
Brief Communication
https://doi.org/10.1038/s41592-021-01262-9

1Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón,
Madrid, Spain. 2Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH – Royal Institute of Technology,
Stockholm, Sweden. 3EPFL Center for Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 4Biomedical Imaging Group
and EPFL Center for Imaging, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. 5These authors contributed equally:
E. Gómez-de-Mariscal, C. García-López-de-Haro. ✉e-mail: mamunozb@ing.uc3m.es; daniel.sage@epfl.ch

DeepImageJ is a user-friendly solution that enables the
generic use of pre-trained deep learning models for biomedi-
cal image analysis in ImageJ. The deepImageJ environment
gives access to the largest bioimage repository of pre-trained
deep learning models (BioImage Model Zoo). Hence, nonex-
perts can easily perform common image processing tasks in
life-science research with deep learning-based tools includ-
ing pixel and object classification, instance segmentation,
denoising or virtual staining. DeepImageJ is compatible with
existing state of the art solutions and it is equipped with util-
ity tools for developers to include new models. Very recently,
several training frameworks have adopted the deepImageJ
format to deploy their work in one of the most used softwares
in the field (ImageJ). Beyond its direct use, we expect deepIm-
ageJ to contribute to the broader dissemination and reuse of
deep learning models in life sciences applications and bioim-
age informatics.

Deep learning (DL) models have a profound impact on a
wide range of imaging applications, including life sciences1,2.
Unfortunately, their accessibility is often riddled with technical
challenges for the nonexpert user. As most DL methods are avail-
able as source code, running them requires setting up a sophisti-
cated software and hardware environment. The increasing use of
image analysis workflows in biomedical research1 and the willing-
ness to disseminate trained DL models have pushed computer sci-
entists to design more user-friendly solutions3–5. Currently, there
exists an increasing number of active developer teams address-
ing this problem with different solutions: the CSBDeep team6,
the Ozcan Research Group, DeepClass4Bio7, Ilastik8, ImJoy9,
ZeroCostDL4Mic10, YAPIC11 and DeepTrack12. The CSBDeep team
distributes their DL workflows via an ImageJ3,13 toolbox6, which
lets nonexpert users perform a variety of microscopy image anal-
ysis using trained DL models. Through their plugin, it is possible
to train denoising models in a local machine without any previous
programming skills. The StarDist plugin14 makes the most power-
ful tool for cell nuclei detection and segmentation in microscopy
images accessible in ImageJ. Similarly, the Ozcan Research team has
often made its trained models available in ImageJ15. DeepClass4Bio
is an API to use image classification tasks in ImageJ using trained
DL models. The Ilastik team has an early release of a neural net-
work classification workflow equipped with both inference and
training functionalities. ImJoy9 is particularly suited for building
and sharing interactive web interfaces for DL-based image analysis.

ZeroCostDL4Mic10 utilizes the free cloud GPU resources provided
by Google Colaboratory and provides extensive documentation in
a browser-based notebook interface, allowing nonexperts to train
DL models such as a generic segmentation model (for example, the
well-known U-Net16) or the super-resolution microscopy model
(for example, DeepSTORM17). YAPIC is a Python library to train a
U-Net on pixel classification and make predictions by writing few
plain command lines. DeepTrack combines browser user interfaces
to train different models in a noncoding fashion, together with a
set of Python notebooks that support the easy training and use of
their models.

The previously mentioned tools have started to boost the use
of DL solutions for biomedical image analysis tasks. However, a
user-friendly tool to disseminate trained models for image pro-
cessing in a noncoding fashion and with a unified format is still
missing1,18. We present deepImageJ, an open-source environment
for ImageJ, which is the de facto standard image processing soft-
ware in life sciences3. The open-source package ImageJ gives biolo-
gists access to a wide variety of user-friendly image analysis tools
through third-party plugins and macros (Fig. 1). It contains most
of the standard bioimage analysis methods and is continuously
updated with the most recent techniques. The current integration of
deepImageJ further contributes to the ImageJ ecosystem. Since the
first release of deepImageJ, the framework has been widely used by
developers to share their work with collaborators in the life sciences
domain or to provide an easy way to test a DL solution for their bio-
logical imaging application (Fig. 1). DeepImageJ runs a variety of
third-party models from the main DL libraries that are powering the
DL framework (TensorFlow and PyTorch). Installing deepImageJ is
straightforward compared to that of common Python environments
thanks to the one-click installation facilitated by the ImageJ updates
manager. DeepImageJ is designed as a standard ImageJ plugin with
the technicalities hidden behind the user-friendly interface. It runs
locally without the need of uploading data, thus providing better
privacy protection.

