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ABSTRACT

Low axial resolution is a major limitation of fluorescence
imaging modalities. We propose a methodology to achieve
high isotropic resolution by reconstructing fluorescence vol-
umes from observations of multiple particle replicates with
different orientations. The challenge is to conciliate high
reconstruction accuracy, requiring a large amount of input
3D data, with computational tractability. We achieve this
goal by designing an iterative joint deconvolution and multi-
view reconstruction algorithm with an efficient augmented-
Lagrangian based optimization. The computational cost is
limited to only two FFTs per iterations, regardless of the
number of input particles. We also adopt the nuclear norm of
the Hessian as regularizer to avoid the usual staircase artifacts
of the more standard total-variation. Experimental validation
on realistic simulated data demonstrate the efficiency and
accuracy of our method.

1. INTRODUCTION

Fluorescence microscopy is an essential tool for the observa-
tion of subcellular structures and the understanding of their
interactions. A large variety of optical devices and recon-
struction procedures have been proposed to enhance the reso-
lution of fluorescence images. This research has particularly
focused on the lateral plane, where confocal microscopes are
able to reach the diffraction limit (around 200 nm). This bar-
rier is even surpassed by superresolution techniques [1, 2, 3].
However, no decisive advance has been realized to improve
the axial resolution. As a consequence, super-resolution fluo-
rescence imaging is still mainly restricted to the focal plane,
which is likely to loose important 3D structure information.
To overcome this issue, we propose a novel conceptual
framework that takes advantage of multiple poses to recon-
struct fluorescence images with 3D isotropic high resolution.
Our approach is to perform volumetric acquisitions of ran-
domly oriented replicates of identical particles. This allows us
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to take advantage of the high lateral resolution of the micro-
scope to gain access to details within each view. Our recon-
struction then combines the details acquired at random poses.

This procedure is inspired by the single-particle recon-
struction framework used in cryo electron microscopy (cryo-
EM) [4], where a particle is reconstructed from tomographic
projections instead of volumetric acquisitions. To the best
of our knowledge, the only similar existing work for fluo-
rescence is the 3D averaging approach described in [5] for
STORM. The selective-plane illumination microscopy tech-
nique (SPIM) acquires images of a single sample from multi-
ple views and involves a related reconstruction problem, but
it deals with a significantly lower number of views [6, 7].
Given an input volume, our overall framework is made of
three steps: 1) detection of individual particles; 2) estimation
of pose parameters; 3) 3D reconstruction. In this work, we
demonstrate the feasibility and the potential of our approach
by focusing on the reconstruction problem. The main chal-
lenge is to conciliate high reconstruction accuracy with com-
putational efficiency. Indeed, while iterative methods with
advanced regularization strategies are mandatory to achieve
good results, the abundance of input 3D volumes is a major
issue for computational tractability of this approach.

We propose a generic reconstruction framework to over-
come the challenges mentioned above. We take the imaging
modality into account by designing a joint approach that com-
bines deconvolution and multiview reconstruction in a sin-
gle model. We employ a second order regularizer based on
the penalization of the nuclear norm of the Hessian, to fa-
vor piecewise-smooth solutions. To cope with the compu-
tational issue associated with the high number of views, we
adopt a proximal splitting optimization strategy that we adapt
to the specific structure of our data. The computational cost
of each iteration is independent of the number of input orien-
tations, which is the key point to be able to process large data.
Altogether, this allows us to obtain accurate reconstructions
with high axial resolution. We demonstrate the feasibility of
our approach by extensive performance validation on realistic
simulated data in confocal microscopy. Our work is a proof
of concept and a first step toward the realization of a complete



and practical framework that would include Steps 1) and 2).
More details about our method can be found in a longer ver-
sion of this paper [8].

2. RECONSTRUCTION FROM MULTIPLE POSES

2.1. Model

Consider a 3D micrograph containing a series of randomly
oriented and shifted particle replicates y,, where ¥; € RS is
a vector of pose parameters composed by rotation parameters
0; € R? and translation parameters t; € R>. Let us assume
that the particles have been detected and the pose parameters
are known. The goal is to reconstruct the model x of the par-
ticle with high isotropic resolution.

