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Abstract

This thesis addresses the problem of detecting and segmenting biological objects
and tracking them over time. This is far from trivial due to the fact that, in
biology, the objects of interest are usually indistinguishable from each other and
can appear tightly packed and in various configurations. Since we focus on
objects that have a constrained shape and move according to specific patterns, it
seems natural to approach the detection, segmentation, and tracking problems
with model-based techniques.

We present a class of parametric active contours that use a novel kind of B-splines
as basis functions. We prove analytically that our new bases have the shortest-
possible support, subject to some design constraints. While the resulting active
contours are versatile and able to closely approximate any closed curve in the
plane, their most important feature is the fact that they admit ellipses within
their span. Thus, they are able to represent exact circular and elliptical shapes
and are particularly appropriate to delineate cross sections of cylindrical-like
conduits and to outline blob-like objects. Then, we extend our model to a fully
parametric 3D design. The resulting active surface can approximate smooth
blob-like objects with good accuracy and can perfectly reproduce spheres and
ellipsoids of any position and orientation.

Finally, we make use of our active contours to segment and track mitotic cells in
large-scale time-lapse images. Due to their optimally short support, our active
contours are computationally efficient. Moreover, we designed a highly paral-
lelizable image analysis toolkit to further increase the throughput rate.

Keywords: Time-lapse, high-throughput microscopy, exponential B-spline, inter-
polation, parameterization, multiresolution, Fourier descriptor, segmentation,
active contour, active surface, shape prior, ellipse, tracking, mitosis, crowd, par-
ticle filter, ImageJ.






Résumé

Cette thése aborde le probleme de la détection et segmentation d’objets biolo-
giques, ainsi que de leur poursuite temporelle. Ce probleme est rendu difficile
par le fait que, en biologie, les objets d’intérét ne sont généralement pas diffé-
renciables les uns des autres, peuvent s’agglutiner et apparaitre dans plusieurs
configurations. Nous nous concentrons sur des objets qui ont une forme prééta-
blie et se déplacent selon des trajectoires prévisibles ; des lors, il semble naturel
que détection, segmentation et poursuite soient traitées selon des techniques
fondées sur des modeles.

Nous présentons une classe de contours actifs paramétriques qui utilisent un
nouveau type de B-splines comme fonctions de base. Nous démontrons analy-
tiquement que nos nouvelles bases ont un support minimal tout en satisfaisant
certaines contraintes de conception. Alors que les contours actifs qui en résultent
sont polyvalents et capables d’approcher toute courbe fermée du plan, leur ca-
ractéristique majeure est le fait que le sous-espace qu’ils engendrent contient
les ellipses. Ainsi, ils sont en mesure d’offrir une représentation exacte de toute
forme circulaire ou elliptique, et sont donc particuliérement propices pour déli-
néer les sections de tubes cylindriques et celles d’objets globuleux. Ensuite, nous
étendons notre modele a une conception paramétrique 3D. La surface active
qui en résulte peut approcher avec bonne précision les objets lisses et globu-
leux. Elle peut reproduire de facon exacte les spheres et ellipsoides de n’importe
quelle position et orientation.

Enfin, nous tirons parti de nos contours actifs pour segmenter et poursuivre des
cellules mitotiques dans une volumineuse séquence d’images. En raison de leur
support minimal, nos contours actifs sont efficaces d'un point de vue calcula-
toire. En outre, nous avons conc¢u un outil d’analyse d’images qui se préte bien
a la parallelisation, dans le but d’augmenter encore le débit de calcul.

Mots-clé : Vidéo-microscopie, B-splines exponentielles, interpolation, multiréso-
lution, paramétrisation, descripteurs de Fourier, segmentation, contours actifs,
surfaces actives, ellipses, contraintes de forme, suivi de cellules, mitose, cultures
cellulaires, filtres a particules, ImageJ.

vii






Acknowledgements

This thesis would not have materialized without the help and cooperation of
many people. I take this opportunity to express my gratitude to all of them. First
and foremost, I thank my advisor Prof. Michael Unser. Terribly lost in details to
start with, it was his patient guidance that eventually helped me strike the right
chord. He has always encouraged fresh and original ideas, and helped refine
them at the same time. I particularly value the advise and training I received
from him concerning the exposition of scientific ideas. Michael has also been
very kind and considerate.

I express my sincere thanks to the president of the thesis jury, Prof. Pierre Van-
dergheynst, and the official referees, Prof. Mathews Jacob, Prof. Dimitri Van De
Ville, and Dr. Jean-Christophe Olivo-Marin, for reviewing the thesis.

I take this opportunity to thank the fellow present and past lab members of the
Biomedical Imaging Group (BIG), Dr. Jean-Charles Baritaux, Prof. ilker Bayram,
Ayush Bhandari, Emrah Bostan, Aurélien Bourquard, Julien Fageot, Dr. Matthieu
Guerquin-Kern, Ulugbek Kamilov, Dr. Djano Kandaswamy, Dr. Ildar Khalidov,
Dr. Hagai Kirshner, Dr. Stamatis Lefkimmiatis, Dr. Florian Luisier, Ramtin Ma-
dani, Dr. Simona Maggio, Junhong Min, Masih Nilchian, Dr. Chiara Olivieri, Pe-
dram Pad, Zsuzsanna Piispoki, Dr. Sathish Ramani, Dr. Daniel Sage, Prof. Chan-
dra Sekhar Seelamantula, Dr. Pouya Tafti, Raquel Terrés Cristofani, Dr. Philippe
Thévenaz, Prof. Dimitri Van De Ville Dr. Cédric Vonesch, and Dr. John Paul Ward.
And more particularly, I thank my present and past office mates Dr. Francois
Aguet, Dr. Arash Amini, Dr. Kunal N. Chaudhury, Dr. Nicolas Chenouard, and
Virginie Uhlmann. I really appreciate the efforts of Virginie to increase the geek-
iness of the laboratory. I am also grateful to Manuelle Mary for helping me out
with various administrative matters inside and outside EPFL.

I must say it was a real pleasure interacting with the members of the BIG group.
A special thanks to Chandra and Philippe for introducing me to the world of
snakes, Pouya Tafti for the stimulating discussions on myriads of topics, and
Francois, Philippe and Daniel for sharing their knowledge on various technical
matters related to ImagelJ. I particularly thank Nicolas for helping me with my

ix



ACKNOWLEDGEMENTS

first baby steps into Icy.

I thank my collaborators, Prof. Sebastian Maerkl, Dr. Nicolas Denervaud, and
Jean-Bernard Nobs from the DynamiX project for their help and cooperation
understanding the processes laying behind the natural images I helped to ana-
lyze. Moreover, I also want to thank my collaborator from the WingX project
Thomas Schaffter for showing me the good practices of collaborative software
development.

I also take this opportunity to express my deep gratitude to all the member of
the BIG Snake Project: Cédric, Emrah, Masih, Nicolas, Ramtin, Ulugbek and Vir-
ginie. Together we made our snakes reach a totally new level of awesomeness.

I thank all my friends from Spain, giving special attention to the ones that have
been giving me their support and friendship since childhood: Alberto Ramirez,
Didac Farré, Xavier Garriga, and Gerard Salom. I do not want to forget all
my friends from my universities (FME, ETSETB, and IIT). Without them, my
geekiness would not be so strong. I am also very gratefully to Raquel for her
tremendous support and affection. I am certain that this thesis would not have
been possible without her patience and support.

Finally, I wish to thank my family members, especially my parents and my
brother. I dedicate this thesis to them.



Table of Contents

[Abstract v
Résumé] vii
|Acknowledgements| ix
(Table of Contents| xi
(1__Introduction| 1
(1.1 The Quest for Quantitative MiCroscopy|. . . . . . .. .. .. ..... 1
1.2 Image Analysis in Bioimaging| . .. ................... 2
L3 The DynamX ProJect. . - . v oo oveoeeeeeeeee ] 2
1.4 Developement of Principalized Image Analysis Tools for Systems |
[ Biology| . . ... .. ... 3
1 verview of th ntributions] . . . ... e 4
|1.6 Organization of this Thesis| . . . ... .................. 5
[2  State-of-the-art in Image Analysis| 7
[2.1 A Survey on Segmentation| . . . ... ................ .. 7
[2.1.1  Snakes, a Perfect Fit for Image Segmentation] . . . . . . . . 8
2.2 Image Analysis Software| . ... .......... .. ......... 14
[221 Software Design|. . . ... ... ... ... 14
[2.2.2" Open Image Analysis Platforms|. . . . . .. .. ........ 15
[3  Spline Bases for Representation of Curves| 19
B ParametricCurves . ............... ... ... ... . ... 20
B.1.1 GenericCuUIVeS|. . . . . o v v vt 20
3.1.2 ClosedCurves . .......... .. ... . .. ... 21
[3.1.3 Desirable Properties of Bases in the Periodic Settings| . . . 22

[3-1:4 Approximation and Reproduction Properties in Periodic
Settings| . . . v v v v e e 23
[3.27 Reproduction of Exponential Polynomials| . . . . . .......... 24

Xi



TABLE OF CONTENTS

3.2.1 Preliminary Definitions|. . . . . ... ... ... ........ 24
.................... 24
...................... 26
.................. 27

|3.2.5 Minimal-Support Generating FUNctions|. . . . .. ...... 31
[3:26 Tnterpolator]. . ... ............. ... 33

3.3 Multiresolution and Subd 33
[3.3.1 Classical Multiresolution of Exponential B-Splines| . . . . . 33

3.3.2 Subdivision Scheme| ... .................... 34

[3.3.3  Multiresolution-Reproduction Capabilities| . . . . ... ... 35

[3.4 Applications| . . ....... ... .. ... . o o 36
[3:4.1 Reproduction of Ellipses| . . . . . ... ... .. 36

[3.:4.2" Reproduction of Higher-Order Harmonics] . . . . . . . . . . 44

3.5 Conclusions] . . . ... .. e 49

[4 2D Spline Snakes| 51
4.1 Parametric Snakes| . ... ... ... .. .. .. ... .. . . 52

4.1.1 Parametric Representation of Closed Curves|. . . . ... .. 52
4.1.2 Desirable Properties for the Basis Functions| . . . . . . . . . 53

[F2" Reproduction of Ellipses]. . . . ... ...t .. 55
721 Winimum-Support Ellipse-Reproducing Basig . . . . . . . - 56
[4.2.2 ApproxXimation PIODETTIES| « - « « « v v v v v v v e e e e n 56
4.2.3  Approximation Order|. . . . . . ... ... ... ... 57

F-2.4Best Constant and EINpse FGGng]. .. ... ... ... .. 58
F.2.5 Expansion of SIUSOWS]. - - - -+ oo eees ) 59
A3 Energies and Implementation] . . . . . .. .. ............. 61
431 SnaKeFNeTRY| - . o oo 61

4,32 Fast Energy Computation] . . . . ................ 64
433 Sampling| . ........ ... ... ... L 65
4.3.4 TMIZAtion] . . . . . . . i o e e e e e e e 65

[#-4 Experiments and Simulations| . ..................... 66
4.4.1 Approximation of Sinusoids|. . . . .. ... .......... 67
4,42 Accuracy and Robustness to NOis€|. . . . . ... ....... 67
443 MedicalDatal. . . . .. ..ot 72
444 RealDatal . .......... ... . ... ... 77

4.5 Conclusions| . ...... ... . .. .. ... 78
Appendices| . .. ....... ... .. 80
[A Tmplementation Details| . . . . . oo v v v i ee e 80
4.A.1 TmageFnergyl ........................... 80
4.A.2  Partial Derivatives of the Image Energyl. . . . ... ... .. 82
[>__Extension to 3D Spline Snakes 85

[5.1 SplineSurfaces| .. .......... .. .. .. .. .. .. ... .. 86

Xii



Table of Contents

[5.1.1 Parametric Representation of Surfaces| . ........... 86

------------ 87
.......................... 90

[5.2  Energies and Implementation| . ..................... 98
5.2.1 SnakeEnergy| ......... ... .. ... ... 98
.................... 102

5.2.3 Sampling| . . ... .. ... ... 102
B34 OPUMIZAtON . . . . . . o oo eoee e e 103
[5.2.5  SelfIntersection Detection] . . . « « « v v oo oo .. 103

5.2. ser Interaction| . . . ... ... ... ... 104
5.2.7 Imitialization| . . .. ... .. ... ... .. .. ... .. 104

[5.3 Experiments and Simulations| . ..................... 105
5.3.1 TwistingtheSnake| . ... ... ... ... .. ......... 105

5.3.2 RobustnesstoNoisel. . . ... ... ... ............ 107
[5.3.3 Segmentation of Overlapping Objects|. . . . ... ...... 108
[5.3.4 Approximation of Shapes| . ... ................ 110
[5.3.5  Segmentation of 3D Confocal Microscopic Images| . . . . . 112
................................. 115
..................................... 116
[5.A Tmplementation Details| . . . . . v v v v e e 116
[5.A.1 Tmage ENnergyl . . . . . ..o vt m it 116

[6  Snake-Based Algorithm for Tracking Mitotic Cells| 119
[6.1 Single Mitotic Cell Tracker] . . . ..................... 120
.................... 120
6.1.2 Variational Importance Sampling| . .............. 123

[6.1.3" Application to Time-Lapse Microscopy] . . . ......... 124
[6.2 High-Throughput Multi-Target Tracker] . . . . . .. ... ....... 128

6 NOLALION|. « « v v v o e e e e e e e e e e e e 128

[6.2.2  Probabilistic Graph Formulation| . . . .. ........... 129

[6.2.3 Efficient Graph-Based Algorithm|. . . . ... ......... 130

24 MotionModell . . . .« vvov et 132

[6.2.5 Application to Time-Lapse Microscopy| . . .. ........ 133

6.3 Conclusionsl .. ....... ... .. ... 135
[Z_Conclusion| 137
[7.1 _Technical Contributions| . . . . ... ... ................ 137
|7.2 Contributions to Research Projects in Life Sciences| . ... ... .. 139

|7.2.1 TEe D@amlx Projecti. . .. .......... ... ... 139
[722 The WingXProjec] . .. ...........oouunn.... 140
|7.2.3 Drosophila Fly Locomotion Study] « . . « v« o v v v v v ... 141

|7.2.4 Estimation of Local Aortic Elastic Properties with MRI| .. 142
[7.2.5  Assessment of Chromosomal Size Variation in CHO Cells| . 143

xiii



TABLE OF CONTENTS

7.3 Outlook for Future Research|

Bibliographyj

[ Curriculum Vit

Xiv



1.1

Chapter 1

Introduction

The Quest for Quantitative Microscopy

By their nature, biological systems are dynamic. In recent years, there has been
an increasing interest in getting a proper understanding of the underlying cel-
lular and molecular processes [[1, 2]]. One of the major challenges of current
biomedical research is to characterize not just the spatial organization of these
complex systems, but their spatio-temporal relationships as well [3].

Thanks to substantial improvements in optics [[4} 5], imaging sensors [6} [7, 8],
and florescence labeling methods [9, 10} [11]], microscopy has matured to the
point that it enables sensitive time-lapse imaging of cells in vivo and even of sin-
gle molecules [[12} [13]]. Microscopy was initially a qualitative technique, but the
transition to computerized microscopy enables one to extract meaningful quan-
titative data from images [[14, [I5]]. Making microscopy more quantitative will
bring important scientific benefits in the form of new applications and improved
performance and reproducibility.

A direct consequence of the advances in high-throughput microscopy is that the
size and complexity of image data are increasing. Datasets generated in time-
lapse experiments commonly consist of hundreds to thousands of images, each
containing hundreds to thousands of objects to be analyzed [[16,[17]. Such huge
amounts of data cannot be analyzed by visual inspection or manual processing
within any reasonable amount of time. Automated methods are therefore nec-
essary, not only to handle the growing rate at which images are acquired, but
also to provide a level of sensitivity and objectivity that human observers cannot
match.
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1.3

Image Analysis in Bioimaging

The aim of image analysis in bioimaging is to use cutting-edge techniques from
the fields of Image Processing and Computer Vision to achieve insights into bio-
logical problems through analysis of large-scale image datasets [18]].

The domain of action of the tools provided by these fields is very large. It ac-
tually begins during the image acquisition process itself. All imaging modalities
introduce a certain degree of distortion in the captured images, which are al-
ready intrinsically noisy. These deformations can range from simple smoothing
with a point spread function (PSF), to optical aberrations, or non-linearities in
the acquisition process [[19].

The quality of an acquired image from an optical imaging system can be limited
by factors such as imperfections or misalignment in the lenses. However, there
is a fundamental maximum to the magnification of any optical system which
is due to diffraction [[19]. Shannon’s sampling theory from Signal Processing
provides the conditions for setting the optimal resolution of the camera during
the acquisition process to match the magnification of the optical device [20].
As for the next step, a large variety of image restoration algorithms exist to
facilitate the extraction of the information of interest. Among them, the most
used ones are deconvolution [21]] and denoising [22]] algorithms. Then, the last
major image analysis challenge is to reliably segment thousands of individual
biological objects and to track them over time. This is far from trivial due to the
dependence on the imaging modality and the fact that the cells can be tightly
packed in the growth chamber and may appear in various configurations making
them difficult to segregate.

The DynamiX Project

The research in this thesis is part of the larger interdisciplinary DynamiX project
within the SystemsX.ch consortium.ﬂ SystemsX is the the research initiative
underway in Switzerland with the mandate of promoting Systems Biology.

The aim of the DynamiX project is to advance in the state-of-the-art of protein
biochemistry and live cell imaging by applying highly-integrated microfluidic
devices, advanced image processing, and computational biology to two central
aspects of cell function: the cell cycle and growth control. Together these meth-
ods enable a single scientist to gather thousands of precision measurements on
protein expression dynamics, promoter architecture, or molecular interactions
in a single experiment. The measurements provide insights into network func-
tion on all levels, including cis-regulatory networks, transcriptional regulatory
networks, and protein expression dynamics, thus permitting the development

1. http://www.systemsx.ch/



1.4

1.4. Developement of Principalized Image Analysis Tools for Systems Biology
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Figure 1.1: Description of the DynamiX work-flow. Microfluidic devices are
programmed with yeast libraries and imaged on an automated microscope. The
acquired images are then analyzed and the resulting data interpreted. The im-
ages on the bottom show, from left to right, a highly-integrated microfluidic
device, yeast cells grown in pico-chemostats using device on left, a fully auto-
mated fluorescence microscope, a yeast cell expressing a GFP tagged protein, a
colony of yeast cells and their trajectories, and a statistical temporal analysis of
the colony of yeast cells expressing RNR3.

of quantitative models of specific sub-network function, such as ribosome bio-
genesis or DNA damage response. The final goal of the project is to decipher
promoter architecture to understand how a given promoter DNA sequence reg-
ulates gene expression levels. We show in Figure [I.1] the general pipeline of the
DynamiX project from the image acquisition process to the final data analysis.
Within the DynamiX project, we tackle the block of image analysis shown in

Figure

Developement of Principalized Image Analysis Tools for
Systems Biology

Many algorithms exist in the literature that perform cell detection, segmenta-
tion or tracking. We review the state of the art with regard of this matter in
Chapter [2] These algorithms are usually ad-hoc, and strongly dependent upon
the acquisition technique. This makes it difficult to reuse image analysis tools
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from different imaging modalities, or even tools developed for the same imag-
ing modality, but designed to detect objects with clear morphological differences
(e.g., an elliptic detector designed to segment cell nuclei is not suited to segment
chromosomes even though both can be imaged with fluorescence microscopy).

In this thesis, we aim at designing tools that can be used in a variety of situa-
tions and are easily extensible to a broad range of imaging modalities. For that
reason, our approach to design segmentation and tracking algorithms is princi-
paled, in contrast to many of ad-doc designs that can be found in the literature.
Our aim is two-fold: first of all, we want our methods to be rooted in a consistent
and flexible framework in which our algorithms can be properly analyzed. This
will enable us to derive optimality results and make concrete statements about
the efficiency and performance of the derived algorithms. Moreover, it will also
provide a clear methodology to extend or adapt our algorithms to new imaging
modalities. Secondly, we want to produce useful tools for the bioimaging com-
munity. Thus, special attention is given to the user-friendliness and interactivity
of our resulting software.

Usually, the general perception of the shape of an object is independent of its lo-
cation, orientation and size [|23]]. These abstract attributes, which seem to come
form Plato’s world of Ideas, can be made precise using the appropriate formal-
ism. We identify the areas of functional analysis and differential geometry as
the ones that provide an elegant methodology to design shape descriptions with
explicit parametrization. Moreover, computational geometry provides us with
strategies to implement the shape descriptors and create routines that perform
quantitative analyses of biological images. We use the machinery of these disci-
plines to identify the strengths and limitations of the classical B-spline represen-
tation model.

Overview of the Contributions

Specifically, this thesis addresses the problem of detecting and segmenting bio-
logical objects and tracking them over time in high-throughput microscopy. This
is far from trivial due to the fact that, in biology, the objects of interest are
usually indistinguishable from each other and can appear tightly packed and in
various configurations making them difficult to segregate. We focus on objects
that have a constrained shape and move according to specific patterns. It seems
natural, then, to approach the detection, segmentation and tracking problems
with model-based techniques that enforce the topology.

We revisit the spline-based framework for active contours, and tailor it to cell
segmentation. We identify the key elements of the framework that have an im-
portant impact on the efficiency, speed, robustness, and usability. We address
them providing optimal solutions derived from functional analysis. The most
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1.6. Organization of this Thesis

important design factor throughout the thesis is the efficiency of the derived al-
gorithms. For that, a proper definition of shape descriptors is imperative. Every
module of the segmentation and tracking algorithms must be efficient in order
to be able to apply them to high-throughput microscopy.

The main contributions of this thesis can be summarized as

— The proposal of a parametric curve representation model using generalized
B-splines that can perfectly replicate ellipses as well as higher-order algebraic
curves. For that purpose, we fully characterize the family of basis functions
with shortest support that allows one to reproduce exponential polynomials.
We show that the minimal-support of these functions has a crucial role in
terms of efficiency.

— A new 2D segmentation method using our B-spline parametric curve model.
It is versatile enough to provide a good approximation of any closed curve
in the plane. Furthermore, its most important feature is that it can perfectly
generate circular and elliptical shapes. These features are appropriate to
delineate cross sections of cylindrical-like conduits and to outline blob-like
objects.

— The extension of our 2D segmentation method to 3D obtaining a fully para-
metric B-spline surface model with a sphere-like topology. This surface can
approximate any blob-like structure with arbitrary precision and reproduce
spheres and ellipsoids perfectly.

— A framework that is capable of generating fast and intuitive interactions of
the user with the segmentation algorithms due to our B-spline representation
of the 2D and 3D segmentation methods. The modification of one parame-
ter in the model affects a limited region of the active curve/surface, which
allows us to provide feedback to the user in terms of live updating display.

— The design of an image analysis toolkit that performs large-scale spatio-
temporal analysis of mitotic cells using our segmentation algorithms as build-
ing blocks. This is possible due to the efficiency of each individual segmen-
tation routine and and possibility of high level of parallelization.

Organization of this Thesis

The thesis proceeds with a review in Chapter [2] of different segmentation meth-
ods, among which we highlight the active contours framework. Special effort
is given to categorize methodologies that have emerged from this framework
using different shape representations.

We present in Chapter [3| the mathematical concepts that are used extensively
throughout the work. Special attention is given to the parametric representation
of curves in a basis composed of integer shifts of a generating function (i.e.,
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uniform B-spline representation). We also prove our optimality theorems in
which the methods designed in the subsequent chapters are based on.

In Chapter [4, we present a new class of parametric active contours using the
special kind basis functions designed in Chapter 3] We force our bases to have
the shortest possible support subject to some design constraints to maximize
efficiency. While the resulting snakes are versatile enough to provide a good
approximation of any closed curve in the plane, their most important feature
is the fact that they admit ellipses within their span. Thus, they can perfectly
generate circular and elliptical shapes. We address the implementation details
and illustrate the capabilities of our snake with synthetic and real data.

An extension to 3D active contours is presented in Chapter 5| We introduce a
fully parametric 3D design relying on the basis functions of Chapter 3| Once
more, we design our bases to have the shortest possible support subject to some
constraints that maximize computational efficiency. The proposed 3D snake can
approximate blob-like objects with %! smoothness, with good accuracy and can
perfectly reproduce spheres and ellipsoids irrespective of their position and ori-
entation. The optimization process is remarkably fast for a volumetric method
thanks to the use of Gauss’ theorem within our energy computation scheme. Our
technique yields successful segmentation results, even for challenging datasets
where object contours are not well defined. This is due to our parametric ap-
proach that allows us to favor prior shapes.

Finally, in Chapter [6] we make use of the active contours designed in previous
chapters to design a segmentation and tracking method that performs large-
scale time-lapse analysis of mitotic cells. The demonstrated efficiency of our
active contours allows us to use them as building blocks in a highly parallelizable
image analysis toolkit.
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Chapter 2

State-of-the-art in Image Analysis

In this chapter, we first review the state of the art in image-analysis algorithms.
Then, we address how implementation standards allow one to provide users
with appropriate tools.