DeepImageJ operates with several types of models for image
processing tasks such as image-to-vector (for example, image clas-
sification), image-to-image (for example, image segmentation,
deconvolution, virtual labeling, super-resolution) or pyramidal fea-
ture pooling networks (for example, region proposal networks for
object detection, panoptic segmentation) (Fig. 2). Succinctly, the
deepImageJ format is as general as possible so that the use of dif-
ferent models does not rely on any technical configuration or work

DeepImageJ: A user-friendly environment to run
deep learning models in ImageJ
Estibaliz Gómez-de-Mariscal   1,5, Carlos García-López-de-Haro1,5, Wei Ouyang2, Laurène Donati3,
Emma Lundberg   2, Michael Unser4, Arrate Muñoz-Barrutia   1 ✉ and Daniel Sage   4 ✉

Nature Methods | VOL 18 | October 2021 | 1192–1195 | www.nature.com/naturemethods1192

mailto:mamunozb@ing.uc3m.es
mailto:daniel.sage@epfl.ch
http://orcid.org/0000-0003-2082-3277
http://orcid.org/0000-0001-7034-0850
http://orcid.org/0000-0002-1573-1661
http://orcid.org/0000-0002-1150-1623
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-021-01262-9&domain=pdf
http://www.nature.com/naturemethods

Brief CommunicationNaTure MeTHoDs

(that is, utilizing one model or another, makes no difference to the
user). The latter goes in hand with the recent BioImage Model Zoo
(https://bioimage.io/) initiative, which is meant to unify the effort of
the biomedical image analysis community to make accessible, open
and usable the trained DL model through different consumers. As
part of the initiative, we are building an open-source repository
to deliver trained DL models, notebooks and datasets in a stan-
dard manner, resulting in a combined effort for the democratiza-
tion of DL in the biomedical image analysis field. The deepImageJ

format follows the specifications of the BioImage Model Zoo, allow-
ing interoperability between the community partners software and
seamless access to the model repository.

The main plugin of the deepImageJ toolbox, DeepImageJ_Run,
allows the execution of DL models in one click. It ensures the
consumption of pre-processing, inference and post-processing as
detailed by the model developer (Fig. 2). The deepImageJ toolbox
is complemented by three companion plugins for model bundling,
model installation and validation of the results (Methods).

DeepImageJ users

RunInstall Validate

Image Image

TableImage
DeepImageJ

a

b

Model developers

Ground
truth

Output

Configuration

Benign
nevus

Malignant
melanoma

Class

Seborrheic
keratosis

0.98

0.01

0.01

Score

Validation
measures

Raw model

Bundled model

Pre-processing

Post-processing

Example image

Trained model

Result

Bioimage.IO

ImJoy

Overlap

Fig. 1 | DeepImageJ environment and scope. DeepImageJ targets model developers and nonexpert biomedical image analysts. a, Developers train a DL
model usually in Python and bundle it using the DeepImageJ_Build_Bundled Model plugin in ImageJ. The bundled model follows the BioImage Model Zoo
format: it contains the trained model architecture and weights, pre and post-processing routines, testimonial images for reproducibility purposes and a
specifications file. The latter gathers all the technicalities that allow cross-compatibility among the BioImage Model Zoo consumer software, deepImageJ
among others. The bundled model package can be disseminated through the public model repository in the cloud synchronized with the BioImage Model
Zoo, or directly sending it to the final user through a private communication channel. b, Life scientists can run a deepImageJ model online using ImJoy, or
install it locally. The model can be used as any regular ImageJ plugin to analyze images. The deepImageJ model package allows the automatic processing of
any input image and is compatible with outputs of different formats and dimensions such as images or tables. The DeepImageJ_Validate plugin provides a
set of evaluation measures to compare the resulting image with a ground-truth image provided by the user.

