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Reconstruction From Multiple Poses in Fluorescence
Imaging: Proof of Concept
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Abstract—One disadvantage of all fluorescence imaging modali-
ties is a poor axial resolution. To overcome this issue, we propose a
novel approach to reconstruct fluorescence volumes with isotropic
high resolution, from images of particle replicates observed at mul-
tiple orientations. We design a joint deconvolution-and-multiview
reconstruction approach dedicated to three-dimensional fluores-
cence imaging. We address the computational challenge associated
to big data by designing a fast augmented-Lagrangian optimizer.
The computational cost of the iterative part of the algorithm does
not depend on the number of input particles. We experimentally
demonstrate the resolution improvement yielded by our frame-
work and its ability to handle practical constraints like large PSF
sizes and large number of particles. The validation is performed
on realistic simulated data, which establishes a proof of concept
for our framework and defines it as the basis for future extensions.

Index  Terms—Alternating-direction method of multi-
pliers (ADMM), deconvolution, fluorescence, single-particle
reconstruction.

I. INTRODUCTION

LUORESCENCE microscopy is an essential tool for

the observation of subcellular structures and the under-
standing of their interactions. A large variety of optical devices
and reconstruction procedures have been proposed to enhance
the resolution of fluorescence images. This research has partic-
ularly focused on the lateral plane, where confocal microscopes
are finally able to reach the diffraction limit (around 200 nm).
This barrier is even surpassed by superresolution techniques
like structured illumination microscopy (SIM, [1]), stimulated
emission depletion (STED, [2]), or photo-activated localization
microscopy (PALM) and stochastic optical reconstruction
microscopy (STORM) [3]. However, no decisive advance has
been realized to improve the axial resolution. As a conse-
quence, the analysis of fluorescence is mainly restricted to 2D
observations, which is likely to loose important information
about complex 3D structures.
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To overcome this issue, we propose a novel framework that
takes advantage of multiple poses to reconstruct fluorescence
images with 3D isotropic high resolution. Our approach is to
perform volumetric acquisitions of randomly oriented repli-
cates of a rigid particle. This allows us to take advantage of the
high lateral resolution of the microscope to gain access to de-
tails within each view. Our reconstruction then combines these
details acquired at random poses. This procedure is inspired
by the single-particle reconstruction framework used in cryo
electron microscopy (cryo-EM) [4], where a particle is recon-
structed from tomographic projections instead of volumetric
acquisitions. To the best of our knowledge, the only similar
existing work for fluorescence is the 3D averaging approach
described in [5] for STORM imaging.

Given an input volume, the overall framework is made of
three steps: 1) detection and segmentation of individual parti-
cles in the original image; 2) estimation of pose parameters; 3)
3D reconstruction. Each of these steps comes with its own chal-
lenges that have to be addressed specifically. In this work, we
demonstrate the feasibility and the potential of our approach by
focusing on the reconstruction problem. Two main challenges
have to be overcome: Firstly, the fluorescence imaging model
must be adequately integrated in the multiview reconstruction.
In particular, the resolution of fluorescence microscopy is usu-
ally limited by large point-spread functions (PSF). Secondly,
the main difficulty comes from the abundance of input 3D vol-
umes that have to be processed to obtain accurate reconstruc-
tions. Such big data require an adapted and efficient algorithm
to ensure the computational tractability of the method.

We propose a generic reconstruction framework to overcome
the challenges mentioned above. We take the imaging modality
into account by designing a joint approach that combines
deconvolution and multiview reconstruction in a single model.
To cope with the computational issue associated with the high
number of views, we adopt a proximal splitting optimization
strategy that we adapt to the specific structure of our data.
The computational cost of each iteration is independent of the
number of input orientations, which is the key point to be able
to process large data. Altogether, this allows us to obtain accu-
rate reconstructions with high axial resolution. We demonstrate
the efficiency of our method by applying it to a confocal mi-
croscopy model. Our work is a proof of concept and a first step
toward the realization of a complete and practical framework
that would include Steps 1) and 2). Our contributions can be
summarized as follows:

* A novel integrative multiview framework for improving

the resolution of fluorescence microscopy, and the design
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of a corresponding reconstruction algorithm based on
global optimization.