First, we focus on image segmentation. We review different approaches, among
which we highlight the active contours framework. Then, we present the current
paradigm in image analysis for software development.

We describe the current good practices of the bioimage analysis community.
To conclude, we briefly review the most popular open image analysis available
platforms.

A Survey on Segmentation

The first step of Biomedical image analysis is often to identify objects in images
that are relevant to a specific application. These objects are typically anatomi-
cal structures (e.g., organs, vessels or other conduits) in medical imaging, and
different cell structures in automated microscopy.

In image processing and computer vision, the process of separating the desired
object (or objects) of interest from the background in an image is called seg-
mentation. More precisely, it is the process of assigning a label to every pixel
in an image such that pixels with the same label share certain visual charac-
teristics. Ultimately, the goal of segmentation is to simplify and/or change the
representation of an image into something that is more meaningful to analyze.

A variety of techniques can be used to do this. The literature contains hundreds
of segmentation techniques [|24]]. They range from simple pixel-wise operations
(such as thresholding or masking) to more complex continuous models (such as
active contours). There is no single method that can be considered good for all
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2.1.1

images, nor are all methods equally good for a particular type of image.

Segmentation methods vary depending on the imaging modality, application
domain, the level of automation, and other specific factors. Beside manual seg-
mentation, the simplest method for separating objects from a background is in-
tensity thresholding [25] 126} 27]. This involves defining one or several threshold
parameters whose value can be set manually or derived automatically from the
data based on the intensity histogram [25[]. This approach would be successful
if the objects to segment and the background are well separated and their inten-
sity levels differ significantly from each other. Unfortunately, these methods do
not maintain object integrity since they do not include neighborhood relations,
and are also sensitive to noise.

A more elaborated approach consists in using a predefined intensity profile, also
referred to as a template, to be matched to the image data [28][29]]. This method
has been shown to work well as long as the shape to segment does not change
significantly across different experiments (i.e., rigid transformations) [28[]. In
order for the algorithm to gain flexibility and generality, a large number of
different templates must be considered. This usually makes a good algorithm
design impractical [30].

Another segmentation strategy is to apply the watershed transform [31]]. The
image is considered as a topographic relief map and progressively flooded start-
ing from its local minima. This transform subdivides the image into regions
(catchment basins) with delimiting contours (watersheds). However, the ba-
sic algorithm has several drawbacks such as sensitivity to noise and a tendency
toward oversegmentation [32].

Finally, the most used statistical segmentation methods rely on Markov Random
Field Models (MRF). MRF modeling itself is not a segmentation method but a
statistical model that can be used within segmentation methods. MRFs model
spatial interactions between neighboring pixels [33]]. MRFs are often incorpo-
rated into clustering segmentation algorithms such as the K-means [34} 35} 36].
The segmentation is then obtained by maximizing the a posteriori probability of
the segmentation, given the image data. The major difficulty associated with
MRF models is the proper selection of the parameters controlling the strength
of spatial interactions [33]]. Moreover, MRE-based segmentation methods are
usually computationally intensive algorithms.

Snakes, a Perfect Fit for Image Segmentation

In recent years, there has been an increasing interest in using deformable mod-
els in segmentation [[37, [38] [39] [40] since they provide the best tradeoff be-
tween flexibility and efficiency. Within this category, active contours (also named
snakes) are the most popular tools for image segmentation. More precisely, an
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Figure 2.1: Graphical representation of the discrete curve defined by a point-
snake over the grid associated to a discrete image model. The shaded pixels
represent the snake points joined by an 8-connected digital topology.

active contour is a curve within a 2D image that evolves from an initial position
towards the boundary of the object of interest. Its extension to 3D images is an
evolving surface. The initial position of the snake is usually specified by the user,
or it is provided by an auxiliary detection algorithm. The evolution of the snake
is formulated as a minimization problem; the associated cost function is usually
referred as snake energy. Snakes have become popular because it is possible for
the user to interact with them, not only when specifying its initial position, but
also during the segmentation process. This interaction is usually implemented
by allowing the user to specify control points the snake must go through.

Research in this area has been fruitful and has resulted in many snake vari-
ants [37, 38}, [41},[42]]. They differ in the type of representation and in the choice
of the energy term. In the rest of this chapter we provide a categorization of
snakes in terms of representation, and offer a description of the overall snake
energies.

2.1.1.1 Snake Representations Snakes can be broadly categorized based on the type
of representation used:

1. Point-snakes. These snakes are based on the simplest representation of dis-
crete curves (or surfaces): by using an ordered collection of points [[43]
441 [45]]. A pair of snake points are considered adjacent if some topological
relations are satisfied [46]]. In Figure we show a 2D point-snake over-
laid on the grid associated to a discrete image model. The discrete curve is
displayed as gray pixels, and has an 8-neighbor connectivity.
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Figure 2.2: Graphical representation of the continuous curve defined by a snake
parameterized by a B-spline basis. The snake contour is shown as a solid line
enclosing a shaded region, while the '+’ elements are the spline control points.
The parametric functions x;(t) and x,(t) are displayed in solid lines, and the
dashed lines indicate the weighted basis functions.

This approach does not ensure smoothness of the contour due to the dis-
crete nature of the representation. However, some degree of smoothness
(in a discrete sense) is usually introduced by adding extra constraints in the
energy functional [[43]]. This discrete representation requires many parame-
ters to encode a simple shape (two for each snake point in 2D and three for
each snake point in 3D). The large number of parameters to be estimated
abate the robustness of the overall segmentation algorithm, and results in a
high computational complexity.

2. Parametric Snakes. The snake is described continuously by some coeffi-
cients [47,/48} 49|50, [51]]. Parametric snakes are usually built in a way that
continuity and smoothness are ensured. This provides the algorithm the
capability to segment at an arbitrary resolution, which may yield subpixel
accuracy. Moreover, when compared with the discrete approaches, they re-
quire much fewer coefficients and result in faster optimization schemes than
their discrete counterpart.

There are many different techniques for representing continuous curves.
For a complete review, refer to [52] [53]]. In computer graphics, curves and
surfaces are often represented using non-uniform or uniform B-spline func-
tions [[54] and, more recently, NURBS (Non-Uniform Rational B-Splines)
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[55]]. NURBS are the preferred approach in computer graphics since these
functions are closed under perspective transformations. On the other hand,
curve and surface parameterizations based on Fourier descriptors [48] [56]]
and uniform B-spline functions [50, 57, [58]] are popular in image process-
ing due to the existence of efficient signal-processing algorithms, and their
invariance to affine transformations. Of these, the B-spline curves have the
extra advantage of locality of control which favors a more user-friendly in-
teraction: a change in one of the snake points will only affect a small region
of the curve or surface. We show in Figure a curve parameterized with
a B-spline basis, its spline control points as well as its corresponding coordi-
nate functions. We discuss the B-spline representation of curves in detail in
the next chapter.

In the case of B-spline parameterizations, it can be shown that the com-
putation complexity of the snake energy and, therefore, the speed of the
optimization algorithms, is related to the size of the support of the basis
functions [|57]]. It is therefore critical to minimize this support while design-
ing snakes.

Since the curve or surface of parametric snakes is represented explicitly, it is
easy to introduce smoothness and shape constraints [[47]. It is also straight-
forward to accommodate user interaction. This is often achieved by allow-
ing the user to specify some anchor points the curve should go through [43]].
The downside of the method is that the topology of the curve is imposed
by the parameterization. This makes parametric snakes less suitable for
handling topological changes, although solutions have been proposed for
specific cases [59} [60]).

Geodesic Snakes. Geodesic approaches have obtained a lot of attention dur-
ing the last decade [61] [62] [63] [64]]. The representation of these snakes is
implicit and described as the zero level-set of a higher-dimensional mani-
fold. Formally, the snake contour is given by ®~1(0) = {p € R"|®(p) = 0},
where @ is a scalar function defined all over the image domain. This method
is based on the ideas developed by Osher and Sethian to model propagating
solid/liquid interfaces with curvature-dependent speeds [65]]. The interface
(front) is a closed, nonintersecting, hypersurface flowing along its gradient
field with constant speed or a speed that depends on the curvature. It is
moved by solving a Hamilton-Jacob type equation written for a function in
which the interface is a particular level-set.

These methods offer great flexibility as far as the curve topology is con-
sidered. A single geodesic snake (evolving under the appropriate energy
functional), has the ability to split freely to segment multiple objects within
an image. This flexibility is convenient when segmenting complex shapes,
which include shapes with significant protrusions, and to situations where
no a priori assumption about the topology of the object is made [66]]. More-

11
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Figure 2.3: Graphical representation of the continuous curves generated as the
result of computing the zero level-set (®71(0)) of a scalar function .

over, level-set methods can be extended to any dimension, which is more
challenging for the case of point-snakes and parametric snakes.

However, they tend to be computationally more expensive since they evolve
a manifold with a higher number of dimensions than the actual contour to
segment. We show in Figure a set of curves generated as the result of
computing ®~1(0).

2.1.1.2 Snake Energies In this thesis we follow the standard paradigm introduced by
Kass et al. [[43]] and formulate the snake evolution as an energy minimization.
The snake energy is typically a linear combination of three terms:

12

the image energy, which is the responsible for guiding the snake toward the
boundary of interest;

the internal energy, which ensures that the segmented region has smooth
boundaries;

the constraint energy, which provides a means for the user to interact with
the snake.

The total energy of the snake is written as

Egrake(©) = Eimage(g) + Ein(©) + E.(©), 2.1

where © encodes the snake representation (snake points, parameters, or mani-
folds). Then, the optimal © is formally obtained as

eopt = arg(;nin Esnake(e))'
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The energy minimization process is nothing but an optimization procedure,
where we iteratively update the snake representation so as to reach the mini-
mum of the energy function from a starting position. Many methods exist to
minimize the energy functional (gradient descent, PDEs, DB etc.), and each op-
timization scheme is usually linked to a particular snake representation.

The image energy is the most important of the three terms in (2.1]) since is the
one that guides the snake to the object of interest. Traditional snakes rely on
edge maps derived from the image [43] [47]]. These edge-based energies can
provide a good localization of the contour of the object to segment. However,
they have a narrow basin of attraction, making critical a good initialization.
Traditional point-snakes and parametric snakes were very sensitive to initial-
ization. This was in part due to the fact that the underlying internal energy
of these methods was purely based on edge maps. Several authors have de-
veloped alternative solutions to this issue. Among them the most important
ones are the introduction of balloon forces [67], the introduction of gradient
vector-fields defined everywhere on the image domain [44]], or multiresolution
approaches [[50].

More image energies use statistical information to distinguish different homo-
geneous regions [49, |68} [69]]. The region-based energies have a larger basin of
attraction and can converge even if explicit edges are not present [70]. How-
ever, it does not provide a good localization as the edge-based image energies.

The internal energy is responsible for ensuring the smoothness of the snake.
In its original definition, it is composed by a linear combination of the length
of the contour and the curvature of the snake [[43]]. Despite the fact that this
particular expression was the first one to be introduced, it still corresponds to
the most widely used [38]]. Some authors also incorporate prior knowledge as
shape constraints in this energy [[71]].

The constraint energy provides a means for the user to interact with the snake.
Usually, this is obtained by introducing an energy functional that behaves as
virtual springs that pull the snake towards the desired points [57]]. Some imple-
mentations obviate the constraint energy while accommodating the user inter-
action as a hard constraint and leaving the parameters related to the point out
of the optimization routine [|72]].

An alternative minimization framework to is the multipurpose Mumford-
Shah functional [73]. In this framework, the image is modeled as a piecewise-
smooth function. The functional penalizes the distance between the model and
the input image, the lack of smoothness of the model within the sub-regions, and
the length of the boundaries of the sub-regions. This approach is quite popular
in the context of geodesic snakes [[70} [74} [75} [76].

13
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The quality of segmentation is determined by the choice of the energy terms;
it is generally agreed that specific image energies need to be defined for each
particular imaging device. For this reason, we define in the subsequent chapters
particular energies for each application.

Image Analysis Software

The step for converting algorithms to good and usable bioimage analysis soft-
ware is also of great importance. In this section, we present the current good
practices for software development to ensure a successful conversion, and we
review the history and current state of the most popular open image analysis
platforms.

Software Design

The primary users of image analysis software are biologists with little or no pro-
gramming training and who are operating their own microscopes and analyzing
their own data. They require user-friendly, well-supported, and flexible software
to easily fulfill their particular needs [[77].

It is generally agreed that the following good practices must be followed in order
to create software that is usable and helpful to a broad segment of bioimaging
community [[78]:

1. User-friendliness: The software should be intuitive and easy-to-use. More-
over, it should be accompanied with clear usage manuals and offer feedback
mechanisms (e.g., forums, mailing lists, bug report systems) [[79]]. We show
in Figure |2.4|an intuitive interface of an image analysis software running in
a Tablet PC.

2. Developer-friendliness: A good documentation of the structure of the code
is crucial since it provides developers the capability to understand what
and how the program works. Open-source software is a good example of
developer-friendly software.

3. Interoperability: It is important to make software that communicates using
the available open standards. In this way, different software can easily in-
teract without having to define complementary components to translate the
data. A successful example is the Bio-Formats project, a Java library for
reading and writing life sciences image file formats [|80].

4. Modularity: The implicit modularity of object-oriented design is key when
maintaining a large piece of software. The use of modular structures with
common interfaces allows developers to update their software at a minimum
effort.
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2.2. Image Analysis Software

Figure 2.4: Samsung Slate PC Series 7 running the open image analysis software
Icy [81]] and one of the plug-ins described in this thesis. This is the result of the
efforts of the open-source community of developers to produce an user-friendly
image analysis software.

5. Validation and Quality Control: The software should be tested in ways that
are relevant to the user. Moreover, for the benefit of making research repro-
ducible, it must be possible to replicate the same exact computations and
quantitative results that the developers advertise.

Open Image Analysis Platforms

The established paradigm in science is to ask and answer scientific questions
by making observations and doing experiments. In order to properly analyze
the experiments and draw conclusions, the scientist must be aware of how his
tools work. Simply pressing a button in a piece of software and interpreting
the results without understanding what the software does is obviously not good
scientific practice. Open-source software provides the necessary transparency,
giving scientists the opportunity to fully understand the computational methods
behind their tools.

Among all open-source bioimage analysis tools, the one that has had the most
impact so far is ImageJ [82]]. It was initiated by Wayne Rasband at the Na-
tional Institutes of Health (NIH) under the name of NIH Image. The idea was to
develop a low-cost image-processing platform for the Apple Macintosh II. This
piece of software was coded in Pascal, and had add-on capabilities in the form of

15
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Initiated Status Language License
NIH Imageli] 1987 Discontinued Pascal Public domain
ImageJ 1997 Active Java Public domain
uManager 2005 Active C++ BSD, Lesser GPL
CellProﬁler 2006 Active Python GNU
Fijif7 2007 Active Java GNU
ImageJZE] 2009 Under development Java Simplified BSD
Icy[7| 2011 Active Java GPL

Table 2.1: Summary of open-source image-processing platforms.

expansion slots in order to enable other developers to easily extend the software
for their own applications.

In the mid-nineties, the programming language Java was created by Sun Mi-
crosystems. Java applications are typically compiled to bytecode that can run
on any machine regardless of the architecture. This allowed developers to write
their software independently of the platform. Rasband ported NIH Image to
Java in the late-nineties under the name of ImageJ. As a result the base of NIH
Image users and developers was extended to PC and Unix.

ImageJ upgraded the expansion slots of NIH Image into the more modular con-
cept of plug-ins. Since its creation, ImageJ has enjoyed a great popularity, and
resulted in the development of a wide variety of plug-ins for very diverse appli-
cations [|83].

Besides the core application, another popular distribution is Fiji. It is a more
user-friendly distribution of ImageJ together with Java, Java 3D and the most
prominent plug-ins as well as transparent installation and updates [|84].

The largest upgrade of ImageJ since NIH Image is being prepared involving sev-
eral research laboratories under the name of ImageJ2. It involves a full rewrite
of the source code using new architectures in order to overcome the limitations
of ImagelJ.

Recently, other open-source related platforms are emerging. Among them, we
can find: wManager, a software package for the control of automated micro-
scopes [I85]]; CellProfiler, a software specialized in measuring phenotypes au-
tomatically within images [86]]; and Icy, a full integrated easy-to-use platform

. http://rsb.info.nih.gov/nih-image/
. http://rsbweb.nih.gov/ij/

. http://www.micro-manager.org/

. http://www.cellprofiler.org/

. http://fiji.sc/

. http://developer.imagej.net/

. http://icy.bioimageanalysis.org/
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extensible with plug-ins [81]]. We summarize all these open-source projects in
Table 2.1] [87].

Due to the possibility that all the aforementioned image-processing packages
diverge and interoperability becomes an issue, the Open Bio Image Alliance[ﬂ
(OBIA) was constituted in 2012. Its primary mission is to provide biologists and
researchers in the life sciences with the highest quality public-domain software re-
sources and a corresponding knowledge base to analyze and quantitate their image
data in a sound and reproducible fashion, and to strengthen the interaction be-
tween biologists, imaging scientists and developers of bio-image analysis software
and algorithms.

OBIA capitalizes on the existence of highly successful software packages such as Im-
ageJ. However, it also faces substantial challenges relating to the long-term support
of existing software, its improvement, the quantity and diversity of available plug-
ins, the documentation and organization of the modules, as well as compatibility
issues. OBIA promotes long-term availability and backward compatibility, feder-
ates the harmonious community-based development of interoperable software, and
promotes good software development practices.

The methods described in this thesis have been programmed as plug-ins for
ImageJ and Icy. Both are free open-source multi-platform Java image-processing
platforms. Our plug-ins are independent of any imaging hardware and, thanks
to ImageJ and Icy, any common file format may be used. The plug-ins and the
source codes are freely available at the respective official repositories.

8. http://www.openbioimage.org/
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Chapter 3

Spline Bases for Representation of
Curves

The generation of curves under geometric restrictions is an important area of
research in Computer-Aided Geometric Design (CAGD). Considerable effort has
been expended over the last forty years in this field in order to develop efficient
and flexible representations of complex shapes. Since Bézier curves in the early
sixties, B-spline curves in the mid seventies, and subdivision schemes in the late
seventies, the search for representations that overcome the topological limita-
tions of the classical approaches has not ceased. Research in this area has been
fruitful and has resulted in many different methodologies [[88}[89]. They can be
broadly categorized in terms of curve representation as

— subdivision schemes, where the curve is described as the limit of a refinement
process [[90] 91}, [92];

— parametric schemes, where the curve is described continuously by some co-
efficients using basis functions [53, (93] (94 [95].

A subdivision scheme is a set of rules that recursively define new points on finer
grids starting form a set of initial points on a coarse grid. If the same rule is
kept for all iterations, the scheme is called stationary [[96] 97, [98]]. If a different
rule is used at each refinement level, the scheme is called nonstationary [99,
100]. Research is continually moving toward the investigation of refinement
rules able to combine desirable reproduction properties under some geometrical
constraints. In particular, schemes capable of reproducing circles were proposed
in [101},[102] 103}, (104, [105]], and, more recently, schemes based on exponential
B-splines made possible the reproduction of conic sections [[106} (107, 108}, (109,
110] and exponential polynomials [T1T] [112].

For certain applications, it is more convenient to represent the curve in an ex-
plicit parametric form instead of representing it as the limit of a subdivision
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process, the reason being that the parameters provide a direct way of evaluating
any point on the curve. For computational reasons, short basis functions are
preferable because the evaluation of a single point on the curve then depends
on fewer coefficients.

In this chapter, we design a parametric curve representation model that can per-
fectly replicate ellipses as well as higher-order algebraic curves. To achieve this,
we select basis functions that have the capability of reproducing specific fami-
lies of exponential polynomials. We prove a factorization theorem that links the
reproduction properties of a given basis function and its support. The theorem
shows that any compact-support basis function that reproduces that subspace
can be expressed as the convolution of an exponential B-spline and a compact-
support distribution. As a corollary of this result, we obtain a full character-
ization of the minimal-support basis functions with the required reproduction
properties; these basis functions were first identified by Ron using a different
approach [[113]]. This explicit characterization gives us the opportunity to iden-
tify interesting candidates within the family, and to construct nonstationary sub-
division schemes that share the same reproduction properties.

This chapter is organized as follows: In Section [3.1 we state the general para-
metric curve model through an expansion with compact-support basis functions,
and discuss the requirements these bases should fulfill. In Section we con-
struct a family of basis functions that reproduce exponential polynomials and
prove that these bases have minimal support. In Section[3.3] we exhibit the mul-
tiresolution properties of our basis functions and propose a subdivision scheme
that shares the same reproduction properties within the family. Finally, we illus-
trate the versatility of our model in Section by identifying a basis from the
family that contains ellipses and higher-order harmonics within its span.

Parametric Curves

Generic Curves

A curve r(t) on the plane can be described by a pair of Cartesian coordinate
functions x;(t) and x,(t), where t € R is a continuous parameter. We choose to
parameterize the one-dimensional functions x; and x, by linear combinations
of suitable basis functions. Among all possible bases, we focus on those derived
from a compactly supported generator and its integer shifts {¢(- — k)};cz- This
allows us to take advantage of fast and stable interpolation algorithms [[114,
115, [116]. The parametric representation of the curve is then given by the
vectorial equation
= t
()= elklo(; —k), (3.1)

k=—o00
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where {c[k]},cy is a sequence of control points and T a sampling step.

We want our parametric curve to be defined in terms of the coefficients in such
a way that unicity of representation of the coordinate functions x; and x, is
satisfied. Furthermore, for computational purposes, we ask the interpolation
procedure to be numerically stable. A generating function ¢ is said to satisfy
the Riesz-basis condition if and only if there exist two constants 0 <A < B < 00
such that

0 2

D clklo—k)

k=—o00

Allellf ) < <B lellf (3.2)

Ly(R)

for all ¢ € £,(Z). A direct consequence of the lower inequality is that the condi-
tion ZZO}OO c[k] cp(% —k) =0 for all t € R implies that c[k] = O for all k € Z.
Moreover, c[k] = 0 for all k € Z trivially implies that >~ _ c[k] @(% -k)=0
for all t € R. Therefore, the basis functions are linearly independent and every
function is uniquely specified by its coefficients. Moreover, the upper inequality
ensures the stability of the interpolation process [[116} [117]. Condition
can be expressed [[117] in the Fourier domain, where the following equivalent
form must hold for every w € R:

[oe]
A< Y [@(w+2mn)? <B.

n=-—o00

The curve model in has been shown to be very versatile since it can ap-
proximate any curve when the sampling step T decreases while keeping the
same basis function ¢. The minimum requirement for this to happen is that ¢
should be able to reproduce constants, which we formalize by

o0

> e-k=1. (3.3)

k=-o00

In the literature of approximation theory, this constraint is often named the
partition-of-unity condition [[118].

3.1.2 Closed Curves

We are especially interested in the case when r is closed. In this context, the
two coordinate functions are periodic, with the same period. We normalize it to
unity so that r(t) = r(t + 1) for all t € R, and divide it into M segments, which
is equivalent to choosing the sampling step T = ﬁ Under these conditions, we
can reduce the infinite summation in to a finite one with M terms involving
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periodized basis functions. We write

M2

r(t) = c[k]p(Mt—k)

k=—00
oo M-1

= > c[Mn+klp(M (t—n)—k)
n=-00 k=0
M-1 00

= Yokl Y. @M (t—n)=k), (3.4)
k=0 n=—oo

‘pper(M t_k)

where M is the number of control points, the sequence {c[k]}cz is M-periodic,
and ¢, is the M-periodization of the basis function ¢. In the periodic setting,
it has also been shown that this parametric curve model is very versatile [119],
and we can approximate any closed curve as accurately as we want by increas-
ing the number of control points M. Under some mild refinability conditions,
it has been shown that this model naturally leads to a stationary subdivision
scheme [[90].

Desirable Properties of Bases in the Periodic Settings

Now, we enumerate the conditions that our parametric closed curve model
should satisfy, and introduce the corresponding mathematical formalism.

1.

Unique and Stable Representation. We want our closed parametric curve to
be defined in terms of the coefficients in such a way that unicity of repre-
sentation is satisfied, and we want the interpolation procedure to be numer-
ically stable. A generating function ¢ is said to satisfy the periodic Riesz-
basis condition if and only if there exist two constants 0 < A < B < oo such
that

M-1

2 2
Allelly, o, w11y = kZ clk] pper(M - =k) < B llelly,o..m-17)
=0 L,([0,1])
’ (3.5)

holds true for all M-periodic and bounded sequences c¢. The interpretation
of this condition is in all points similar to the non-periodic case We also note

that is automatically satisfied if ., is defined as in , and (3.2)
holds true for .

