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DeepImageJ is a user-friendly solution that enables the 
generic use of pre-trained deep learning models for biomedi-
cal image analysis in ImageJ. The deepImageJ environment 
gives access to the largest bioimage repository of pre-trained 
deep learning models (BioImage Model Zoo). Hence, nonex-
perts can easily perform common image processing tasks in 
life-science research with deep learning-based tools includ-
ing pixel and object classification, instance segmentation, 
denoising or virtual staining. DeepImageJ is compatible with 
existing state of the art solutions and it is equipped with util-
ity tools for developers to include new models. Very recently, 
several training frameworks have adopted the deepImageJ 
format to deploy their work in one of the most used softwares 
in the field (ImageJ). Beyond its direct use, we expect deepIm-
ageJ to contribute to the broader dissemination and reuse of 
deep learning models in life sciences applications and bioim-
age informatics.

Deep learning (DL) models have a profound impact on a 
wide range of imaging applications, including life sciences1,2. 
Unfortunately, their accessibility is often riddled with technical 
challenges for the nonexpert user. As most DL methods are avail-
able as source code, running them requires setting up a sophisti-
cated software and hardware environment. The increasing use of 
image analysis workflows in biomedical research1 and the willing-
ness to disseminate trained DL models have pushed computer sci-
entists to design more user-friendly solutions3–5. Currently, there 
exists an increasing number of active developer teams address-
ing this problem with different solutions: the CSBDeep team6, 
the Ozcan Research Group, DeepClass4Bio7, Ilastik8, ImJoy9, 
ZeroCostDL4Mic10, YAPIC11 and DeepTrack12. The CSBDeep team 
distributes their DL workflows via an ImageJ3,13 toolbox6, which 
lets nonexpert users perform a variety of microscopy image anal-
ysis using trained DL models. Through their plugin, it is possible 
to train denoising models in a local machine without any previous 
programming skills. The StarDist plugin14 makes the most power-
ful tool for cell nuclei detection and segmentation in microscopy 
images accessible in ImageJ. Similarly, the Ozcan Research team has 
often made its trained models available in ImageJ15. DeepClass4Bio 
is an API to use image classification tasks in ImageJ using trained 
DL models. The Ilastik team has an early release of a neural net-
work classification workflow equipped with both inference and 
training functionalities. ImJoy9 is particularly suited for building 
and sharing interactive web interfaces for DL-based image analysis. 

ZeroCostDL4Mic10 utilizes the free cloud GPU resources provided 
by Google Colaboratory and provides extensive documentation in 
a browser-based notebook interface, allowing nonexperts to train 
DL models such as a generic segmentation model (for example, the 
well-known U-Net16) or the super-resolution microscopy model 
(for example, DeepSTORM17). YAPIC is a Python library to train a 
U-Net on pixel classification and make predictions by writing few 
plain command lines. DeepTrack combines browser user interfaces 
to train different models in a noncoding fashion, together with a 
set of Python notebooks that support the easy training and use of 
their models.

The previously mentioned tools have started to boost the use 
of DL solutions for biomedical image analysis tasks. However, a 
user-friendly tool to disseminate trained models for image pro-
cessing in a noncoding fashion and with a unified format is still 
missing1,18. We present deepImageJ, an open-source environment 
for ImageJ, which is the de facto standard image processing soft-
ware in life sciences3. The open-source package ImageJ gives biolo-
gists access to a wide variety of user-friendly image analysis tools 
through third-party plugins and macros (Fig. 1). It contains most 
of the standard bioimage analysis methods and is continuously 
updated with the most recent techniques. The current integration of 
deepImageJ further contributes to the ImageJ ecosystem. Since the 
first release of deepImageJ, the framework has been widely used by 
developers to share their work with collaborators in the life sciences 
domain or to provide an easy way to test a DL solution for their bio-
logical imaging application (Fig. 1). DeepImageJ runs a variety of 
third-party models from the main DL libraries that are powering the 
DL framework (TensorFlow and PyTorch). Installing deepImageJ is 
straightforward compared to that of common Python environments 
thanks to the one-click installation facilitated by the ImageJ updates 
manager. DeepImageJ is designed as a standard ImageJ plugin with 
the technicalities hidden behind the user-friendly interface. It runs 
locally without the need of uploading data, thus providing better 
privacy protection.