* The capacity to handle a high number of input 3D images
at low computational cost, with a proximal splitting opti-
mization strategy which does not depend on the number of
views at each iteration.

* A proof of concept establishing the feasibility of our ap-
proach in real conditions, based on extensive performance
validation on realistic simulated data.

The remainder of the paper is organized as follows: In
Section II, we review related works. In Section III, we describe
our reconstruction method. In Section IV, we provide an ex-
perimental evaluation of the performance of the method. In
Section V, we conclude on the main results and discuss the
perspectives opened by this work.

II. RELATED WORK

A. Averaging in Fluorescence Microscopy

Recently, the averaging of identical particles in 2D fluores-
cence imaging has received some particular attention [6], [7].
It has been shown to improve the accuracy of localization in
STORM imaging. However, the averaging approach induces a
blurring that obliterates the small details of the structures. To
partly compensate for this effect, a very large number of par-
ticles has to be processed. Moreover, the restriction to 2D pre-
vents one from capturing the whole complexity of 3D shapes,
and a strong uncertainty remains on the localization of the pro-
teins under study. In [5], the averaging approach is extended to
3D for STORM data. The resulting resolution is isotropic in 3D
but suffers from the blurring effect of the averaging.

B. Reconstruction in Cryo-EM

Cryo-EM measures the electron transmission through particle
structures. The images acquired in cryo-EM are thus 2D projec-
tions of the 3D object, modeled by the Radon transform. The
tomographic reconstruction in cryo-EM from observation of in-
stances of a particle at different poses is called single-particle
reconstruction (SPR) [8]. It has been a very active research topic
over the past thirty years and is today supported by several well
established softwares based on a common efficient algorithmic
framework (Xmipp [4], Spider [9], Bsoft [10], EMAn [11]).

The similarity of SPR with our framework lies in the idea
of reconstructing a particle from several rotated views. How-
ever, the image-acquisition model is fundamentally different in
our case since we deal with 3D images obtained by convolution
with a PSF. Therefore, the reconstruction techniques developed
for cryo-EM are not adapted to fluorescence data and dedicated
methods have to be designed.

Nevertheless, it is possible to interpret the Radon transform in
terms of PSF. Indeed, the Radon transform can be likened to the
effect of a PSF that would be made of a line in the axial direction
of the microscope, with a width equal to the size of a pixel. Thus,
in practice, the Radon transform can be approximated by a very
elongated PSF. We shall investigate experimentally the validity
of this approximation in Section IV.

C. Selective-Plane Illumination Microscopy (SPIM)

The SPIM technique exploits light-sheet illumination to ac-
quire images of a single sample from multiple views [12]. In-
formation at all orientations can be combined in a reconstruc-
tion procedure to enhance the resolution [13]-[15]. The concept
fundamentally differs from ours since the views are obtained
by multiple rotations of a single sample. Thus, the number of
views is limited by the photobleaching effect which increases
at each new observation. The range of angles that can be cov-
ered is also limited by practical constraints on the rotation de-
vice. Therefore, existing reconstruction methods [13]-[15] are
designed to cope only with a small number of views (five to ten
typically). By contrast, we routinely handle several hundreds of
views, which creates specific computational issues.

III. RECONSTRUCTION FROM MULTIPLE POSES

This section is devoted to the detailed description of our
framework and reconstruction method. We first introduce the
general framework. Then, we formulate the reconstruction
problem. Finally we detail our fast optimization strategy.

A. General Framework

The underlying assumption of our method is that we are able
to acquire a 3D micrograph containing a series of particles repli-
cates that are randomly oriented. The goal is to reconstruct data
model of a particle with high isotropic resolution. To this end,
three steps have to be performed. The first stage is the identifica-
tion of individual particles y,, where 9; = (8;, t;) is a vector of
pose parameters composed by rotation parameters 8; and trans-
lation parameters t;. The second stage is the estimation of the
pose parameters ¥;. The third stage is the reconstruction of the
model x of the particle.