Nature Methods | VOL 18 | October 2021 | 1192–1195 | www.nature.com/naturemethods 1193

https://bioimage.io/
http://www.nature.com/naturemethods

Brief Communication NaTure MeTHoDs

To facilitate deepImageJ model testing, we ported DeepImageJ_
Run plugin to Javascript such that it can run in a web browser via
ImageJ.JS (https://ij.imjoy.io). This enables the integration with
ImJoy, which allows testing models in the BioImage Model Zoo
website without downloading any model or installing the plugin
locally. This is especially helpful for users to compare and select
models based on their data, making the dissemination of DL mod-
els more effective.

When running DL models, it is crucial to pre-process the input
image so the model is fed with an image that has the same precise
features as the ones employed in the training process (for example,
data normalization pre-processing). To handle this, deepImageJ
gives the user the flexibility to run pre and post-processing rou-
tines written in an ImageJ scripting language: ImageJ macro or Java
plugins. The latter is the main bridge between com (Fig. 2).

Although we made every effort to lay solid foundations to use
the deepImageJ toolbox, the correctness of a DL model’s output
ultimately depends on its appropriate usage. Hence, it is criti-
cal that the user pays close attention to the information given
by the DL developers before running a model, and that all the
results obtained are thoroughly inspected. For this, users can take
advantage of DeepImageJ_Validate to assess the accuracy of the
results whenever ground-truth data are available. Unlike in other
computer vision niches, most DL models for microscopy image

processing still lack the ability to generalize across datasets18. While
we are confident about the future developments to get general and
data cross-compatible models, it is currently recommended to fine
tune the DL models. Such (re)training and evaluation of a model is
only possible when there is ground-truth data, proper infrastruc-
ture (software and hardware) and, most often, knowledge about
machine learning. Because model training and fine tuning are out
of the scope of deepImageJ, we would like to highlight already exist-
ing user-friendly tools such as Ilastik, ImJoy, ZeroCostDL4Mic
or YAPIC, which can perform such tasks. The efforts to ensure
cross-compatibility with the above tools to provide combined solu-
tions are ongoing. For example, well-established DL models for bio-
medical image processing such as the U-Net16, DeepSTORM17 and
StarDist14 can be trained and automatically exported to deepImageJ
using ZeroCostDL4Mic. The YAPIC team has integrated a new fea-
ture in the software to export any of their models into the deepIm-
ageJ format. We encourage all users with a potential need for fine
tuning their models to integrate these combinations in their pipe-
lines. Moreover, such combinations are becoming popular in bioim-
age analysis as they exploit the computational capacity of Python
easily to (re)train DL models and the flexibility given in tools such
as ImageJ to concatenate different image processing steps.

The use of trained DL models without a deeper understanding
of the method could potentially become the source of unreliable

Input image

DeepImageJ run

Image analysis with deepImageJ

Bioimage analysis tasks

Processed imagesInput images

3D segmentation2D segmentationSuperresolutionDensity map estimation

Instance segmentation Virtual staining

Pre-processing Inference Post-processing

Image classification

Benign nevus

Malignant melanoma

Class

Seborrheic keratosis

0.98

0.01

0.01

Score

a

c

b

Fig. 2 | Functionalities of deepImageJ. a, DeepImageJ_Run plugin processes an input image with a locally installed deepImageJ compatible trained model.
It automatically carries out the pre-processing, inference and post-processing steps required and written previously by a developer. b, The DeepImageJ_
Run plugin can be called from ImageJ macros, so locally stored image datasets can be automatically processed. Furthermore, the use of deepImageJ
trained models can be integrated into extended bioimage analysis pipelines. c, DeepImageJ targets those DL models that have an image as input and it is
compatible with outputs of different formats and dimensions. Therefore, it is suitable for tasks such as density estimation (https://github.com/LEB-EPFL/
DEFCoN-ImageJ), super-resolution17, two-dimensional (2D) and three-dimensional (3D) segmentation16,19, instance segmentation20, image classification
(https://www.isic-archive.com/) and virtual staining15.

Nature Methods | VOL 18 | October 2021 | 1192–1195 | www.nature.com/naturemethods1194

https://ij.imjoy.io
https://github.com/LEB-EPFL/DEFCoN-ImageJ
https://github.com/LEB-EPFL/DEFCoN-ImageJ
https://www.isic-archive.com/
http://www.nature.com/naturemethods

Brief CommunicationNaTure MeTHoDs

results. Aware of this, we remark the very recent effort made by
the community to define and recommend good praxis in bioim-
age analysis, and more specifically to train life scientists on both
the promises and risks of using this new technique. We trust in the
potential of deepImageJ as a user-friendly tool to bridge the cur-
rent gap between computer vision and biomedical image analysis.
Moreover, the deepImageJ environment is highly suitable for educa-
tional activities due to its easy installation and model execution, and
the flexibility achieved thanks to access to all the ImageJ resources.