Affine Invariance. Since we are interested in representing shapes irrespective
of their position and orientation, we would like our model to be invariant
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to affine transformations, which we formalize as
M-1
Ar(t)+b= " (Ac[k]+b) @ (Mt —k), (3.6)
k=0

where A is a (2 x 2) matrix and b is a two-dimensional vector. From (3.6)),
it is easy to show that the affine invariance is satisfied if and only if

M-1
D PpulM - —k)=1. 3.7)
k=0

This last equality is a direct implication of the partition-of-unity condition

stated in (3.3).

3.1.4 Approximation and Reproduction Properties in Periodic Settings

The parametric closed-curve model (3.4)) can be used to approximate any closed
curve s as accurately as desired by increasing the number of control points M.
Formally, we write that

Nlllf(l)o lIs — PusllL,o17) =0,

where &s denotes a projection of s onto {¢p(M - —k)}cz, OF, equivalently,
onto {@pe(M - —k)}r=ro..m—1], since both allow for alternative representations
of the same space. In order to be able to select a suitable basis function, it is
important to know the rate at which the error decreases as a function of M.
The open-curve case reduces to the well-known Strang-and-Fix framework in
approximation theory [[120], [121]], the results of which are transposable to the
closed-curve case as well [[119].

In addition to desirable approximation properties, our main interest lies in the
situation where the curve r can reproduce desirable shapes exactly. For this
purpose, we select for each M > M, a specific basis function capable of repro-
ducing the shapes of interest with M vector coefficients, and denote it p,,. Its
M -periodization is written as g ,.,. Using a different basis function ¢, for each
value of M obviously leads to a subdivision scheme that is nonstationary. The
existence of such a scheme depends on some refinability conditions over ¢,,. In
particular, the conditions of Section [3.1.3]have to hold for each ¢, individually.

In the nonstationary case, the approximation error of curve is ||s — 2y, 0,17),
where now 2,;s denotes the projection of s onto the space {¢(N - —k)}iez,
with N = M. Inspired by [[100], which discusses asymptotically equivalent bi-
nary subdivision schemes, we show in Section that the rate of decay of
the approximation error as a function of N = M is equivalent to that of the
stationary case.
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Reproduction of Exponential Polynomials

The main aim of this section is to introduce a family of functions that reproduce
exponential polynomials, and prove that these functions have minimal support.
To achieve this goal, we start by formalizing the concept of the reproduction
of exponential polynomials. Next, we define the exponential B-splines and list
their relevant properties. This allows us to give a full parameterization of the
family of functions of interest: they happen to be combinations of exponential
B-splines and their derivatives. Note that, in this section, we consider spline
functions on a cardinal grid on the real line. The case of periodic spline functions
corresponding to closed curves follows directly from this theory by the argument
given in Section [3.1.3] but the theory we develop here is more general and can
also be used to design basis functions that reproduce non-periodic functions, for
instance, open curves or surfaces.

Preliminary Definitions

A function Pév of the variable t € R is called an exponential polynomial of degree
N and exponent a € C when it takes the form

N
PN(£) = et (a[O] +> aln] r_"), (3.8)
n=1

where {a[n]},cpo. n) is @ sequence of (N + 1) complex coefficients such that
a[N] # 0. A finite linear combination of exponential polynomials takes the form

M
Z plm] ng' (3.9)
m=1

A generating function ¢ is said to reproduce a function f if and only if there
exists a sequence {c[k]}e; such that

00

FO)= " clklp(t—k)

k=—00

holds almost everywhere.

Reproduction Conditions

A fundamental result in approximation theory is that there is an equivalence
between the ability of a generating function to reproduce polynomials of a cer-
tain degree and the order of decay of the approximation error as the step size
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goes to zero [[122]]. Strang and Fix showed in [[121]] that a generating function
¢ € Ly(R) has an approximation error that decays with order N if and only if

J p(t)dt#0

—00
and there exists a finite constant C,, € C such that

[ee)

D =k p(t—k)=C,

k=—00

holds for almost every t € R, and for n € [0...N — 1]. Moreover, the generating
function reproduces polynomials up to degree (N — 1).

An extension of the Strang-and-Fix conditions was presented by Vonesch et al.
in [123]] in the context of the reproduction of exponential polynomials. Here,
we provide a reformulation suited to our needs.

Proposition 1. A compact-support generating function ¢ € L,(R) reproduces ex-
ponential polynomials of degree up to (N — 1) and exponent a if and only if

J. e *p(t)dt #0 (3.10)

—0o0
and there exists a finite constant C, € C such that

o0

D=k e Pyt —k) =, (3.11)

k=-o00

holds for almost every t € R, and forne [0...N —1].

This proposition is a direct consequence of the generalized Strang-and-Fix con-
ditions from [[123]] and the fact that ¢ is compactly supported.

Another way of approaching the problem is offered in [[124]] where the authors
show that the reproduction properties of generating functions are preserved
through convolution. We summarize here their proposition for completeness.

Proposition 2 (Unser and Blu, 2005). Given a generating function , that repro-
duces exponential polynomials of exponent a and degree up to N, then, for any
such that f jooo e tap(t)dt # 0, the composite function (¢4 * ) also reproduces
exponential polynomials of exponent a and degree up to N.

The formulation proposed by the authors also requires two mild technical con-
ditions over ¢ and (, * 1) to ensure that moments are well-defined.
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Proposition |2| provides a constructive procedure to build generating functions
using simpler functions with known reproduction properties. In the next section,
we present the exponential B-splines, which will provide us with the appropriate
building blocks to reproduce exponential polynomials.

Exponential B-Splines

As their name suggests, exponential B-splines are the exponential counterpart
of the well-known polynomial B-splines [[124, (125, [126[]. They have the prop-
erty of reproducing exponential polynomials, polynomials being recovered as a
particular case by setting & = 0 in (3.8). An exponential B-spline of order N and
poles @ =(ay,...,ay) is defined in the Fourier domain as

N 1—e(o-an)

Pal)=] ] ——. (3.12)

m=1 Jw—an

Note that the exponential B-splines are entirely specified by the collection a; the
ordering of the poles a,, is irrelevant. We illustrate in Figure several expo-
nential B-splines, where we see that a wide range of behaviors can be obtained
by varying N and a.

The most relevant properties of exponential B-splines for our purposes are

— The exponential B-splines are always well-defined (i.e., bounded and com-
pactly supported), and form a Riesz basis if and only if (aml - amz) ¢ 27
for all pairs such that m; # ms.

— Exponential B-splines of order N are compactly supported within the interval
[O,N].

— The convolution of two exponential B-splines yields another B-spline of aug-
mented order

ﬁal * ﬁaz = ﬁaluaz
where (a; Uas,) is the concatenation of the elements of a; and a,.

— The exponential B-splines of first order with parameter (a) reproduce the
exponential function with exponent a

e‘“z Z e“kﬁ(a)(t—k).

k=—00

— Exponential B-splines reproduce exponential polynomials of degree up to
(le - 1) and exponent a,, if and only if a,, appears exactly N,, times in

a and, for all other distinct a,,,, we have that (aml - amz) ¢ 2mj7.
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B(Q B(a,a)
1.5 1.5
1 1
0.5 0.5
0 t 0 t
0 1 2 3 0 1 2 3
(a) (b)
Ba,...,
((iéﬁ a)
0.5
0 . t
0 1 2 3 4 5
©

Figure 3.1: Examples of exponential B-splines. (a) First-order exponential
B-splines with a € {(—2),(—1),(—%), (0),(%)}. (b) Second-order exponential

B-Splines ﬁ(a,a) with @ € {(_27 _2)7(_1) _1);(_%’ _%)5 (O: 0);(%; %)} (C) N-th

,,,,,

The three last properties provide us with a constructive procedure for building
generating functions capable of reproducing exponential polynomials of a given
degree and exponent. By construction, the support of the resulting generating
functions corresponds to the order of the exponential B-spline. We refer to [124]
for additional aspects of exponential B-splines.

Distributional Decomposition

Our first goal is to characterize the functions that reproduce exponential polyno-
mials. To that end, we are able to prove a converse version of Proposition [2} we
prove that any compact-support function with the required reproduction prop-
erties must contain an exponential B-spline convolution factor with the same
reproduction properties.
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Theorem 1. Let ¢ be supported within [a, b] and let it reproduce finite linear
combinations of exponential polynomials @l such that (aml — amz) ¢ 2mj7Z for
m, # m,. That is, ¢ satisfies and (3.11) for each pair (N,,, a,,). Then, a
distribution 1 exists such that

0 =y *x, (3.13)

where 1 satisfies (3.10) for all a,, each a,, appears N,, times in &, and v is
compactly supported within [a,b — N] with N = er\:ﬂ N,

Proof. We proceed by induction over the order N,,, of each a,, to show that we
can factor out N, times an exponential B-spline of first order for each a,,, from
the generating function ¢. The process can be repeated for each exponent until
the remaining kernel cannot reproduce any exponential polynomial anymore.
Then, it is enough to show that, for a given a,, , there exists a distribution v
such that

¢ = Ba,,) *¥s (3.14)
where 1) satisfies the following properties:
1. it is compactly supported within [a,b — 1];
2. it reproduces exponential polynomials of degree up to (Nm2 - 2) and expo-
nent a,, ;
3. it reproduces exponential polynomials of degree up to (le - 1) and expo-
nent a,, forall m; #m,.

Since the definition of ¢ provided in (3.14) is implicit, we need to verify that
this distributional kernel exists and is well-defined. We show this constructively.
For a given m, < M, we define the function

00

P() = e (D - ay, De(t — k), (3.15)

k=0

where D is the derivative operator in the sense of distributions, and I is the
identity. The infinite sum in (3.15) is well-defined since, for every t, the sum has
only a finite number of elements because ¢ has compact support. From (3.15),
we write that

P(t) —e®map(t —1) = (D — ap, De(t). (3.16)
Taking the Fourier transform of (3.16) leads to the factorization

1-— e_(jw_amz)

P(w) = P () = Ba,, (@) ()

jo—ap,

which corresponds to the implicit definition of v given in (3.14).
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To prove Point 1), we recall that ¢ reproduces exponential polynomials of de-
gree up to N, —1 > 0 and exponent a,,. Thus, by setting n =0 in (3.11) and

applying the differential operator (D — A, I), we have that

o0

Z em K (D —Qp, I) p(t—k)=0,

k=-o00

in the distributional sense. Thanks to this last equality and using the explicit
formula of v given in (3.15), we can also write that

-1
P(O)== > e (D-a,,1)p(t—k).

k=—o00

According to this last expression, the support of ¢ is contained within (—oo, b —
1]. But, according to the definition (3.15), we also have that the support of
1) is contained within [a,+o00). Hence, we conclude that the support of 1 is
contained within [a, b — 1].

We deal with a modified version of (3.11) to prove Point 2). By linearity, and
since ¢ reproduces exponential polynomials of degree up to N,,, —1 > 0 and
exponent a,, , we can write that

e

D P(t—k)e Tt — k) = Cp, (3.17)

k=—00

where P is any polynomial of degree no greater than (Nm2 - 1), and Cp is a con-
stant that only depends on the polynomial P and not on t. Then, the application
of (D— Ay, I) to (3.17) leads to

o0

0 = > P(t—ke M (D—a, 1) p(t—k)

k=-o00

Y(t—k)—e*m2 Y(t—k-1)

+ D P(t—k)e T — k),

k=—00

Cp

where we have used (3.16) to rewrite the first term, and where the second term
is equal to the constant C; since P is a polynomial of degree no greater than
(Nm2 - 2). Since v has a compact support, we can rearrange the terms as

Z Q(t —k)e % =y (t — k) = —Cj, (3.18)

k=—o00
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where Q(t) = P(t) — P(t + 1).

Since P is a polynomial of degree no greater than (Nm2 - 1), it follows that Q is
a polynomial of degree no greater than (Nm2 — 2). This also means that, for all
polynomials Q of degree no greater than (Nmz — 2), there exists a constant Cy,
such that Z,i“;ioo Q(t —k)e %m (t_k)w(t —k) = Cq. In particular, if P(t) = ¢,
then Q(t) = —1. Because P is a polynomial of degree lesser than that of P, it

also satisfies (3.17). Then, we can substitute P by P = 1 in (3.17), which we
combine with (3.18)) and Q = —1 to obtain the system

Do Motk = G
Yo € Yt~k = —Cp,
which leads to
Dl ey —k)= > e P —k).
k=—00 k=—00

Integrating the last expression of ¢t over the interval [0, 1], and rearranging the
terms, yields

f e—amztw(t)dt :J e_aﬂntgo(t)dt.

—0o0 —00

Thus, since ¢ satisfies (3.10), so does 1. Therefore, v reproduces exponential
polynomials of degree up to (Nm2 - 2) and exponent a,,, .

Finally, to prove Point 3), we proceed in the same manner. We recall that, for
m, # m,, the function ¢ reproduces exponential polynomials of degree up to
N, —12> 0 and exponent a,, . Thus, if we use (3.17) with parameter a,,, and

apply the differential operator (D —Qp, I), then we obtain

(aml — amz) Cp =

e}

D7 P(t—k)e (D —a, 1) o(t — k)

k=—o00

P(e—k)—e"m2 4 (¢—k—1)

o0
+ >0 Pe—k)e T (e — k),

k=—o00

/
CP

where we have used again (3.16) to rewrite the first term, and where the second
term is equal to the constant C}; since P is a polynomial of degree no greater than
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(le — 2). Since v has compact support, we can rearrange the terms to obtain

D=k Pyl —k) = (@, — an,) G —Cj, (3.19)
k=—o00
where Q(t) = P(t) — e%m2 "% P(t + 1).
Since P is a polynomial of degree no greater than (le — 1), and e%m "% £ 1,
then Q is a polynomial of degree (le - 1), too. This also means that, for all
polynomials Q of degree no greater than (N,, — 1), there exists a constant C,
such that Z,fo:_oo Q(t — k)e @m (= ay(t — k) = Cq. In addition, we see that,
if P(t) =1, then Q(t) = 1 — e*="%m and C}{, = 0. Now, by setting P(t) = 1
in (3.17) and Q(t) =1 — e*="%m in (3.19), we have the system

Yoo € T ot — k)
Zi‘;_oo (1 _ eamflxml) e %m (t—k) w(t —k)

which leads to

Cr
(aml - amz) CP’

o8 00

3 e Ry —k) = _dm " %my 3 e R (e — ).

k=—00 1-— ef(“ml 70["‘2) k=—00

Integrating the last expression of t over the interval [0, 1], and rearranging the
terms, yields

e %miqp(t)dt = ———— e %t p(t)dt.
— 1— ef(amlfamz) —
Thus, since ¢ satisfies (3.10) for a,, , so does ¢ for a,, . Therefore, 1) re-
produces exponential polynomials of degree up to (le - 1) and exponent

A, -

Minimal-Support Generating Functions

As a direct consequence of Theorem [1}, we show that appropriate combinations
of exponential B-splines define the whole family of functions of minimal support
that reproduce exponential polynomials. This family was first identified in [[113]]
by independent means.

Theorem 2. The size of the smallest-support kernel ¢ € Lo(R) that reproduces
exponential polynomials of degree up to (N,,—1) and parameter a,, for m €
{1...M}is

N = i N, (3.20)

m=1
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provided that (aml —amz) ¢ 2mjZ for my # m,. Moreover, every minimal-
support function @ can be written as

n

N-1 d
() = Z]O A g Palt = @), (3.21)

where a is an arbitrary shift parameter that determines the lower extremity of the

support of ¢. In (3.21), each a,, appears exactly N,, times within the collection a
. . N-1

and the collection of A, satisfies Y, _; A, a” #0.

Proof. By Theorem[I] we can write
¢ =Ba*,

where 1) is a distribution with support [a, b — N] that satisfies for all a,,.
Finally, each a,, appears N,, times within the collection a. Conversely, if we take
a distribution ¢ that satisfies for all a,, and is supported within [a, b’],
then ¢ = B, * 1) is supported within [a,b’ + N] and reproduces exponential
polynomials of degree up to (N, —1) and parameter a,, for m € [1...M].
Now, minimizing the support of ¢ means finding the smallest b such that
exists. Of course, this is possible only if b’ = b — N > a, which yields v as a
single-point distribution. This shows that the minimum size of the support of ¢
isb—a=N.

We know from distribution theory that the only distributions that have a support
of zero-measure are finite linear combinations of the Dirac distribution and of
its derivatives [127, Th. XXXV]. Thus, if ¢ has minimal support, then there exist
constants A, such that

Y(t) = i A, 8M(t — a). (3.22)
n=0

This means that

00 dn
ORI G

Since we restrict ourselves to L,(R), the summation has to run from 0 to (N — 1).
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Finally, since 1 satisfies (3.10) for all a,,,, we have that

0 # J e *mtap(t)dt by hypothesis

—0o0
[e e}

N-1
et > 2,6 (t)dt by (322)
n=0

—00
—1

N e}

= Z Ay e %t M (t)dt by linearity
n=0 —00
N-1

= An <5(”)(t), e_amt> by definition
=

= Apal,
n=0

which proves the last result. O

3.2.6 Interpolator

It is also possible to constrain ¢ to be an interpolator. That is,
VkeZ: o(t),_, = 5[k].

Due to the size of the support of ¢, the interpolation condition can add up to N
constraints, depending on the value of a. This number of constraints matches
the N degrees of freedom that result from the choice of A,, in (3.21)). A general
study of the appropriate choice of A,, to satisfy the interpolation condition lies
out of the scope of this thesis. However, we propose a case-by-case approach
that will be exemplified in Section (3.4

3.3 Multiresolution and Subdivision

We have characterized the complete family of functions with minimal support
that reproduce exponential polynomials in order to build parametric curves. In
this section, we emphasize the connection with the subdivision world using the
classical multiresolution properties of exponential B-splines. Moreover, we also
specify another type of multiresolution scheme in terms of reproduction capa-
bilities. In this section we focus on our case of interest: closed curves.

3.3.1 Classical Multiresolution of Exponential B-Splines

An important observation concerning the family of minimal-support basis func-
tions in (3.21) is that it is constructed with exponential B-splines and their
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derivatives of equal parameter a@. Thanks to this property and under appro-
priate circumstances, the basis functions in inherit the multiresolution
properties of the exponential B-splines. It has been shown in [[124] [128]] that an
exponential B-spline and its derivatives with parameter @ = (a,. .., ay) satisfy
the nonstationary set of dilation relations

t o0
Ba(3) = k;wh%[k]ﬁ%(f—k)
d t = d
ha(5) = Zkthg[k]aﬁ%(f—k)

/3a( ) = 2 Z ha [k /5 (t— (3.23)

den dt"

wheren < (N —1), § = (%, ey O‘?”) is the collection of roots divided by 2, and
ha is the mask whose symbol is given by
2

H% (z2)= N1

_1).

Subdivision Scheme

We have now all the ingredients in hand to define a multiresolution hierarchy of
spaces of closed curves. We define the spline space at resolution M as

M-1
aM - {l‘(t) - Z M[k] (pM,per(Mt_k)}:

k=0

where M is the number of control points, and ¢y, ., is the M-periodization
of li with defining parameter &. Note that the parameters {A,},_o n-1,
which are used to define @y ., through and (3.4), depend on M. In
order to find the equivalent scaling expression for our generating function ¢,
we proceed in the Fourier domain where the explicit expression of ¢,, in terms

of exponential B-splines is
Pulw)=AyG w)ﬁ’%(co)e_j‘”“. (3.24)

There, the Fourier-domain function Ay (jw) = Ag[M]+ 0_ A,[M] (jw)" is
a polynomial in (jw) of degree no greater than (N — 1). To derive the scaling
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relation, we take ¢ M(é) and ¢,,,(t) to the Fourier domain. We have that

20y(2w) 2Ay(20) fa(2w)e >

- = — - (3.25)
@am(w) Asu(w)fa(w)er s
By identifying the Fourier symbol H a (e/*), we can rewrite l| as
2042w Ay(G2ow . .
Pu(20) _ AuG )Hl(e]“’)e_“"“. (3.26)

Pam(w) B Apy(w) 2m

Using this result, it is straightforward to verify that V,, y; C V, 5y, provided that
ain is an integer and % is a 2 -periodic function. If a is noninteger,
a similar multiresolution embedding space scheme can be achieved by shifting
the grid at each refinement level. In any case, the particular choice of the set
of parameters {A,},_o._ny_; Will determine if the basis function is refinable and,
therefore, if the multiresolution spaces are nested or not. We analyze in Sec-
tion how applies to the various bases proposed in this chapter.
In addition, we illustrate in Section [3.4.1.4] a constructive procedure to deter-
mine a nontrivial set of {A,},—¢ n_; that satisfies and generates refinable

schemes.

In the case where the spaces are nested, the subdivision process for finding the
sequence of coefficients c,,, starting with the sequence ¢, is then carried out in
the following two steps:

1. up-sampling of the original sequence c,; with a factor of 2;

2. filtering of the up-sampled sequence with a smoothing filter ha using peri-
2
odic boundary conditions.

The filter h, will depend on the particular choice of the parameters {4, },—o y_1,
and its construction will be exemplified in Section for the case of centered
basis functions. The sequence c,,;, of 2M coefficients represents exactly the
same parametric curve as the original sequence ¢;; of M coefficients. This pro-
cess can be repeated indefinitely to obtain finer representations of the curve in
a dyadic fashion.

3.3.3 Multiresolution-Reproduction Capabilities

An alternative multiresolution scheme emerges as we concatenate new elements
to a for fixed M. Since the reproduction of exponential polynomials is fully
determined by a, the incorporation of additional elements does not perturb
the reproduction capabilities. This multiresolution scheme in the reproduction
properties will be exemplified in the case of multiple harmonics in Section|3.4.2
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Applications

In this section, we make use of Theorem [2|to build basis functions with minimal
support capable of reproducing sinusoids. We start with single-frequency sinu-
soids that lead to ellipses, and then we derive the basis functions for generating
higher-order harmonics.

Reproduction of Ellipses

Circles and ellipses deserve a special attention since these simple shapes ap-
pear frequently in images in many fields, for example computer graphics and
biomedical engineering. Since all ellipses can be obtained by applying an affine
transformation to the unit circle, we focus on the reproduction of this simple
shape. This allows us to take advantage of the requirement for affine invariance
that we stated in Section [3.1.3]

A parametric curve defined by M vectorial coefficients and by an M-dependent
generating function ), is said to reproduce the unit circle if there exist two
M-periodic sequences {c.[k]}iez and {c;[k]}rez such that

M-1

cos(2mt) = cc[k] P per(M t — k) (3.27)
k=0
M-1

sin(2mt) = cs[k] @ per(M t — k). (3.28)

=~

=0

We illustrate in Figure the reproduction of sinusoids of unit period for each
component. Note that, when and hold, it is possible to represent
any sinusoid of unit period for an arbitrary initial phase using linear combina-
tions of the two sequences of coefficients.

Minimal-Support Basis for Sinusoids with Maximum Smoothness We now
particularize Theorem 2| for the case of sinusoids keeping the maximum degree
of smoothness for ¢,,. This particular case is of special interest to us. We show
in Chapter[4 and Chapter[5|how to build active contours capable of reproducing
ellipses and ellipsoids respectively.

Corollary 1. The centered generating function with minimal support and maxi-
mal smoothness that satisfies all conditions in Section and that reproduces
sinusoids of unit period with M coefficients is

3
0= (D Kt + 2 — k), (3.29)

k=0
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(@ (b)

Figure 3.2: Parametric representation of the unit circle (a) and its coordinate
functions (b) with exponential B-splines and M = 10. The dashed lines in (b)
indicate the corresponding basis functions.

where

au®) = Lsgn(o) (A2 )

Sll’l

S = [1,1+2cos cos— 1].

_"
M’

Proof. Using Ii we see that (,oi',] needs to be constructed from combina-
tions of exponential B-splines with parameters a = (0, j zﬁ”, —j Zﬁ”), which leaves
N = 3. Therefore, we have

2 dan
Pl = 2 20 IM) 5 Bult — ) (3.30)

This ensures that (pi,l is the shortest generating function that reproduces con-
stants and all sinusoids of unit period with M coefficients. The reproduction of
constants is a direct consequence of using a; = 0, and the sinusoid-reproduction
property comes from applying Euler’s identity to a, = _] % and a; = —j TR

In order to maximize the smoothness of the resulting generating function, the
coefficients )L§ [M] and Ag[M ]in l-i must vanish. Since ¢ w reproduces con-
stants, )LS[M ] can be determined by imposing the partition-of-unity condition.
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Figure 3.3: Plot of a quadratic B-spline 82 and of the generating functions
in (3.29) for M = 3, 4, 5, and 6. The function with the lowest peak at t = 0
corresponds to M = 3, and, as M increases, the central peak increases as well.

From (3.7)), we have that
1 -2
AS[M] = (sincM) )

An exponential B-spline parameterized by a generates a Riesz basis if and only
if

A, — O, E 277
for all purely imaginary pairs such that m; # m,. In our case, it is important to

realize that this condition is satisfied if and only if M > M, = 3. In other words,
at least three control points are needed to define our parametric curve.

