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Abstract

We consider functiong € AC(D) on a convex polygorD C C and their regularity in terms
of Tamrazov’s moduli of smoothness. Using the relation between Fourier and Leont’ev coefficients
given in (CMFT 1(1) (2001) 193) we prove direct approximation theorems of Jackson type for the
Dirichlet expansion
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whereL(z) = Z,’(V:ldke“kz is a quasipolynomial with respect to the vertiegs. . ., ay of D andA

its set of zeros. We show by an example that our results improve Mel'nik's estimates in (Ukrainian
Math. J. 40(4) (1988) 382) on the rate of convergence.
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1. Introduction

Let D be an open convex polygon with vertices at the paints .., ay, N >3, Dits
closure andD = D \ D the boundary oD. We assume & D.

* Fax: +4121693 37 01.
E-mail addressbrigitte.forster@epfl.ckB. Forster)
URL: http://lwww.brigitte-forster.de

0021-9045/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2004.10.008


http://www.elsevier.com/locate/jat
mailto:brigitte.forster@epfl.ch
http://www.brigitte-forster.de

2 B. Forster / Journal of Approximation Theory 132 (2005) 1-14

By AC(D) we denote the space of all functiohsolomorphic inD and continuous on
‘D with finite norm of uniform convergenc|¢ef||AC(5) = max 5 | f(z)| < oco. The class
AC4(D) contains all function$ holomorphic inD with @ ¢ AC(D).

Consider the quasipolynomialz) = Z,’Q’zl dre®*, whered;, € C\ {0} anday as above,
k=1,..., N.By A we denote the set of zerdg,, m € N, of the quasipolynomidl.

We expand functiong e AC (D) with respect to the familyf (A) := {gﬂ,,,,Z}meN into a
series of complex exponentials, the so-called Dirichlet series

e/wn z

fz)~ % K Om) i . @)
where
Kf () = Z e / flpe™ M dn @)
k=1

are the Leont’ev coefficients. The indexing in seriBsg chosen such thaty| <|A2| < - -,
in (2) we fix j € {1, ..., N} arbitrarily. Many important results on these series are due to
Leont'ev[5].

Dzjadyk showed ifi3] (withd, = 1forallk =1, ..., N, butthisisinessential) that series
(1) converges absolutely for all e D and uniformly tof for every functionf € AC(D)
which satisfies

Zf(a,)_o and /wdt o0, ¢ =const> 0.

Herew(t) = w; 5(f, oo = SUR, D jz—w|<t | f(z) — f(w)| denotes the first modulus of

continuity off on D.

In this paper, we consider functiorfse AC (D) with certain regularity conditions and
the rate of approximation of their Dirichlet expansion. Results for first moduli were proved
by Mel'nik [9]. We extend his results to moduli of arbitrary order using Tamrazov’s moduli
of smoothness and the relation between Leont’ev and Fourier coefficients prgvéd in

The following section gives a closer look at the zeros of the quasipolynanildle next
section introduces the notion of Tamrazov’s moduli. In Seclieve give Mel'nik’s result
on the order of approximation with Dirichlet series for first moduli of continuity and extend
his theorem to moduli of smoothness of arbitrary order. The respective proofs are presented
in Section5. The last section gives an example on the scope of our result.

2. The set of zeros of the quasipolynomial

First let us have a closer look at the quasipolynomial

N
L) =) de™,
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whered;, € C\ {0} anda; as abovek =1, ..., N. For the set of zerod of the quasipoly-
nomialL the following results are well known [5 Chapter 1, Section 2, 6]:
1. The zeros/”’ of L with |)L(”| > C for sufficient largeC have the formi\/) = 1"+,
wherez(’) =& i’i’”ﬂ +gj¢'Pi and|6)| <e~9". Here O< a = const, j = 1 N,
. iB; ,
n > nopanday 41 := a1. The parameters; andg, are given byds @j+1=aj)e™ — —%,

wheredy 11 := dj. Hence these zeros are simple. The set of zdroan be represented
in the form

N

A= {/In}n=1,...,no U U {}vflj)}n=n(j),n(j)+l,...
j=1

2. There are positive constamg andc; such that for alk >n(j) and all € [a;, ai]

) ox ).
we havqe—)~fx’)(€—“k) e (Eap) | <A1-e~“". Herel aj, ai] denotes the straight-line
closed interval between the vertiagsanda, in the complex plane.