Let us assume that the identification step has been performed,
providing a set of particles yy,. We consider the case of con-
focal imaging, for which the image-acquisition process can be
modeled as the convolution of the underlying signal with a PSF
denoted by k. Owing to the small field of view covered by each
particle, we assume one spatially invariant PSF per particle.
This choice is motivated by the spatial smoothness of the PSF
in fluorescence microscopy, which has been experimentally ob-
served in previous works [16], [17]. Each particle can then be
modeled as the observation of a rotated and translated version
of & obtained at pixel p by

yo.(D) = / h(@) @ (Ro,(p— a) I &) da,
Ri‘l

(1)

where Ry, is the rotation matrix with angular parameters 8;. The
estimation of the pose ¥; allows us to register the observations
by applying inverse rotation and translation. It is then possible,
after changes of variables, to rewrite the forward model (1) as

(3 (R;f(p - ti)) = / h (R@1Q) z(p—q)da.  (2)

R3

In a discrete setting, assuming that all images have identical
sizes and contain M pixels, we denote y; € R™ the observation
vector corresponding to the discretization of yg, (R, ' (- — t:)),

i
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Hy, € RM*M the convolution matrix representing 2(R, !-),
and x € RM the unknown image in vector form. The discretiza-
tion of (2), with the addition of the measurement noise n € RV
leads to the linear forward model

yi = Hy, x +n. (3)

The pose estimation and reconstruction problems are closely
intertwined since the degradation model of x is defined by 9;.
We formulate the reconstruction problem as a joint maximum
a posteriori (MAP) estimation, which can be turned into the
optimization problem

{x, @} = argmin
xERY PRV x6

A
5 fdata(Ya X, "9) + freg (X)v 4

where 4 = {¥,..., 9y} andy = {y1,..., ¥~} with N the
number of particles, the data-fitting term fy,, penalizes devi-
ations from the forward model (3), the regularization term fex
imposes regularity on the solution, and A > 0 is a tradeoff pa-
rameter that balances the two terms. Problem (4) is blind in the
sense that the orientations of the PSFs are not known and would
need to be estimated jointly with x.

In this proof-of-concept work, we focus on non-blind recon-
struction and demonstrate the benefits of our reconstruction
method when the pose parameters are known. Thus, we drop
the dependency of fgqata on @ in the sequel. We focus now on
the description of the energy of (4) and its minimization over x.

B. Reconstruction Problem

The choice of fya¢a reflects the assumption made on the noise.
The image formation in fluorescence microscopy is affected
by a combination of two sources of noise. The photo-counting
performed by the detector involves a signal-dependent Poisson
noise, while thermal and electronic effects produce Gaussian
additive noise. For the sake of simplicity and to focus on our
proof of concept goal, we neglect the influence of Poisson noise
in our model and consider i.i.d. Gaussian noise, which leads to
a quadratic data-fitting term of the form

N
faata(y: %) = Y |ys — Hoxll3. ®)
i=1

We discuss the adaptation of our method to Poisson noise in
Section IV-E.

The matrix H is often ill-conditioned. To stabilize the solu-
tion, we assume a uniform distribution of the fluorophores in the
samples. Then, it is reasonable to favor piecewise constancy of
the result. It can be achieved with the total-variation (TV) reg-
ularization defined as

Jreg(x) = |[Dx[]1, (©)

where D = (D,,D,,D.)" is a discrete differential operator
concatenating first-order forward finite-difference matrices in
the three spatial directions.

C. Minimization

The main difficulty in the optimization stage stems from the
potentially large size of the input data. High accuracy comes at
the cost of a large number of orientation angles, as we show in
Section IV. Our practical constraint then is to be able to handle

this large amount of 3D observations at a reasonable computa-
tional cost.