Finally, a closed form for (,0;,1 is obtained by computing the inverse Fourier trans-

form of

A s 30 1—eTe 1 (0i5F) 1 — (it 57)
Py(w)=A5[M] e

: : s 27 : s 27
w —jiT Elus
] jo—=j5; Jo+i3,
where we have set a = —% in order to ensure that the basis function is centered.

O

We show in Figure some members of this family of functions for several
values of M. We observe that they are continuous, with finite support of length
W = 3, and tend to be bump-like. Moreover, when M — oo, they converge to
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the quadratic B-spline. We can see this by expanding in Maclaurin series ¢;.
Then, we have that limy,_,, ¢, (t) = isgn(t) t2 and limy,_,, Cz?/z =[1,3,3,1]

immediately implies that lim,,_, ., gojsw = (2. This is because a polynomial B-
spline of degree n can be written as

n+1 1
pro=3 0 (M) e

where ¢"(t) = —sgn(t) t". Note that the convergence of ¢35 to 2 is point-
wise. A piecewise expression of Lpl?/[ can be obtained by expanding 1| into

27ltl (e T oo 2T 1

) cos cosM2 cosTF 0<|t] <3

S (1) — - (3/2-t]) 1 3

oy(t) = (sm—) S< |t <2

M 1-— cosz—7T M 2 ltl <3
0 5= [t].

3.4.1.2 Minimal-Support Interpolating Basis for Sinusoids As was suggested in Sec-
tion[3.2.6] the generating function ¢,, can be tailored to satisfy the interpolating
condition. We investigate now how this applies to the reproduction of ellipses
and other trigonometry-related curves.

Corollary 2. The centered interpolating generating function with minimal support
that satisfies all conditions in Section and that reproduces sinusoids of unit
period with M coefficients is

3
(0 = Z( 1 ek sec (a3 -0

1 T

2 3
T (sec w) sgn(t + 3~ k)) . (3.31)

Proof. Following the same approach as when constructing <pls\‘,[, we see that cp]IV[
needs to be constructed from combinations of exponential B-splines with @ =
(0,j %”, —j zﬁ“). Therefore, we have that

«pM(t)—ZA‘ ] (- a). (3.32)

de™

In order to fulfill the interpolating condition, A{[M], A}[M], and A}[M] must
satisfy a linear system of equations. If we set a = —% in order to ensure that the
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— Lﬂfw(f/)
— 1 iz 32

8 dt? ®

-0.24

Figure 3.4: Plot of the third-order I-MOMS (2 — %[3) and of the generating
functions in for M = 3, 4, 5, and 6. Among the different w}w, the function
with the least pronounced discontinuity at t = :I:% corresponds to M = 3, and,
as M increases, the jump of the discontinuity increases as well. For M = 3, goIIV[
is continuous at t = :I:%, but discontinuous at t = :l:g.

basis function is centered, we end up with

ApM] =1
[M] = 0

M\? 7t
— (1 —sec —) .
27 M
In this case, the interpolating ‘lew is a Riesz basis if and only if M > 3, a condition

that we already encountered in the case of Corollary[1] Finally, a closed form
for t,oIIV[ is obtained by applying an inverse Fourier transform to

A [M]

e 1—e 9 1 —e (0d5) 1 — e (oH5)
Py(w) = A[M]e™

jo  jo—jX  jo+jiE

—eio 1 ef(jwszﬁﬂ) 1-— ef(j“’ﬂzﬁn)

-w].
+ AL M] (jw)? &% —
M1 Ge) joje-jif  je+iff

O

We show in Figure [3.4{ some members of this family of functions for several val-
ues of M. We observe that they share a finite support of length W = 3. As
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we increase M, ¢}, converges to 3% — éﬁ;z, which is the third-order I-MOMS
described in [[129]. A piecewise expression of “levz can be obtained by expand-

ing (3.31) into

27t

COS*—CQSJ 1
BT o<ltl<?
M

(2cosf+1)2 .
Seos ; (cos = 41) lel= 3
(p]I\/[(t): { COS cosw 3
T 3 Stl<3
2(1 cosIM)cos 2 2
T E () 3
8cosf(cos +1) |t| =3
0 e > 2.

3.4.1.3 Refinability of the Proposed Bases As discussed in Section [3.3.2) not all

members of the family of functions given by Theorem [2| are refinable. Here,
we show the multiresolution properties of the proposed basis functions that re-
produce sinusoids.

When imposing maximal smoothness, it is straightforward to verify that the ba-
sis function cp]f,[ is refinable since it is proportional to a refinable exponential
B-spline. To build the associated refinement mask, we have to take into account
that a is a half-integer. Therefore, there is a half-integer shift in the parameter-
ization every time we apply the refinement. This means that a curve r), built
with M coefficients and the same curve expressed with 2 M coefficients satisfy

S 3
() = A5M] D eylk] (Mt —k+2)
k=—00
= A;[2M] Z ¢ulk] Pa (th—k+———)
k=—00

The dependency between the two sequences of coefficients can be stated as

AMBIM] &
coulk] = % >, cy[llhalk+2-21]

[=—00

. 1 2
sine;
(sincﬁ ((CM)TZ*h%)[k+2]’

where (cM)TZ is the ¢); sequence upsampled by a factor of 2. It is interesting
to note that the filter ha is equal to the sequence cM in the expression of goM
in jf .29). We identify the refinement filter ha described in Section as a
shifted and scaled version of the refinement fllter ha of the exponentlal expo-
nential B-spline f3,. ’
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When imposing the interpolation property, it can be shown that, for the par-
ticular choice Ag[M], A}[M], and A,[M] leads to a ratio %
2 m-periodic. Thus, the multiresolution spaces are not nested, and no refine-
ment mask exists. Meanwhile, ¢, is unique due to the restrictions introduced
by the interpolatory condition, and there is no remaining degree of freedom to
be used to increase the regularity or to improve the multiresolution properties
of the basis function.

Additional Refinable Bases In this section, we illustrate a constructive proce-
dure to design new refinable schemes. In particular, we focus on the particular

case where the ratio 2242%)
Aoy ()

ing conditions over the N’ roots {y,},=1_n of the polynomial A,,(jw). Then,
we have that

that is not

is constant. This can be achieved by imposing scal-

v
AGw)=2rp M1 | G —raIM]),
n=1

where N’ < N and where we have made explicit the dependence of the roots
with respect to M. Note that there is a one-to-one dependence between the
elements of the set {A,},—o y_; and the roots of the polynomial {y,},—1 n, Up
to a scaling factor. In particular, if we choose the roots such that

M
Tal2M]= —Y”[z ] (3.33)
for all n, then the quantity
Ay(i20) A IMI T, (120 —y,[M]) -
- = T by definition
Aau( ) A [2M] [Ty (G = 7a[2M])
A [MI2Y [T, (o —v.[M]1/2) .
= T factoring
v [2M] [Ty (o —v,[2M])
_ v MwM] by (3.33)
- Y 2M] Ve

is independent of w and the resulting function ¢ is refinable. This particular
multiresolution scheme where the roots of A, (jw) satisfy (3.33) is intimately
related to the generalized exponential B-splines proposed in [[130].

To build new refinable basis functions that reproduce sinusoids, we can choose
the roots {y*},-1_n+ of Ay (jw) such that yR[2M] = yR[M]/2. The number of
roots N’ determines which is the maximum non-zero element in the sequence
{AR},—0..2, and therefore the smoothness of the resulting basis function.

The particular choice of }/If[M 1= —yfz{[M 1= ﬁ and a = —% defines a refinable,

centered, and symmetric generating function with minimal support reproduces
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3.4. Applications

-0.4-

-0.6

Figure 3.5: Plot of the generating functions in (3.34) for M = 3, 4, 5, and 6.
Among the different cpi‘,,, the function with the most pronounced discontinuity at

t= :I:% corresponds to M = 3, and, as M increases, the jump of the discontinuity
decreases.

sinusoids of unit period with M coefficients. These roots determine the set of
parameters {AR},_, , up to a scaling constant as

AR M
o = 220l
ARM] = 0
ASM] = AR[M].

Then, the resulting generating function is

A5[M]
MZ

R 3 .. 3
OR (1) = — BoMt—k+ )+ A5IMI M~k +3).  (334)

We show in Figure some members of this family of functions for several
values of M. We choose }Lg[M ] such that the L, norm of cp,ff,[(t) is unitary. We
observe that they share a finite support of length W = 3.

Our choice of {yR},_; , is arbitrary and corresponds to one particular case
where the resulting generating function is symmetric and non-smooth. Other
choices would lead to asymmetric functions and other degrees of smoothness.

Order of Approximation The notion of order of approximation is crucial in
approximation theory since it governs the rate of decrease of the approximation
error as the sampling step vanishes. Specifically, in the periodic stationary case,
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the approximation order is defined as the exponent L such that the difference
between a function f and its projection &,,f onto {¢(M - —k)};cz, OF equiv-
alently in {@pe (M - —k)}i—[0..m-1], tends to zero. In direct analogy with the
classical Strang-and-Fix theory of approximation for the nonperiodic case, it has
been shown in [[119]] that the error for the periodic case can be bounded by

If = Puf o1 < Co M 1111, 00.17)5

where C,, is a constant that only depends on the particular choice of ¢. An
analogous result for the nonstationary case can be obtained using the concept of
asymptotically equivalent subdivision schemes presented in [[100]]. We say that
¢y and ¢ define equivalent multiresolution schemes of order y if and only if

1Puf — Pouf lyo = OM™T), (3.35)

where &, f denotes the projection of f onto {¢,;(N - —k)} ey, with N = M, and
2, f denotes the projection of f onto {$(M - —k)},cz. In our setting, if we set
@(t) =limy,_,o @y (t) for all t € R, it is straightforward to see that

If = Puf o017 < ||f_gSMf“Lz([o,l])"‘”gSMf_ngf“Lz([o,l]) = g(M ™),

Therefore, if the ¢,, and ¢ define multiresolution schemes of order high enough,
the rate of decay of the error is the same for the nonstationary and the stationary
case.

By taking the limit M — oo on gof/[ and cp}w, we can observe that such functions
converge to the classical quadratic B-spline 32 and to the third-order I-MOMS
B2 — %[3'2 derived in [[I29], respectively. Both generating functions are known
to have the same order of approximation L = 3. The main difference between
them lies in the constant that multiplies the M2 factor. This factor is more
favorable in the case of the quadratic B-spline than in the case of the third-order
I-MOMS. Thus, in general, the approximation offered by the quadratic B-spline
is more accurate than the one offered by the I-MOMS. This property carries over
to ¢35, and ¢}, when M — co.

Reproduction of Higher-Order Harmonics

We now present a constructive procedure to extend the ellipse-reproduction
properties of our curves to higher-order harmonics. This problem was already
approached using Fourier descriptors [[56]]. Since our basis functions are capa-
ble of perfectly reproducing sinusoids, the classical family of Fourier descriptors
becomes a special class of our construction. It must be noted, though, that our
bases have a finite support, a property which is lacking in Fourier descriptors.

We say that a parametric curve defined by M vectorial coefficients and by a gen-
erating function ¢;, reproduces higher-order harmonics up to order L if there
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Oy ] Py
Parameters AS[M] = (sincﬁ)_ ApM]=1
AS[M] =0 MIM]=0
M 7T
25[M1=0 A M) = () (1—-sec )
Smoothness € 1(R) ¢'(R)
Order of approximation omM™3) ﬁ(A4_?)
Limit (M — 00) B> B> — 3 B?
Refinable YES NO

Table 3.1: Summary of the properties of 5, and ¢;,.

exist two M-periodic sequences {c; .[k]};ez and {c;s[k]};ez for every 1 <1 <L
such that

M-1

cos2mlt) = D o [kl @y pe(Mt—k) (3.36)
k=0
M-1

sin(2ntlt) = cs[k] o per(M t — k). (3.37)
k=0

Such a curve is able to reproduce all modes up to order L for each component.
Like in the case of the sinusoids, it is possible to represent any initial phase using
linear combinations of the two sequences of coefficients in and (3.37).
We recall that, using Euler’s identity and the multinomial theorem, related func-
tions such as (COS(ZT['))Z and (sin(Zn-))l, with 1 <[ < L, can also be expressed
as linear combinations of elements from {cos(27tl-),sin(27l)};<;<;. This en-
sures that the functions (cos(27t+))! and (sin(27-))' are expressible with the
same basis functions @y, Or Yy per-

Minimal-Support Basis for Higher-Order Harmonics

Corollary 3. The centered generating function with minimal support and maximal
smoothness that satisfies all conditions in Section[3.1.3|and that reproduces higher-
order harmonics up to order L with M coefficients is

2L+1
2

@ ()= Ao [M] By(t + ), (3.38)

where a contains only {0}, {j Zﬁ k}rerr..np, and {—j %ﬂ k}reri..1, and where the
value Ay[M] is an appropriate normalizing constant.

Proof. The proof follows the same strategy as in Corollary [I] The choice of the
collection a and the size of the support N = 2L + 1 is given by Theorem
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The parameters A,;[M],..., A [M] are set to zero to maximize the smoothness
of ¢3, and Ao[M] is fixed in such a way that ¢;, satisfies the partition-of-unity
condition, which yields

1

2L-1

Ao [M] = .
’ 2Bk + 1)

We recall that exponential B-splines parameterized by a form a Riesz basis if
and only if (aml — amz) ¢ 27j7Z for all pairs such that m; # m,. In our case,
this condition is satisfied if M > 2L + 1. Finally, the shift parameter is set to

a= —% to ensure that the generating function is centered. O

It should be noted that the smoothest basis function corresponds to a normalized
trigonometric spline, which was defined as a piecewise trigonometric function
by Schoenberg in [131]].

Parametric Expansion of Higher-Order Harmonics Here, we determine the
sequence of M vector coefficients that reproduce the higher-order harmonics
using the generating function gof/[ given in (3.38). We start by recalling the
exponential-reproducing property of the exponential B-splines

e8]

et = Z e"‘k ﬁ(a)(t - k) (3.39)

k=—00

Setting a = j 27”1 with 1 <1 < L, we see that 32, reproduces &5t If we
M
now convolve both sides of l| with ﬁa\(j 2a1), We get that
M

(B =8 0= 3 S (Bt Buagigny) =B

k=—o00

1 S 2L+1
wotm P75k

where we have used the definition of cpf,[ from , along with the fact that
the convolution operator commutes with the shift operator. To simplify the left-
hand side, we invoke an important property of linear shift-invariant (LSI) sys-
tems: complex exponentials are eigenfunctions of LSI operators. By virtue of this
property, if the complex exponential @/*¢ is presented at the input of a system
specified by the impulse response h, then its output is given by h(a)e/*¢, where
h denotes the Fourier transform of h. If we consider [J’a\(j ealy as the impulse
response of a LSI system, then
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Therefore, we have that

27rl j2ml g 1 2L+1
Ze’m Pt =—5— —k).

By flipping the sign of a, we can easily obtain an analogous result for the repro-
duction of e i ¢, Finally, by using both results, we have that

2L+1 >0
cos (27{1 (t + 73 )) = Z [kl @5, (Mt —k) (3.40)
k=—00
2L+1 >
sin (2711 (t + T )) = Z colkley(Mt—k),  (3.41)
k=—00
where
s27l 27l
1 e K eV K
c1[k] +
200MMI | B ey ﬁa\(szvm)(w)‘ .
1 e‘IZTﬂIk esz?mk
cy[k]

ZjAO[M] a\(Jml)(w)) _2ml [ga\(fj%l)(w))w:_m

Note that the sequences c¢; and c, can be considered M-periodic and that the
summations in (3.40) and can be reduced to finite ones if we make use
of the periodized basis functions given in (3.4). We have expressed in
and how to compute the vector coefficients for reproducing sinusoids
and initial phase. The appropriate linear combination of ¢; and ¢, allows one to
change arbitrarily the initial phase.

In order to illustrate the reproduction capabilities of the proposed model, we
designed a basis function capable of reproducing some of the classical har-
monic curves [[132]. In part1cular we tallored <,0M in with L = 4 and
M =9, which lead to a = (0, J— - 2?” i 87t) We show some mem-
bers of the Lissajous, Hypotroch01d and Epltrochmd families in Figures[3.6} [3.7}
and (3.8} respectively. More singular examples like the Teardrop, the Deltoid,
the Astroid, and the Cardioid are shown in Figure The coefficients for each

coordinate function can be found in Table
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(a) (b) © (d)

Figure 3.6: Lissajous curves.

(a) (b) © (d)

Figure 3.7: Hypotrochoid curves.

(@ (b) © (d)

Figure 3.8: Epitrochoid curves.

(@) (b) (© (d)

Figure 3.9: Other curves: (a) Teardrop, (b) Deltoid, (c) Astroid, (d) Cardioid.
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Curve Cyy Cy,
Lissajous (a) Cis Cos
Lissajous (b) Cis Cas
Lissajous (c) Cas Cas
Lissajous (d) Ca5 Cas

Hypotrochoid (a) | 2¢;.+3c¢y.  2¢15— 3¢y
Hypotrochoid (b) CretCse C15—Ca3s
Hypotrochoid (c) CietCopc C1s— Cags

Hypotrochoid (d) | 3¢;.+2c;. 3¢y —2c3;
Epitrochoid (a) 2¢1.— 3¢y 25— 30

Epitrochoid (b) Cle—Cac C1s— Cag
Epitrochoid (c) 2C1c—Cqp 2¢15—Cys
Epitrochoid (d) 4c1.—5¢4, 4cis— 50,
Teardrop 4cq 2¢y5—Cys
Deltoid 2¢1 .+ ey 25— Cy
Astroid 3¢t cs, 3¢ —C3
Cardioid 2¢.—Cyp 2¢y—Cay

Table 3.2: Coefficients for the curves shown in Figure Figure[3.7] Figure[3.8]
and Figure

Conclusions

In this chapter we have proposed a new family of basis functions that we use to
represent planar curves. We were able to single out the basis of shortest support
that allows one to reproduce exponential polynomials. Under the appropriate
circumstances, these basis functions may form a natural multiscale hierarchy.
In these cases, we specified multiresolution algorithms and subdivision schemes
for the representation of geometric closed curves. We were able to characterize
the order of approximation of such nonstationary multiresolution schemes. We
exemplified our method by constructing minimal-support bases that reproduce
ellipses and higher-order harmonics. In particular we tailored these bases to
obtain maximal-smoothness basis functions, and interpolatory basis functions.
In the forthcoming chapters, we take advantage of the theoretical developments
of this chapter to build efficient active contours in 2D and 3D.
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Chapter 4

2D Spline Snakes

In this chapter, we present a new class of continuously defined parametric snakes
using the basis functions we designed in Chapter [3] While the resulting snakes
are versatile enough to provide a good approximation of any closed curve in the
plane, their most important feature is the fact that they admit ellipses within
their span. Thus, they can perfectly generate circular and elliptical shapes.
These features are appropriate to delineate cross sections of cylindrical-like con-
duits and to outline blob-like objects. We illustrate in Figure [4.I|how our snake
can adopt the shape of a perfect ellipse (i.e., reproduces the ellipse) as well as
more refined shapes.

Segmenting circles and ellipses in images is a problem that arises in many fields,
for example biomedical engineering [133], 134} [135] [136]] or computer graph-
ics [[137,[138]]. In medical imaging in particular, it is usually necessary to seg-
ment arteries and veins within tomographic slices [[139]. Because those objects
are physiological tubes, their sections show up as ellipses in the image. Ellipse-
like objects are also present at microscopic scales. For instance, cell nuclei are
known to be nearly circular [[140] and water drops are similarly spherical thanks
to surface-tension forces [[141]]. However, these elements deform and become
elliptical when they are subject to stress forces.

In order to efficiently segment elliptical objects, a parametric snake named the
Ovuscule was proposed in [69]. It is a minimalistic elliptical snake defined by
three control points. Its main drawback was that it was unable to represent
shapes different from circles and ellipses. Our goal here is to create a more
versatile parametric snake whose basis functions are short, perfectly reproduce
ellipses, and have good approximation properties. Our main contribution in this
chapter is to fulfill this goal by selecting a special kind of exponential B-splines.
We are actually able to prove that our basis functions are the ones with the
shortest support among all admissible functions. Since the computational cost
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Figure 4.1: Approximation capabilities of the proposed parametric snake. The
thin solid line corresponds to an elliptical fit. The dashed thick line corresponds
to a generalized shape.

of spline snakes is determined in part by the size of the support of the basis
function, our use of the shortest possible support favors optimal performance.

The chapter is organized as follows: In Section we review the general para-
metric snake model, fix the notation, and formalize our design constraints. The
main contribution is described in Section where we build an explicit ex-
pression for the underlying basis functions that fulfill our requirements, and we
analyze in detail its reproduction and approximation properties. Implementa-
tion details such as energy functionals and discretization issues are addressed in
Section Finally, we perform report evaluations in Section@

Parametric Snakes

In this section we begin by recalling the formalism of B-spline parametric curves,
and fix the notation for the rest of the chapter, which is a simplification of the
one of Chapter 3]

Parametric Representation of Closed Curves

Following our formalism introduced in Section|3.1} a curve r(t) on the plane can
be described by a pair of Cartesian coordinate functions x;(t) and x,(t), where
t € R is a continuous parameter. The one-dimensional functions x; and x,
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4.1. Parametric Snakes

are efficiently parameterized by linear combinations of suitable basis functions.
Among all possible bases, we focus on those derived from a compactly supported
generator ¢ and its integer shifts {¢ (- —k)},cz. This allows us to take advantage
of the availability of fast and stable interpolation algorithms [[116].

We are interested in closed curves specified by an M-periodic sequence of control
points {c[k]}iey, with e[k] = c[k + M]. The parametric representation of the
curve is then given by the vectorial equation

00

()= Y clklpMt—k). (4.1)

k=—o00

The number of control points M determines the degrees of freedom in the
model (4.1). Small numbers lead to constrained shapes, and large numbers
lead to additional flexibility and more general shapes.

Since the curve r is closed, each coordinate function is periodic, and the period
is common for both. For simplicity, in we normalized this period to be
unity. Under these conditions, we can reduce the infinite summation in to
a finite one involving periodized basis functions as

Ai i cMn+k]oM (t —n)—k)

r(t) =
k=0 n=—co
M-1
= c[k] Z oM (t —n)—k), (4.2)
k=0 n=—00

ou(Mt—k)

where ¢,, is the M-periodization of the basis function ¢.

This kind of curve parameterization is general. Using this model, we can approx-
imate any closed curve as accurately as desired by using a higher number of vec-
tor coefficients M, > M, provided that ¢ satisfies some mild conditions [[119].

Desirable Properties for the Basis Functions

We now enumerate the conditions that our parametric snake model should sat-
isfy and introduce the corresponding mathematical formalism.

1. Unique and Stable Representation. We want our parametric curve to be de-
fined in terms of the coefficients in such a way that unicity of representation
of the coordinate functions x; and x, is satisfied. Furthermore, for com-
putational purposes, we ask the interpolation procedure to be numerically
stable.
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A generating function ¢ is said to satisfy the Riesz basis condition if and
only if there exist two constants 0 <A < B < oo such that

o)

D clklp(M - —k)

k=—00

Allell,, < VM <B ||, (4.3)

Ly

for all c € £,. A direct consequence of the lower inequality is that the con-
dition Zk__oo k]l (Mt —k)=0 for all t € R implies that c¢[k] = O for all
k € Z. Thus, the basis functions are linearly independent and every func-
tion is uniquely specified by its coefficients. The upper inequality ensures
the stability of the interpolation process [[116].

It has been shown in [[117] that, due to the integer-shift-invariant struc-
ture of the representation, the Riesz condition has the following equivalent
expression in the Fourier domain:

[o¢]
A< D7 |eC+2mk)|* <B,
k=—
where ¢(w) = f R ¢(x)e“*dx denotes the Fourier transform of ¢. Once
expressed in the Fourier domain, the Riesz condition provides a practical
way to verify if a given generating function ¢ satisfies (4.3).

Affine Invariance. Since we are interested in outlining shapes irrespective of
their position and orientation, we would like our model to be invariant to
affine transformations, which we formalize as

(0.9)
Ar(t)+b= > (Ac[k]+b) p(Mt—k), (4.4)
k=—00
where A is a (2 x 2) matrix and b is a two-dimensional vector. From (4.4),
it is easy to show that affine invariance is ensured if and only if

VeeR: Y oMt—k)=1. (4.5)

k=-o00
In the literature, this constraint is often named the partition-of-unity condi-
tion [116].
Well-Defined Curvature. The curvature of a parametric curve at a point
(x1(t), x(t)) is given by

(Xl 2)3/2)

where the dot denotes the derivative with respect to t. We would like x to
be a bounded function with respect to t. To do so, each coordinate function
(or, equivalently, the basis ¢) must be at least ¢*(R) with bounded second
derivative.

k(x1,Xxy) =
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4.2. Reproduction of Ellipses

(@ (b)

Figure 4.2: Parametric representation of the unit circle (a) and its coordinate
functions (b) with exponential B-splines and M = 10. The dashed lines in (b)
indicate the corresponding basis functions.