We consider the case of confocal imaging, for which the
image-acquisition process can be modeled as the convolution
of the underlying signal with a PSF denoted by h. Thus, we
have at pixel p in the image domain

wo.(p) = [ hla) a(Ro(p—a) ) da. (D)

where Rg, € R3*3 is the rotation matrix with angular param-
eters 0;. After alignment of the observed particles, (1) can be
rewritten, with changes of variables:

yo.(Rg, (P —t1)) =

i

/R h(Ryla)s(p—q)da. @)

In a discrete setting, assuming that all images contain M pix-
els, we denote y; € RM the observation vector corresponding
to the discretization of yg,(Rg ' (- — t;)), Hy, € RM*M the
convolution matrix of h(Rgil‘), and x € RM the unknown
image in vector form. The discretization of (2) leads to

yi = Hy, x. (3)

2.2. Reconstruction problem

We formulate the reconstruction problem as the following
maximum a posteriori (MAP) estimation:

N
- A
% = arg min S " llyi — o x[3 + 6(0)

M
x€eRY i=1

“

where ¢(x) is a regularization term, N is the number of par-
ticles, and A > 0 is a tradeoff parameter. The quadratic pe-
nalization in the data term reflects the assumption of additive
Gaussian noise, and the solution is imposed to belong to Rf‘f .

We adopt a second order regularization strategy involving
the discrete Hessian operator H : RM — RM*3xX3 35 de-
fined in [9]. The nuclear norm of a matrix X is defined as
IX|Ix = Zfil |o;|, where o is the i'"* singular value of X.
Our regularizer is then given by

M
¢(x) = | Hx|1x =D [[Hxillw- ©)

i=1
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Singular values of the Hessian can be interpreted as lo-
cal measures of curvature, and ¢; penalization promotes
piecewise-smooth (opposed to piecewise-constant) solutions.

2.3. Minimization

The main issue in the optimization stage is to be able to han-
dle a large amount of 3D observations at a reasonable com-
putational cost. Our solution involves the decomposition of
the original problem into efficiently solvable sub-problems,
via the alternating-direction method of multipliers (ADMM)
[10, 11], which has become very popular in the field. We
first reformulate (4) as a constrained optimization problem by
introducing splitting variables u; and us, respectively associ-
ated to the regularization term and the positivity constraint:

N
A 2

Jmin 5 ; lyi = Ho.x[l5 + g(u), st. u=Ax, (6)
where u = [uj,us] ", A = [#H,I]T with I the identity ma-
trix, and g(u) = [juy|1, + ey (uz) whit tpyr the indicator

function of Rf. The augmented-Lagrangian formulation of
the problem (6) is then

N
A
Lutewa) =5 3 lyi — Hoxl3 + g(u)

i=1

(N
+a’ (u=-Ax) + Fllu—Ax]3,

where @ = [, o] T is the Lagrange multiplier with oy €
R3M oy € RM, and 1 is the parameter associated to the
quadratic penalty. Problem (4) is then solved by the following
alternated updates of the variables:

k+1

X = arg min L, (x, u”, ak) 8)
xERM

u* = arg min L,(x"™, u, a¥) )
UG]RALI\J

ot = af 4 p(AxFTE —uhtl), (10)

The two components of u are independent in the subprob-
lem (9), so that the minimization w.r.t. the two variables can
be performed separately. The update of u; amounts to the
computation of pixel-wise proximal operators of the nuclear
norm. It can be efficiently computed by singular value thresh-
olding [9]. The update of us is the projection onto the set ]Rf ,
ub ! = max (v4,0), with v = x*1 — (1/p)ab.

The subproblem (8) is a pixelwise quadratic problem solv-
able in closed form as

> -1
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Table 1. Comparison of PSNR (dB) of the reconstructions of
our method with TV and HN regularizations, Deconv/Average, and
Average [5], for 100 orientation angles and several levels of noise.

Volume Centriole [12] Nuclear pore [13]
Noise variance 1 5 10 1 5 10
Average [5] 10.84 10.63  10.50 8.55 8.33 8.32
Deconv/Average | 19.80 18.00 17.71 | 20.28 19.66  18.57
Proposed-TV 23.14 2022 2001 | 2372 2128 20.84
Proposed-HN 23.79 21.10 20.17 | 24.05 21.83 20.92

Most of the computational cost of the algorithm is devoted
to the matrix multiplications by Hgi in (11), summed over
a large number N of particles. The crucial advantage of the
ADMM approach is to decouple these operations from the
iterative updates. The sums can then be computed offline,
which makes the cost of each iteration independent of the
number of orientations.

