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Abstract. Most state-of-the-art algorithms for filament detection in
3–D image-stacks rely on computing the Hessian matrix around indi-
vidual pixels and labeling these pixels according to its eigenvalues. This
approach, while very effective for clean data in which linear structures
are nearly cylindrical, loses its effectiveness in the presence of noisy data
and irregular structures.

In this paper, we show that using steerable filters to create rotationally
invariant features that include higher-order derivatives and training a
classifier based on these features lets us handle such irregular structures.
This can be done reliably and at acceptable computational cost and
yields better results than state-of-the-art methods.

1 Introduction

Most state-of-the-art approaches to filament detection in 3–D image-stacks rely on
computing the Hessian matrix around individual voxels and labeling these voxels
according to its eigenvalues. Some are optimized for ideal tubular structures, while
others use statistical-learning techniques to improve detection results.

In this paper, we will show that the second-order derivatives used to compute
the Hessian matrix do not provide a local description that is powerful enough to
account for the fact that dendrites, such as those depicted by Fig. 1, are far from
being regular tubular structures, which can drastically impact performance. To
effectively account for such irregularities, one must use higher-order derivatives.

To this end, we rely on 3–D steerable filters [1] to create rotationally invariant
features that include derivatives of order 2 to 4 that we use as input to a classifier
trained to recognize voxels belonging to potentially irregular dendrites. Because
the training data encompasses the deviations from the ideal model, the resulting
algorithm has the potential to be more robust than traditional ones and can
be trained to detect not only simple linear-structures but also junctions and
crossings.
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Fig. 1. Original image stack and its segmentation result for a false positive rate of
10−2 for three different methods: Frangi’s non-linear relationship on the eigenvalues
of the hessian [2], our methodology with second order features, and our methodology
with fourth order features. As it will be demonstrated later, the fourth order method
outperforms the other two ones.

Most automated approaches to finding linear structures in image stacks as-
sume them to be locally tubular and model them as generalized cylinders. The
most popular one involves computing the Hessian matrix at individual voxels
by convolution with Gaussian derivatives and relying on the eigenvalues of the
Hessian to classify voxels as filament-like or not [3,2,4]. The Hessians can be
modified to create an oriented filter in the direction of minimum variance, which
should correspond to the direction of any existing filament [5,1]. To find fila-
ments of various widths, these methods perform the computation using a range
of variances for the Gaussian masks and select the most discriminant one. The
fact that intensity changes inside and outside the filaments has also been explic-
itly exploited by locally convolving the image with differential kernels [6], finding
parallel edges [7], and fitting superellipsoids or cylinders to the linear structure
based on its surface integral [8,9].

All these methods, however, assume image regularities that are present in
high-quality images but not necessarily in noisier ones. Furthermore, they often
require careful parameter tuning, which may change from one data-set to the
next. As a result, probabilistic approaches able to learn whether a voxel belongs
to a filament or not have begun to be employed. Instead of assuming the filaments
to be cylinders, they aim at learning their appearance from the data. In [10], the
eigenvalues of the structure tensor, are represented by a mixture model whose
parameters are estimated via E-M. Support Vector Machines that operate on
the Hessian’s eigenvalues have also been used to discriminate between filament
and non-filament voxels [11].

The latter approach [11] is closest to ours in that it also relies on the statistical
learning paradigm. However, its ability to generalize is limited by the fact that
it still relies on the eigenvalues of the Hessian and therefore on second order
derivatives, whereas using higher-order derivatives gives us access to a much
richer descriptor.
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As shown in Fig. 2, our method outperforms one of the very best Hessian-
based methods [2]. Interestingly, this stops being true if we limit it to using only
second-order derivatives as opposed to fourth-order ones and our results actually
become worse. In other words, these higher-order derivatives are required to take
full advantage of the statistical-learning framework that has been advocated
in the literature [10,11]. Furthermore, steerable filters provide a very effective
framework to do this robustly. We view this observation as the main contribution
of the paper.

2 Method

To demonstrate that higher-order derivatives provide better descriptive power
at an acceptable computational cost, we rely on 3–D steerable filters [1] to create
rotationally invariant feature vectors that can be used to classify voxels as being
part of a dendrite or not. In practice, to achieve rotation invariance, we compute
a local orientation and use it to steer the filters and to create the feature vectors
corresponding to a reference orientation. In other words, we rotate the feature
vectors to a reference orientation.

In the remainder of this section, we first recall the basic theory of steerable
filters. We then show how we use them to create feature vectors given a local
orientation estimate. Finally, we discuss how we use these feature vectors to train
the classifier we use at run time to detect filament-like voxels.