DeepImageJ operates with several types of models for image 
processing tasks such as image-to-vector (for example, image clas-
sification), image-to-image (for example, image segmentation, 
deconvolution, virtual labeling, super-resolution) or pyramidal fea-
ture pooling networks (for example, region proposal networks for 
object detection, panoptic segmentation) (Fig. 2). Succinctly, the 
deepImageJ format is as general as possible so that the use of dif-
ferent models does not rely on any technical configuration or work 
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(that is, utilizing one model or another, makes no difference to the 
user). The latter goes in hand with the recent BioImage Model Zoo 
(https://bioimage.io/) initiative, which is meant to unify the effort of 
the biomedical image analysis community to make accessible, open 
and usable the trained DL model through different consumers. As 
part of the initiative, we are building an open-source repository 
to deliver trained DL models, notebooks and datasets in a stan-
dard manner, resulting in a combined effort for the democratiza-
tion of DL in the biomedical image analysis field. The deepImageJ  

format follows the specifications of the BioImage Model Zoo, allow-
ing interoperability between the community partners software and 
seamless access to the model repository.

The main plugin of the deepImageJ toolbox, DeepImageJ_Run, 
allows the execution of DL models in one click. It ensures the 
consumption of pre-processing, inference and post-processing as 
detailed by the model developer (Fig. 2). The deepImageJ toolbox 
is complemented by three companion plugins for model bundling, 
model installation and validation of the results (Methods).
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Fig. 1 | DeepImageJ environment and scope. DeepImageJ targets model developers and nonexpert biomedical image analysts. a, Developers train a DL 
model usually in Python and bundle it using the DeepImageJ_Build_Bundled Model plugin in ImageJ. The bundled model follows the BioImage Model Zoo 
format: it contains the trained model architecture and weights, pre and post-processing routines, testimonial images for reproducibility purposes and a 
specifications file. The latter gathers all the technicalities that allow cross-compatibility among the BioImage Model Zoo consumer software, deepImageJ 
among others. The bundled model package can be disseminated through the public model repository in the cloud synchronized with the BioImage Model 
Zoo, or directly sending it to the final user through a private communication channel. b, Life scientists can run a deepImageJ model online using ImJoy, or 
install it locally. The model can be used as any regular ImageJ plugin to analyze images. The deepImageJ model package allows the automatic processing of 
any input image and is compatible with outputs of different formats and dimensions such as images or tables. The DeepImageJ_Validate plugin provides a 
set of evaluation measures to compare the resulting image with a ground-truth image provided by the user.
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To facilitate deepImageJ model testing, we ported DeepImageJ_
Run plugin to Javascript such that it can run in a web browser via 
ImageJ.JS (https://ij.imjoy.io). This enables the integration with 
ImJoy, which allows testing models in the BioImage Model Zoo 
website without downloading any model or installing the plugin 
locally. This is especially helpful for users to compare and select 
models based on their data, making the dissemination of DL mod-
els more effective.

When running DL models, it is crucial to pre-process the input 
image so the model is fed with an image that has the same precise 
features as the ones employed in the training process (for example, 
data normalization pre-processing). To handle this, deepImageJ 
gives the user the flexibility to run pre and post-processing rou-
tines written in an ImageJ scripting language: ImageJ macro or Java 
plugins. The latter is the main bridge between com (Fig. 2).

