

f p   : =  sup ( )
n

pf z dz
n

∈
∫

N γ
  <  ∞  .

Here,  ( )γ n n∈N   is a sequence of closed rectifiable Jordan contours  γn ⊂  D   that converges to  ∂ D .  The space

E Dp( )  is called a Smirnov space. 
Consider the quasipolynomial 

L ( z )  =  d ek
a z

k

N
k

=
∑

1

,

where  dk ∈ C \ { 0 }  and  ak  are the vertices of  D,  k = 1, … , N.  Let  Λ = ( )λm m∈N   be its sequence of zeros.

We can expand functions  f ∈ E Dp( )  with respect to the family  é ( Λ ) : = ( )e mz
m

λ
∈N  into a series of complex

exponentials, namely, the so-called Dirichlet series 

f ( z )  ∼  κ λ
λ

λ

λ
f m

z

m

e
L

m

m

( )
( )′∈

∑
N

, (1)

where 
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κ λf m( )  =  d e f e dk
a

k

N

a

a

k m m

j

k
λ λ ηη η

=

−∑ ∫
1

( ) . (2)

The indexing of  Λ  is chosen such that  ( )λm m∈N   is nondecreasing.  The coefficients  κ λf m( )  are called Le-

ont’ev coefficients.  Many results on these series are due to Leont’ev [1].  Lewin and Ljubarskii showed in [2]

that, for  p = 2,  the family  é ( Λ )  forms a Riesz basis of  E 
2

 ( D ) ,  and, hence, series (1) converges uncondi-

tionally in norm.  In [3], Sedletskii proved that, for arbitrary  1 < p < ∞  ,  the Dirichlet series (1) converges in

norm since  é ( Λ )  forms a Schauder basis in  E 

p
 ( D ) . 

To estimate the rate of convergence of these series, Mel’nik studied the relation between Leont’ev coeffi-
cients and Fourier coefficients, since, for the latter, many results on approximation and rate of convergence of
the Fourier series are well known (see, e.g., [4]).  He showed that, under certain conditions, the Leont’ev coeffi-

cients of  f ∈ E
p

 ( D )  are the Fourier coefficients of some function  F ∈ L
p

 ( [ 0, 2 π ] ) .  He estimated the regularity
of  F  with first moduli of continuity.  In Sec. 2, we state his results.  Extending Mel’nik’s Theorem 1 to moduli
of smoothness of arbitrary order, we obtain Theorem 2 in Sec. 3.  The last section contains the respective proof. 

2.  Mel’nik’s  Results

In [5] and [6], Mel’nik considered the relation of the Leont’ev coefficients of  f ∈ E
p

 ( D )  to the Fourier

coefficients of some suited function  F ∈  L
p

 ( [ 0, 2 π ] )  for the first moduli of continuity.  His first step was the
reduction of the integral in (2) to a Fourier transform:  

Lemma 1 [5].

I. Let  Φ ∈ L
p

 ( [ 0, 2 π ]) ,  1 < p < ∞  ,  and  � ( v ) > 0.  Denote 

∨
Φ( )t   : =  d em

imt

m n j
( )

( )
Φ

=

∞

∑ ,

where 

dm( )Φ   : =  
  0

2π
ξξ ξ∫ −Φ( )e dmv ,      m  ≥  n ( j ) .

Then  Φ
∨

 ∈  L
p

 ( [ 0, 2 π  ]) ,  and   
∨
Φ  ≤ const ⋅ Φ   for some positive constant depending only

on  p . 

II. Let  f ∈ E  

p
 ( D ) ,  1 < p < ∞  .  For fixed  1 ≤ j ≤ N,  the Leont’ev coefficients  ( ( ))( )

( )κ λf m
j

m n j≥

are the Fourier coefficients of some function  Fj  ∈ L
p

 ( [ 0, 2 π ]) ,  and  Fj Lp   ≤  const ⋅ f E p . 