The key element making reconstruction computationally fea-
sible for a very large number of views is our proximal splitting
approach, decomposing the original problem into efficiently
solvable sub-problems. {We adopt the alternating-direction
method of multipliers (ADMM) [18]-[22], which is adapted
to the convex and non-smooth form of (4). Some other related
variants based on similar problem splitting could lead to com-
parable computational savings [23]-[25]. We first reformulate
(4) as a constrained optimization problem, by introducing the
splitting variables u; and u;, which leads to

LA
min - - fdata(yvx) + ”ulHl + LR;‘f (u2),

xCRM 2
u; = Dx
sn{wzx ™

where the non-negativity constraint is handled by the indicator
function LM defined as

0,
LRJ\J:I (Z) = { +00

: M
ifz € RY
else,

®)

and where the auxiliary variables u; and uy decouple the reg-
ularization term and the non-negativity constraint from the data
term. We rewrite (7) in the more compact form

LA
min = faata(y,x) + g(u), s.t. u = Ax, 9)

xRN 2
where u = [uy,uy]", A = [D,I]" with I the identity matrix,
and g(u) = ||uy ||, + LR (u,). The augmented-Lagrangian for-
mulation of the problem (9) is then

L (36,1,@) = 7 fuseal0) Ho(u) b (Ax )+ | A—u3

a0
where @ = |e,a5]" is the Lagrange multiplier with
a; € R*M a, € RM and p is the parameter associated to the
quadratic penalty. Problem (4) is then solved by the following
alternated updates of the variables:

x" 1 = argmin L, (x, u*, a") (11)
xERM

u*™ = argmin L, (x*™, u, a*) (12)
ueRM

a* Tt =af 4 p(AxFT —uhth. (13)

The two components of u are independent in (12), so that
the minimization w.r.t. the two variables can be performed sep-
arately. The update of u; amounts to the computation of the
proximal operator of the £; norm, which has a unique solution
that can easily be computed by soft-thresholding operations [26]
like

uft! = max <||v’fH1 - 1,0) % (14)
K [ v ||1
with vF = Dx** + (1/p)ak.
The update of u; is the projection onto the set R}/
ugﬂ = max (v’; O) , (15)

with v& = x*+1 — (1/p)ak.
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For u” fixed, (11) is a pixelwise quadratic problem solvable
in closed form as

N —1
L <#ATA + /\ZHJZ_H,,Z)

i=1

k N
" (MAT (uk _ %) +)\ZHgiyi> . (16)

i=1

Most of the computational cost of our method is devoted to the
filtering operations involving Hgi in (16). The bulk of this cost
comes from the summation over the number /N of particles,
which can be large. The crucial advantage of the ADMM ap-
proach is to decouple the NV filterings by H; from the iterative
updates. The sums can then be computed offline, which makes
the cost of each iteration independent of the number of orienta-
tions.

Another computational issue comes from the fact that the ma-
trix (LATA + AN, H, Hy,) is too large to be inverted.
However, due to the block-circulant form of the matrices H,
and D, they can be diagonalized by the discrete Fourier trans-
form under periodic boundary conditions. After diagonaliza-
tion, the update (16) can be evaluated much faster in the Fourier
domain as

Xk+1

F{naT (2} Asy, F ()

=F!
(IO +1) + AT, |7 (Hy, )’

The terms S5, F{H}y;} and u(|F{D}? + I) +
A Zf\; | F{Hyg,}|? are constant and are thus computed offline.
The computational time of each iteration is then mostly devoted
to two FFTs, and the total number of FFT computations to
reconstruct a particle is 2(N 4+ n;; + 1), where n;;, is the number
of iterations of the ADMM optimization. The time complexity
of the algorithm is thus O(N log(N)).

Finally, the choice of the parameter 4+ does not influence much
the final result, but has a significant influence on the speed of
convergence. A large value of p accelerates convergence but
favors local optima. Based on empirical observations, we follow
the continuation strategy of [18] by updating the value of 4 at
each iteration as described in Algorithm 1. The constants 3 and
~ have been determined experimentally to optimize the speed
of convergence. This approach yields faster convergence and
similar results than a fixed value of u. The steps of the overall
algorithm are recalled and summarized in Algorithm 1.