Although we made every effort to lay solid foundations to use 
the deepImageJ toolbox, the correctness of a DL model’s output 
ultimately depends on its appropriate usage. Hence, it is criti-
cal that the user pays close attention to the information given 
by the DL developers before running a model, and that all the 
results obtained are thoroughly inspected. For this, users can take 
advantage of DeepImageJ_Validate to assess the accuracy of the 
results whenever ground-truth data are available. Unlike in other 
computer vision niches, most DL models for microscopy image  

processing still lack the ability to generalize across datasets18. While 
we are confident about the future developments to get general and 
data cross-compatible models, it is currently recommended to fine 
tune the DL models. Such (re)training and evaluation of a model is 
only possible when there is ground-truth data, proper infrastruc-
ture (software and hardware) and, most often, knowledge about 
machine learning. Because model training and fine tuning are out 
of the scope of deepImageJ, we would like to highlight already exist-
ing user-friendly tools such as Ilastik, ImJoy, ZeroCostDL4Mic 
or YAPIC, which can perform such tasks. The efforts to ensure 
cross-compatibility with the above tools to provide combined solu-
tions are ongoing. For example, well-established DL models for bio-
medical image processing such as the U-Net16, DeepSTORM17 and 
StarDist14 can be trained and automatically exported to deepImageJ 
using ZeroCostDL4Mic. The YAPIC team has integrated a new fea-
ture in the software to export any of their models into the deepIm-
ageJ format. We encourage all users with a potential need for fine 
tuning their models to integrate these combinations in their pipe-
lines. Moreover, such combinations are becoming popular in bioim-
age analysis as they exploit the computational capacity of Python 
easily to (re)train DL models and the flexibility given in tools such 
as ImageJ to concatenate different image processing steps.

The use of trained DL models without a deeper understanding 
of the method could potentially become the source of unreliable 
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Fig. 2 | Functionalities of deepImageJ. a, DeepImageJ_Run plugin processes an input image with a locally installed deepImageJ compatible trained model. 
It automatically carries out the pre-processing, inference and post-processing steps required and written previously by a developer. b, The DeepImageJ_
Run plugin can be called from ImageJ macros, so locally stored image datasets can be automatically processed. Furthermore, the use of deepImageJ 
trained models can be integrated into extended bioimage analysis pipelines. c, DeepImageJ targets those DL models that have an image as input and it is 
compatible with outputs of different formats and dimensions. Therefore, it is suitable for tasks such as density estimation (https://github.com/LEB-EPFL/
DEFCoN-ImageJ), super-resolution17, two-dimensional (2D) and three-dimensional (3D) segmentation16,19, instance segmentation20, image classification 
(https://www.isic-archive.com/) and virtual staining15.
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results. Aware of this, we remark the very recent effort made by 
the community to define and recommend good praxis in bioim-
age analysis, and more specifically to train life scientists on both 
the promises and risks of using this new technique. We trust in the 
potential of deepImageJ as a user-friendly tool to bridge the cur-
rent gap between computer vision and biomedical image analysis. 
Moreover, the deepImageJ environment is highly suitable for educa-
tional activities due to its easy installation and model execution, and 
the flexibility achieved thanks to access to all the ImageJ resources.

The experience gathered through the development of deepIm-
ageJ has seeded the scientific collaborations among different actors 
involved in the bioimage analysis field and set a roadmap for future 
developments, with key aspects being interoperability and smart 
guidance towards automated machine learning (AutoML)1. Because 
DL models consist of numerous layers and operations, using them 
to process images requires considerable memory consumption. 
DeepImageJ integrates a smart feature that allows adjusting the 
patch size when possible to smaller image size and to complete the 
tiling strategy automatically without further changes in the model 
specifications. Nonetheless, further improvements can still be made 
to design an intelligent memory management strategy for running 
the DL models, such as adjusting the input patch shape automati-
cally according to the user’s resources. DeepimageJ, for example, 
provides relevant information for the user to know how much 
memory the model execution will consume and, therefore, to deter-
mine if the model can be used in a certain machine. However, it 
will not set up the model execution configuration according to the 
memory capacity. A straightforward example is the smart configu-
ration of the tiling strategy considering the capacity of the user’s 
machine. Yet another challenge is the development of personalized 
guides based on the user’s data to choose the best-suited model and 
proper fine tuning strategies. So, it is that AutoML could turn into 
the new hot topic in bioimage analysis.