2.1 Steerable Filters in 2–D and 3–D

Steerable filters were introduced as an efficient means to compute filters that
can be rotated to any orientation for a small computational cost [12]. In three
dimensions, steerable filter based detection of a feature g in a volume f at a
given orientation and position u = (x, y, z), is formulated as:

r = f(u) ∗ g(Rθ,φu), g(Rθ,φu) =
∑

l

bl(θ, φ)gl(u), (1)

where θ and φ parameterize the orientation of the feature template in spherical
coordinates, Rθ,φ is the 3–D rotation matrix, and r is the response. The func-
tions b(θ, φ) are trigonometric polynomials that interpolate the templates gl(u).
This decomposition decouples the rotation of the filters from the convolution in
Eq. (1), which makes the estimation computationally efficient.

The best known class of such filters, and the ones used in this paper, are Gaus-
sian derivatives and their linear combinations [13]. To preserve the separability
of the resulting kernels, we limit ourselves to diagonal covariance matrices. Let
Gσ denote the isotropic Gaussian kernel of variance σ centered at the origin. Let
Gσ

m,n,p denote it mth derivative with respect to x, nth derivative with respect to
y and pth derivative with respect to z.

∀u ∈ R3, Gσ(u) =
1

(2πσ2)3/2
exp

(
−‖u‖2

2σ2

)
, Gσ

m,n,p =
∂m+n+pGσ

∂xm∂yn∂zp
. (2)
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The rotation equations for a filter that is formed by a linear combination of
Gaussian derivatives is:

bm,n,p(θ, φ) =
m∑

i=0

n∑

k=0

p∑

q=0

i∑

j=0

k∑

l=0

m!n!p!(−1)i−j+p−q

(m − i)!(i − j)!j!(n − k)!(k − l)!l!(p − q)!q!

cos(θ)m−i+j+k−l cos(φ)m−i+n−k+q sin(θ)i−j+n−k+l sin(φ)j+l+p−q

am−i+n−k+p−q,i−j+k−l,j+l+q (3)

where am,n,p is the coefficient that multiplies Gσ
m,n,k at the reference orientation.

2.2 Feature Vectors

We take the features vectors to be the convolution of the volume f with the set
of templates Gσ

m,n,p of normalized energy,

vσ(f,u) =
(

f ∗
[
Gσ

1,0,0

E1,0,0
,
Gσ

0,1,0

E0,1,0
,
Gσ

0,0,1

E0,0,1

Gσ
2,0,0

E2,0,0
· · ·

Gσ
0,0,M

E0,0,M

])
(u) , (4)

where Ei,j,k is the energy of the Gσ
i,j,k function. These feature vector are equiv-

alent to a steerable filter, and therefore can be steered to any orientation using
Eq. (3).

2.3 Training and Detection

During a training phase, we use ground truth data for which the orientation
is provided to train an SVM classifier. Then, to classify a voxel at run-time,
we compute the local orientation to rotate the feature vectors to the reference
orientation. Finally, the classifier is used to output the likelihood of the voxel
belonging to the neuron.

The training data consists of quadruplets that include a 3–D location u in an
image stack, two orientation angles θ and φ, and a single bit indicating whether
it is a positive or negative sample. Formally, the training set can be written as

S = {(u1, θ1, φ1, 1), . . . , (uN , θN , φN , 1),
(uN+1, θN+1, φN+1, 0), . . . , (u2N , θ2N , φ2N , 0)} (5)

where the first N quadruplets represent the positive samples and the following
N the negative ones.

The positive samples are taken from ground truth data. Negative samples are
taken from two populations. The first one includes points closer than a given
radius to the dendrites but not belonging to them, the second one are points
taken at random in the whole volume, but not belonging to the neuron. The
local orientation of negative points is given by the same algorithm as the one
used during detection, which in our case is the steerable filters optimized using
Canny criteria for filament detection of [1].
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For each of the training points, the feature vector is computed and rotated
back from its labeled orientation. Let vθ,φ be the feature vector rotated by angles
θ and φ. The set of samples used for training is

V = {(v−θ1,−φ1
1 , 1), . . . , (v−θN ,−φN

N , 1), (v−θN+1,−φN+1
N+1 , 0), . . . , (v−θ2N ,−φ2N

2N , 0)} .
(6)

After training an SVM, the detection score for a voxel u at orientation θ, φ
becomes

Ψ : RD → R , ψ(u, θ, φ) =
N∑

n=0

an κ
(
vn, v−θ,−φ(u)

)
+ b , (7)

where κ is the standard Gaussian kernel, the variance ν of which is obtained by
minimizing the error on a validation set.