Reproduction of Ellipses

Since every ellipse can be obtained by applying an affine transformation to the
unit circle, we focus on the reproduction of this simpler shape. This simpli-
fication is allowed whenever the affine-invariance requirement stated in Sec-

tion is satisfied.

A parametric snake defined by M vectorial coefficients and by a generating func-
tion ¢ is said to reproduce the unit circle if there exist two M-periodic sequences
{cc[k]}kez and {c;[k]}rez such that

cos2mt) = > clklo(Mt—k) (4.6)
k=—00

sin(2mt) = > ¢ [k]oMt—k). 4.7)
k=—00

That is, we need to be able to reproduce sinusoids of unit period for each compo-
nent of the parametric snake, as illustrated in Figure Note that, when
and hold, it is possible to represent any sinusoid of unit period for an arbi-
trary initial phase using linear combinations of the two sequences of coefficients.
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We now provide an explicit expression for the minimum-support basis functions
that reproduce sinusoids. These bases are a particular case of the broader family
of basis functions investigated in Chapter

By Corollary [1|in Section |3.4.1.1} we know that the centered generating func-
tion with minimal support that satisfies the Riesz basis condition, the partition-
of-unity condition, is 4'(R) with bounded second derivative and reproduces
sinusoids of unit period with M coefficients is

2me| T _ cog 27 1
. cos =~ costcosM O§|t|<2
w(t)= T cos 22 (sin W) % <lt] < % (4.8)
Mo > <ltl.

This result is a direct consequence of the Minimal-Support Generating Functions
Theorem detailed in Section This theorem provides a complete charac-
terization of the family of basis functions with minimum-support that reproduce
exponential polynomials expressed as combinations of exponential B-splines.

We recall that the basis function form a Riesz basis if and only if M > 3.
Therefore, at least three control points are needed to define our parametric
snake. Moreover, they are one-time continuously differentiable and the second
derivative is bounded. This ensures the well-definiteness of the curvature of the
snake curve.

For the sake of completeness, we also show in Figure the function ¢ for
several values of M. We observe that they share with the quadratic B-spline
a finite support of length W = 3, and all of them have a similar bump-like
appearance.

Approximation Properties

Not only are we interested in reproducing ellipses, but we would also like our
snake to be able to approximate any other shape s. This is achieved by increasing
the number of degrees of freedom afforded by the number M of nodes. In the
Fourier domain, it is easy to see that ¢ converges to a quadratic B-spline as
M increases (see Section [3.4.1.1)). Therefore, we expect similar approximation
properties for large values of M.

While ¢ leads to integer-shift invariance, the space spanned by the generating
function ¢ is not shift-invariant in general. Hence, the approximation error us-
ing M vector coefficients is dependent upon a shift in the continuous parameter
t of the 1-periodic function s. The minimum-mean-square approximation error
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4.2. Reproduction of Ellipses

Figure 4.3: Plot of a quadratic B-spline 82 and the resulting generating functions
given in for M = 3, 4, 5, and 6. The function with the lowest peak at
t = 0 corresponds to M = 3, and as M increases, the height of the central peak
increases as well.

for a shifted function is given by

1
r(m.M) = f lIs(t — ) —e(0)|” dt
0

= |Is¢--1)— r(')Hiz([O,l]) 5

where r is the best approximation within the span {¢(M - —k)},.,. Since 7 is
usually unknown, we measure the error averaged over all possible shifts as

1 2
n(M) = (J Y(T,M)df) . 4.9)
0

We give in Section the decay of n as M — oo, following the method de-
scribed in [[T19].

Approximation Order

In this section, we introduce the necessary formalism to compute the order of the
approximation error associated to the best-possible approximation of a periodic
vector function s within the span of the basis {¢(M - —k)},.,, where ¢ is given

by (4.8).

As explained in Section about the approximation properties of ¢, the space
spanned by the generating function ¢ is not shift-invariant in general. Hence, as

57



4. 2D SPLINE SNAKES

4.2.4

58

a metric of dissimilarity between shapes, we use the averaged minimum-mean-
square approximation error 7.

Using the main result of [T19]], we obtain the asymptotic behavior of 1) as
ﬂZ(M) = Clz(M) ||S||%2([0,1]) M

2 |2 —4 -6
+C MBI 01y M +ﬁ(M ),

where C;, = % \/(Zk;éo }Q(L)(Zﬂk)lz) and ¢ is the L-th derivative of the
Fourier transform of . Following lengthy calculations, we get

1 1
QM = - (18 (Mo —M) (M, +4M) +307%)* (4.10)
1
C,(M) = o (225 (ZM;} - 7M?*M?2 - 15M° M, +20M4)
+75 (8 M7 —29M?) * +1707*) %, (4.11)

where we defined M, = 7 cot % It can be shown that C;(M) = ¢(M~2) and

Cy(M) = 0(M~2). Since the curve s does not depend on M, we can also write
that

w0 = (0 (7))t =0 (),

which shows that the averaged quadratic mean error decays as M ~3—the same
rate as the quadratic B-spline [[142]].

Best Constant and Ellipse Fitting

Since our snakes have the capability of perfectly reproducing ellipses, it is nat-
ural to ask which is the best ellipse that approximates the parametric curve r
defined by the M-periodic sequence {c[k]};cz. In other words, we are inter-
ested in finding the ellipse r. that minimizes

1
iz([o,l]) = L ||1'(f) - l‘e(t)”z dt.

[r —re

Since r is continuous and 1-periodic, we can expand it in a Fourier series as

[e9)

r(t)= »_ R[n]e2™. (4.12)

n=—oo



4.2.5

4.2. Reproduction of Ellipses

The Fourier-series vector coefficients R in (4.12) are given by
1
R[n] = f r(t)e 2™t dt
0

= «p(zﬁ) Z [k e, (4.13)

where the parametric expression of r has been used in the second equality.

From the classical theory of harmonic analysis, we know that the best ellipse
approximation (component-wise sinusoids) of r, in the L,([0,1]) sense, is the
first-order truncation of the series , where only the terms n = —1,n =0,
and n =1 are kept. Therefore, we have that

r.(t) = R[O]+(R[1]+R[—1])cos(27t)
+j(R[1] —R[-1])sin(27t), (4.14)

where R[O] is the center of gravity of the snake. The Fourier-series vector coef-

ficients in (4.14)) can easily be obtained from (4.13)) as

1 Mol
R[0] = MZc[k]
M-
R[1]+R[-1] = Zh[k]c[k]
s
jR[1]-R[-1]) = hg[k] e[k],
k=0
where
2 T 21k
h.[k] = — cos— cos—
M M M
2 . 27mk
hk] = — cos— sin—.
M M M

Since all sinusoids of unit period can be reproduced by the generating function ¢
and the appropriate M-periodic sequence of coefficients ¢, the curve r, belongs
to the span of . For the sake of completeness, we provide in the next section
an explicit expansion of sinusoids in terms of ¢.

Expansion of Sinusoids

Here, we explicitly find the sequence of M vector coefficients that reproduce
sinusoids of unit period using the generating function ¢ given in (4.8]). We start
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by recalling the exponential-reproducing property of the exponential B-splines

as
0

et = ek Bray(t — k). (4.15)

k=—00

Setting a = j zﬁ", we see that f3; 2~ reproduces the complex exponential e L
M

which is M-periodic. If we now convolve both sides of l| with B, _; 2ny, We

get that

(Bosamy ) 0= 37 &5 (Byzy * Bro 2yt k),

k=—00

2(1 cos M ) gp(t———k)

()

where we have used the definition of ¢ from (4.8), along with the fact that the
convolution operator commutes with the shift operator.

To simplify the left-hand side, we invoke an important property of linear shift-
invariant (LSI) systems: complex exponentials are eigenfunctions of LSI oper-
ators. By virtue of this property, if the complex exponential e/*¢ is presented
at the input of a system specified by the impulse response h, then its output is
given by h(a)e/®t, where h denotes the Fourier transform of h. If we consider
Beo,~i 2x) as the impulse response of a LSI system, then

(ﬁ(oﬁjzﬁn)*ejzﬁ.) ()= B(o’_j%f)(a)) ooim e]%t

™

Therefore, we have that

By flipping the sign of a we can easily obtain an analogous result for the repro-
227
duction of e . Finally, by using both results, we have that

00

cos2mt) = > clkloMt—k) (4.16)
k=—00

sin2me) = > ¢ [klpMt—k), 4.17)
k=—00
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where
2 (1—cosZZ 27k
c.[k] = (ﬂ "22 cos o
cos 1+ — cos <&
2 (1—cos2Z 27tk
k] = (ﬂ 1\/;“ sin T
cos 3+ — Cos T F

Note that the sequences c, and ¢, are M-periodic and that the summations
in (4.16) and (4.17) can be reduced to finite ones if we make use of the pe-
riodized basis functions.

We have expressed in (4.16) and (4.17) how to compute the vector coefficients
for reproducing sinusoids of unit period. The appropriate linear combination of
¢ and ¢ allows one to reproduce sinusoids of arbitrary initial phase.

4.3 Energies and Implementation

Since the presented parametric active contour is a spline snake, it is capable
of handling all traditional energies applicable to point-snakes and parametric
snakes. However, to illustrate the behavior of our parameterization in a real
implementation, we performed our experiments with a specific snake energy
that we designed to be versatile.

In this section, we first introduce the snake energy that drives the optimization
process, and then we provide a description of the implementation details for the
proposed snake. We construct the energy functional to detect dark objects on a
brighter background.

4.3.1 Snake Energy

As it was exposed in Chapter [2| the snake evolution is driven by a chosen en-
ergy function. Thus, the quality of the segmentation depends on the choice of
the energy term. In our model we obviated the constraint energy since we ac-
commodated the user interaction as a hard constraint allowing the user to leave
some control points outside the optimization routine.
4.3.1.1 Image Energy There are many construction strategies for the image energy.
These can be categorized in two main families: 1) edge-based schemes, which
use gradient information to detect contours [43] [47, [50]] and 2) region-based
methods, which use statistical information to distinguish different homogeneous
regions [[49] [68]]. In order to benefit from the advantages of both strategies,
a unified energy was proposed in [|57]. In our case, we are going to follow a
similar approach by using a convex combination of gradient and region energies,
like in
Eimage =a Eedge + (1 - a) Eregion (418)
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Figure 4.4: Schematic representation of a parametric snake r (dashed line), of
its interaction with an object constituted by a gray semicircle (representing low
pixel values), of the vector dx tangent to the curve, and of the gradient vector
Vf of the image. The vector k, which is mentioned in the text, is perpendicular
to the image plane and points outwards, towards the reader.

where a € [0,1]. The tradeoff parameter a balances the contribution of the
edge-based energy and the region-based energy. Its value depends on the char-
acteristics of each particular application.

For the gradient-based (or edge) energy, we consider the one described in [68]]
since it has the advantage of penalizing the snake when the orientation is incon-
sistent with the object to segment. Let r be our parametric snake. The contour
energy term is then given by

Eedge = _jé kT (Vf(xl’xz) X dX) 5 (4.19)

where k = (0,0, 1) denotes the outward vector orthonormal to the image plane,
where Vf(x;,x,) = (M, W,O) is the within-plane gradient of the
2

dx
image f at (x;,x5) on thelcurve, where dx denotes the tangent vector of the
curve in the three-dimensional space formed by the image plane and its orthog-
onal dimension, and where X is the 3D cross product. In Figure we present
the configuration of the various quantities involved. The chirality of the system

of coordinates will determine the sign of the integrand, as discussed in [57, 68]].

For the region-based energy, we adopt a strategy similar to the Ovuscule in [69]].
More precisely, our region-based energy discriminates an object from its back-
ground by building an ellipse r; around the snake and maximizing the contrast
between the intensity of the data averaged within the curve, and the intensity of
the data averaged over the elliptical shell ©2,. When Q C Q,, the region energy
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term can be expressed as

Eregion = i f(X) dxl dX2 - f(X) dxl dX2 ’ (4.20)
1€ Q 2,\0

where || is given by

M

Ql=-> cl[k]cz[n]J ot =) gy (t — k) dt. (4.21)

k=0 n=0 0

The normalization factor |Q2| can be interpreted as the signed area, defined as
Q] = — ggr x,dx;. The sign of the quantity |©2| depends on the clockwise or
anti-clockwise path followed on the curve r. In this paper, we follow the usual
convention whereby an anti-clockwise path leads to a positive sign. We enforce
our criterion to remain neutral (Epegi,, = 0) when f takes a constant value, for

instance in flat regions of the image. To achieve this we set )QA{ =2Ql.

The construction of the elliptic shell is performed using the best ellipse r. given
in (4.14), and magnifying its axes by a factor A to achieve

r,(t) = R[0]+A(R[1]+R[-1])cos(2mt)
+jA (R[1] =R[-1]) sin(2mt),

where A = 4/2|Q]/ {Qe} and {Qe} is the signed area enclosed by the curve r,,

wit
47 N e 2n(n—k)
Q] = __COSM Z Z ¢, [k] cy[n] sin —w

The elliptic shell r, is fully determined by the sequence of control points. Thus,
the optimization of the control points leads to an automatic readjustment of r
and r,.

In Figure we illustrate how we take advantage of the ideas presented in
Section to build the best ellipse approximation r, of an arbitrary snake r.

4.3.1.2 Internal Energy The internal energy is responsible for ensuring the smooth-
ness of the curve. In the original implementation by Kass et al. [43]], the internal
energy is composed of a linear combination of the length of the contour and the
integral of the square of the curvature along the contour. This energy is the one
that is most widely-used in applications.

In the framework of parametric snakes, most schemes rely on the smoothness
of the representation, thus eliminating the need for an explicit internal en-
ergy term. However, these approaches can ensure a low value of the curvature
only when the curves are parameterized at constant speed (proportional to arc-
length). For example, a spline curve may be rough if some of the spline control
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Figure 4.5: Representation of the parametric snake r, the best ellipse approxi-
mation r, and the corresponding enclosing shell r; used in Eqgjqp-

points accumulate at the same position. A practical workaround is to repa-
rameterize the curve to constant arc-length after each step of the optimization
algorithm, which is quite expensive [[143]]. Another approach is to substitute
the curvature term of by an energy term that penalizes the curve for not
being in the curvilinear abscissa [57]]. This energy is called curvilinear repa-
rameterization energy. Minimizing this energy causes the control points to move
tangentially to the snake, thus bringing it to curvilinear abscissa. The use of this
energy yields the same results as reparameterizing the snake at each step, but
with a much lower computational load.

In our implementation we obviated the internal energy term in order to allow
our snake to segment objects with non-smooth boundaries. In Section [4.4.2) we
quantify the accuracy of our snake while segmenting objects with non-smooth
boundaries.

Fast Energy Computation

The computational cost is dominated by the evaluation of the surface integrals
in (4.20). An efficient way to implement these operations is the use of pre-
integrated images. Let g be the function we are integrating (Af, f, or —f,
respectively) and let T" be the domain of integration (Q or ;). Then, by Green’s
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theorem, we rewrite the surface integrals as the line integrals

JJ g(x)dx;dx, = f g1(x1,x5) dx,
r ar
= _§ 82(x1, x5) dxq,
ar
where JT is the boundary of I, and
g1(x1,x,) = f g(7,x;)dt (4.22)
&(x1,x3) = J g(xy,7)dr. (4.23)

The use of Green’s theorem to rewrite the surface integrals as line integrals
reduces dramatically the computational load. This can only be achieved if the
curve is defined continuously, like with the curves of Section By contrast,
this acceleration would not be available to methods such as point-snakes and
level-sets, because their implementation ultimately relies on discretization.

In the interest of space, we show the derivation of the energies using pre-
integrated images in Appendix

4.3.3 Sampling

Despite the fact that we are assuming a continuously defined model for our func-
tions, in a real-world implementation we only have at our disposal a sampled
version of the functions we want to pre-integrate. To solve this inconsistency,
we perform a bilinear interpolation of the sampled data and we store in lookup

tables the values of (4.23) or (4.22) at integer locations.

4.3.4 Optimization

As mentioned before, the active contour extracts the final contour by finding the
minimum of the energy functional. For that purpose, we iteratively update the
value of the M free control points {c[k]}e[o..1—1] USing a generic unconstrained
gradient-based optimizer. The optimization scheme is efficiently carried out by
a Powell-like line-search method [[144]]. This method requires the derivatives
of the energy function with respect to the parameters, and converges quadrat-
ically to the solution. The algorithm proceeds as follows: firstly, one direction
within the parameter space is chosen depending on the partial derivatives of
the energy. Secondly, a one-dimensional minimization is performed within the
selected direction. Finally, a new direction is chosen using the partial deriva-
tives of the energy function once more, while enforcing conjugation properties.
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Figure 4.6: Mean time of one iteration in the snake evolution.

This scheme is repeated till convergence. Assuming a bilinear interpolation of
the original function f, we were able to derive exact and closed expressions
for these derivatives. In the interest of space, we show the derivation of these
expressions in Appendix [4.Al

For spline snakes it has been shown that the evaluation of the partial deriva-
tives of the energy of the form depends quadratically on the number
of parameters [57]. In Figure we compare the computational cost of the
snake during line minimization (simple update), and when the energy gradient
is required to chose a new direction (gradient update). For the latter case, we
contrast the computation time of an analytical computation of the gradient to
that of a centered finite differences approach. For low values of M, the simple
update and the gradient update using analytical energy gradient lead to a sim-
ilar computational load. As the value of M increases, the quadratic behavior of
the computation of the gradient makes the update cost increase. This quadratic
behavior can be easily discerned in the topmost curve of Figure 4.6

Experiments and Simulations

We present in this section four experimental setups. In the first one, we compare
our choice in against the classical quadratic B-spline when representing si-
nusoids. We move away from sinusoids in the second experiment, where we
work with synthetic data and perform an objective validation of the segmenta-
tion properties of our snake in noiseless and noisy environments. In the third
setup, we also perform a quantitative evaluation by segmenting real cardiac MRI
data. Finally, in the last experiment, we illustrate some real applications of our
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snake where the ground truth is not available.

4.4.1 Approximation of Sinusoids

By design, our basis function ¢ has the property of reproducing sinusoids ex-
actly. By contrast, the classical polynomial B-splines do not enjoy this property.
In this section, we are focusing on this aspect and exhibit the amount of error
committed by B-splines when attempting to reproduce a sine function.

We start with exact reproduction by our basis. Using the result of Section [4.2.5]
we determine the coefficients for the case M = 3 (smallest possible M). They
are given by

sin(27t) = v3 (933t — 1) — (3t +1)),

where @5 corresponds to the 3-periodization of the basis function (4.8), as
in (4.2).

We continue with approximate reproduction by B-splines. For fairness, we
choose a quadratic B-spline 32 so that the size of the support of 32 and ¢ is
the same. The reproduction will be approximate, not because of the limited size
of the support, but because the sine function does not lie in the span of polyno-
mial B-splines of any degree. Nevertheless, we can compute the coefficients that
best adjust the sinusoid with unit period in the least-squares sense. This yields

) 1215 , , )
sin(27t) & T ([33(3t—1)—/33(3t+1)),
where
2 ef? o<lt|<?
2
FO=y s(G-1)" g<ltl<3 (4.24)
0 £§|t|

is the quadratic B-spline and the subscript 3 indicates a 3-periodized basis func-
tion as in (4.2)).

We observe in Figure that both constructions result in sine-like functions.
However, the reproduction is exact in the left part of Figure while it is
only approximate in the right part. This happens even though the support of
B? is identical to the support of ¢, even though the asymptotic approximation
properties of 32 and ¢ are identical, and even though 2 and ¢ have the same
degree of differentiability. We show in Figure[4.8|the amount of error committed

by the parabolic approximation. We determine that MSE = % — 293;‘71156.

4.4.2 Accuracy and Robustness to Noise

In this section, two experiments are carried out. The first one consists in outlin-
ing different synthetic blob-like shapes in a noise-free environment. The second
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Figure 4.7: Approximations of a sin function with unit period. (a) Parametric
representation (solid line) using ¢ (dashed lines). (b) Best parametric approx-
imation (solid line) using [3’2 (dashed lines).
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Figure 4.8: Sinusoid of period 3, its representation with our basis function (solid
line), and its best quadratic B-spline approximation (dashed line).
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experiment consists in outlining one specific target within an image, this time,
in the presence of noise. In both experiments we set a = 0, that is, we make use
of the region energy only. This particular choice ensures that the snake is not
misled by noisy boundaries in the presence of excessive noise.

In the first experiment, we generate 10 test images of size (512 x 512) by pixel-
wise sampling of our shape of interest, which is built by intersecting or making
the union of two circles of radius 50 pixel units. We illustrate these shapes
in the header of Table They are parameterized with the distance d, in
pixel units, between the centers of the circles. For d < 0, the shape is built by
the intersection of the two circles. For d > 0, they are parameterized by their
union. The grayscale values of the images are 255 for the shape, and 0 for the
background.

We used the Jaccard distance J = 1 — |©NQ|/|©UQ| to measure as a per-
centage the dissimilarity between the two sets. There, © corresponds to the
ground-truth region, and Q corresponds to the region enclosed by the snake.
We computed J with a pixel-wise discretization of the images.

In the simulations of Table [4.1) we investigated the dependence of J on the
number M of coefficients and the distance d between the circles. We denoted
with a dash (—) when the snake did not converge, and therefore, we could
not compute the Jaccard distance. We initialized every snake as a circle with a
radius of 75 pixel and a center that lay in the middle of the shape. We observe
that the results in Table tend to improve as the number M of control points
is increased, especially for the non-elliptical shapes. However, the increase in
the number of control points does not bring any further improvement when the
shape to segment is a perfect circle. This result is expected since the circular
shape is reproduced exactly for any M > 3. The residual error seen in Table
for d = 0 can be attributed to the discretization of ® and 2. We also observe
that for d = —80 and d = —64 the Jaccard distance starts increasing severely for
M = 7 and for M > 9, respectively. This is due to the fact that the sharp corners
of the shape lead to loops in the curve during the optimization process. Such
self-intersections violate the conditions of Green’s theorem in Section |4.3.1

In the second experiment, we investigated the sensitivity to noise of our snake
depending on the number of snake coefficients M. We generated 100 noisy real-
izations of a circle of radius 50 pixel units for different signal-to-noise ratios. We
computed the power of the noise over a region of interest of size (200 x 200).
We illustrate a realization of the resulting images in the header of Table

We show the percentage of success in Table We considered that our snake
succeeded in segmenting the circle when the optimization process led to a seg-
mentation with J < 1%. This criterion is very conservative as shown in Fig-
ure We observe from the results that our snake is robust against noise since
it is capable of giving a proper segmentation even for low signal-to-noise ratios.
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M 3 4 5 6 7 8 9 10
| 508 485 3.53 269 363 1884 — = —
d=—80
‘ 412 412 264 218 187 058 156 141
d = —64
. 378 3.84 203 200 1.63 0.68 099 093
d=-48

284 278 125 1.13 1.08 055 0.72 0.70

d=-32

1.54 153 058 064 048 032 030 0.34
d=-16

0.17 0.15 0.20 0.17 0.17 0.18 0.15 0.17
d=0

218 222 106 091 109 086 0.55 0.18
d=16

4.06 4.01 227 181 192 192 085 041
d=32

6.63 6.64 421 284 250 400 1.41 0.80

Q.
I
N
6

9.49 948 6.82 436 3.68 573 - 1.23

Q.
I
fo)
N

Table 4.1: Error percentage of our snake for noiseless synthetic data.
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100 100 99 100 100 99 99 96

100 100 99 99 99 100 98 99

100 100 100 100 100 100 99 97

100 100 100 99 99 98 96 100

99 96 97 98 90 90 92 92

SNR = —5dB

45 33 25 25 20 7 7 11

SNR = —10dB

Table 4.2: Percentage of success rate of our snake for noisy synthetic data.
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Figure 4.9: Segmentation results for noisy synthetic data with SNR= —5dB.
(a) Barely accepted with J= 0.853%. (b) Rejected with J=1.001%. (c) Rejected
with J= 81.065%.

Furthermore, the increased sensitivity to noise as we increase the number of
vector coefficients M corresponds to the appearance of additional noise-related
local minima in the energy of the snake. Therefore, M should be chosen as small
as possible in order to avoid over-fitting of the noise, but large enough to be able
to approximate the shape of interest.

Medical Data

Now, we move away from synthetic data. We compare our snake against other
snake variants in terms of accuracy and speed. We quantify their accuracy at
outlining the endocardial wall of the left ventricle within slices of 3D cardiac
MR image sequences.