IV. RESULTS

A. Experimental Protocol

We exploit the public database EMDataBank!, which is the
reference portal for deposit, retrieval, and evaluation of 3D den-
sity maps in cryo-EM. The reconstructed volumes in cryo-EM
can attain subnanometric resolution, while typical resolutions
in fluorescence imaging are comprised between 200 nm in con-
focal and 30 nm in PALM/STORM imaging. Therefore, we con-
sidered cryo-EM reconstructions as the ground truth to evaluate
the performance of our reconstruction for fluorescence imaging.

Algorithm 1 Joint reconstruction and deconvolution

Input: y;, Hy, , A, 1
Initialization: xX° =y, 1; =0, us = 0,a; =0, =0
Constants: 3 = 0.6,y = 2
Ci+ ALY, F{H y:}
Co < u(|F{D}? +1) + AZZ‘]\; | F{Hy,}
while stopping criterion do
xM = FH(F{pA (u* — oF/p)} + C1)/Ca}
vi = Dx*! 4 (1/p)af
vh = Xk (1)l
w ™t = max(||vfll, — 1/m 0)(vE/IvE]l,)
u; ™' = max(vk,0)
o = af 4 (DX )
a_lzcﬂ = ok + p(xFt - u§+1)
if |Ax"T — uF |, < B|AxE — u¥|),

B Xy

2

end
k+—k+1
end

return x*

To circumvent the absence of existing work realizing Steps
1 and 2 of the SPR framework for fluorescence (defined in
Section I as particle detection and orientation estimation),
we generate input data from the reconstructions of the EM-
DataBank. Our working assumption is that the structure of
the particles can be imaged by fluorescent tagging, with a
uniform distribution of fluorophores. Hence, our approach
to generated realistic 3D fluorescence images is to rotate the
cryo-EM reconstructions, threshold the density map, apply PSF
convolution, and add Gaussian noise. The orientation angles are
assigned by random sampling on the unit sphere. The resulting
fluorescence images of rotated particles are used as input data
for the reconstruction method. Examples can be visualized in
Fig. 3(c)—(e).

In the EMDataBank database, we selected the nuclear pore
reconstruction described in [28], the flagellar basal body of
[29], and the centriole basal body presented in [27]. These
particles are characterized by their large size, enabling imaging
by confocal microscopy. The three reconstructions are rendered
in Fig. 1. Protein mapping in the centriole structure has recently
received particular attention and motivated several works in
superresolution [30]-[32].

B. Comparison of Methods

The only existing competing method for reconstruction from
multiple poses in fluorescence is described in [5]. It is an av-
eraging of the registered particles. We refer to this approach as
Average in the sequel. For a fair evaluation of our approach, we
also implemented two other reconstruction methods.