At run-time, to classify a voxel as belonging to a filament or not, we need
to estimate the orientation of that filament if it exists. In standard Hessian
methods, this is done by computation the eigenvectors of the Hessian matrix.
However, there is no obvious method to do the same using our feature vectors.
To derive the orientations we need, we therefore use a modified linear Hessian
method that relies on second-order steerable filters optimized according to the
Canny criterion [1]. We have found empirically that the orientations it returns
allow us to achieve better performance than when using other methods.

3 Results

In this section, we show that using fourth order steerable features allow us to
detect dendrites more accurately in brightfield microscopy images than second
order methods. We compare our method to both [2], which we believe to be one
of the best Hessian-based methods, and to our own algorithm constrained to use
only second-order derivatives. The ROC curve of Fig. 2 summarizes our findings.

The dataset used for these comparisons consists of two image stacks of neurons
imaged using standard brightfield microscopy and the associated ground truth
data. The first is used for training and validation and the second for testing.
Fig. 1(Original) is a 3–D minimum intensity projection of the test stack. Cross-
sections in the XY and XZ planes are shown in Figs. 3 and 4. In Fig. 4, please
note the cone of shadow cast by the dendrites, which causes problems to second
order filament detectors.

In the remainder of this section, we first describe implementation details of
the training and detection procedures, and offer a more in-depth analysis of our
results.

3.1 Training and Detection

For training we used as positive samples 2500 hand-labeled voxels and their as-
sociated orientations, and 2500 more for validation purposes. In addition, we
collected 1250 negative samples around the neuron and 1250 chosen at random,
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Fig. 2. ROC curve for several methods. The presented method of order four outper-
forms the method of Frangi [2] and our algorithm constrained to second order features.
The improvement is due to the use of fourth order features, which allows us to emcom-
pass a higher frequency signals. Please not the logarithmic scale in the false positive
rate.

(Original) (Frangi) (Second Order) (Fourth Order)

Fig. 3. Detail of one of the images in the stack. We compare our detector using features
of order four and two against that of Frangi [2]. In red we show true positives, in green
false positives and in blue false negatives. The false positive rate is fixed to 10−2. Our
second-order detector fails to detect some filaments and is more sensitive to the shadow
casted by the dendrites. However, our fourth order filter outperforms the second order
Hessian-based method of Frangi. False positives for our method are clustered around
the true dendrite locations, and the true positive rate is incremented from 67.7% to
74.5%.

but not belonging to the dendrites. The orientation of the negative samples is
taken from the output of the orientation predictor [1], using same scale as the
one used to compute the feature vectors. We use the method of [1] to compute
the orientation as it is a more elongated template than the Hessian and provides
a more accurate orientation estimation. During detection, the orientation is es-
timated using the same method as for assigning orientation to negative points.

3.2 Discussion

The ROC curve of Fig. 2 indicates that our fourth order filter outperform the
second order methods over the entire range of false positive rates. This comes
from the fact that fourth order derivatives can encompass higher frequency



Steerable Features for Statistical 3D Dendrite Detection 631

(Original) (Frangi) (Second Order) (Fourth Order)

Fig. 4. Detail of the YZ projection of several filaments in parallel. As in Fig. 3, we
show true positives in red, false positives in green and false negatives in blue. Our
method produces ellipsoids centered in the true filament but bigger in size. This is due
to uncertainties in the training data. Frangi’s method [2] detects the real dendrites ac-
curately but produces many false-positives away from them. Our second order method
responds mainly to the shadow of the dendrite in this cross-section. Please note the
noise in the different images highlighted by the rectangles.

signals. For example, this is what explains that our fourth order method avoids
confusion between the cone of shadow of the signal and the actual dendrite in
the difficult case of Fig. 4.

Our features are linear combinations of SVM kernel functions evaluated at the
support vectors. As we are using Gaussian kernels, these functions are smooth.
By contrast, [2] uses ratios between features. This creates a sharper detection
profile that makes the method more discriminative at low false positive rates
than ours when using only second-order derivatives.

4 Conclusion

In this paper we have presented an approach to detecting dendrites in 3–D image
stacks that outperforms state-of-the-art Hessian based methods in brightfield
image stacks. The performance gain is due to the use of a rich feature set made of
higher-order image derivatives. At the heart of our implementation are steerable
filters that let us rotate the feature vectors to a reference orientation and train
a classifier to recognize which ones correspond to dendrite voxels.

This approach is very generic because, instead of postulating a priori models
for the filaments we are looking for, our algorithm can learn specific appearance
models for each new situation. In future work, we will therefore extend our
approach to other imaging modalities in which the filaments break the perfectly
tubular structure assumption.
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