Another computational issue comes from the fact that
the matrix (LA TA + )\Zil Hgi Hy,) is too large to be
inverted. Therefore, we perform the update (11) efficiently
in the Fourier domain after diagonalization of the block-
circulant the matrices Hy, and D, which leads to

FluaTwt - 2 A, F{H i}
p(F{DH2 + 1)+ A | |F{Hy, }2

Xk+1 _

The terms Zf\;l Hj y; and pu(| F{D}*+I)+X Zfil |F{Hpy, }|
are constant and computed offline. The computational time

of each iteration is then mostly devoted to two FFTs, and the
total number of FFT computations to reconstruct a particle is
2(N + ni + 1), where ny; is the number of iterations of the
ADMM optimization. The time complexity of the algorithm

is thus O(N log(N)), whereas independent deconvolutions
of each particle would require O(N?log(N)).

3. RESULTS

To evaluate the performance of our method, we simulate in-
put particles according to the forward model (3) from Cryo-
EM reconstructions available in the database EMDataBank!
(see Figure la,b,c). In regard of their very high (subnano-
metric) resolution, Cryo-EM reconstructions can be used as
ground truth for fluorescence imaging. We selected the centri-
ole basal body [12] and the nuclear pore [13], which are large
enough to be imaged by a confocal microscope. We compare
our results with those of the only existing competing method
[5], which reconstructs by averaging the input particles. We
also extend the method of [5] by introducing a first step of in-
dependent deconvolutions with total-variation regularization
(TV) of each particle before averaging. We refer to this ex-
tension as Deconv/Average. To evaluate the impact of the

Uhttp://www.emdatabank.org/search.html
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Fig. 1. Visual comparisons of reconstruction results with 100 angles
and noise variance of o2 = 5, in the case of the centriole[12].

Hessian nuclear norm regularization (denoted Proposed-HN),
we compare it with the TV approach (denoted Proposed-TV).

In our experiments, the PSF are generated according to the

Born&Wolf model with the available PSF Generator software

«escribed in [14]. The PSF support in pixels is (69 x 69 x 43)

and the input volume size is (70 x 70 x 35).

The PSNR results reported in Table 1 for 100 angles
and various levels of noise demonstrate the higher accuracy
yielded by our joint approach in all the cases. Visual results in
Figure 1 highlights the better preservation of structure details
by our method, and the isotropic resolution of the results. The
superiority of the Hessian nuclear norm regularization over
TV can also be clearly observed in Table 1.

The influence of the number of poses on the PSNR of the
reconstructions is reported in Figure 2 for our method and De-
conv/Average. Increasing the number of poses improves the
accuracy of both methods. However, the PSNR of our method
grows significantly faster than the one of Deconv/Average.
This is a very important point in practice because it allows
us to reduce the required number of particles, which can fa-
cilitate the preparation of samples for the biologists.

We observe in Figure 3 that the computational time of
our method stays almost constant as the number of poses
increases, whereas it grows much faster in the case of De-
conv/Average. The reason is that the iterative part of our
method, which contains most of the computational cost, does
not depend on the number of poses. For 100 poses, our
method takes 30 s and Deconv/Average takes 29 min. This is
a key result since in practice the reconstruction needs to be
performed several times, alternatively with angles estimation,
which makes the Deconv/Average approach prohibitively
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Fig. 2. Influence of the number of orientations on our method and
Deconv/Average in the case of the centriole [12].
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Fig. 3. Impact of the number of orientations on the computational
time of our method and Deconv/Average in the centriole case [12].

slow in practice. The feasibility of the reconstruction is thus
established by the low computational cost of our method.

4. CONCLUSION

We have proposed a novel approach for reconstructing fluo-
rescence volumes with isotropic high resolution. We exploit
multiple poses of particle replicates to combine multiview re-
construction and deconvolution in the same model. The com-
putational cost of the iterative part of our optimization ap-
proach does not depend on the number of input volumes. This
allows us to tackle the challenge of processing a large amount
of 3D data in low computational time. Experimental results
demonstrate the feasibility of our scheme by achieving accu-
rate reconstructions in realistic situations, and outperforming
similar approaches based on averaging in all situations.
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