The experience gathered through the development of deepIm-
ageJ has seeded the scientific collaborations among different actors
involved in the bioimage analysis field and set a roadmap for future
developments, with key aspects being interoperability and smart
guidance towards automated machine learning (AutoML)1. Because
DL models consist of numerous layers and operations, using them
to process images requires considerable memory consumption.
DeepImageJ integrates a smart feature that allows adjusting the
patch size when possible to smaller image size and to complete the
tiling strategy automatically without further changes in the model
specifications. Nonetheless, further improvements can still be made
to design an intelligent memory management strategy for running
the DL models, such as adjusting the input patch shape automati-
cally according to the user’s resources. DeepimageJ, for example,
provides relevant information for the user to know how much
memory the model execution will consume and, therefore, to deter-
mine if the model can be used in a certain machine. However, it
will not set up the model execution configuration according to the
memory capacity. A straightforward example is the smart configu-
ration of the tiling strategy considering the capacity of the user’s
machine. Yet another challenge is the development of personalized
guides based on the user’s data to choose the best-suited model and
proper fine tuning strategies. So, it is that AutoML could turn into
the new hot topic in bioimage analysis.

Notwithstanding the current tendency to build general mod-
els for image processing tasks18, there is a pressing need to release
user-friendly and model-adjustable environments to run DL mod-
els1,4,18. The latter goes in hand with a higher-level target of reduc-
ing human interaction in the routinely performed bioimage analysis
tasks. That said, deepImageJ is a contribution to the field for the
accessibility of DL in bioimage analysis and the dissemination of
DL models in a standardized manner. The deepImageJ environ-
ment facilitates the work exchange between developers and end
users, which the ongoing integration of deepImageJ in the BioImage
Model Zoo seeks to reinforce. Therefore, we expect deepImageJ to
enlighten the work of life sciences researchers and to become yet
another standard open-source tool for the dissemination of DL
image processing models.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of

author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
s41592-021-01262-9.

Received: 28 October 2019; Accepted: 5 August 2021;
Published online: 30 September 2021

References
	1.	 Meijering, E. A bird’s-eye view of deep learning in bioimage analysis.

Computational Struct. Biotechnol. J. 18, 2312 (2020).
	2.	 Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16,

1233–1246 (2019).
	3.	 Schroeder, A. B. et al. The ImageJ ecosystem: Open-source software for image

visualization, processing, and analysis. Protein Sci. 30, 234–249 (2020).
	4.	 Deep learning gets scope time. Nat. Methods 16, 1195 (2019).
	5.	 Lucas, A. M. et al. Open-source deep-learning software for bioimage

segmentation. Mol. Biol. Cell 32, 823–829 (2021).
	6.	 Weigert, M. et al. Content-aware image restoration: pushing the limits of

fluorescence microscopy. Nat. Methods 15, 1090–1097 (2018).
	7.	 Inés, A., Domínguez, C., Heras, J., Mata, E. & Pascual, V. DeepClas4Bio:

Connecting bioimaging tools with deep learning frameworks for image
classification. Computers Biol. Med. 108, 49–56 (2019).

	8.	 Berg, S. et al. Ilastik: interactive machine learning for (bio)image analysis.
Nat. Methods 16, 1226–1232 (2019).

	9.	 Ouyang, W., Mueller, F., Hjelmare, M., Lundberg, E. & Zimmer, C. ImJoy: an
open-source computational platform for the deep learning era. Nat. Methods
16, 1199–1200 (2019).

	10.	von Chamier, L. et al. Democratising deep learning for microscopy with
ZeroCostDL4Mic. Nat. Commun. 12, 2276 (2021).

	11.	Fäßler, F. et al. Cryo-electron tomography workflows for quantitative analysis
of actin networks involved in cell migration. Microsc. Microanalysis 26,
2518–2519 (2020).

	12.	Midtvedt, B. et al. Quantitative digital microscopy with deep learning. Appl.
Phys. Rev. 8, 011310 (2021).

	13.	Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25
years of image analysis. Nat. Methods 9, 671–675 (2012).