Thttp://www.emdatabank.org/search.html
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TABLE I
COMPARISON OF PSNR (DB) BETWEEN JOINT, DECONV/AVERAGE, TOMO [33] AND AVERAGE [5],
FOR 100 ORIENTATION ANGLES, SEVERAL LEVELS OF NOISE AND PSF SIZES
Volume Centriole [27] Nuclear pore [28] Flagella basal body [29]
Noise variance 0.5 5 10 15 0.5 5 10 15 0.5 5 10 15
Average [5] 10.84 10.63 1050 10.44 8.55 8.33 8.32 8.28 1097 10.12 10.87 10.75
Tomo 1298 1275 12,65 1242 | 12.15 1096 1086 10.82 | 1427 1399 13.82 13.79
PSF1 Deconv/Average | 21.45 19.65 19.44  19.16 | 20.28 19.66  18.57 18.06 | 22.16 20.41 20.04  19.78
Proposed 23.14 20.22 20.01 19.54 | 23.72 21.28 20.84 20.09 | 2548 2331 2236 21.59
Average [5] 10.84 10.84 1098 1047 | 10.72 10.80 10.65 10.60 | 12.23 12.23 1230 12.23
Tomo 14.08 13.85 13.80 13.78 | 14.78 14.61 1458 1457 | 19.19 19.10 19.05 19.00
PSF; Deconv/Average | 27.52 2478 21.78 2095 | 2590 24.04 21.88 21.15 | 26.64 2392 22.68 2238
Proposed 29.02 2520 2212 2132 | 29.29 2540 22,54 22.23 | 3146 25.77 2517 25.02
Average [5] 1630 16.30 1630 1629 | 1528 1527 1527 1526 | 1595 1594 1590 15.89
Tomo 16.15 16.11 16.10  16.09 | 20.02 1999 1997 1996 | 20.70 20.66 20.48 20.47
PSF3 Deconv/Average | 37.05 35,52 3290 30.52 | 36.81 3270 31.88 2994 | 3742 3517 32.04 29.9
Proposed 37.18 35,52 3290 30.52 | 37.93 3578 32.58 30.15 | 40.43 37.05 33.01 30.42
1 T T
p
b
08y 1
1
o8l . 1
' Joint
. ) ---Deconv/Average
Centriole [27] Nuclear pore [28] Flagella basal body [29] 07,y -
1
Fig. 1. 3D surface visualization of the three ground truth particles. The input o8 '|
particle images have dimensions from 50 x 50 x 20 to 70 x 70 x 35 pixels. g l‘
[_7:, 05 4 B
. . \J
We first consider applying to fluorescence the standard mul- b % 1
tiview reconstruction from projections modeled by the Radon - b
. . [ 1 7
transform. We use the tomographic reconstruction method de- \
. . . . 1
scribed in [33], which embeds the Radon transform ina TV reg- oz 1 1
. . . . . . . . 1
ularization and ADMM optimization strategy that is similar to o1 o
ours. We refer to this method as 7omo in the sequel. .- \,’\,—\,;*-_\ T
We also implemented an extension of [5] as follows: 1) We % ool otz 003 o004 005 006 007 008

first independently deconvolved each volume of rotated particle,
2) the particles were then registered (the registration was exact
since we know the poses), 3) the registered particles were aver-
aged. Compared to [5], the deconvolution step is crucial because
it depends on the PSF. For the sake of fairness, we implemented
a deconvolution method in the same framework as ours, with TV
regularization and ADMM optimization. We call this deconvo-
lution/averaging method as Deconv/Average in the sequel, and
we name our joint deconvolution and reconstruction Joint.

C. Implementation Details

The algorithms were implemented in Matlab and the experi-
ments have been carried out on a PC with 2.60 GHz CPU and
128 GB RAM. The regularization parameters yielding the best
PSNR have been selected for the methods Tomo, Deconv/Av-
erage, and Joint in all experiments, after extensive tests for a
large range of values. The stopping criterion of the optimization
process for these methods was fixed to 10~° to guarantee con-
vergence. All input images are nonnegative and scaled to have

1/Angstrom

Fig. 2. Comparison of Fourier shell correlation curves of Joint and Deconv/
Average.

their maximum at 255. The PSF are generated according to the
Born&Wolf model with the available PSF Generator software?
described in [34].

D. Results

The quality of the reconstruction is measured by the peak
signal-to-noise ratio (PSNR) defined by 10log,,(L?/MSE),
where L is the maximum intensity of the image and M S'E is the
mean-square error defined by M SE = ||X — x|?/N, with zg
the ground truth. We also evaluate our results with the Fourier-
shell correlation (FSC), which is the standard tool for measuring
the resolution of reconstructed volumes. It correlates the Fourier

2http://bigwww.epfl.ch/algorithms/psfgenerator/
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(c) Example 1 of Input particle

2 /3
< J-’.i el
@»g&« 3
-
¥ - . :

-

L3

(e) Example 2 of Input particle

(f) Joint + Deconv/Average reconstruction

Fig. 3. Visual comparison of reconstruction results between Joint and Deconv/Average, using 100 angles, P SF}, and the noise variance of o2 = 5. (a) Ground
truth; (b) Joint reconstruction; (c) example 1 of input particle; (d) Deconv/Average reconstruction; (¢) example 2 of Input particle; () Joint + Deconv/Average

reconstruction.

transforms of two estimations X; and X, obtained with different
input data at different frequency ranges and is defined as

Yorier F(X1) (1) F(X2)" (7:)

FSC(r) = : =
VE rer [F @) ey | F () ()
(17)
The resolution is defined as the frequency ry at which
FSC(TQ) = 0.5.