This result was extended in [6] using the first moduli of continuity.  Consider the parametrization  z :  ∂ D →
[ 0, T ]  of  ∂ D : 
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z ( u )  =  a
a a

a a
u Tj

j j

j j
j+

−
−

−+

+
−

1

1
1( )    for    Tj  – 1  ≤  u  ≤  Tj  ,    j  =  1, … , N,

where 

T0  : =  0,      Tj  =  a ak k
k

j

+
=

−∑ 1
1

and 

T  : =  TN  : =  a ak k
k

N

+
=

−∑ 1
1

.

For  f ∈ E 

p
 ( D )  and  0 < h < 2π,  let 

δ1( , )f h p   : =  f a
a a

dj
j j

ph p

j

N

+
−

















+

=
∫∑ 1

0

1

1 2π
θ θ

/

  +  f a
a a

dj
j j

p

h

p

+
−





















+

−
∫ 1

2

2 1

2π
θ θ

π

π /

.

The function  δ1( , )f h p   is continuous, nonincreasing, and vanishing as  h → 0 +. 

Theorem 1 [6].  Let  f ∈ E 

p
 ( D ) ,  1 < p < ∞  ,  and let  1 ≤ j ≤ N  be fixed.  Then the Leont’ev coefficients

κ λf m
j( )( ) ,  m  ≥  n ( j ) ,  of  f  are the Fourier coefficients of some function  Fj ∈ L

p
 ( [ 0, 2 π ]) .  Furthermore, 

ω1( , )F hj p   ≤   const ⋅ +( )( , ) ( , )ω δ1 1f z h f hp p� .

The proof can be deduced as a special case of Sec.  4.2.  Mel’nik used his results in [6] to prove direct ap-
proximation theorems for the first moduli.  As we will see in Sec. 3, Theorem 1 can also be proved for moduli of
arbitrary order. 

3.  Extension to Moduli of Arbitrary Order

To extend Theorem 1, we have to define moduli of smoothness of order  k  for functions  f ∈ E  

p
 ( D ) .  This

can be done by using the best approximation by algebraic polynomials. 

Let  f ∈ E 

p
 ( ∂ D )  and let  I ⊂ ∂ D  be an arc.  For  k ∈ N0 

,  the equation 

Ek ( f, I )  =  inf ( )P k L I
k

pf P−

defines the algebraic best approximation on the arc  I.  Here, the infimum is taken over all algebraic polynomials
Pk  of degree at most  k .  The modulus of order  k  is defined as follows: 



ON THE RELATION BETWEEN FOURIER AND LEONT’EV COEFFICIENTS WITH RESPECT TO SMIRNOV SPACES 631

Definition 1.  Let  f ∈ E
p

 ( D ) ,  1  <  p  <  ∞ .  For  h  >  0,  consider all partitions 

∂ D  =  

 
I j

j

n

=1
∪ ,

where  h / 2  ≤  I j   ≤  h .  The  k th metrical modulus of smoothness of the function  f  is defined as follows: 

ωk pf h( , )   : =  ωk D pf h, ( , )   : =  sup inf ( )P k L I
j

n

k
p

j
f P−






=
∑

1
  =  sup ( , )E f Ik j

j

n

=
∑






1
.

Here, the supremum is taken over all such partitions. 
One can show that these moduli are equivalent to usual moduli of smoothness defined on finite intervals

[7].  We can formulate Theorem 1 for the  k th moduli. 

Theorem 2.  Let  f ∈  E  

p
 ( D ) ,  1 < p < ∞  ,  and let  1 ≤ j ≤ N  be fixed.  Then the Leont’ev coefficients

κ λf m
j( )( ) ,  m ≥ n ( j ) ,  are the Fourier coefficients of some function  Fj ∈ L

p
 ( [ 0, 2 π ]) : 

κ λf m
j( )( )   =  

1
2 0

2

π
θ θθ

π
F e dj

im( )∫   = :  c Fm j( ).

The  k th modulus of  Fj  can be estimated as follows: 

ωk j pF h( , )   ≤  const ⋅ +( )( , ) ( , )ω δk p k pf h f h , (3)

where 

δk pf h( , )   : =  
j

N

j
j j

pnh p

n

k k

n
f a

a a
d

=

+

=
∑ ∫∑ 





−
−















1

1

0

1

1 2π
θ θ

/

  +  f a
a a

dj
j j

p

nh

p

−
−





















+

−
∫ 1

2

2 1

2π
θ θ

π

π /

.