	14.	Schmidt, U., Weigert, M., Broaddus, C. & Myers, G. Cell detection with
star-convex polygons. In Medical Image Computing and Computer Assisted
Intervention – MICCAI 2018 – 21st International Conference, Granada, Spain,
September 16–20, 2018, Proceedings, Part II 265–273 (Springer, 2018).

	15.	Rivenson, Y. et al. Virtual histological staining of unlabelled
tissue-autofluorescence images via deep learning. Nat. Biomed. Eng. 3,
466–477 (2019).

	16.	Falk, T. et al. U-Net: deep learning for cell counting, detection, and
morphometry. Nat. Methods 16, 67–70 (2019).

	17.	Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM:
super-resolution single-molecule microscopy by deep learning. Optica 5,
458–464 (2018).

	18.	Caicedo, J. C. et al. Nucleus segmentation across imaging experiments: the
2018 data science bowl. Nat. Methods 16, 1247–1253 (2019).

	19.	Gómez-de-Mariscal, E. et al. Deep-learning-based segmentation of small
extracellular vesicles in transmission electron microscopy images. Sci. Rep. 9,
13211 (2019).

	20.	Tsai, H.-F., Gajda, J., F.W. Sloan, T., Rares, A. & Shen, A. Q. Usiigaci:
Instance-aware cell tracking in stain-free phase contrast microscopy enabled
by machine learning. SoftwareX 9, 230–237 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021

Nature Methods | VOL 18 | October 2021 | 1192–1195 | www.nature.com/naturemethods 1195

https://doi.org/10.1038/s41592-021-01262-9
https://doi.org/10.1038/s41592-021-01262-9
http://www.nature.com/naturemethods

Brief Communication NaTure MeTHoDs

Methods
In the following lines technical descriptions and software requirements are
provided. The ImageJ user guide for this version of the plugin (deepImageJ v.2.1.0)
is given in the Supplementary Material. As deepImageJ is an ongoing project, we
strongly recommend users to check the documentation at deepImageJ’s website
(https://deepimagej.github.io/deepimagej/) and the plugin’s Wiki in GitHub
(https://github.com/deepimagej/deepimagej-plugin/wiki).

DeepImageJ plugins. The main plugin of the deepImageJ toolbox, DeepImageJ_
Run, allows the execution of DL models for an image processing task in a few clicks
without DL expertise or programming skills. During this process, users have access
to a description and the complete documentation of the trained model. If a GPU is
locally available and set up following the guidelines in the website of deepImageJ,
the plugin will automatically connect with it. Image-to-image processing tasks
such as segmentation, denoising, deconvolution or super-resolution need a tiling
strategy when using DL models (Methods). The plugin guides the user through
this step by recommending a specific tile size whenever possible. In addition, the
plugin ensures the consumption of pre-processing, inference and post-processing
routines as detailed by the model developer (see Fig. 2). While the process is
automatically executed, the plugin informs the user about each performed step.
This provides flexibility to users who want to test different model configurations
and understand more in depth the entire process. Moreover, DeepImageJ_Run can
be called from the popular scripting ImageJ macro, which allows the use of the
models in larger image processing workflows. This feature facilitates a variety of
setups such as the automatic processing of a locally stored set of raw microscopy
images21 (Fig. 2).

The deepImageJ toolbox is complemented by three companion plugins for
model bundling, model installation and validation of the results:
•	 DeepImageJ_Build_BundledModel guides model developers to bundle their

trained model and provide all the necessary information (meta-data) for
its easy use in ImageJ (Methods). The plugin creates the package required
to upload the model to the online repository (Fig. 2). Alternatively, model
developers can use the pydeepimagej (https://github.com/deepimagej/pydeep-
imagej) library to create the bundled models directly from the source code in
Python.

•	 DeepImageJ_Install_Model allows the BioImage Model Zoo repository to be
accessed to install a model stored in the cloud (Fig. 2).

•	 DeepImageJ_Validate tool gives access to a variety of perceptual and segmen-
tation validation measures that guide the user through an evaluation of the
obtained result (Fig. 2).