The data we used are short-axis cardiac MR image sequences from 33 subjects
acquired in the Department of Imaging of the Hospital for Sick Children in
Toronto, Canada [[145]. For each subject, data consist of a time-series of 20
volumes. For each volume, the number of slices varies from 8 to 15. Each slice
is a (256 x 256) image with a pixel spacing between 0.93 mm and 1.64 mm.
The ground truth was obtained by manual annotation. In each segmented im-
age 1,000 points (named landmark points) define a closed polygon outlining the
endocardial wall.

Accuracy For each subject, we selected one slice guided by its anatomical
structures along the long axis and its timing in the cardiac cycle. Since the region
of interest is nearly elliptical, we used the minimalistic elliptical active contour
named Ovuscule to provide a first estimate of the location and orientation of the
left ventricle [69]. Then, we refined the segmentation of the endocardial wall
using the general parametric active contour model for different values of
M and several basis functions. More specifically, we used linear and quadratic
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B-splines, our function that we refer to as third-order exponential spline,
and an extended version of that we refer to as fourth-order exponential
spline. The linear B-spline basis function has a smaller support than our func-
tion (4.8). However, it can only adopt the form of polygons. The quadratic
B-spline basis function has the same support and regularity than (4.8). How-
ever, it is unable to reproduce ellipses. Finally, the fourth-order exponential
spline is an extended version of (4.8), with one more degree of regularity, but
with a support one unit larger. The initialization provided by the Ovuscule could
be carried over to (4.8) and to the fourth-order exponential spline. In the case of
other types of snakes, the perfect ellipse of the Ovuscule cannot be reproduced
but must be approximated. This approximation was achieved by sampling the
outline of the Ovuscule.

In a preprocessing step, the images were magnified four times horizontally and
vertically. Firstly, we evolved the Ovuscule on the magnified image. Secondly,
we evolved more refined snakes, guided exclusively by the edge energy on a
smoothed version of the magnified image. The smoothing was Gaussian, with
a kernel of variance 02 = 10%. We then measured the landmark error. We
computed this error as the mean distance of the snake to the landmark points
given by the ground truth, as was done in [[145].

In Figures 4.10} [4.11] and [4.12] we show the mean, median, and maximum
values of the landmark error, respectively. From these graphs, we validate that

the Ovuscule provides a good and robust starting point to be refined by the
snakes investigated in this paper. The polygonal snake does not reach the accu-
racy of the Ovuscule till M = 7, and exhibits a high variance across subject. The
quadratic-spline snake and the third-order exponential-spline snake converge to
similar accuracies starting with M = 4. This was expected, since we showed in
Section that our function does converge to a quadratic B-spline when M
increases. However, for low values of M, the difference is noticeable, and the
quadratic-spline snakes produce shapes that are not compatible with the region
of interest. Finally, the fourth-order exponential-spline snakes produce equiva-
lent results in terms of accuracy and stability than the third-order one, at a price
of a larger support, and therefore, of a slower convergence.

In Figure [4.13p, we illustrate the initialization provided to the Ovuscule, and
in Figure the outcome of optimizing the Ovuscule, which will provide the
initialization for further processing. We also show the result of several more
elaborated snake variants, and how they compare with the ground truth. The
fourth-order exponential-spline snake results in an outline that is visually indis-
tinguishable from that of the third-order one, but comes at an increased cost.

4.4.3.2 Speed In terms of speed, we compared our proposed snake to some classic
traditional snakes such as a Kass-like snake [[146] and a traditional Geodesic
Active Contour (GAC) model [62].
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Figure 4.10: Mean and variance of the landmark error across all 33 patients.
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Figure 4.12: Maximum landmark error among all 33 patients.
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(a) (e)

@ (h)

Figure 4.13: Outlining of the endocardial wall. (a) Raw data. (b) Initialization.
(c) Ovuscule. (d) Ground truth. (e) Polygonal snake with M = 3. (f) Quadratic-
spline snake with M = 3. (g) Third-order exponential-spline snake with M = 3.
(h) Fourth-order exponential-spline snake with M = 4.
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Figure 4.14: Temporal evolution of the Jaccard distance. During the 2 seconds
of snake evolution, the proposed method with M = 3 performed 1479 itera-
tions, with M = 5 it performed 1406 iterations, and with M = 3 it performed
889 iterations. The Kass snake performed 17 iterations, the first of which took
370ms, and the GAC performed 34 iterations.

In this analysis, we used the anatomical structures of the 33 patients of Sec-
tion[4.4.3.1] However, we modified our initialization procedure to accommodate
for the GAC model, since it fails unless the initial contour lies totally inside or
outside of the boundary of interest. Therefore, we scaled down the initialization
that was provided by the outcome of optimizing an Ovuscule in Section 4.4.3.1]
By doing so, we guarantee that all initial contours lay inside the endocardial
wall to be segmented. Unfortunately, neither the Kass-like snake nor the GAC
model are able to reproduce the initial ellipse perfectly and their initialization
must be approximated. This approximation was achieved by sampling the out-
line of the Ovuscule. Finally, we refined the segmentation of the endocardial
wall either using our snake model for different values of M, the Kass-like snake,
or the GAC.

This experiment was performed on a MacPro 3.1 with two Quad-Core Intel Xeon
processors and 8GB of RAM memory running Mac OS X 10.6.8. The implemen-
tation of the Kass-like active contour was taken from [[146]], and the one of GAC
model from the free open-source image-processing package FijiE]implementing
the algorithm described in [|62]).

In Figure 4.14] we show the mean temporal evolution of the improvement of the
Jaccard distance during the snake evolution process for the 33 patients. We can
clearly see that the proposed snake reaches its optimum earlier than the classical

1. http://fiji.sc/
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@ | )

Figure 4.15: Outline of HelLa nuclei in a fluorescence microscopy image. The
parametric snakes were built with M = 5. (a) The initial contour of the snake.
(b) Result provided by our snake.

Kass-like snake and the GAC model. The Kass-like snake has a very costly first
step, and then it cannot escape a local minimum. The GAC is executed with an
advection value of 2.20, and a propagation value of 1. These parameters make
the GAC succeed in overcoming the local minimum, but the convergence rate is
still slower than that of the parametric case. It is important to notice that, for
our proposed model, an increase in the number M of control points slows down
the convergence. As pointed out in Section |4.3.4} this is due to the fact that
larger values of M increase the computational load per iteration of the snake.

Real Data

Here, we illustrate the behavior of our snake and provide further insights into
its capabilities. In the context of this section, the ground truth is missing, so we
must relinquish quantitative assessments in favor of qualitative ones.

HeLa Nuclei We want to evaluate the success of our snake model at outlining
ellipse-like targets in the context of automated time-lapse microscopy. We use
(434 x 434) images of HeLa nuclei that express fluorescent core histone 2B on
an RNAi live cell array. We show in Figure the result of the optimization
process with and M = 5. This number of points is high enough to capture
small departures from an elliptic shape.

We initialized every snake as a circle of radius of 25 pixel units, as shown in
Figure [4.15] These initial circles were centered on the locations given by a
maxima detector applied over a version of the image that was smoothed with a
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Gaussian kernel of variance o2 = 122 pixel. A total number of 23 maxima were
detected. We then proceed with an inverted version of the original, unsmoothed
image to optimize the snakes. The optimization process converged in 22 cases.
We show in Figure the result of the outlining process. We observe that our
snakes were successful in most of the cases.

Droplets As a second example, we show the outline of sprayed and deformed
water droplets hitting a surface. The flight and the impact of the droplet was
captured by a high-speed camera (Photron Fastcam) at a rate of 10,000 im-
ages/s. The shape of the droplet is changing during flight, at impact, and while
bouncing. After cropping, the size of the image was (663 x 663) pixels.

We analyzed two frames. One was an image taken before the collision took
place, the other was taken after the impact. In both cases, we initialized the
snake as a circle with a position and size that we chose manually. These initial-
izations are shown in Figure In the image prior to the impact, which we
show in the left part of Figure |4.16| a snake with M = 5 was used. We selected
a small value for M because the droplet is nearly circular. In the image after
the impact, which we show in the right part of Figure five control points
did not provide enough freedom to cope with the discontinuity created by the
attachment to the surface. However, the outline was successfully retrieved when
slightly increasing the number of nodes to M = 8.

Conclusions

Our contribution in this chapter is a new family of basis functions that we use to
describe parametric contours in terms of a set of control points. We were able
to single out the basis of shortest support that allows one to reproduce circles
and ellipses. Those can be characterized exactly by as few as three control points
but, by considering additional ones, our parametric contours can reproduce with
arbitrary precision any planar closed curve. In particular, we have shown that
the mean error of approximation decays in inverse proportion of the cube of
the number of control points. We have used our ellipse-reproducing paramet-
ric curves to build snakes driven by a combination of contour and region-based
energies. In the latter case, the energy depends on the contrast between two
regions, one being delineated by the curve itself, and the other by an ellipse
of double area. To determine this ellipse, we showed how to compute the best
elliptical approximation, in a least-squares sense, of a contour described by an
arbitrary number of control points. We were able to accelerate the implementa-
tion of our snakes by taking advantage of Green’s theorem, which was facilitated
by the availability of the explicit expressions of our basis. We have applied our
snakes to a variety of problems that involve synthetic simulations and real data.
We achieved excellent objective and subjective performance.



4.5. Conclusions

© ®
Figure 4.16: Sprayed droplets. (a) Prior to the impact: The initial contour of the
snake is represented with a black dashed line. (b) After the impact: The initial
contour of the snake is represented with a black dashed line. (c) Prior to the
impact: The outline of our snake with M = 5 is represented with a white dashed
line. (d) After the impact: The outline of the successful snake is represented with
a white dashed line (M = 8), while the configuration with M = 5 is represented

with a gray solid line. The droplet edges are partially out of focus, making them
blurry and noisy.
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4.A

4.A.1

4.A.1.1

Appendices

Implementation Details

In Section [4.3} we provided the guidelines for an efficient implementation of
our energy functionals. Here, we derive the explicit expressions of our image
energies and their partial derivatives. These expressions are needed when im-
plementing the snake optimization routine.

Image Energy

As described in Section |4.3.1] our image energy is composed of two terms: a
contour (or edge) term and a region term.

Contour Image Energy Using Green’s theorem, our contour energy can
be expressed as the surface integral

Eedge =- Jf Af(X) dxl dxz:
Q

where x = (x;,x,) and Af is the Laplacian of the image f. We express the
surface integral of g = —Af over the region Q enclosed by the curve r as

1

Eedge = § gl(r) dxz = J gl(r(t))

0

dx,(t)
dt

dt,

where g; is the pre-integrated image along the first dimension. Now, by the
explicit parametric description of r, we have

M-1

1
Eedge = J gl(r(t))M Z Cz[k] ﬂP(M t— k)dt:
0

k=0
where ¢ = (¢q, ¢,). Finally, we approximate the integral by the sum
1 MR i M-1 i
Eedge ~ E ZO &1 (1‘ (m)) Z CZ[k] (pM (E - k) ’

i= k=0

where R is discretization the sampling rate. Since ¢ is compactly-supported, the
number of non-zero elements of the inner sum is small. We precompute and
store in a lookup table the values of ¢, (i/R — k).

4.A.1.2 Region Image Energy Our region energy (4.20) can be expressed as
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as long as ©2 € Q,. Then, computing the image energy reduces to the evaluation
of two surface integrals over the regions delimited by r and r; (i.e., 2 and 9,
respectively).

We express the surface integral of f over Q as

dxz(t)

§ fi(r)dx, = f f1(x(6)

where f; is the pre-integrated image along the first dimension. Now, by the
explicit parametric description of r, we have

f AGENM Z ¢ [k (Mt — k) dt.

Analogously, we can express the surface integral of f over the region 2, en-
closed by the curve r; = (x, 1,x; ) as

xﬂ)

}5 filr)dx, , = f fr(ra ()

Now, by the explicit parametric description of r;, we have

1
f JACNG)PLY Z ¢o[k] (hy[k] cos(27t) — h [k]sin(27t)) dt.
0

We obtain an explicit expression for the region energy by combining both results
Ereglon = |Q| ( J fl(r(f))M Z Cz[k] (P(M t— k)

—fi(r(t)2mA Z cy[k] (hg[k]cos(2mt) — h.[k]sin(27t)) dt) .
k=0

Finally, we approximate the integral by the sum

e ) o

27 i M-l 27 27i
—rAfi (rA (M—R)) D elk] (h [k] cosM — h [k] smM—R) ,

k=0

where R is the discretization sampling rate. We precompute and store in lookup
tables the values of ¢, (i/R — k) and (hs[k] cos m — h.[k] sin zm)
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4.A.2 Partial Derivatives of the Image Energy

Our optimization scheme requires the partial derivatives of the energy func-
tion with respect to the parameters, that is, the sequence of control points
{elk]}rero..m-13-

4.A.2.1 Partial Derivatives of the Contour Image Energy Since the edge-based image
energy can be expressed as a surface integral of a function g = —Af, we can
compute the partial derivatives as

aEedge
dcq k]

0

a 1
= —aCMJ g1(x(0)) 1(”
0
1o 2 d
- f @)} 5 xl(” x(t)
0 1[k] dt
\—f—/\—v—/

(line integral)

(chain rule)

. g(x(t)) pu(Mt—k)
M-1
= f g ou(Mt =M > oIy (Mt —i)de  (by @)
0 i=0
M-1

1
= il M J ge(t))oyMt —k)py(Mt—i)dt (reordering).
i=0 0

Qu k]

Thus, we obtain the simplified expression

edge
8c1 Z 11Qglk, 1.

In a similar manner, we get

aEed e L= . .
Gepg -~ 2 alilQlk

To summarize, the computation of the partial derivatives of the edge energy
reduces to the trivial computation of the finite sequence Q,. Since ¢ and ¢ are
compactly supported, Q, [k, ] differ from zero if and only if ¢\ (Mt — k) and
$u(M t — i) overlap. Formally, Q,[k,i] # 0 if min{|k —il,|i — k[} < N, where
N is the common support length of ¢ and ¢. Then, if M is large compared to
N or if the length of the support of the basis functions is short, then most of the
elements of Q, [k, ] are zero.

82



4.A. Implementation Details

4.A.2.2 Partial Derivatives of the Region Image Energy We compute the partial

derivatives of the region-based image energy as

aEregion _ 0 1 5 de. d e d
ac, (k] dcy[k] 19l 0 dxdx, = nlf(x) xpdx, | .

By using differentiation properties and expanding the expression, we obtain

aEregion _ Eregion a|Q|
oci[k] 19 9¢[k]

1 Kl P
+ﬁ (2 —861 [k] fﬂ f(X) Xm dX2 — m J\J\Ql f(X) Xm dxz) .

We can expand the first term using (4.21)). We obtain,

M-1
Eregion 0 |Q| Eregion

M
Tl gkl 9l £ C2[n]£ eu(t —k) gy (t —n)de.

Q;[k,n]

The second term can be expanded following the strategy used in Section|4.A.2.1

We obtain M1
ﬁ (Z ¢,[1] (2Q; [k, 1] _Qf[k’i]))’

i=0
where Q ¢ contains the integration of f along the elliptical shell.

To summarize, the partial derivatives of the region-based image energy can be
written as

aEregion 1 = . . . = .
st =i 2o 2l (Bregon ik, 11 +2Qs T 1] = Qs [ 1)
1 i=0

In a similar manner, we get

M—

OE region

1= .
Gotd = i 2 Al (Eregion Q1 [k, 11+ 2Q; [k, i1 — Qf [k, 1) .
2

i=0
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Chapter 5

Extension to 3D Spline Snakes

Many 3D snake variants have been proposed utilizing different types of sur-
face representation and various energy terms. Implicit methods based on a
level-set formulation of the Chan-and-Vese problem have been investigated ex-
tensively over the past decade [[70]. Some effort was invested to obtain semi-
parametric approaches using simplex meshes [[147] and, more recently, 3D tri-
angular meshes [[T48]]. A first approach to fully parametric snakes named active
geometric functions (AGF) was proposed in [[149] using the variational frame-
work and the Mumford-Shah energy functional. Then, a refinement of the AGF
method was presented using polynomial B-splines [[150]].

In this chapter, we extend our 2D parametric snakes exposed in Chapter [4 and
propose the first fully 3D spline-based parametric snake for the analysis of im-
ages in 3D microscopy in which we constrain the topology to segment ellipsoid-
like objects of the type encountered in cell biology. Our snake surface is pa-
rameterized by few control points and uses as basis functions a special kind of
exponential B-splines from the family investigated in Chapter [3} The most im-
portant feature of our basis is that it allows our 3D snake to perfectly reproduce
ellipsoids. Our bases have the shortest-possible support given the aforemen-
tioned ellipsoid reproduction property. Because they are also refinable, they also
provide a good approximation of any closed surface with a sphere-like topology.

The parameterization based on splines, and more precisely the use of our expo-
nential B-splines, allows us to derive a fast algorithm for image segmentation.
This is crucial for biological applications such as cell tracking in time-lapse se-
quences of 3D images, which produce tremendous amounts of data. We have
investigated the efficiency of the proposed approach with the analysis of sev-
eral sets of real microscopic images and are reporting real-time performance.
We have designed edge and region energies that admit a fast implementation
thanks to the use of pre-integrated images and Gauss’ theorem. We also pro-
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5.1.1
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pose a simple method to detect self-intersections of the surface during the snake
evolution.

The class of parametric snakes proposed here lends itself to a semi-automatic
segmentation scheme that allows for user-friendly interaction. Because the
snake is fully parameterized by only a few 3D control points, the user is able
to easily guide and modify it by interacting with anchors in dedicated 2D and
3D image views. These views feature a live display of the snake and provides
feedback to the user when a control point is modified. This ability is precious for
crowded biological environments which may require user input and feedback.
The software implementing our techniques is given as an open-source library in
an effort to provide useful tools for the bioimaging community.

This chapter is organized as follows: In Section |5.1} we present an extension of
the curve generation framework introduced in Chapter |3|in order to generate
parametric surfaces using B-splines. Then, we formalize the mathematical con-
ditions for the basis functions in order to make the parametric surfaces suitable
for segmentation. Next, we specify a 3D snake model with a sphere-like topol-
ogy. Implementation details such as energy functionals and discretization issues
are addressed in Section Finally, we illustrate the capabilities of our snake
with synthetic and real data in Section [5.3

Spline Surfaces

In this section, we extend the general framework of parametric curve represen-
tation investigated in Chapter |3|to parametric surfaces using B-splines as basis
functions, and provide explicit expressions that characterize the surface points
and the tangent spaces. Then, we provide a formal set of conditions for the ba-
sis functions to ensure unique and stable representation of the surfaces, affine
invariance of the model, well-definiteness of the surface curvature, and some
reproduction properties. Finally, we specify a 3D snake model with a sphere-like
topology capable of perfectly reproducing ellipsoids irrespective of their position
and orientation.

Parametric Representation of Surfaces

We consider a parametric representation of a surface o (u,v) in 3D space that
is described by a triplet of Cartesian coordinate functions x;(u, v), x,(u,v) and
x5(u,v), where u,v € R are continuous parameters. The two-dimensional func-
tions x, y and gz are represented by linear combinations of suitable basis func-
tions. Among all possible bases, we focus on those derived from a compactly sup-
ported generator ® : R? — R and its multi-integer shifts {®(u — k,v — D} k.nezz-
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Then, the representation of the surface is given by the vectorial equation

U(uv)—z Z kl]d)(——k——l) (5.1)

k=—o00 l=—00 2

where {c[k,l] € Rg}(k’l)ezz are the control points in 3D that define the shape
of the surface, and T, T, € (0,00) are the sampling steps for each parametric
dimension. We denote by S C R? the set of points of the surface.

In view of the nature of the domain set defined by u and v, a common strategy
is to consider using tensor-products for the construction of the base function .
Then, the generator can be written as

®(u,v) = ¢p1(u) po(v). (5.2)

This approach of representing surfaces using bases built on tensor-products of
one dimensional functions has been studied by several authors [[151},[152] [153]],
albeit not in the context of snakes. Various choices of ¢; and ¢, have been con-
sidered, such as polynomials, polynomial B-splines and trigonometric B-splines.
Moreover, this tensor-product decomposition choice allows us to take advantage
of fast and stable interpolation algorithms [[114} 115} [116].

We define the tangent space at any point on the surface p = o (uy,vy) €S as the
vector space generated by the tangent vectors to S at p

Jo

T, = E(U,V)kuo,vo) (5.3)
Jo

T2 = E(u’v)kuo:vo)' (54)

The tangent bundle is usually defined as the disjoint union of all tangent spaces
indexed by the points on the surface p € S. The tangent bundle is said to be
well defined if all tangent spaces have dimension equal to two; that is, they are
planes. In this case, the surface S is said to be regular [[154]]. Requiring S to
be regular implies that the surface should be smooth, not self-intersect, or have
any border. Loosely speaking, S should locally look like a plane. Under these
conditions, a normal vector to S at p = o (uy, o) can be computed by

n=T, xT,, (5.5)

where X denotes the three-dimensional cross product.

5.1.2 Desirable Properties of Basis Functions

We now enumerate the conditions that our parametric surface model should
satisfy for the purpose of shape segmentation and introduce the corresponding
mathematical formalism. These conditions are the bivariate analogous to the
ones we presented in Section in the context of parametric curves.
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Unique and Stable Representation. We want our parametric functions x;, x,
and x5 to be defined in terms of the coefficients in a unique fashion; that is,
X1, X, and x5 are uniquely determined by a single sequence of coefficients
{elk, 11} 1yez> for all u,v € R. Furthermore, for computational purposes,
we ask the interpolation procedure to be numerically stable. A bivariate
generating function ® is said to satisfy the Riesz basis condition if there
exist two constants 0 <A < B < oo such that

Allelle, < llollz, < B liell, (5.6)

forall c € £,. A direct consequence of the lower inequality of is that the
condition Do Y7 c[k,l] (- —k, le —1)=0 for all (u,v) € R? im-
plies that c[k, 1] = 0 for all (k,1) € ZZ. Thus, the basis functions are linearly
independent and every function is uniquely specified by its coefficients. The
upper inequality ensures the stability of the interpolation process [[116].

It has been shown in [[117] that, due to the integer-shift-invariant structure
of the representation, the Riesz basis condition has the following equivalent
expression in the Fourier domain:

A< i i |8 (w0 +27k, w, +271)|* < B (5.7)

k=—00 l=—00

for all (w;,w,) € R2, where ®(w;,w,) = ff]Rz d(u,v)e  (@ure2v) gy dy
denotes the two-dimensional Fourier transform of ®. Once expressed in
the Fourier domain, the Riesz condition provides a practical way to verify
whether a given generating function & satisfies or not.

Given the fact that @ is built from the tensor product of two one-dimensional
functions, ¢, and ¢,, a sufficient condition to satisfy is to require ¢,
and ¢, to satisfy the one-dimensional Riesz condition. In particular, they
should satisfy

i |1(w+27k)[°

A < < B
k=—00
= ~ 2

A, < Y |dw+2nd)|” < B,
[=—00

where ¢, and ¢, are the one-dimensional Fourier transforms of ¢; and ¢,
respectively, and A;, B, A, and B, are the corresponding Riesz bounds.
Affine Invariance. Since we are interested in outlining shapes irrespective of
their position and orientation, we would like our model to be invariant to
affine transformations. We formalize this by requiring

Ao(u,v)+b= Z Z (Ac[k,1] +b)<1>(——k 72_1)

k=—00 l=—00
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where A is a (3 x 3) matrix and b is a three-dimensional vector. From (5.8)),
it is easy to show that affine invariance is ensured if and only if

>, Z@(F—k,F—l)z (5.8)
k=—o00 I=—00 1

for all (u,v) € R2. In the literature, this constraint is often named the

partition-of-unity condition [[118].

Since & is built from the tensor product of two one-dimensional functions,

¢, and ¢, holds if and only if

VueR i ¢1(Til—k)=
VveR : i(ﬁz(%—l):l,

hold; that is, if both ¢; and ¢, satisfy the one-dimensional partition-of-unity
condition.

Well-Defined Gaussian Curvature. The Gaussian curvature of a parametric
surface at a point p can be expressed as the ratio of the determinants of the
second and first fundamental forms at the same point

detII
detl”

K(p)=

The first fundamental form at a point p is the inner product on the tangent
space of a surface in three-dimensional Euclidean space which is induced
canonically from the dot product of R®. It is usually expressed as a symmet-

ric matrix
= LT T-Ty
I\ T’ Ty, Ty T, )0
where T; and T, are the tangent vectors defined in (5.3)) and (5.4) at a point
p, respectively.

The second fundamental form at a point p is a quadratic form on the tangent
plane in the three-dimensional Euclidean space,

2 2
a (Z. ‘ﬁ a 0. .1’_‘1
= azu a%av
Sl P L P
dudv av?
where i = m denotes the normal unit vector, which can be computed

using (5.5). Together with the first fundamental form, it serves to define
extrinsic invariants of the surface [[154].
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We want out parametric surface to have a well-defined Gaussian curvature
at every point on the surface. To do so, each coordinate function (o1, equiva-
lently, the functions ¢, and ¢,) must be in 4! with bounded second deriva-
tive.