The function  δk pf h( , )   is continuous and nonincreasing for  0 < h  < 2 π / h  and satisfies the relation
lim ( , )h k pf h→ +0 δ  = 0. 

This result enables us to transform the Leont’ev coefficients (2) in the Dirichlet series (1) into the Fourier
coefficients of certain functions  F.  Since Theorem 2 provides information on the regularity of  F,  classical
Bernstein theorems can be applied to the corresponding Fourier series.  This can be used to prove new results on
the rate of approximation of the Dirichlet series (1). 

The term  δk pf h( , )   cannot be omitted from the theorem, as the following example shows:  Let  p = 2  and

f ( z ) = 1.  Suppose that  L ( 0 ) = 1.  Then  ωk f h( , )2  ≡ 0,  whereas  δk f h( , )2 = O h( )  for  h → 0  and all  k ∈  N.

For the Leont’ev coefficients, we have 
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κ λf m
j( )( )   =  – 

1
λm

j( )   =  
 
O 1

m




       as    m  →  ∞ .

We know from Lemma 1 that 

Fj  =  κ λf m
j im

m n j

e( )( )

( )

⋅

≥
∑   ∈  L

2
 ( [ 0, 2 π ]) .

The Bernstein theorem [4] yields  ωk jF h( , )2 = O h( )  since the approximation with the partial series 

S Fn j( )  =  κ λf m
j im

m n j

e( )( )

( )

⋅

≥
∑

gives 

F S Fj n j− ( )
2
  =  1

λm
j

im

m n n j

e( )
( )

⋅

> >

∞

∑   =  1
2 1 2

λm
j

m n n j
( )

( )

/

> >

∞

∑








  = 

  
O 1

n






      as    n  →  ∞ .

Thus, the term  δk f h( , )2  is necessary in (3) (see also [6]). 

4.  Proof of Theorem 2

4.1.  Preliminaries.  Let us first take a closer look at the quasipolynomial 

L ( z )  =  d ek
a z

k

N
k

=
∑

1

,

where  dk ∈ C \ { 0 }  and  ak ,  k = 1, … , N,  are the vertices of  D.  Let  Λ = ( )λm m∈N
  be the sequence of its

zeros.  The entire function  L  has the following properties [1] (Chap. 1, Sec. 2): 

I.  For sufficient large  C,  the zeros  λn
j( )   of  L  such that  λn

j( )  > C  are of the form  λn
j( )  = ˜( ) ( )λ δn

j
n
j+ , 

where 

˜( )λn
j   =  2

1

πni
a aj j+ −

  +  q ej
i jβ

,

and  δn
j( )  ≤ e an− .  Here,  0 < a = const,  j = 1, … , N,  n > n0 ,  and  aN +1 : = a1 .  The parameters  bj  and  qj  are

defined by the formula 

e
q a a ej j j

i j( )+ −1
β

  =  −
+

d

d
j

j 1
 ,
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where  dN +1 : = d1 .  Hence, the zeros  λn
j( )   are simple.  The set of zeros  Λ  can be represented in the form 

Λ  =  

 
{ } { }, ,

( )
( ), ( ) ,λ λn n n n

j
n n j n j

j

N

= … = + …
=









1 1

1
0

∪ ∪  .

II.  There are positive constants  A1  and  c1  such that, for all  n ≥ n ( j )  and  ξ ∈ [ aj , ak ] ,  we have 

e en
j

k n
j

ka a− − − −−λ ξ λ ξ( ) ( )( ) ˜ ( )   ≤  A e c n
1

1− .

Here,  [ aj , ak ]  denotes the line between the vertices  aj  and  ak  in the complex plane. 

For simplicity, we assume that all zeros of  L  are simple.  We use properties I and II to treat the zeros of  L
and to estimate the complex exponentials in the Dirichlet series (1).  In addition, we need the following result on
multipliers: 

Theorem 3  (J. Marcinkiewicz, [8], Theorem 4.14).  Let  ( )an n∈N0
 ⊂ C  be some series such that 

an   <  M      and      a aj j
j n

n

− +
=

−+

∑ 1
2

2 11

  ≤  M

for all  n ∈ N0  and some suited positive constant  M.  Let 

f  =  c en
in

n

⋅

=

∞

∑
0

  ∈  L
p

 ( [ 0, 2 π ]) ,      1  <  p  <  ∞  .