Notwithstanding the current tendency to build general mod-
els for image processing tasks18, there is a pressing need to release 
user-friendly and model-adjustable environments to run DL mod-
els1,4,18. The latter goes in hand with a higher-level target of reduc-
ing human interaction in the routinely performed bioimage analysis 
tasks. That said, deepImageJ is a contribution to the field for the 
accessibility of DL in bioimage analysis and the dissemination of 
DL models in a standardized manner. The deepImageJ environ-
ment facilitates the work exchange between developers and end 
users, which the ongoing integration of deepImageJ in the BioImage 
Model Zoo seeks to reinforce. Therefore, we expect deepImageJ to 
enlighten the work of life sciences researchers and to become yet 
another standard open-source tool for the dissemination of DL 
image processing models.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
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Methods
In the following lines technical descriptions and software requirements are 
provided. The ImageJ user guide for this version of the plugin (deepImageJ v.2.1.0) 
is given in the Supplementary Material. As deepImageJ is an ongoing project, we 
strongly recommend users to check the documentation at deepImageJ’s website 
(https://deepimagej.github.io/deepimagej/) and the plugin’s Wiki in GitHub 
(https://github.com/deepimagej/deepimagej-plugin/wiki).

DeepImageJ plugins. The main plugin of the deepImageJ toolbox, DeepImageJ_
Run, allows the execution of DL models for an image processing task in a few clicks 
without DL expertise or programming skills. During this process, users have access 
to a description and the complete documentation of the trained model. If a GPU is 
locally available and set up following the guidelines in the website of deepImageJ, 
the plugin will automatically connect with it. Image-to-image processing tasks 
such as segmentation, denoising, deconvolution or super-resolution need a tiling 
strategy when using DL models (Methods). The plugin guides the user through 
this step by recommending a specific tile size whenever possible. In addition, the 
plugin ensures the consumption of pre-processing, inference and post-processing 
routines as detailed by the model developer (see Fig. 2). While the process is 
automatically executed, the plugin informs the user about each performed step. 
This provides flexibility to users who want to test different model configurations 
and understand more in depth the entire process. Moreover, DeepImageJ_Run can 
be called from the popular scripting ImageJ macro, which allows the use of the 
models in larger image processing workflows. This feature facilitates a variety of 
setups such as the automatic processing of a locally stored set of raw microscopy 
images21 (Fig. 2).

The deepImageJ toolbox is complemented by three companion plugins for 
model bundling, model installation and validation of the results:
•	 DeepImageJ_Build_BundledModel guides model developers to bundle their 

trained model and provide all the necessary information (meta-data) for 
its easy use in ImageJ (Methods). The plugin creates the package required 
to upload the model to the online repository (Fig. 2). Alternatively, model 
developers can use the pydeepimagej (https://github.com/deepimagej/pydeep-
imagej) library to create the bundled models directly from the source code in 
Python.

•	 DeepImageJ_Install_Model allows the BioImage Model Zoo repository to be 
accessed to install a model stored in the cloud (Fig. 2).

•	 DeepImageJ_Validate tool gives access to a variety of perceptual and segmen-
tation validation measures that guide the user through an evaluation of the 
obtained result (Fig. 2).

Software/network compatibility. DeepImageJ is compatible with both Fiji22, 
ImageJ13 and ImageJ2 (ref. 23). It is self-sufficient on any operating system: MacOS, 
Linux and Windows and on 64-bit operating systems (32-bit operating systems are 
not supported). It supports TensorFlow models until version 1.15, and PyTorch 
1.6. Keras version 2 or lower is also supported as long as the models are compatible 
with Tensorflow version 1.15 or lower. The same as CSBDeep6, deepImageJ uses 
a TensorFlow Java API manager to ensure TensorFlow version compatibiltiy. 
The latter can be upgraded in ImageJ2 through the ImageJ-TensorFlow manager 
(https://github.com/imagej/imagej-tensorflow), developed by Curtis Rueden and 
Deborah Schmidt. The Deep Java Library (https://djl.ai/) ensures the compatibility 
with PyTorch. Nonetheless, those users with a Windows operating system need to 
install Visual Studio (https://visualstudio.microsoft.com/) for the deployment of 
this library in ImageJ/Fiji.