3. There is a constamp > 0 such that for alk € Ng there exists a positive constafitk)
with

}(]) k /15,].) S (L aj4ata;
( n ) e. ( 1)nB ()(]))k /“n (Z 2 ) <A(k)€_62n
L'
for all n > ng. Here allB; # 0 are constantg, = 1, ..., N. This inequality is true for
allzeD.

For simplicity reasons we assume that all zerdsafe simple. We shall use these properties
of A to estimate the exponentials in partial series.

3. Tamrazov’s moduli of smoothness

To get a sophisticated view on the regularity of functiond @(D) Tamrazov introduced
in [13] appropriate moduli of smoothness. Lete D, r € N, § > 0 andA > 0. Let
UE,0) := {z € C : |z — &<} be the closed-ball with centeré. We denote by
T(D, ¢, r, 5, A) the set of all vectorg = (z1, ..., z,) € C" with

() zzeDNUE d)foralli=1,...,r, and
(i) |z —zj|>Adforalli # j,i,j=1.....r

If there is no vector satisfying these conditions wels@®, &, r, 6, A) := . Nevertheless
for A = 27" there exist$ > OWithT(D, &, 7, 6, A) # 0. LetTy = T(D, &, r+1,6,27").
Let L(z, f, z1, ..., zr) be the polynomial irz of degree at most — 1 which interpolate$
at the pointgy, ..., z,. Therth modulus off is defined by

wr(f’ t) = wr’ﬁ(f; t)oo
== sup sup sup |[f(zo) — L(zo, f, 21, -5 2r)|- )

0<0<1 ¢eD zeTy
z=(2Q,.-»2r)
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Here the supremum over the empty set is defined as zero. Mo@)lissgquivalent to the
best-approximation with algebraic polynomi§l$,10]

Or(fit) =@, 5(fi oo := SUP sup inf  |If — Pr_illsemmucons (4
' P = 0<0<1t ¢eD Proaell—1 : AC(DNU(C.9))

wherell,_1 denotes the vector space of all algebraic polynomials of degree atmdkst

For our purposes an easy estimation of modg)lighd @) is needed. Tamrazov defined
normal majorantsp with exponenty: These are bounded non-decreasing functipns
10, 00[ — 10, co[ such that for fixedr > 1 and an exponent> 0 the following normality
condition holds:

Ptd) <at’p(d)

forall 6 > 0,7 > 1[12, Section 1]
Both moduli defined above are nornja#t,15, Theorem 1ji.e.,

0, 5(f,10)0o <C 1" -0, 5(f, 0o and @, 5(f, 1800 <C 1" @, 5(f, 6o,

whereC,C > 0 depend om and the polygorD only. Thus normality is preserved while
estimating with normal majorants.

With these moduli and majorants we define classes of regularityABY (D) we
denote the class of all functiong € AC(D) with o, 5(f,1)<const - o(t) and by
AW?H? (D), q € N, the class of functionsregular orD, such thatf?) € AH,” (D). We
setAWPH” (D) = AH? (D). For intervald we just writeH,” (I) resp.W9H,? ().

We shall use these moduli to state our results in Sedidrheir normality property is
essential in Theorerd [4].

4. Direct approximation theorems

Mel'nik established irf9] a direct theorem on the approximation of functions regular in
D and continuous irD by partial series ofk) analogous to the well-known approximation
theorems of periodic functions by trigonometric series:

Theorem 1(Mel'nik [9, Thm. 1). Let f € AWY Hl‘“(ﬁ), q € Ng, and a modulus of con-
tinuity » = , 5 satisfy the Zygmund condition

h @ ¢ 21 @ ¢
/ D )dt—l—h-/ 2D gr<e olf D, 1
0 ! h !

forall 0 < h < 2r and some positive constantlet

N
> defa) =0 forall 0<s<q.
k=1
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Letn = (n1,...,ny) € NV be amulti-indexConsider the corresponding quasipolynomial
of Jackson’s type

no /mZ /‘L(j)z
o Z g+Lly 0y "
,Pll,n(f)(z) = § . Kf(}m)L (/L ) + / Z% )(1 — Xnj, m)Kf( 1 )L/(}(]))
m= Jj=1 m=n(j

The coefficients,, = Xn;.m are determined by the Jackson kernel through the relations
Xm=1—J,

and

nj
S+ > Jwcosmi),

m=1

3 <sin(th/2)) Jo
2Mj(2M‘]2 +1) \ sini/2)

whereM; = | %] + 1.
Then

N 1 1
If = Pyg.n (f)”AC(E) < const Z ol o5 (£ = '
k= 00

=1 "k nk

For the proof seg9].