Software/network compatibility. DeepImageJ is compatible with both Fiji22,
ImageJ13 and ImageJ2 (ref. 23). It is self-sufficient on any operating system: MacOS,
Linux and Windows and on 64-bit operating systems (32-bit operating systems are
not supported). It supports TensorFlow models until version 1.15, and PyTorch
1.6. Keras version 2 or lower is also supported as long as the models are compatible
with Tensorflow version 1.15 or lower. The same as CSBDeep6, deepImageJ uses
a TensorFlow Java API manager to ensure TensorFlow version compatibiltiy.
The latter can be upgraded in ImageJ2 through the ImageJ-TensorFlow manager
(https://github.com/imagej/imagej-tensorflow), developed by Curtis Rueden and
Deborah Schmidt. The Deep Java Library (https://djl.ai/) ensures the compatibility
with PyTorch. Nonetheless, those users with a Windows operating system need to
install Visual Studio (https://visualstudio.microsoft.com/) for the deployment of
this library in ImageJ/Fiji.

The Java libraries used to load TensorFlow and PyTorch models point to the
same source code as the respective Python packages. This implies that regardless
the code (Python or Java), the same results and execution times are ensured.

DeepImageJ bundled models. DeepImageJ_Run processes folders (models) that
contain one of the following:
•	 saved_model.pb and variables: TensorFlow model in Protocol Buffer format

(saved bundled model).
•	 pytorch_model.pt: PyTorch model stored in TorchScript format.
•	 and all the following files:

•	 file (.ijm/.jar/.class): ImageJ macros or Java code written by the model’s author
for the pre and post-processing. Ready to use ImageJ macros can be found at
https://github.com/deepimagej/imagej-macros.

•	 exampleImage.tiff: Example of input of the image.
•	 result(.tif/.csv): Output of the model after the post-processing.
•	 model.yaml: Bioimage Model Zoo configuration specifications, containing

details about the related publication and technical characteristics of the model.
All previous files are created by the author of the model, which makes the

bundled model self-sufficient. Their content is described in the next paragraph.
Further details about loading bundled models in deepImageJ are given in the
Supplementary Material.

Any DL model is determined by a graph (the architecture of the network) and
its weights (specific values for all the parameters in the network obtained after

training). The TensorFlow’s Java API is only compatible with the SavedModel
format, which is obtained using an in-house Python routine (https://github.
com/deepimagej/python4deepimagej/). Namely, the deepImageJ models are
defined by a protocol buffer format file (called saved_model.pb) that contains the
architecture of the model and a series of text files storing the weights that are kept
in a folder called variables. PyTorch models should be exported in TorchScript
format (pytorch_model.pt), which contains both the architecture and the weights
compressed in a single file. ImageJ macros (.ijm) or compiled Java code (.jar/.
class) are optional pre and post-processing steps. The pre-processing routine
transforms the image into a specific input type for which the model was trained.
Typical pre-processing operations are normalization of the pixel intensity values,
change of the bit depth and image resizing. The post-processing routine curates
the output of the network. Optional post-processing operators are, for example,
thresholding, resizing or extraction of objects features. At least two files, an input
image (exampleImage.tiff) and an output result (.tif/.csv), are also stored in each of
the bundled model folders to facilitate model testing.

The configuration file (model.yaml) has descriptive information about
the model and it is synchronized with the Bioimage Model Zoo configuration
specifications (https://github.com/bioimage-io/configuration):
•	 General information: Name of the author(s), title, description, reference to the

publication or GitHub repository, license and framework.
•	 Technical characteristics of the model: Input and output specifications

(dimensions shape, size and axis order), pre and post-processing information
and model format.

•	 DeepImageJ specific information: Example image name and pixel size, Tensor-
Flow signature name, pre and post-processing file names, minimum amount
of memory required to process the example input image, estimated execution
time on the PC.

Input and output size calculations: tiling strategy. The model developer needs
to specify the following information when uploading their convolutional neural
network (CNN) model:
•	 Q, I: Whether the input size of the model (Q) is predetermined or not. If it is

predetermined, Q needs to be provided, and it will be compared with the size of
the image to process (I). Q corresponds to the field called shape in the model.
yaml.