4. Reproduction of Particular Shapes. Ellipsoids are particular shapes that ap-
pear repeatedly in segmentation problems in 3D microscopy. For that rea-
son, it is important that our surface model perfectly reproduces them.
Formally, we want a parametric description of all ellipsoids to lie within the
span of . For than reason the basis {®(u—k, v — )} ez should repro-
duce the family of functions that describe any ellipsoid. Since our model is
vectorial, we can impose this condition component-wise. In mathematical
terms, we say that a bivariate generating function  reproduces a bivariate
function f : R? — R if and only if there exists a sequence of coefficients
{c[k,1] € R} yez2 such that

flu,v)= i i clk,l]®(u—k,v—1)

k=—00 l=—00

holds almost everywhere. The analysis is further simplified if the function
f is separable in u and v, that is, there exists a decomposition such that
fw,v) = f1(u) fo(v). In this situation, it is sufficient to approach the prob-
lem separately for each variable. Then, we say that ¢ reproduces the func-
tion f if there exists sequences {c; [k]};ez and {c,[1]1};cz such that

o0

AW = Y7 alklgiu—k)
k=—00

LM = Y olllgv-1)
[=—00

holds almost everywhere. In addition, we say that ¢, reproduces f; and
that ¢, reproduces f,.

5.1.3 3D Snake Model

90

We are especially interested in the case when S is a closed surface since we want
our snake to segment blob-like objects within 3D images. We define our 3D
snake model as a closed parametric surface o following the parametric vectorial
equation (5.I). Since the surface is closed, it is not necessary to consider the
parameters (u,v) taking all possible values in R2. It is enough to consider a
domain that is a compact set  C R2. By convention, we normalize the range of
the parameters u, v to lie within [0, 1], setting the domain to Q = [0,1]2.
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Figure 5.1: Rendering of the snake surface taking a form of an oblate spheroid
flattened at the poles. The mesh has been obtained by sampling (5.9).

As discussed in Section|5.1.1} we consider among all possible bases those derived
from the tensor product of two compactly supported generators ¢, ¢,. Then,
the parametric representation of the surface is given by the vectorial equation

o)=Y, D e[kl (M u—k)¢y(Myv —1D), (5.9)

k=—00 l=—00

where we have substituted the sampling steps T; and T, by the positive integers
M, = Ti and M, = Ti The fact that we impose here M; and M, to be positive
1 2

integers guarantees that the functions x;, x, and x5 are represented by an inte-
ger number of basis functions within their domain Q = [0, 1]2. The larger these
values are, the more basis functions come into the domain . In this situation,
o has more degrees of freedom and can represent a larger variety of shapes. In
other words, small numbers lead to constrained shapes for the snake, and large
numbers lead to additional flexibility and more general shapes.

From the desired conditions in Section|5.1.2] the particular choice of ¢, and ¢,
determines the properties of the surface generated by (5.9), such as smoothness,
computational load of the resulting model, or reproduction of particular shapes.

We can force the surface generated by to take the topology of an ellipsoid
by imposing the appropriate boundary conditions on the sequence of control
points {c[k, ]} ez, and we can make the snake reproduce all possible ellip-
soids with the appropriate choice of ¢; and ¢,.

5.1.3.1 Topology To describe the parameterization, we shall adopt an earth-like car-
tographic terminology referring to meridians and circles of latitude. Then, the
curves that are obtained when fixing the second parameter in correspond
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to circles of latitude, as shown in Figure Formally, the curves obtained
when v is constant in & must be closed. As a consequence, the functions of each
component of o in u are 1-periodic when v is constant. In order to satisfy this
condition, it is necessary to apply periodic boundary conditions along the first
index of the sequence of control points. Therefore, the sequence of coefficients
becomes M, -periodic and satisfies c[k,[] = c[k+ M, ]. Under these conditions,
we can reorganize the first infinite summation in to a finite one involving
periodized basis functions. Then, the parametric representation of the surface is
expressed as

M-1 oo
o)=Y D> clkl] by pe(Myu—k) (M, —1), (5.10)
k=0 l=—00

where @1 pe,(u) = ZZ‘;_OO ¢, (u—M; n) for all u € R. Moreover, continuing with
our earth simile, the curves that are obtained when fixing u in correspond
to meridians; that is, open curves starting at the north pole ¢y and ending at the
south pole cg.

Reproduction of Ellipsoids We are also interested in our snake being capable
of perfectly reproducing ellipsoids irrespective of their size, position and orienta-
tion. Note that if ¢; and ¢, are chosen to satisfy the partition-of-unity condition,
the snake model will satisfy the affine invariance property. Then, since every el-
lipsoid can be obtained by an affine transformation of a sphere of unit radius,

we focus on the reproduction of this simpler shape.

The classical parametrization of a sphere with unit radius that goes with our
earth-like description is given by

x,(u,v) = cos(2mu) sin(mv)
xy(u,v) = sin(27nu) sin(mtv) (5.11)
x;(u,v) = cos(mv),

where u,v € [0,1].

All parametric equations in are separable in u and v, and each part can be
efficiently taken care of with our separable model (5.10). In order @ to be able to
reproduce and satisfy the condition of Section[5.1.2] ¢, must reproduce
constants and sinusoids of unit period, and ¢, must reproduce constants and
sinusoids of double period.

We rely once more in the Minimal-Support Generating Functions Theorem de-
tailed in Section to determine the optimal choice of ¢; and ¢,. More
precisely, by using Corollary [1] in Section we know that the centered
generating function with minimal support that satisfies the Riesz basis condi-
tion, the partition-of-unity condition, is ¢*(R) with bounded second derivative
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Figure 5.2: Members of the family of functions ¢ indexed by M = M; =2 M,.
@M=3. b)) M=4. (c) M =5. (d) M — oo. The function with the lowest
peak at the origin corresponds to M = 3, and, as M increases, the central peak
increases as well.

and reproduces sinusoids of unit period with M coefficients is

cosm—‘”cos%—cos%T 05|t|<%
1 2
— R - 7(3/2—t]) 1 3
o (t) T cos 2E (sm = ) 1< <
Mo\ 0 2< el

Therefore, we take ¢1(u) = ¢y, (w) and ¢,(v) = ¢4y, (v) in order to be able to
reproduce all sinusoids in (5.11). Note that ¢, and ¢, are equal if and only if
M, =2M,.

We show in Figure |5.2| some members of the family of functions ¢ indexed by
M = M; = 2M,. They are continuous, have finite support of area (3 x 3), and
tend to be bump-like. Moreover, when M — oo, they converge to the tensor
product of two quadratic B-splines. These functions allow the snake to per-
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fectly replicate constants and sinusoids of the appropriate frequency at each
component. This means that they can perfectly reproduce the parametric equa-
tions with the appropriate configuration of control points. The most re-
markable feature, though, is that the size of the support of these functions are
the shortest possible to satisfy the conditions from Section This results in
a maximally efficient scheme due to the fact that the computation of each point
on the surface of the snake depends on the minimum possible number of basis
functions, and it also ensures a local control of the surface by modifying single
control points.

The explicit expression of the control points that make our snake take the shape
of a perfect a unit sphere is

Cn, (k] Sam, (1]
clk,1]= le[k] 32M2[l] >
C2M2[l]
where
2 (1 — CosS Zﬁ”) 27n
cyln] = — 5o COS
cos 7 —cos = ¢ M
2 (1—cos3Z 2
syln] = ( M) sin T
M P 3 M
cos -+ — €os <=

The derivation of the specific coefficients to reproduce the sinusoids is equivalent
to the one obtained in Section [4.2.5]

Smoothness The chosen basis functions are ¥'(R), and their second deriva-
tives are bounded. However, the parametric model has two singular
points where the continuity and smoothness are not guaranteed and require
special attention: the poles ¢y and cg.

In order for the surface to be well-defined and continuous at the poles, we re-
quire the function o (u, v) to be independent of u for v = 0 and v = 1. Moreover,
to ensure that the tangent plane varies continuously, we need to make some
assumptions about the partial derivatives of . It was shown in [[I51]] that a
sufficient condition for continuity of the tangent plane is that the partial deriva-
tives satisfy

Jdo

E(U’VNV:O = Tyycos(27u)+ T,y sin(27u) (5.12)
oo .

E(U’Vﬂvﬂ = Tygcos(2mu)+ Ty sin(27u), (5.13)

where T; \, Ty, Ty s, To g € R? are free vectors.
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Tensor product polynomial splines on the sphere have already been considered
in [[I55] in the context of estimation techniques for fitting data on the sphere.
However, no attempt was made to deal with the pole problem nor to take full
advantage of the use of B-splines. Then, the sufficient conditions to obtain a
continuously varying tangent plane, or equivalently 6!(R) on the surface, were
first formulated in [[I51]] within the same context of fitting data on the sphere
using polynomial B-splines. However, the proposed scheme could only fulfill
the conditions approximately, the main reason being that the conditions
and can only be satisfied if the basis function associated to u is capable of
reproducing sinusoids of unit period. An extension of this work was presented
in [[I53]], where the basis function associated to u was substituted by periodic
trigonometric splines, being able to satisfy and (5.13). Here, we use the
full potential of the underlying exponential B-splines within our basis functions,
and we can satisfy and thanks to the fact that the basis function
¢, that we selected in Section is capable of reproducing sinusoids. To
the best of our knowledge, this has not been done previously.

We would like our parameterization include implicitly the exposed conditions.
Now, we translate them as conditions over the control points. We categorize the
required conditions in two types:

1. Pole Interpolation Conditions. All meridians originate at the north pole if and
only if o(u,0) = ¢y for all u € [0,1]. Likewise, all meridians terminate at
the south pole if and only if o(u,1) = ¢g for all u € [0,1]. The condition
concerning the north pole can be rewritten in terms of the control points by
evaluating at v = 0. This yields

ey = e[k, 1] ¢5(—1) + [k, 0] ¢,(0) + e[k, —1] ¢,(1),

for all k € [0...M; — 1], where we have used the fact that ¢, satisfies the

partition-of-unity condition and that its support is limited to the interval

[— %, %] Likewise, the condition concerning the south pole can be rewritten
in terms of the control points by evaluating (5.10) at v =1:

¢s = e[k, My +1] ¢o(=1) + c[k, My] $5(0) + e[k, My — 2] $»(1),

forallk e [0...M; —1].

2. DPole Smoothness Conditions. The sufficient conditions (5.12) and (5.13)
were stated for any generic parameterization. For our case, this translates
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(a) (b) ©

Figure 5.3: Surfaces generated by our snake model. (a) Interpolation conditions
are not satisfied. (b) Smoothness conditions are not satisfied. (c) Interpolation
and smoothness conditions are satisfied.

into

T,y cos(27u) + T,y sin (27ru)

M;-1 oo
= M, Z D elk, 1] by per(My 1 — k) (1)
=0 l=—00
T; 5 cos (2 7'[11) + Ty sin(27u)
M;-1 oo
=M, Z D7 elk, 1§y per(My u— k) (M, — 1)
=0 l=—o0

by evaluating the left-hand-side of (5.12) and (5.13). Here, Ty, T,y € R?
represent two free vectors that determine the tangent plane at the north

pole, and Ty 5, Ty 5 € R3 are two free vectors that determine the tangent
plane at the south pole. The proposed smoothness conditions can be satis-
fied if and only if the model can reproduce sinusoids of unit period over u
with a specified sampling rate. Since ¢; was designed to reproduce sinu-
soids of unit period over u with a sampling rate of M;, we are guaranteed
that smoothness conditions can be satisfied.

In Figure we show some surfaces generated by that fail to satisfy
some of the conditions on the poles. If the pole interpolation conditions are
not satisfied, the surface may not be completely closed; if the pole smoothness
condition is not satisfied, the surface may have kinks at the poles, leaving an
ill-defined tangent plane at these points.

The final step is to incorporate the exposed conditions into the parameterization
and to obtain explicit formulas. We provide an explicit expression of (5.10) with
a sphere topology and verify the pole interpolation and smoothness conditions.
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Proposition 3. A parametric spline-based surface with a sphere-like topology,
%¢1(R) continuity, and the capability of reproducing ellipsoids irrespective of their
position and orientation can be expressed as

M,—1 M,+1

o(u,v) = g 121 ek, 1] 1 per(My u — k) o (My v — 1), (5.14)
restricted to o

clo—1] = clk,1]+ 2 Mll[;j;;lz;s”’ K] (5.15)

c[k.0] = ¢Z?o) ¢z(1)(C[k(;52—(2])+C[k,1]) (5.16)

o] — ¢2c€0)_¢2(1)(c[k,Mz;ig);—c[k,Mz—i—l]) 517

ko, My+1] = c[k,Mz—u—Tl’SCMIZ[\l;j;;;’)SsMI[k], (5.18)

where {c[k, 1} kero..m, 11101, Mp-11 € €55 Tino Tons Tas, and Ty g are free pa-
rameters. This adds up to a total number of (M; (M, — 1) + 4) free control points.

Proof. First, since the support of ¢, is limited to the interval [—% %] and v lies
within the interval [0, 1], the second summation in can be restricted to
the indicesl € [-1...1].

The restrictions (5.16) and (5.17) are obtained directly from the pole interpola-
tion conditions. We rewrite the condition of the north pole as
ey + ¢2(1) (elk, —1] + e[k, 1])
$,(0)

for all k € [0...M; —1], where we have used the fact that ¢,(1) = ¢p,(—1) since
¢, is symmetric, giving us (5.16). Likewise, the interpolation condition on the
south pole is rearranged as

c[k,0] =

¢s — ¢o(1) (e[k, My — 1]+ [k, M, +1])
$,(0)
for all k € [0...M; — 1], giving us (5.17).

Now, we simplify the right-hand-side of the smoothness condition on the north
pole to

clk,M,] =

M,—1

D7 My (elk, —11 ¢2(1) — elk, 1] $5(1)) 1 per(My u— k),

k=0
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where we have used the fact that ¢, is an antisymmetric function. We expand
the sinusoids of the left-hand-side of the smoothness condition of the north pole
using @ pe,- It results in

T,y cos(27u) + T,y sin (27ru)

M, -1 M, -1
=Tn Z Cm, (k] ¢1,per(M1 u—k)+ Ton Z Sm, (k] ¢1,per(M1 u—k)
k=0 k=0
M,—1
= > (Tuncw, K]+ Tonsu, [K]) b1 per(Myu—k).
k=0

By identification of the coefficients, we obtain
Ty n O, L] + Ty x5, L]
M, (1)

for all k € [0...M; — 1], which gives (5.15). The expression for (5.18) is ob-
tained analogously using the pole smoothness condition in the south pole. [

c[k,—1] =c[k, 1]+

5.2 Energies and Implementation

5.2.1 Snake Energy

As exposed in Chapter 2] the snake evolution is driven by a application-depend-
ent energy function. Moreover, the quality of the segmentation depends on the
choice of the energy term. In our implementation, we obviated the constraint
energy since we accommodated the user interaction as a hard constraint.

5.2.1.1 Image Energy There are many construction strategies to design the image en-
ergy in 3D snakes. They are usually an extension of their 2D counterparts. As
shown in Section 4.3.1|in the context of 2D snakes, image energies can be cate-
gorized in two main families: 1) edge-based schemes [[43][47,/50]] and 2) region-
based methods [[49]168]]. Both families have their own advantages and disadvan-
tages. The first one gives a better localization of the contour near the boundaries
of the object to segment at expense of a narrower basin of attraction. We fol-
low the same strategy than in Section by using a convex combination of
gradient and region energies

Eimage = aEedge + (1 - Ct) Eregion:
where a € [0,1]. The tradeoff parameter a balances the contribution of the

edge-based energy and the region-based energy. Its value depends on the char-
acteristics of each application.
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For the gradient-based (or edge) energy, traditional snakes rely on edge maps to
guide them. The most popular approach is based on the magnitude ||V f || of the
gradient [43]]. Mathematically, they minimize

Emag = _% ”Vf” dS,
S

where the integration is performed on the closed surface S, and dS represents
the differential of area. The major drawback of this approach is that the snake
gets distracted by edges of nearby targets, since it does not distinguish between
gradients generated by different objects in the image.

We solve this issue by considering the direction of the gradient as well and by
imposing that the direction of the gradient and the normals of the surface be
aligned. The parameterization offers us the opportunity to choose the ori-
entation of the normal vectors at initialization time. From now on, and without
loss of generality, we assume it to be outwards. If we want to segment a bright
object surrounded by a darker region, we expect the directions of the image
gradients to be the same as the directions of the normal vectors when the en-
ergy reaches its minimum. We formalize this concept with the following image

energy:
Egrad=—jg; Vf-dS=—jﬁ£ (Vf-ﬁ) ds, (5.19)

S S

where dS represents the vector differential of area.

The advantage of this energy is that it uses the direction of the gradient to
discriminate between edges of the same target and between different targets.
Its minimization makes the surface of the snake stick to edges where the image
gradient has similar direction as the normal vector n and to be repelled from
edges with different orientations.

In Figure we present a 2D schematic with the configuration of the various
quantities involved in the computation of in two different setups. The
first one corresponds to a snake represented by the dashed line S;, segmenting
the gray circle (representing high pixel values) labeled as 2;. The normal to the
surface n and the image gradient Vf are pointing in the same direction, which
will add a strong contribution to E,,q. The second case corresponds to a snake
represented by the dashed line S, segmenting the same gray circle, but this time
the dashed line is closer to the region labeled as €2,. In this case, the normal
to the surface n and the image gradient Vf are pointing in opposite directions,
which adds a strong negative contribution to Egq.

For the region-based energy, we adopt a strategy similar to the one we followed
in the 2D case. We first build an enclosing shell Sy, around the snake. Then,
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Figure 5.4: 2D schematic representation of two parametric snakes S; and S,
(dashed lines), of their interaction with the objects ©; and 2, constituted by
gray circles (representing high pixel values), of normal vectors n, and of the
gradient vectors Vf of the image.

our region-based energy discriminates an object from its background by and
maximizing the contrast between the intensity of the data averaged within the
volume V enclosed by the snake, and the intensity of the data averaged within
the volume Vg, enclosed by the shell. When V C V,, the region energy is ex-

pressed as
1
Eregion =N (JJ de - ff de) 5 (5.20)
V] \% Ve \V

where |V| is the volume of the snake.

To enforce that the criterion remains neutral when f takes a constant value f;,
we build the enclosing shell such that |[Vg,| = 2|V|. Under these conditions,
Eregionlf=f, = O depends neither on the snake nor even on f,. We take full
advantage of the affine invariance property of our snake model; we build the
parameterization of the shell o, as the affine transformation of the snake sur-
face (5.14) with the same center of gravity and with volume [V |. The explicit
parametric expression is

oq(w,v)= V20 (u,v)+ (1 — «3/5) g,

where
M,—1 M,+1

o,= Z Z c[k,1]
k=0 1=—1
is the center of gravity of the snake. Since the shell is an affine transformation
of the original snake, it is possible to express oy, with the same basis functions.
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The shell o, is fully determined by the sequence of control points. Thus, any
modification on o results in a readjustment of o ,.

5.2.1.2 Internal Energy The internal energy is responsible for ensuring the smooth-
ness of the snake. It was first proposed in [43] in the context of 2D active
contours as a linear combination of the length of the contour and the integral of
the square of the curvature along the contour. This smoothness term is the one
that is most widely-used in applications. Its direct extension to active surfaces
gives

Eine = A1 S|+ 2, j%( IK[*ds, (5.21)

S

where K is the Gaussian curvature of the surface.

This internal energy can also be expressed specifically in terms of the tangent
vectors and the fundamental forms as

1 1 1 1
Ene =M f J IT; X Tylldudv + A, f f
0 0 0 0

where the first term makes the snake contract and the second favors smooth so-
lutions. In the framework of active contours, most parametric schemes rely on
the smoothness of the representation, thus eliminating the need for an explicit
internal energy term. However, these approaches can ensure a low value of the
curvature only when the curves are parameterized at constant speed (propor-
tional to arc-length). For example, a spline curve may be rough if some of the
spline knots accumulate at one section of the curve. Similar problems exist with
Fourier and other parametric representations. A practical workaround is to repa-
rameterize the curve to constant arc-length after each step of the optimization
algorithm, which is quite expensive [[143]]. Another approach is to substitute
the curvature term of by an energy term that penalizes the curve for not
being in the curvilinear abscissa [57]. This energy is called curvilinear repa-
rameterization energy. Minimizing this energy causes the curve knots to move
tangentially to the snake, thus bringing it to curvilinear abscissa. The use of
this energy yields the same results as reparameterizing the snake at each step,
but with a much lower computational load. We adopt a similar approach and

modify the internal energy (5.21) to

2

detIl T, % T, || dud
X udv,
detl ! 2

1 1
Eim=AIIS|+A2f f (| detI| — |S])* dudv. (5.22)
0 0

Evolving the curve with such an energy term will cause the control points to
distribute uniformly over the snake surface and avoids accumulation.
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Fast Energy Computation

The computational cost of the evolution of the snake is dominated by that of
the volume integrals in (5.20). An efficient way to implement these operations
is the use of pre-integrated images. Let g be the function we are integrating,
and let Q be the domain of integration (V or V). Then, by Gauss’ theorem, we
rewrite the volume integral as the surface integral in different ways

Jff gdv = fﬁ;&dxz/\dxs
Q

a0

= ﬁ; godxs Adx;

a0

= {jﬁ g3 dx; Adxy,

a0

where A is the wedge product, dV is the boundary of V, and

g1(x1, X2, x3)

X1
f g(7,x5,x3)dT

o

82(x1,x2,x3) = f g(x1, 7, x3)dt
sy

g3(xy,xp,x3) = f g(x1, x5, T)dT.
—00

All three possibilities are equivalent and can be stored in lookup tables to speed
up the access to the data. The translation of volume integrals into surface inte-
grals reduces the computational load dramatically. This can only be achieved if
the surface is defined continuously, as in (5.1).

In the interest of space, we show the exact expressions of the energies using
pre-integrated images in Appendix

Sampling

Despite the fact that we are describing our surface continuously, in a real-world
implementation we only have at our disposal a sampled version of the functions
we want to pre-integrate. We therefore perform a trilinear interpolation of the
sampled data and store the result in lookup tables.
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5.2.4 Optimization

5.2.5

As mentioned before, the snake extracts the boundary of an object by finding
the minimum of the energy functional. For that purpose, we iteratively update
the value of the free control points {c[k,]}refo..m,~171€[1..M,~1]> €N»> Cs, and
the free control vectors T; y, Ton, T1 s, and T, using a generic unconstrained
gradient-based optimizer. The optimization scheme is efficiently carried out by
a Powell-like line-search method [[144]. This method requires the derivatives
of the energy function with respect to the parameters, and converges quadrat-
ically to the solution. The algorithm proceeds as follows: firstly, one direction
within the parameter space is chosen depending on the partial derivatives of the
energy. Secondly, a one-dimensional minimization is performed within the se-
lected direction. Finally, a new direction is chosen using the partial derivatives
of the energy function once more, while enforcing conjugation properties. This
scheme is repeated until convergence. This powerful optimization method is
used here because the number of parameters that define the shape of the snake
is very small. Assuming a trilinear interpolation of the original function f, we
were able to derive exact and closed expressions for the energy functions. In the
interest of space, we show the derivation of these expressions in Appendix[5.A|

Self-Intersection Detection

The optimization process can sometimes lead to self-intersecting surfaces. How-
ever, the probability of self-intersection is greatly reduced by the introduction of
the new internal energy (5.22). Without this term, the control points can bunch
together, eventually resulting in self-intersection.

Despite this refinement, self-intersection may still arise occasionally when the
image energy forces some control points to move faster than others. This com-
promises our approach since we use Gauss’ theorem, which assumes non self-
intersecting closed surfaces. An extensive body of research can be found on the
intersection problem, with numerous articles presenting different approaches
for the intersection of freeform curves and surfaces [[156]. Unfortunately, these
methods are excessively time-consuming for our purpose.

As an alternative, we devised a fast method for self-intersection detection using
the Gauss-Bonnet formula. This formula states that the Euler characteristic y of
a closed, non-intersecting surface S can be computed by integrating the Gaussian
curvature as follows:

1
2(S)= 7 j%ﬁ |K|2dS. (5.23)
S

The Euler characteristic is a number that describes a topological space’s shape or
structure regardless of the way it is bent or deformed, as long as it does not self-
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intersect. In the case of sphere-like topologies, we have y (S) = 2. Therefore,
we know that the snake self-intersects if y (S) # 2.

Note that our criterion can give a correct value y even if the surface is self-
intersecting, which implies that it is not completely foolproof. In principle, it
is possible to detect these cases by splitting the integral over a series
of smaller intervals and checking if there is a self-intersection in each of the
subintervals. However, such cases are unlikely to occur in practice, and it was
not necessary to implement such a finer level of detection.