Influence of Noise and PSF Size: We report in Table I the
PSNR of the reconstructions obtained with Joint, Deconv/Av-
erage, Average, and Tomo, obtained for 100 angles. The exper-
iments were realized with several levels of noise, and with PSF
sizes defined in pixels as follows: (69 x 69 x 43) for PSFy,
(35 x 35 x 21) for PSF,, and (17 x 17 x 11) for PSF3. The
input volume sizes vary from (50 x 50 x 20) to (70 x 70 x 35).
Note that the most realistic PSF is PSF;, which is the largest
one.

It can be first noticed that the results of Tomo and Average in
Table I are clearly far from being competitive with the other two
methods. Because of these poor results, we focus the remainder
of the experimental analysis on Joint and Deconv/Average.

The results obtained with Joint are superior to those of De-
conv/Average in almost all cases of Table I. In particular, Joint
outperforms Deconv/Average for all levels of noise. We notice
that the gain in performance of Joint over Deconv/Average in-
creases with the size of the PSF. This is an important observa-
tion since the most realistic PSF is the largest one.

Resolution Improvement: In Fig. 2, we plot the F'SC of Joint
and Deconv/Average for the case of the centriole. The curve of
Joint is clearly above the one of Deconv/Average, meaning that
its similarity with the ground truth is higher at all frequencies.
As aresult, we achieve a significantly finer resolution of 101 nm,
whereas the resolution of Deconv/Average is 333 nm.

Visual Results: Reconstructions obtained with Joint and De-
conv/Average can be visualized in Fig. 3 for the case of the
centriole. 3D surface renderings are obtained with the same
threshold value in Figs. 3(a), (b), (d), (f). The 2D images of
the central x-y and y-z slices are also displayed in each case.
The amount of blur and noise of the input volumes can be ap-
preciated in Figs. 3(c)—(e) for two different rotation angles. The
details of the structure are better preserved by Joint, especially
at the thin spokes of the structure, which are often discarded
by Deconv/Average. The superimposition of the results of Joint
and Deconv/Average in Fig. 3(f) makes also appear the defor-
mation of the structure. In particular, the central tube and the
pinheads at the borders of the centriole are oversmoothed and
appear larger in the Deconv/Average reconstruction.

Influence of the Number of Poses: The influence of the
number of poses on the PSNR of the reconstructions of Joint
and Deconv/Average is reported in Fig. 4. Several levels of
noise are considered. Increasing the number of poses improves
the accuracy of both methods. However, the PSNR of Joint
grows significantly faster than the one of Deconv/Average, for
all levels of noise.
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Fig. 4. Influence of the number of orientations for Joint and Deconv/Average in the case of the centriole and using PSF;.

Computational Time: Finally, the computational times of
Joint and Deconv/Average are compared in Fig. 5 in the case
of the centriole and for PSF;. We consider the same numbers
of poses as in Fig. 4, to be able to compare the evolutions
of the computational time and the PSNR. We observe that
the computational time of Joint stays almost constant as the
number of poses increases, whereas it grows much faster in the
case of Deconv/Average. For 100 poses, Joint takes 30 s and
Deconv/Average takes 29 min.

E. Discussion

We point out in the sequel the main conclusions that can be
deduced from the experimental results described above, demon-
strating the feasibility of our approach.