Then there exists a function  h ∈ L
p

 ( [ 0, 2 π ])  with 

h  =  c a en n
in

n

⋅

=

∞

∑
0

      and      h   ≤  C p M f( ) ,

where the constant  C ( p ) > 0  depends only on  p . 

We now have all means for the proof of Theorem 2. 

4.2.  Proof.  The existence of a function  Fj ∈ L
p

 ( [ 0, 2 π ])  with the indicated properties is shown in asser-

tion II of Lemma 1.  Thus, we just have to examine the regularity of  Fj .  Using conditions I and II of Sec. 4.1,
we can write 
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κ λf n
j( )( )   =  d f z e dzk

z a

a

a

k

N
n
j

k

j

k

( )
( )( )− −

=
∫∑ λ

1
  =  d f z e dzk

z a

a

a

k

N
n
j

k

j

k

( )
˜ ( )( )− −

=
∫∑ λ

1
  +    O( )e cn−

=  d
a a

f a
a a

e e dj
j j

j
j j q e

a a

inj
i j j j

+
+

+
+

−
−

−
−





+

∫1
1

1
1 2

0

2

2 2

1

π π
θ θ

β

π
θ θ

π

+  
k

k j j

N

k
k j

k
j k q e

a a ni
a a

a a
d

a a
f a

a a
e e d

j
i j k j

j k

j j

=
≠ +

− −
−

−∑ ∫
−

+
−





+

1
1

2

0

2

2 2
1

,

π π
θ θ

β

π
θ θπ

  +   O( )e cn− .

The first term is obviously the  n th Fourier coefficient of some function with modulus of order  ωk D pf h, ( , ) .

Using assertion I of Lemma 1 for the second term, we just have to analyse the regularity of  Φ
∨

  with respect to

the regularity of some function  Φ ∈ L
p

 ( [ 0, 2 π ])  since 

ℜ
−
−











+
i

a a

a a
j k

j j1
  >  0.

Then the required assertion follows from the inequality  ωk a a pf h
j j

( )[ , ],+1
  ≤  ωk pf h( , ) .

Let  h > 0,  � ( v ) > 0,  α ∈  R,  and  Φ  ∈  L
p

 ( [ 0, 2 π  ]) .  We will show that the series of coefficients

( )( ) ( )dm m n jΦ ≥   is the series of Fourier coefficients of some function  Φ
∨

 ∈ Lp
 ( [ 0, 2 π ])  with 

∨
ωk ph( ),Φ   ≤  const ⋅ + ′( )( , ) ( , )ω δk p k ph hΦ Φ ,

where 

′δk ph( , )Φ   : =  
k

n
u du u dup

nh p
p

nh

p

n

k 











+






















∫ ∫∑

−=
Φ Φ( ) ( )

/ /

0

1

2

2 1

1 π

π
.

Let  ϕ ∈ L
p
([ , ])0 2π .  Then 

A  : =  
  

( )( )∆−
−∫ α

π
ϕk m uu e duv

0

2

  –  
  
( )( ) ( )∆ α

π
ϕk m m ue u e du− ⋅ −∫v v0

0

2

=  
  

( ) ( )−






−( ) −








−

=

− − +( )∑ ∫ ∫1
0 0

2

0

2
k n

n

k
m u m u n

k

n
u n e du u e duϕ α ϕ

π
α

π
v v

=  

  

( )−








 −( ) − −( )











−

=

− −
+

∑ ∫ ∫1
0 0

2 2
k n

n

k
m u m u

n

nk

n
u n e du u n e duϕ α ϕ α

π

α

π α
v v
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=  

  

( )−








 −( ) − −( )











−

=

− −
+

∑ ∫ ∫1
0 0 2

2
k n

n

k
m u

n
m u

nk

n
u n e du u n e duϕ α ϕ α

α

π

π α
v v

=  1 12

00
−( ) −









 −( )− − −

=
∫∑e

k

n
u n e dum k n m u

n

n

k
π

α

ϕ αv v( ) .