Our new resultis the extension of Mel'nik’s Theoréro arbitrary moduli of smoothness.
Let 1< j <N be fixed and- € N. Let f € AC(D) haver — 1 existing derivatives at the
verticesa, k = 1,..., N, of the polygon. Consider fdr # j + 1 the polynomialP; ; of
degree at mostthat interpolate$ at the vertices; unday andf’,...,f"~D at the vertex
ax. Fork = j + 1 let the polynomialP; ;11 interpolatef, f',...,f "~V at both vertices:;
anda;1. We define

[ ol o ) P o+ )
O, i(f, h):= d
r,](f ) Z /O » u
i)
el ) - )|
+ ’ h ur+1 u
and
or(fih) = 1rr}ax Or,j (f, h).

For the approximation of € AC(D) we use partial Dirichlet series weighted with the
generalized Jackson kernel

sinMt/2\% J
—/) = ”’°+ZJ,”kcoskt

K, (1 ::ﬂnr
@) A*( 12 2
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wheren € N, r>2, M := | 7| + 1, and/,,, is chosen such that

1 2n
gfo Ky r@)dt =1.

K, is an even non-negative trigonometric polynomial of degree at mose denote
by P, ».r(f) the quasipolynomial of Jackson’s type

e /Lm Z

an(f)(Z) _ZKf(;vm) L/(/l )

m=1
()

m 4

1- n rm (j) ‘ N

Jj=lm=n(j)

with
" r
Xnj,rom = Z(_l)p (P) Jnj,r,mp'
p=0

Theorem 2. Let f € AH"”" (D), r>2, and @, be a normal majorant with exponent r
satisfying the Stechkin condition

h 2n
/0 “”t(’) di+h" - / O 4 < ey ()

h tr+1

forall0 < h < zr—" and a positive constant tet 1 be continuous in a neighborhood
of the verticesy, k =1,..., N, and

N
de FOar) =0, 0<s<r—1.
k=1

Letn = (n1, ...,ny) € NV be multi-index
Then for the quasipolynomi&®y , () weighted with the generalized Jackson kernel
and for some normal majoraif?, with exponent r

1
If = Pon.r ()l 4cpy S CONSL - ZQ( >

k=1 Mk
where
Qr(h)<const - {w, (h) + 6.-(f. h)} . (6)
For differentiable functions it follows:

Corollary 1. Let f € AWYH"" (D), ¢ € Np, r>2, and o, be a normal majorant
with exponent r satisfying the Stechkin conditi@). Let f"~1+9) be continuous in a



B. Forster / Journal of Approximation Theory 132 (2005) 1-14 7

neighborhood of the verticeg, k=1, ..., N, and

N
> dfSa) =0 for0<s<r—1+q.
k=1

Then for approximation with the quasipolynoniij . (/) weighted with the generalized
Jackson kernel

N
1 1
—Pinr -, <const — Q. — ),
1f = Py (Dl acp) ; AT (nk)
whereQ,—a normal majorant with exponent r—satisfies inequaliy

In Mel'nik’s caser = 1 we get a stronger result, see Remé&rkamely, forg # 0 our
proof allows to delete the term

h (q) t

/ o(f,1) dt
0 t

in the Zygmund condition in Theorefn

5. Proofs of Theorem 2 and Corollary 1

First we have closer look on the Leont’ev coefficients and their relation to Fourier coef-
ficients. We use these properties for the subsequent proofs.

5.1. Leont’ev and Fourier coefficients

In [7], Mel'nik gave an important result establishing the relation between Fourier and
Leont'ev coefficients for functiong € AC(D) and their first moduli of continuity. 1{4]
we extend his result to moduli of arbitrary order. We use this relation to reduce the Dirichlet
series {) to well-known Fourier series. Subsequently we can apply direct approximation
theorems for Fourier series and deduce our new results.