The Java libraries used to load TensorFlow and PyTorch models point to the 
same source code as the respective Python packages. This implies that regardless 
the code (Python or Java), the same results and execution times are ensured.

DeepImageJ bundled models. DeepImageJ_Run processes folders (models) that 
contain one of the following:
•	 saved_model.pb and variables: TensorFlow model in Protocol Buffer format 

(saved bundled model).
•	 pytorch_model.pt: PyTorch model stored in TorchScript format.
•	 and all the following files:

•	 file (.ijm/.jar/.class): ImageJ macros or Java code written by the model’s author 
for the pre and post-processing. Ready to use ImageJ macros can be found at 
https://github.com/deepimagej/imagej-macros.

•	 exampleImage.tiff: Example of input of the image.
•	 result(.tif/.csv): Output of the model after the post-processing.
•	 model.yaml: Bioimage Model Zoo configuration specifications, containing 

details about the related publication and technical characteristics of the model.
All previous files are created by the author of the model, which makes the 

bundled model self-sufficient. Their content is described in the next paragraph. 
Further details about loading bundled models in deepImageJ are given in the 
Supplementary Material.

Any DL model is determined by a graph (the architecture of the network) and 
its weights (specific values for all the parameters in the network obtained after 

training). The TensorFlow’s Java API is only compatible with the SavedModel 
format, which is obtained using an in-house Python routine (https://github.
com/deepimagej/python4deepimagej/). Namely, the deepImageJ models are 
defined by a protocol buffer format file (called saved_model.pb) that contains the 
architecture of the model and a series of text files storing the weights that are kept 
in a folder called variables. PyTorch models should be exported in TorchScript 
format (pytorch_model.pt), which contains both the architecture and the weights 
compressed in a single file. ImageJ macros (.ijm) or compiled Java code (.jar/.
class) are optional pre and post-processing steps. The pre-processing routine 
transforms the image into a specific input type for which the model was trained. 
Typical pre-processing operations are normalization of the pixel intensity values, 
change of the bit depth and image resizing. The post-processing routine curates 
the output of the network. Optional post-processing operators are, for example, 
thresholding, resizing or extraction of objects features. At least two files, an input 
image (exampleImage.tiff) and an output result (.tif/.csv), are also stored in each of 
the bundled model folders to facilitate model testing.

The configuration file (model.yaml) has descriptive information about 
the model and it is synchronized with the Bioimage Model Zoo configuration 
specifications (https://github.com/bioimage-io/configuration):
•	 General information: Name of the author(s), title, description, reference to the 

publication or GitHub repository, license and framework.
•	 Technical characteristics of the model: Input and output specifications 

(dimensions shape, size and axis order), pre and post-processing information 
and model format.

•	 DeepImageJ specific information: Example image name and pixel size, Tensor-
Flow signature name, pre and post-processing file names, minimum amount 
of memory required to process the example input image, estimated execution 
time on the PC.

Input and output size calculations: tiling strategy. The model developer needs 
to specify the following information when uploading their convolutional neural 
network (CNN) model:
•	 Q, I: Whether the input size of the model (Q) is predetermined or not. If it is 

predetermined, Q needs to be provided, and it will be compared with the size of 
the image to process (I). Q corresponds to the field called shape in the model.
yaml.