With the notation of assertion I of Lemma 1, we have 

ˇ∆αϕk t( )   =  
m n j

m
k imd e t

=

∞
⋅∑

( )
( ) ( )( )ϕ α∆   =  

m n j
m

k im imtd e e
=

∞
⋅∑

( )
( ) ( )( )ϕ α∆ 0

=  
 m n j

m k im imte d e e
=

∞
− ⋅∑ ∫

( )
( ) ( )( )ϕ ξ ξξ

α

π
v ∆ 0

0

2

=  
m n j

k m u
k im

k m
imtu e du A

e

e
e

=

∞

−
−

⋅

− ⋅∑ ∫ − +





 −( )
( ) ( )

( )
( )

( )

( )
∆ ∆

∆α

π
α

α
ϕ v

v
0

2
0

0

=  

 m n j
m

k
k im

k m
imtd

e

e
e

=

∞

−

⋅

− ⋅∑ −
−( )

( ) ( )
( )

( )

( )
∆ ∆

∆α
α

α
ϕ 0

0v

+  
  m n j

k n

n

k
m u

nk

n
u n e du

=

∞
−

=

−∑ ∑ ∫−






−( )
( )

( )1
0 0

ϕ α
α

v
 1

0

0
2−( )

−
−

⋅

− ⋅e
e

e
em

k im

k m
imtπ α

α

v
v

( )
( )

( )

( )

∆
∆

=  
m n j

m
k

m
imtd e

=

∞

−∑ −
( )

( )∆ α ϕ µ   +  
 m n j

k n

n

k
m u

n

m
imt

k

n
u n e du e

=

∞
−

=

−∑ ∑ ∫−








 −( )

( )
( ) ˜1

0 0

ϕ α µ
α

v , (4)

where 

µm  =  

 

( )
( )

( )

( )

∆
∆

α

α

k im

k m
e

e

⋅

− ⋅−
0

0v       and      µ̃m  =   1
2−( )−e m

m
π µv .

We will show that  µm   and  µ̃m  are multipliers in  L
p
([ , ])0 2π .  Thus, the Fourier series weighted with

( ) ( )µm m n j≥   and  ( )˜ ( )µm m n j≥   both converge in  L
p
([ , ])0 2π .  First, consider  µm .  We have 

µ µm m+ −1   =  
d
dx

e

e
dx

k ix

k x
m

m ( )
( )

( )

( )

∆
∆

α

α

⋅

− ⋅

+

−









∫ 0

0

1

v (5)

and, furthermore, 
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d
dx

e

e

k ix

k x
( )

( )
( )

( )

∆
∆

α

α

⋅

− ⋅−
0

0v   =  – 

 

d
dx

e

e

ix k

x k

( )
( )

1

1

−
− −

α

αv
.

Let  ε > 0  be fixed and let  α  < min { � ( v ), 1 } .  We split the weighted Fourier series in two parts. 

First, let  m α  < ε .  For  m ≤ x ≤ m + 1,  we have 

  

d
dx

e

e

k ix

k x
( )

( )
( )

( )

∆
∆

α

α

⋅

− ⋅−
0

0v   =  
d
dx

e

e

ix k

x k

( )
( )

1

1

−
− −

α

αv
  =  k

e

e

d
dx

e

e

ix k

x k

ix

x

( )
( )

1

1

1

1

1

1
−

−
−

−







−

− − −

α

α

α

αv v
. (6)

We investigate how this term behaves as  α  → 0  because, for  α  > γ  with some  γ > 0,  the term is bounded

in the domain  m α  < ε  for continuity reasons.  For  k = 1,  it is easily seen that 

  

d
dx

e

e

ix

x

1

1

−
−









−

α

αv
  =  

  
α αα α α α

α
− − − −

−

− −

−
i e e e e

e

x ix ix x

x

( ) ( )
( )

( )1 1

1 2

v v

v

vsign
 .