The poor results of Tomo invalidate the approximation of the
PSF as a line made by the Radon transform. The tomographic
approach, which is the standard model for most multiview re-
construction problems is thus insufficient in our case. This result
demonstrates the necessity of a model dedicated to fluorescence
imaging.
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Fig. 5. Impact of the number of orientations on the computational time of Joint
and Deconv/Average.
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The low accuracy of Average, and the gap separating it from
Deconv/Average (which differs from Average only by a decon-
volution step), emphasizes the importance of taking into ac-
count the PSF in the reconstruction procedure. However, the
independent deconvolutions performed by Deconv/Average are
not the proper way to integrate the PSF in the reconstruction.
Indeed, as can be seen in Fig. 3(c)—(e), the poor axial resolu-
tion induces a particularly large blur in the axial direction of
the PSF, discarding almost all information along that axis. As
a consequence, the independent deconvolutions performed by
Deconv/Average are inefficient and the averaging is affected by
these errors. Our approach is less sensitive to this effect since
the joint model for deconvolution and reconstruction avoids the
drawback of separate deconvolution and averaging. This ex-
plains the superiority of Joint over Deconv/Average in Table 1.

In addition to these quantitative improvements, our method is
particularly well adapted to practical constraints that can be en-
countered in real conditions. Firstly, the robustness of the joint
reconstruction to large PSF sizes is crucial since low resolution
is the main limitation of confocal imaging. Secondly, the fast in-
crease of the PSNR with the number of poses reported in Fig. 4 is
very important in practice because it allows us to reduce the re-
quired number of particles and can facilitate the preparation of
samples for the biologists.

The low computational cost of our reconstruction algorithm
is a very desirable feature that makes the integration of a
large number of particles feasible. Indeed, dealing with a large
number of 3D input images leads to a prohibitive computational
cost in the case of Deconv/Average, a drawback which our
proposed approach overcomes. Moreover, it is also important
to keep in mind that in practice the reconstruction process
needs to be performed several times, alternatively with angles
estimation, increasing even more the computational cost. The
iterative part of our method, which contains most of the com-
putational cost, does not depend on the number of poses. More
precisely, the computational cost of Joint is mainly devoted
to the computation of 2(N + ni; + 1) FFT. In comparison,
Deconv/Average repeats the deconvolution process for each
angle and thus requires 2N (N + ni; + 1) FFT computations.
Consequently, the computational complexity of Joint is O(N
log(N)), while Deconv/Average is in O(N?log(N)). The
ability to process many different orientations is crucial for
the accuracy of the result, as emphasized in Fig. 4, and made
possible by our approach.

A natural extension of our method would be to take into ac-
count the Poisson noise usually involved in fluorescence mi-
croscopy. It would require to redefine the data term (5) with the
Kullback-Leibler divergence [35]-[37]. In this case, our mini-
mization framework described in Section III-C could be easily
adapted, similarly to previous works [35]-[37]. More precisely,
an additional splitting variable should be introduced in the con-
strained formulation (7) to split the data term. The proximity
operator of the Kullback-Leibler divergence would then have
to be computed, which can be done in analytical form. The
other steps of Algorithm 1 would remain similar, and the inde-
pendence of the computational cost from the number of views
would be retained.

Another problem that remains to be addressed is the estima-
tion of the pose of each particle. While it constitutes a research
project on its own right, it can benefit from some previous work
in other fields. In particular, two strategies can be envisaged. A
first option is to register all the particles on a common refer-
ence. This approach can take advantage of the high quality of
rigid-body registration achieved in medical imaging [38]. Al-
ternatively, one may take inspiration from the methodology for
pose estimation from projections which has been perfected over
years in cryo-EM tomography [39] and which may be adapted
to the present forward model. Therefore, despite the difficulty of
the problem, the good results and mature development of these
two fields suggest the feasibility of pose estimation in our case.

V. CONCLUSION

We have proposed a novel approach for reconstructing flu-
orescence volumes with isotropic high resolution. We exploit
multiple poses of particle replicates to combine multiview
reconstruction and deconvolution in the same model. The
computational cost of the iterative part of our optimization
approach does not depend on the number of input volumes.
This allows us to tackle the challenge of processing a large
amount of 3D data in low computational time. Experimental
results demonstrate the feasibility of our scheme by achieving
accurate reconstructions, as well as proving robustness to
practical constraints as large PSF sizes and large number of
poses. Our method also outperforms similar approaches based
on averaging in all situations.
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