•	 m,s: If the network has an auto-encoder architecture, the size of each dimension 
of the input image has to be a multiple of a minimum size s defined as s = pd 
where d is the number of poolings (down-sampling operations) and p their size. 
In addition, the input should have a minimum size m so the shape of the tensor 
that will enter the model satisfies the equation

Q = m + ns, n ∈ N
∗ (1)

m and s correspond to the fields called min and step, respectively, in the model.
yaml.
•	 P: To preserve the input size at the output, convolutions are usually calculated 

using zero padding boundary conditions (Supplementary Fig. 1) is an illus-
tration of the 2D case). Namely, additional void pixel values are added along 
the borders of the image. Hence, the size (per dimension) of the valid domain 
of the output is given by R = Q − 2P with Q, the model input size and P, the 
size of the network padding, sometimes denoted as halo. The size of the pad-
ding is equivalent to the receptive field of one pixel in the CNN. For a sym-
metrical encoder-decoder architecture, namely, the same number of down and 
up-samplings. It can be computed as

P = 2p
(

l
( kp − 1

2

))

+ 2
p−1
∑

i=0
2i
(

l
(

ki − 1
2

))

(2)

where ki is the kernel size for each convolutional layer, p is the number of poolings 
and l is the number of convolutional layers at each level of the encoder-decoder. 
Usually, ki is an odd number. If the kernel is not square, then P and R have different 
values on each dimension. P is given in the field halo of the model.yaml.

To handle input images with a large size, deepImageJ follows a common 
strategy called tiling:
•	 If the network has not a predetermined input size (Q), the algorithm calculates 

what is the smallest size t that satisfies equation (1) and is still larger or equal 
to the size of the input image I and the total padding 2P:

ts = argmin
t=m+ns,n∈N∗

{t ≥ (I + 2P)} (3)

Then, the image is augmented by mirroring along the borders up to a size t per 
dimension, and it is processed. Finally, the output is cropped to the initial size 
I. See Supplementary Fig. 1 for an illustration.

•	 If the network input size (Q) is predetermined, then the algorithm compares 
the size of the image (I) with it taking into account the padding (P). If it is 
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smaller (I + 2P ≤ Q), then the image is augmented by mirroring until the 
desired size Q is reached. If the opposite is true (I + 2P > Q), the optimal num-
ber of tiles to process (N) is calculated as follows:

N = ceil
(

I
Q − 2P

)

(4)

where the function ceil(x) outputs the smallest integer number that is equal to 
or larger than x. Note that N can vary on each dimension. Then, the image will 
be covered by patches of size

T = floor
(

I
N

)

(5)

where the function floor(x) outputs the largest integer number that is equal 
to or smaller than x and T ≤ (Q − 2P). From each processed patch of size Q, a 
patch of size T is cropped and placed accordingly to reconstruct a valid output 
(tiling strategy). The patches along the borders are filled by mirroring as 
shown in Supplementary Fig. 1. As the quotient in equation (5) may not be an 
entire number, the last patch on each dimension has exactly size I − (N − 1)T.

Both the input size of the network (Q) and the padding of the CNN (P) are 
critical parameters for good results and they are directly related to the time spent 
by the plugin to process one image. Large input images and deeper networks that 
have a larger receptive field imply longer computations.

The current deepImageJ version also handles inputs and outputs of different 
sizes, such as, for example, the case of models for super-resolution. To determine 
the shape of the output image given a certain input image, we do

Q̃ = aQ + 2b. (6)

where a and b are the scale and offset parameters, respectively, given in the model.
yaml file, Q the shape of the input image and Q̃ the shape of the output image. 
Likewise, in the model.yaml file, the reference image for Q needs to be indicated. 
The latter is given in the field reference_input.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data that were used to generate the figures in this paper are available at https://
deepimagej.github.io/deepimagej/.

Code availability
We used TensorFlow and PyTorch libraries for Python to create the in-house 
models shown in the figures. The deepImageJ plugin can be used in ImageJ and 
Fiji. The source code for the plugin together with its releases is provided at https://
github.com/deepimagej/deepimagej-plugin. The pydeepimagej Python package 
is provided at https://github.com/deepimagej/pydeepimagej. The ImageJ macro 
files can be accessed at https://github.com/deepimagej/imagej-macros. All source 
code is under a BSD 2-Clause License. The web page https://deepimagej.github.
io/deepimagej/provides free access to the ImageJ plugin, along with the bundled 
models and user guide for image processing.
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