Theorem 3(Forster[4]). Letw, be some normal majorant with exponent r andifgﬂ
be integrable 010, 51,0 < 6 < 2n. Let f € AH"" (D) with §,(f, h) < oo and

N
Z di f(ax) =0 forall 0<s < r.
k=1
Thenthe Leont’'ev coefficient;‘s()h,(j)), n>n(j),j =1,..., N,arethe Fourier coefficients
of some2r-periodic function of cIasstQ" ([0, 2 [) where

h 2n
2, (h) <const / @) 4 + h’/ o) 4, +0r(fih) .
0 u n urtl

For the proof of Corollary in Section5.3we need a supplementary lemma:
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Lemma 1 (Mel'nik [8]). Let f € AC4(D),q € N, and

N
Y dfOa) =0 fors=0,....q -1
k=1

Then the coefficients of the Dirichlet series of f have the form
Kf(q) (;vm)
(/lm)q

This can be shown using integration by parts.
We now have all means to prove the results given in Sedtion

Kf(/lm) =

5.2. Proof of Theorem 2

We decompose the Dirichlet series fofvith respect to property 3 of the zeros lof
mentioned in Sectio@:

no
f@ =1 K50
m=1

AmZ

B
L' (Zom)

N o 20, (. ajirta;
. e’'m ,—J J
3 5w (i - o )
J=Lm=n(j) ")
N 00 , Z(j)(z—
+> B Y kO nmem ¢
j=1

aj+:|2_—aj)
m=n(j)

N
=@+ ) P;@).

j=1

Due to the absolute convergence of the Dirichlet series and estimate 3 we also have
absolute convergence @#(z) and®;(z) for all z € D.
The same decomposition is used for the quasipolynoRyal, (f):

PO,n,r(f)(Z)
0 €j'mZ N nj 0
=1> % OUm) o + Z 2 (L= X )6 O
m=1 Jj=1m=n(j)
2z SU) (. ajpita;
X e— — (—1)mBj€lm (Z_ 2 )
L'
N " » I(.i)(z_aj-#l’“j)
+Y B Y A= X ek AP (=D e™ 2
j=1  m=n(j)
N
= pu(@) + ) Pjm; ).

j=1
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We define
OO .
Fiw) = Y &G )
m=n(j)
and

nj
Hj,nj(w)z Z (1_x11/,r,rn)Kf(;L£,{))wm~

m=n(j)

With property 1 of Sectio@ we write

ad .ani 4q; iﬂj) _ajq1ta;
@](Z)IBJ Z Kf(/h(']))( 1)m <]+17a] qje (Z > )

m=n(j)

By (,_giritei) 0 _ommi (,_4j+1tdj

=Bj€q]e I(Z 2 ) Z Kf()(]))eﬂml “H—l*“j(z 2 )
m=n(j)

i5; Ry~ (z—a))

=Bjeqje !(z—aj)e—qje JEs L Z Kf(/l(]))e /+1 aj J
m=n(j)
:Bjeq.feiﬁj(Z*aj)e*‘Ijeiﬁj a_/+é*a_i FJ (eﬁrl“(z aj)>
and
a0y —geiB I 2 (z—a;)
pim@ = B! eV, ( e (8)

With (5), (7) and Theoren8 we deduceF; (% e H,Q’([O, 271 ]) (compare with[1]).
Hence for the approximation with the generalized Jackson kernel we obtain by Stechkin’s
theorem[11, Theorem 11][2, Chapter 7, Theorem 2.3]

1
|Fj(w) — 11, (w)|<const - Q, (—) for lw| = 1.
nj

Fj(w)—II; ,; (w)isholomorphicorfw : |w| < 1}. Thusthis function reachesits maximum
on the boundary of this domain. Hence

1
[Fj(w) — Il (w)|<const - Q, (—) for lw| < 1.
. n;

*{l,
The estimate$e T |<1forallz € D and |eqf€ lie- aj)|<const for all z € D
lead to

1 _
|®;(z) — pjn;(z)|<const- Q, ( ) forallz € D.
nj
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Now we consider the remaining ter®(z) — p, (z). With property 3 in Sectio we infer

|D(z) — pn (z)l

/17(-,{)2 S ajqitaj
Z Z Kf( (1)) < e 5 _ (_l)mBjeﬂm (Z > ))
L'(2;7)

j=lm=n;+1
2 aj41+aj
2) mp 7~m =
+Z Z X K f (o )( (m) N )>‘
Jj=1m=n(j)
N 00 ]
<Y ) Ikf G A2
j=lm=n;+1
N nj ]
)Y gl I ()] AQ)e 2™,
j=lm=n(j)

Itis

m"
Xnjrm = O <—r ) 9)
1

forn; — oo, and thus for alt € D and some appropriate constant 0

|P(2) — pa(2)| < COI’IStZ ( —nj 4 )
]

This proves Theorerf.