•	 m,s: If the network has an auto-encoder architecture, the size of each dimension
of the input image has to be a multiple of a minimum size s defined as s = pd
where d is the number of poolings (down-sampling operations) and p their size.
In addition, the input should have a minimum size m so the shape of the tensor
that will enter the model satisfies the equation

Q = m + ns, n ∈ N
∗ (1)

m and s correspond to the fields called min and step, respectively, in the model.
yaml.
•	 P: To preserve the input size at the output, convolutions are usually calculated

using zero padding boundary conditions (Supplementary Fig. 1) is an illus-
tration of the 2D case). Namely, additional void pixel values are added along
the borders of the image. Hence, the size (per dimension) of the valid domain
of the output is given by R = Q − 2P with Q, the model input size and P, the
size of the network padding, sometimes denoted as halo. The size of the pad-
ding is equivalent to the receptive field of one pixel in the CNN. For a sym-
metrical encoder-decoder architecture, namely, the same number of down and
up-samplings. It can be computed as

P = 2p
(

l
(kp − 1

2

))

+ 2
p−1
∑

i=0
2i
(

l
(

ki − 1
2

))

(2)

where ki is the kernel size for each convolutional layer, p is the number of poolings
and l is the number of convolutional layers at each level of the encoder-decoder.
Usually, ki is an odd number. If the kernel is not square, then P and R have different
values on each dimension. P is given in the field halo of the model.yaml.

To handle input images with a large size, deepImageJ follows a common
strategy called tiling:
•	 If the network has not a predetermined input size (Q), the algorithm calculates

what is the smallest size t that satisfies equation (1) and is still larger or equal
to the size of the input image I and the total padding 2P:

ts = argmin
t=m+ns,n∈N∗

{t ≥ (I + 2P)} (3)

Then, the image is augmented by mirroring along the borders up to a size t per
dimension, and it is processed. Finally, the output is cropped to the initial size
I. See Supplementary Fig. 1 for an illustration.

•	 If the network input size (Q) is predetermined, then the algorithm compares
the size of the image (I) with it taking into account the padding (P). If it is

Nature Methods | www.nature.com/naturemethods

https://deepimagej.github.io/deepimagej/
https://github.com/deepimagej/deepimagej-plugin/wiki
https://github.com/deepimagej/pydeepimagej
https://github.com/deepimagej/pydeepimagej
https://github.com/imagej/imagej-tensorflow
https://djl.ai/
https://visualstudio.microsoft.com/
https://github.com/deepimagej/imagej-macros
https://github.com/deepimagej/python4deepimagej/
https://github.com/deepimagej/python4deepimagej/
https://github.com/bioimage-io/configuration
http://www.nature.com/naturemethods

Brief CommunicationNaTure MeTHoDs

smaller (I + 2P ≤ Q), then the image is augmented by mirroring until the
desired size Q is reached. If the opposite is true (I + 2P > Q), the optimal num-
ber of tiles to process (N) is calculated as follows:

N = ceil
(

I
Q − 2P

)

(4)

where the function ceil(x) outputs the smallest integer number that is equal to
or larger than x. Note that N can vary on each dimension. Then, the image will
be covered by patches of size

T = floor
(

I
N

)

(5)

where the function floor(x) outputs the largest integer number that is equal
to or smaller than x and T ≤ (Q − 2P). From each processed patch of size Q, a
patch of size T is cropped and placed accordingly to reconstruct a valid output
(tiling strategy). The patches along the borders are filled by mirroring as
shown in Supplementary Fig. 1. As the quotient in equation (5) may not be an
entire number, the last patch on each dimension has exactly size I − (N − 1)T.

Both the input size of the network (Q) and the padding of the CNN (P) are
critical parameters for good results and they are directly related to the time spent
by the plugin to process one image. Large input images and deeper networks that
have a larger receptive field imply longer computations.

The current deepImageJ version also handles inputs and outputs of different
sizes, such as, for example, the case of models for super-resolution. To determine
the shape of the output image given a certain input image, we do

Q̃ = aQ + 2b. (6)

where a and b are the scale and offset parameters, respectively, given in the model.
yaml file, Q the shape of the input image and Q̃ the shape of the output image.
Likewise, in the model.yaml file, the reference image for Q needs to be indicated.
The latter is given in the field reference_input.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All data that were used to generate the figures in this paper are available at https://
deepimagej.github.io/deepimagej/.

Code availability
We used TensorFlow and PyTorch libraries for Python to create the in-house
models shown in the figures. The deepImageJ plugin can be used in ImageJ and
Fiji. The source code for the plugin together with its releases is provided at https://
github.com/deepimagej/deepimagej-plugin. The pydeepimagej Python package
is provided at https://github.com/deepimagej/pydeepimagej. The ImageJ macro
files can be accessed at https://github.com/deepimagej/imagej-macros. All source
code is under a BSD 2-Clause License. The web page https://deepimagej.github.
io/deepimagej/provides free access to the ImageJ plugin, along with the bundled
models and user guide for image processing.