The second term converges to  
1

2
− iv

v

sign( )α
  if  α  → 0.  Since  m ≤ x ≤ m + 1  and  m  α  < ε ,  we can esti-

mate the whole term by some constant independent of  α  and  x .  Hence,  µm  ≤ const  for  m α  < ε  and some

constant independent of  α  .  By induction and Eq. (6), we get 

 

d
dx

e

e

k ix

k x
( )

( )
( )

( )

∆
∆

α

α

⋅

− ⋅−
0

0v   ≤  const ⋅ α ,

where the constant does not depend on  x  and  α .  Furthermore,  µm  < const  for some constant independent of

α  .  Using Eq. (5), we deduce 

µ µm m+ −1   ≤  const
m

m

dx
+

∫
1

α   =  const ⋅ α ,

and, thus, 

µ µ
ε α

m m
m

+
<

−∑ 1
/

  ≤  const.

For  Φ ∈ L
p
([ , ])0 2π   and  Φ

∨
  as in Lemma 1, by using Theorem 3, we conclude that 

c em m
im

m

( )
/

Φ
∨ ⋅

<
∑ µ
ε α

  ≤  const c em
im

m

( )
/

Φ
∨ ⋅

<
∑
ε α

  ≤  const ⋅ 
∨
Φ , (7)

since  
∨

∈( ( ))cm mΦ Z   is the sequence of Fourier coefficients of  Φ
∨

. 
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Second, let  m α  ≥ ε .  We define 

′µm  : =  
  

1

1( )− −e m kv α

and deduce 

′ − ′+µ µm m1   ≤  
( ) ( )

( ) ( )

( )

( )
1 1

1 1

1

1
− − −

− −

− − +

− − +
e e

e e

m k m k

m k m k

v v

v v

α α

α α

=  

( ) ( )

( ) ( )( )

−






−

− −

−
=

− −

− − +

∑ 1 1

1 1

1

1

k n
n

k mn n

m k m k

k

n
e e

e e

v v

v v

α α

α α

≤  e

k

n
e

e e
m

k n
n

k n

m k m k
− ℜ

−
=

−

− − +

−






−

− −

∑
( )

( )

( ) ( )

( ) ( )
v

v

v v
α

α

α α

1 1

1 1

1

1

≤  e

k

n

e

e e
m

k n
n

k
n

m k m k
− ℜ

−
=

−

− − +

−










−

− −

∑
( )

( )

( )

( ) ( )
v

v

v v
α

α

α αα
α

1
1

1 1

1

1

≤  
  
e

C k

e e
m

m k m k
− ℜ

− − +− −
( )

( )
( , )

( ) ( )
v

v v

vα
α αα

1 1 1   ≤  C k e m( , , ) ( )v vε α α− ℜ

for positive constants  C ( k, v )  and  C ( k, v, ε ) .  Thus, since  α  < min { � ( v ), 1 } ,  we have 

′ − ′+
≥
∑ µ µ
ε α

m m
m

1
/

  ≤  
l

l l
=

∞

[ ]+ + [ ]+∑ ′ − ′
0

1µ µε α ε α/ /

≤  C k e
l

l( , , ) / ( )v vε α ε α α

=

∞
− [ ]+( )ℜ∑

0

≤  C k
e

e( , , ) ( )
( )/v

v
vε α α

ε α α1

1 − −ℜ
−[ ]ℜ

≤  C k
e

( , , ) ( )v
v

ε α α
1

1 − −ℜ   ≤    C k( , , ) ( )v vε ℜ .



638 B. FORSTER

Obviously,  ′µm  ≤ Cε  for some positive constant  Cε  depending only on  ε .  Hence, for  Φ ∈  L
p
([ , ])0 2π   with

∨
Φ   as in Lemma 1, by using Theorem 3 we get 

c em m
im

m

( )Φ
∨

−
′ ⋅

≥
∑ µ
ε α 1

  ≤  const ⋅
∨

−

⋅

≥
∑ c em

im

m

( )Φ
ε α 1

  ≤  const ⋅ 
∨
Φ . (8)