5.3. Proof of Corollary 1

We carry out an analogous decomposition as in the proof of TheBrErom Theoren3,
Lemmal and §) [1] we infer F; (') e wa H,Qf([o, 21 ]). Hence for the approximation
with the generalized Jackson kernel

1 1
|Fj(w) — I, (w)|<const — €, <—> for |Jw|<1,
n. I’lj
J
becauserj(w) — 11, (w) attains the maximum on the boundary of the domain:
|lw|<1}. Thus

1 1 _
|®;(z) — pjn,(z)|<const — £, (n—> forallz € D.
n; j
J
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With property 3 of Sectio2 and Eq. 8) we infer

|P(z) — pn(2)]
N o ) Wz S (L ajqata;
1Y Y o) (g ()
c L/()L(j))
j=lm=n;+1 m
N o 202 SG) (. ajpataj
g+1 2 () e qymp.tm T
I I e
j=Lm=n(j) m
N oo )
<Y D ks G A2
j=lm=n;+1
N n; '
)Y Bl T )] AQ)e 2™
j=Lm=n(j)

N
—ens
<COHSIZ e "+ @D
j=1 nj

J

a 1
<const Z Q, (—)

j= N
for some constant > 0, and the claim is proved.

Remark 1. The proof of Theorenl can be deduced as a special case of the proofs above.
Moreover, letf € ACY~V (D), r > 1. Letn : [0,1] — [ax,a; ], n(t) = a; — (1 —

1)(a; —ax), be a continuous parametrization of the straight-line intgrwgla; 1. Then for

k#j+1

(f — Pjx) on(u)
:/ / 1f r_z(fon)(’_l)(v)—(for/)(r_l)(O)dvdu,_z...dul
0JO 0
1 rup Up_2
—u’/ / / (fom" P
0JO 0
—(fon)(r_l)(O) dvdu,_»...du (10)
andfork = j +1
(f = Pj j+1) on(u)
:u/ /ﬂl..:/ Fi(forp“_le)——(fofﬂ“_lRO)dvdur,gu.dul
0J0 0

1 ru Uy

—u’/ / ' .. / 2(f ) n)(’_l)(v) —(fo 17)(’_1)(0) dvdu,_»...duy
0JO 0

—u" (u—1)Qr—1(u) (11)
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for some polynomial,_1 of degree- — 1. Thus in both cases
(f = Pja) on(w)| <constu” 1 (0, u),

and

h,r—1 (r=21) 2n  r—1 (r=21
/ u o1 (fY 7 u) du+h"/ u ro1(f , ) du

o,(fyh) < const.{ . . \ s

2 (f0D, u)
———~du.

p
< const.a / 5

h u

Thus Theorent follows from Theoren? and by the inequalityn, ( f, u) < constu’ 1
o1V, w).

6. Example

Consider the function
(2) = ( +1)In< ! )
sl =1 z+1

on the squar® c C with vertices—1+i, —1—i,1—i and 14 i. Then

=i L) -
g(z)_ln<z+1) 1.

The derivative has alogarithmic branch poing at —1 but is continuous at the four vertices
(see the absolute values of both functions in E)g.
By direct calculation we see; (8, Moo = O(hln %) forh — 0. Thuswlﬁ(g, h)
does not satisfy Zygmund'’s condition and Mel'nik’s Theorgémannot be applied.
Considering the second moduli of smoothness weaeh(g. o = O(h) and
02(g,h) = O(h) for h — 0, and Stechkin’s condition is complied. Applying our new
Theorem?2 we obtain

1 1 1
g — PO,n,Z(g)HAC(ﬁ) =0 <w2,D (g, —) + 2 (g, —)) =0 (—>
s s Ny

for n, — oco. Heren, = min{n1, ..., ny} denotes the minimal component of the multi-
indexn = (n1,...,ny) € NV, This shows that Theorerd sharpens the results on the
order of approximation with quasipolynomials of Jackson’s type.
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(a)

Re -
®) -1

Fig. 1. (a) Absolute value of the functiag(z) = (z + 1)In (2—%1) on the squar®. (b) Absolute value of its
derivativeg’ on D with a logarithmic branch point at= —1.
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