References
	21.	Gómez-de-Mariscal, E., Franco, D., Muñoz-Barrutia, A. & Arganda-Carreras, I.

in Bioimage Analysis Components and Workflows (eds Sladoje, N. &
Miura, K.) (Springer, 2021).

	22.	Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis.
Nat. Methods 9, 676–682 (2012).

	23.	Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific
image data. BMC Bioinformatics 18, 529 (2017).

Acknowledgements
We thank P. M. Gordaliza, I. Arganda-Carreras (tested the beta-versions),
D. F. González-Obando (tested the beta-versions), C. Rueden, S. Tosi, T. Pengo
(tested the beta-versions), R. Henriques (ZeroCostDL4Mic), R. F. Laine
(ZeroCostDL4Mic), G. Jacquemet (ZeroCostDL4Mic), D. Krentzel (ZeroCostDL4Mic)
and C. Möhl (YAPIC) for the fruitful discussions and enriching feedback
about the deepImageJ project. We would also like to thank NEUBIAS for supporting the
project, the NEUBIAS symposium and NEUBIAS Academy@Home and P. Rasti
and S. Bollmann for including deepImageJ in their tutorials. We would like specially
to mention all the contributors and community partners at the BioImage Model Zoo
for the time they have spent to get a cross-compatible model format. We acknowledge
the support of Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal
de Investigación, under grant nos TEC2016-78052-R and PID2019-109820RB-I00,
MINECO/FEDER, UE, co-financed by European Regional Development Fund (ERDF),
‘A way of making Europe’ (E.G.M., C.G.L.H., A.M.B.), and a 2017 Leonardo Grant
for Researchers and Cultural Creators, BBVA Foundation (A.M.B.). This work
was also supported by the EPFL Center for Imaging (C.G.L.H., L.D., D.S., M.U.).
We would like to thank the Science for Life Laboratory, Erling-Persson Foundation
and Knut and Alice Wallenberg foundation (grant no. 2018.0172) (W.O., E.L.). We
thank the program ‘Short Term Scientific Missions’ of NEUBIAS (network of European
bioimage analysts) (E.G.M., C.G.L.H.). We also want to acknowledge the support of
NVIDIA Corporation with the donation of the Titan X (Pascal) GPU card used for this
research (A.M.B.).

Author contributions
E.G.-M. and C.G.-L.-H. contributed to the design of the experimental framework, and
reviewed, trained and exported existing image processing methods. C.G.-L.-H. and D.S.
developed and implemented the toolbox and worked on the supporting documentation
with input from the rest of the authors. C.G.-L.-H. and W.O. built the connection
between the toolbox and ImJoy. E.G.-M. wrote the code lines of the supplementary
Python notebooks, Python library and ImageJ macros. E.G.M. and W.O. worked on
the synchronization with the BioImage Model Zoo. E.G.-M., W.O. and L.D. wrote the
manuscript with help from E.L., M.U., A.M.-B. and D.S. E.G.-M., A.M.-B. and D.S.
created the website of deepImageJ. M.U., A.M.-B. and D.S. initiated the project. A.M.-B.
and D.S. supervised the project. All the authors contributed to the conception of the
study, the design of the experimental framework and took part in the literature review.
All authors revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41592-021-01262-9.

Correspondence and requests for materials should be addressed to
Arrate Muñoz-Barrutia or Daniel Sage.

Peer review information Rita Strack was the primary editor on this article and
managed its editorial process and peer review in collaboration with the rest of the
editorial team.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Methods | www.nature.com/naturemethods

https://deepimagej.github.io/deepimagej/
https://deepimagej.github.io/deepimagej/
https://github.com/deepimagej/deepimagej-plugin
https://github.com/deepimagej/deepimagej-plugin
https://github.com/deepimagej/pydeepimagej
https://github.com/deepimagej/imagej-macros
https://deepimagej.github.io/deepimagej/
https://deepimagej.github.io/deepimagej/
https://doi.org/10.1038/s41592-021-01262-9
http://www.nature.com/reprints
http://www.nature.com/naturemethods

	DeepImageJ: A user-friendly environment to run deep learning models in ImageJ

	Online content

	Fig. 1 DeepImageJ environment and scope.
	Fig. 2 Functionalities of deepImageJ.