Denote 

Φ
∨

ε( )t   : =  c em m
imt

m

( )Φ
∨

−
′

≥
∑ µ
ε α 1

,

i.e.,  
∨

cm( )Φε  = 
∨

′cm m( )Φ µ .  Hence, 

c em m
im

m

( )Φ
∨

−

⋅

≥
∑ µ
ε α 1

  =  c e em m
im k im

m

( ) ( )Φ
∨

−
′ − ⋅

≥
∑ µ α

ε α

1
1

=  c e em
im k im

m

( )( )Φ
∨

−
− ⋅

≥
∑ ε

α

ε α

1
1

  =  c em
k im

m

( )∆ Φ−
⋅

≥

∨

−
∑ α ε
ε α 1

≤  
∨

−∆ Φα ε
k   ≤  ( )k + 1

∨
Φε   ≤  const ⋅ 

∨
Φ , (9)

where we have used (8).  Using (7) and (9), we can deduce 

c em m
im

m n j
( )

( )
Φ
∨ ⋅

=

∞

∑ µ   =  c em m
im

n j m

( )
( )

Φ
∨

−

⋅

≤ <
∑ µ

ε α 1

  +  c em m
im

m

( )Φ
∨

−

⋅

≥
∑ µ
ε α 1

  ≤  const ⋅ 
∨
Φ .

Hence,  µm  is a multiplier in  L
p
([ , ])0 2π . 

The same can be shown for  µ̃m.  We have 

˜ ˜µ µm m+ −1   ≤  
  
( ) ( )( )1 12 1

1
2− − −− +

+
−e em

m
m

m
π πµ µv v

≤    µ µ π
m m

me+
− ℜ− +1

21( )( )v   +  
  
µ π π

m
m me e+

− − +−1
2 2 1v v( )

≤    µ µ π
m m

me+
− ℜ− +1

21( )( )v   +  
  
µ π π

m
me e+

− ℜ −−1
2 21( )v v

≤  const ⋅ µ µm m
ame+

−− +( )1 ,

for some positive constant  a > 0.  Thus,  µ̃m  is a multiplier in  L
p
([ , ])0 2π ,  too.  We have 
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c em m
im

m n j
( ) ˜

( )
Φ
∨ ⋅

=

∞

∑ µ   ≤  const ⋅ 
∨
Φ .

For  | α | < h,  using relations (4) and Lemma 1 we get 

∨
∆ Φα

k   ≤  d em
k

m
im

m n j
( )

( )
− −

⋅

=

∞

∑ ∆ Φα µ   +  
m n j

k n

n

k
m u

m
im

nk

n
u n e du e

=

∞
−

=

− ⋅∑ ∑ ∫−






−( )
( )

( ) ˜1
0 0

Φ α µ
α

v

≤  const ⋅ − −
⋅

=

∞

∑ d em
k im

m n j

( )
( )

∆ Φα   +  const ⋅ −






−( )
=

∞
−

=

− ⋅∑ ∑ ∫
m n j

k n

n

k
m u im

nk

n
u n e due

( )
( )1

0 0

Φ α
α

v

≤  const ⋅ −∆ Φα
k   +  

  

const ⋅ −






−( )( )
=

∞
−

=
[ ]

− ⋅∑ ∑ ∫
m n j

k n

n

k

n
m u im

k

n
u u n e due

( )
,( ) ( )1

0
0

0

2

χ αα

π
Φ v

=  const ⋅ + −






( ) ⋅ −( )





−
=

∞
−

[ ]
=

⋅∑ ∑∆ Φ Φα αχ αk

m n j

k n
m n

n

k
im

k

n
d n e

( )
,( )1 0

0

≤  const ⋅ + −






⋅ −( )



−

−
[ ]

=
∑∆ Φ Φα αχ αk k n

n
n

k k

n
n( ) ,1 0

1

≤  const ⋅ +






−( )




















=

∑ ∫ω α
α

k p
n

k
p

n p

h
k

n
u n du( ),

/

Φ Φ
1 0

1

≤  const ⋅ + ′( ( ) ( ) ), ,ω δk p k ph hΦ Φ ,

where  χ[ , ]a b   denotes the characteristic function of the interval  [ a, b ] .  Passing to the supremum, we get 

∨
ωk ph( ),Φ   =  sup

0< <α
α

h

k
p

∆ Φ   ≤  const ⋅ + ′( ( ) ( ) ), ,ω δk p k ph hΦ Φ ,

and the assertion is proved. 
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