User Interaction

By contrast with many other implicit and global parametric snakes, our snake
is fully parameterized by only a few control points, which eases the interactions
with the user. This has encouraged us to develop a dedicated graphical user
interface that lets the user initialize the 3D snake position and refine it even
after the optimization process. The user can intuitively manipulate the position
of any point by selecting it in either the 2D or 3D mesh representations of the
snake. The 2D view also provides 3D cues, as we color the mesh depending
on the depth and set its transparency proportional to the distance of the slice
displayed in the 2D viewer. With this strategy, only parts of the snake which
are close to the displayed image are revealed. Editing the points is performed
with simple mouse actions. The live update of the 2D and 3D views is very fast.
This is due to the fact that the change in one control point affects the structure
locally. Thus, just a limited region of the snake’s surface has to be recomputed.
As a result, a fast, user-friendly, and semi-automatic segmentation procedure,
that loops between snake initialization, optimization, and correction, is made
possible.

Initialization

Our method can be operated in an automated fashion. For that, the algorithm
only requires an initial position. Like in all segmentation problems, this initial-
ization is strongly dependent on the imaging modality. For example, in fluores-
cence microscopy, a blurring or a DoG filter followed by the detection of local
maxima/minima suffices to provide an initial position (see Chapter [4] for exam-
ples of automatic initializations of 2D parametric snakes). In medical imaging,
refined methods based on atlases can also be used [[157]).

When choosing the initial position of the snake, one must ensure that the object
of interest is within the basin of attraction of the chosen image energy. The
conditions for the convergence of our image energies are the following:

—  Eg,q is only responsive to image gradients. Therefore, the snake surface must
be initialized close to the boundary of the object. This basin of attraction is
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usually extended by preprocessing the input image with a smoothing or a
distance transform.

—  Ejegion 1S TESpONSiVe to image contrasts between the snake core and the snake
shell. Therefore, the snake surface must be initialized such that the core
intersects the object and the shell intersects the background.

5.3 Experiments and Simulations

We present in this section five experiments. In the first one, we deform our
snake to show how the self-intersection is detected by monitoring the Euler
characteristic. In the second experiment, we investigate the sensitivity of our
snake to the presence of noise. In the third setup, we perform a quantitative
evaluation of our algorithm when segmenting neighboring targets; there the
preservation of topology plays a crucial role. We move away from simulated data
in the fourth experiment where we investigate the approximation properties of
our snake with medical data of a spleen from a CT-scan. In the last experiment,
we illustrate the application to real microscopic data where the ground truth is
not available.

The calculations were performed on a MacPro 3.1 with two Quad-Core Intel
Xeon processors, 12GB of RAM memory, and an NVIDIA GeForce 8800 GT with
512 MB running Mac OS X 10.8.2

5.3.1 Twisting the Snake

We deformed the snake away from a perfect sphere by rotating the central layer
of control points by an angle 8, thereby creating a twist in the center of the
structure. In particular, we set the snake control points to

Cn, (k] Sam, (1]
clk,l]=1 sum (k] SZMZ[Z] )
Cam, []

for k € [0...M; — 1] and for all [ # [%J, and we set

cu, [k]s20, [1] cos © — sy [k]sgp, [1] sin @
clk,1]1= | cum,[k]lsom,[l]sinO +sy [k]sypy,[1] cosO |,
CZMZ[Z]

forke[0...M; —1] and for | = [%J.

We show in Figure different surface configurations as a function of the ro-
tation angle 6. We see that for small angles, the surface is slightly twisted but
not self-intersecting. However, as we approach 6 = 7, the central part of the
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Figure 5.5: Deformation of our snake from a perfect sphere by rotating the
central layer of control points by an angle 6, thereby creating a twist in the cen-
ter of the structure: (a) 6 =0; (b) 6 = T§[§ (c) 6= 2?”; d o= 3?”; (e 6= 4?”;
6 =m.

N~ w -~ 9] =) 2
il Ly

Euler characteristic

0 /4 /2 3m/4 i
Angle

Figure 5.6: Value of the Euler characteristic y (S) of the snake surface, computed
using the Gauss-Bonnet formula when applying a rotation on the central layer of
control points. As the layer rotates, the structure deforms and loses its sphere-
like topology.
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Figure 5.7: Cross-sections of the test images used in the assessment of robust-
ness. Only one realization is shown for each PSNR value. (a) PSNR = 20dB.
(b) PSNR = 15dB. (c) PSNR = 10dB. (d) PSNR = 5dB. (e) PSNR = 0dB.
(f) PSNR = —5dB. (g) PSNR = —10dB.

structure collapses in two points, producing two self-intersections. We show in
Figure[5.6|how the Euler characteristic, computed by the use of (5.23), varies in
terms of 6. The predicted value is correct for < ZZ* and starts increasing when
the snake starts self-intersecting. Hence the conditions of the Gauss-Bonnet the-
orem are violated.

Robustness to Noise

Next, we investigate the sensitivity of our method to the presence of noise.
We generated 100 realizations of a noisy sphere for each one of seven differ-
ent peak-signal-to-noise ratios (PSNRs). Our test images were obtained by on-
voxel-wise sampling a sphere of radius of 30 voxel units on a regular grid of
(256 x 256 x 256) voxels. We show in Figure one cross-section of the noisy
volumes for every PSNR value.

The initial shape is a sphere with a fixed radius of 50 voxel centered at a dis-
tance of 25 voxel from the real center of the object to segment. We constrained
the number of control points to its minimum (M; = M, = 3). Then, we ran
the optimization process until convergence using exclusively the region-based
energy (i.e., we set the tradeoff parameter a = 0).

We used the Jaccard distance J = 1 — |©@NQ|/|©OUQ| to quantify, as a per-
centage, the quality of the segmentation. This distance provides a measure of
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PSNR [dB] | J[%] o, [%]
20 0.20 0.16

15 0.44 0.26

10 0.61 0.35

5 2.16 2.68

0 12.16 10.05

-5 22.74 11.29
—10 34.69 9.82

Table 5.1: Jaccard distance when segmenting noisy spheres.

dissimilarity between two binary objects where a low value reflects an accurate
segmentation. In the definition of the Jaccard distance, © corresponds to the
ground-truth region and Q2 corresponds to the region enclosed by the snake. We
computed J following a on-voxel discretization of the data.

We show in Table the value of J and its standard deviation o; across all
noisy realizations. We observe from the results that our snake is robust against
noise since it is capable of giving a proper segmentation even for low PSNRs.
The quality of the segmentation deteriorates quickly when PSNR> 0 due to the
presence of too much noise.

Segmentation of Overlapping Objects

In this section, we compare our snake against other segmentation methods in
terms of accuracy and speed at the task of delineating different configurations
of overlapping objects.

We generated 4 volumetric images (256 x 256 x 256) by voxel-wise sampling
the union of two spheres of radius 50 pixel. We show a rendering of these
shapes in Figure They are parameterized with the distance d, in pixel units,
between the centers of the spheres. For d < 100, the spheres intersect; for
d = 100, the spheres share one single pixel; for d > 100, the spheres are dis-
joint. The grayscale values of the images are 255 for the shape and 0 for the
background. We are interested in isolating each sphere. Without loss of gener-
ality, we focus on segmenting one of them.

We compared our snake to a traditional level-set method based on the formula-
tion of Chan-and-Vese [70], and to the 3D active meshes of [[148]]. The imple-
mentation of the level-set method was taken from the free open-source image-
processing package FijiE] implementing the algorithm described in [62]]. The im-

1. http://fiji.sc/
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(a) (b) © (d)

Figure 5.8: Renderings of the test images used in the analysis of performance
when segmenting overlapping objects. (a) d = 80. (b) d =90. (c¢) d = 100.
(d) d =110.

plementation of the active-meshes method was taken from the free open-source
image-processing package Icy.E]

We initialized the level-set method by providing a point seed (the only possible
initialization afforded by the Fiji plug-in). The initial positions were determined
by a detector of local maxima applied over a version of the image that was
smoothed with a Gaussian kernel of with o = 10. A total number of 2 local
maxima were detected in all images. We discarded the rightmost detection since
we are interested in segmenting the leftmost object. We initialized our snake as
a perfect sphere of radius 60 pixel units. Finally, the active meshes cannot take
the form of an ideal sphere but can approximate it. We initialized this method
using the automatic tessellation of the sphere of radius 60 voxels.

We chose M; = M, = 3, which are low values that favor ellipsoid-like shapes
during the segmentation process. Then, we ran the optimization process until
convergence using the edge-based energy (i.e., we set the tradeoff parameter
a = 1) and our internal energy with A; = 0.1 and A, = 0.01. We executed
the level-set with an advection value of 220 and a propagation value of 100.
These values were chosen to accelerate the propagation of the evolving level-set
front and to obtain a faster convergence without loosing accuracy. For the active
meshes, we set the time-evolution step to 0.01, the window size to 100, and we
evolved the snake using the gradient criterion with weight 0.5 and regulariza-
tion weight 0.01.

We show in Table a comparison across all mentioned methods of the Jaccard
distance J reached at the end of the optimization process as well as the time it
took the algorithms to converge for the different test datasets. The times shown
in Table exclude the preprocessing stages of the three methods.

Clearly, the level-set method is the slowest. This is in agreement with the results
shown in Chapter[4|for the 2D case. Meanwhile, our snake and the active meshes

2. http://icy.bioimageanalysis.org/
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Method | J [%] Time [s] Segmented shape
d =80
Spline Snake 3.06 0.93 Left sphere
Level-Set 48.66 2808.00  Merged spheres
Active Meshes | 48.91 6.32  Merged spheres
d=90
Spline Snake 2.61 0.91 Left sphere
Level-Set 49.69 2862.03  Merged spheres
Active Meshes | 50.11 6.01  Merged spheres
d =100
Spline Snake 0.83 0.93 Left sphere
Level-Set 50.00 2889.13  Merged spheres
Active Meshes 2.79 3.96 Left sphere
d =110
Spline Snake 0.71 0.93 Left sphere
Level-Set 0.25 1412.09 Left sphere
Active Meshes 1.98 4.44 Left sphere

Table 5.2: Accuracy and efficiency of the mentioned segmentation algorithms
when segmenting overlapping objects.

demonstrate a similar level of performance in terms of speed and accuracy, even
though the active-meshes method takes advantage of the GPU present in the
hardware, while our snake and the level-set method do not.

We can also see from Table that the level-set method extracts a merged ver-
sion of the two spheres as long as there exists a single pixel that connects them.
This is due to the fact that the level-set method does not have any constraint on
the topology and can leak though holes. On the other hand, the active meshes
and our snake succeed in segmenting the left sphere alone even in the presence
of some overlap, being the proposed method the most robust and the fastest.

Approximation of Shapes

In this section, we move away from numerical simulations, and we investigate
the capabilities of our snake when approximating realistic shapes as a function
of M; and M,. We quantify its accuracy at outlining the wall of a spleen within
slices of a 3D CT-scan image sequence.

The data we used are part of the 3D-IRCADDb (3D image reconstruction for com-
parison of algorithm database). It includes several sets of medical images of
patients and the manual segmentation of the various structures of interest, per-
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Figure 5.9: Evolution of the Jaccard distance as a function of M = M; = M,
when approximating a spleen.

formed by clinical experts.[’f] For every patient under analysis, the ground truth
is available as a triangular mesh where the vertex locations correspond to pixel
positions. Moreover, the database provides a 3D voxel mask with the interior
of the mesh. In the case of the mask, the volume consists of 166 slices with a
spacing between slices of 1.8 mm. Each slice is a (512 x 512) image with a pixel
spacing of 0.961 mm.

To approximate the spleen with our snake, we first detect the boundary pixels of
the spleen mask for each slice. Then, for each slice, we fit a spline corresponding
to a circle of latitude of o. Using this approach we obtain a snake o aligned in
the vertical direction. The north pole is located at the apex of the spleen, and
the south pole is located at its bottom. The circles of latitude are adapted to
the shape of the spleen in the XY plane. Then, we refine the final fit with a
global 3D optimization led by the edge-based energy (i.e., we set the tradeoff
parameter a = 1), and our internal energy with A; = 0.1 and A, = 0.01.

In the simulations of Figure we investigated the dependence of the Jaccard
distance J on M; = M, = M. Our results show that the error decreases quadrat-
ically, which demonstrates the ability of the proposed model to segment objects
with an ellipsoid-like topology. In Figure we show the voxelized mask we
used as ground truth and the successive approximations of our snake for differ-
ent values of M. We see that, for small values M (such as M = 3), the snake
takes an almost ellipsoidal shape and is not capable of capturing every detail
of the spleen structure. As we increase the number of control points, the snake
captures the structure of the organ while providing a smooth surface.

3. http://www.ircad.fr/softwares/3Dircadb/3Dircadb.php

111



5. EXTENSION TO 3D SPLINE SNAKES

5.3.5

5.3.5.1

112

(@

Figure 5.10: Approximation of a 3D CT-scan spleen for different values of
M = M, = M,. (a) Rendering of the spleen. (b) Approximation with M = 3.
(c) Approximation with M = 5. (d) Approximation with M = 7. (e) Approxima-
tion with M = 10.

Segmentation of 3D Confocal Microscopic Images

We finally illustrate the behavior of our snake and provide further insights into
its capabilities in real-world applications. In this section, the ground truth is
missing, so we must relinquish quantitative assessments in favor of qualitative
ones. Here, we initialized our snake manually using the interaction capabilities
of our software.

Cell-Body Segmentation We processed a stack (576 x 504 x 200) of confocal
(x60 magnification) images from the brain cortex of a rat, with YFP labeling
for the neurons and GFP for the microglia.El The challenge was to segment the
body of the neuronal cells, despite their non-spherical shape, the lack of clear
borders, and the presence of several surrounding objects. We set M; = M, =
7, roughly initializing the snake position around each cell body as a sphere,
and ran the optimization process until convergence using exclusively the edge-
based energy (i.e., we set the tradeoff parameter a = 1). One example of the
resulting segmentation is shown in Figure We observe that the snake was

4. http://www.cellimagelibrary.org/images/27155/
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Figure 5.11: Segmentation of a cell in a 3D confocal image of a murine brain
(courtesy of Sabine Scheibe and Sebastian Rhode at TILL Photonics). (a) 3D
view of the segmented brain cell with the full snake mesh overlaid. From (b)
to (d): 2D views of different slices of the dataset at different x5-axis positions.
The snake mesh changes color and transparency depending on the position of
the grid points to the displayed slice.

able to adapt well to the 3D cell shape: the surface is accurately fitted despite
the limited degrees of freedom of the model, while irregularities are properly
smoothed out. The optimization process took only 0.74 s, which is faster than
the duration of the acquisition of such data (usually, much longer than 1 s).

Segmentation of Glomeruli We investigated the segmentation of olfactory
glomeruli in the mouse brain which represent neuroglial functional units in
olfactory information processing [[158]]. With Topro staining, glomeruli corre-
spond to the dark areas delimited by fluorescent cell bodies. In Figure
they are visualized as bright areas with an inverted look-up-table. However,
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Figure 5.12: Segmentation of an olfactory glomerulus in a 3D confocal image
stack (256 x 256 x 67) of a mouse brain (image courtesy of Lisa Roux at the
Collége de France). (a) 3D view of the segmented glomeruli with the full snake
mesh overlaid. From (b) to (d): 2D views of different slices of the dataset
(inverted colors) at different x;-axis positions (x;3 = 10, 17 and 24 yum). The
snake mesh changes color and transparency depending on the position of the
grid points to the displayed slice.
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5.4. Conclusions

the surrounding fluorescent cells do not form continuous boundaries. This pe-
nalizes nonparametric active contours, as the snake may ‘leak out’ between the
neighboring cells. By contrast, we show in Figure that the proposed snake
method (with M; = M, = 7) is able to accurately identify the glomerulus border.
This is a key advantage of the proposed parametric model, as it allows one to
exert a priori control over the regularity and topology of the snake. Here again,
the optimization process was performed using the edge-based energy exclusively
(i.e., a = 1). Convergence was reached after 1.74 s, which is remarkably fast.

Conclusions

Our contribution in this chapter is a new fully parametric snake with a sphere-
like topology. It is constructed using the basis functions we investigated in
Chapter (3} and it is therefore capable of reproducing any ellipsoid, irrespec-
tive of its position or orientation. Our snake is characterized by fewer control
points than nonparametric snakes and can approximate any blob-like structure
with arbitrary precision. The modification of one control point affects a limited
region of the snake surface, which favors intuitive interactions with the user.
Since our shape model is fully characterized by few control points, the design
of customized shapes becomes possible by simple manipulation of these points
in the same way that control points are used in the NURBS meshes typical of
computer-aided industrial designs [[55]. Moreover, the control points may be
used to perform statistical learning/analysis of the segmented objects [[I59]).

We designed an edge-based energy that is capable of maintaining the consis-
tency of the segmentation in the presence of clutter. This is accomplished by pe-
nalizing mismatches in the directions of the image gradients. Furthermore, we
combined it with a robust region-based energy. We were able to accelerate the
implementation by taking advantage of Gauss’ theorem, which was facilitated
by the availability of explicit expressions of our bases. Moreover, we introduced
a novel technique to detect self-intersection in order to know when the snake
loses the sphere-like topology. We have applied our snakes to a variety of prob-
lems that involve synthetic simulations and challenging real datasets, where the
object contours were not well defined. As a result, various experiments have
shown that the proposed 3D snake can approximate blob-like objects with good
accuracy. Moreover, the optimization process is remarkably fast as we have de-
signed our bases to have the shortest-possible support.
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Appendices

Implementation Details

In Section[5.2] we provided the guidelines for an efficient implementation of our
energy functionals. Here, we derive the explicit expressions of our image ener-
gies. These expressions are needed when implementing the snake optimization
routine. We approximated the partial derivatives of the energy functionals using
centered finite differences. However, it is possible to obtain analytic close-form
expressions following the same strategy as in Appendix [4.A]

Image Energy

As described in Section [5.2.1.1} our image energy is composed of two terms: a
contour (or edge) term and a region term.

Contour Image Energy By Gauss’ (or divergence) theorem, our contour en-
ergy can also be expressed as the volume integral

Egrag = — Jffv div(Vf) dv =— fffv Af dv,

where V is the volume enclosed by S, dV represents the differential of volume,
and Af is the Laplacian of the image f. We express the volume integral of
g = —Af over the region V enclosed by S as

E doo Ad ) Oxy 0x3 00Xy OXg dud
grad = 814Xy AN dX3g = &i1\o Pu av _ av ou uay,
S

(5.24)
where g; is the pre-integrated image along the first dimension. Now, by the
explicit parametric description of o, we have

do My—1 My+1
S wv=M Z D bl puMu—k) ¢(Mv =1 (5.25)
=0 1=—1
do My—1 My+1 .
S, @ =M; 3 > ek ¢ pu(Mu—k)$o(Myv—1)  (5.26)
k=0 1=—1
where 2% = % @ %) nd 9 = (% 9x %). Finally, we approximate

u av dv’ 3y’ dv
the double mtegral by a double sum by sampling u and v at a fixed
sampling rate. Since the basis functions and their derivatives are compactly-
supported, the number of non-zero elements in the sum is small. Moreover, we

precompute their samples and store them in lookup tables .
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5.A.1.2 Region Image Energy Our region energy (5.20) can be expressed as

b (2 [[[ - []] sar).

as long as V C V,. Then, computing the image energy reduces to the evaluation
of two volume integrals over the regions delimited by o and o, (i.e., Vand Vg,
respectively).

We express the volume integral of f over V as

e A — trt ) 0xy 0x3 0% 0X3)
frdx; Adxs = o hie du dv dv du ua,
S

where f; is the pre-integrated image along the first dimension. Analogously, we
can express the surface integral of f over the region Vg, as

1 1
Ox, Oxs x,
%fldxz/\dxg :J Fi(0) V3 (ﬁ % _ ﬁﬁ) dudv,
0 0 u u
SSh

since
aosh 3 ao'sh
=y
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We obtain an explicit expression for the region energy by combining both results

1 1 1 3 aXZ aX3 aX2 ax:;
region |V| J;) J;) ( fl(O') \/Zfl(ash)) ( ou Ov Jv Jdu ) wev

Finally, we approximate the double integral by a double sum by sampling u and
v at a fixed sampling rate. Since the basis functions and their derivatives are
compactly-supported, the number of non-zero elements in the sums is small.
Moreover, we precompute their samples and store them in lookup tables .

117






Chapter 6

Snake-Based Algorithm for Tracking
Mitotic Cells

Because biological systems are dynamic, it is highly desirable to quantify their
evolution through time in order to improve our understanding of their behavior.
Large-scale time-lapse imaging of cells is nowadays performed routinely thanks
to the automatization achieved in the field of light microscopy. The obtained
datasets are such that it is not possible to analyze them manually within any
tolerable amount of time.

Present-day efforts in cell tracking are mostly application-oriented and depend
on different methodological approaches [3] 19} [160]. Among them, two para-
digms can be identified: the Bayesian framework and variational methods. The
former involves a probabilistic reasoning grounded in a motion model [[161,
162,[163]]. The latter localizes the target accurately at each frame by optimizing
a cost function that depends exclusively on the current image, often employing
a standard minimization algorithm [[164} [165] (166} [167]]. The most straight-
forward technique is to link each detected target in one frame with the closest
one in the subsequent frame, where the used distance may include similarity
measures. It has also been proposed to use graph-theoretic approaches. In this
case, the solution is obtained using standard graph optimization algorithms on
a weighted graph composed of the detected targets and all possible correspon-
dences [[168}[169].

The variational approach is usually preferred in bioimaging, while the Bayesian
framework is quite popular in the Computer Vision. Nonetheless, several at-
tempts have been made in the Computer Vision community to take advantage of
Bayesian and variational methods simultaneously. Most of these methods make
use of parametric active contours and rely on kernel density estimators, which
incorporate many parameters that can degrade the overall performance of the
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algorithm [[I70},[171]]. By using active contours of the geodesic variety the use of
such estimators was avoided in [[I72]. This resulted in a significantly slower al-
gorithm than their parametric counterparts due to the high computational load
inherent to geodesic active contours.

In this chapter we make use of the active contours of the previous chapters
to design a segmentation and tracking method that performs large-scale time-
lapse analysis of mitotic cells. The demonstrated efficiency of our active contours
allows us to use them as building blocks in a highly parallelizable image analysis
toolkit.

This chapter is organized as follows: In Section[6.1} we present a tracking algo-
rithm that combines our active contours with the Bayesian tracking framework.
As a result we obtain a parallelizable single cell tracking algorithm capable of
handling cell mitosis, and multiple changing motion cell behaviors. Then, we
describe a refinement algorithm in Section in order to deal with imaging
conditions where the cells are densely packed and interact with each other.

Single Mitotic Cell Tracker

Among the Bayesian methods, our interest lies in the particle filter, which per-
forms a multimodal random search guided by a motion model [173]. The fact
that the search is multimodal is important when modeling uncertainties of as-
sociation in dividing targets. In the role of the parametric contours, we can use
any of the methods developed in Chapter [4] or Chapter[5] We embed the snakes
in the particle filter in a way that the importance sampling of the particle filter
is defined implicitly by the optimization algorithm of the variational method,
and the particle weights correspond to the optimal values of the energy function
of each individual particle. This construction drastically reduces the number of
particles needed to have an accurate description of the target. We make use of
the shape information provided by the snake in order to detect the start and
end of the mitotic stage within a simplified cell cycle, and use different motion
models accordingly.

This section is structured as follows: We first recall elements of the particle-filter
framework in Section Then, we describe our algorithm in Section
and illustrate its capabilities by tracking mitotic HeLa cells and outlying their
nuclei in Section [6.1.3

Particle-Filter Framework

The Bayesian-tracking framework provides a methodology to infer the sequence
of hidden states of a dynamic system x;., = {X;,...,X,}, using a sequence of
noisy measurements z,., = {z,,...,2,}. Bayesian estimation is used to recur-
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Figure 6.1: Belief network representation of a first-order state-space belief net-
work with a layer of hidden variables. Round nodes denote that the variables
are continuously defined, and shaded nodes indicate that the variable is la-
tent/hidden.

sively compute a time-evolving posterior distribution p(x,|z;..). This distribu-
tion can be estimated by assuming a Markovian model of the state evolution,
D(x,|x,_;), and a likelihood that relates the noisy measurements to the hidden
state L(z,|x,).

In the statistical signal processing community, this framework for modeling time-
series data that uses a latent, unobserved variables x,, from which the observa-
tions 2, are generated, takes different names: latent Markov models, state-space
models or HMMs [[174]. We show in Figure the corresponding belief net-
work representation of a first-order Markov model. Each node is associated with
a probability function that takes as input a particular set of values for the node’s
parent variables and gives the probability of the variable represented by the
node. The round nodes indicate that the variables are continuous, the shaded
nodes indicate latent/hidden variables and the absence of arrows indicate inde-
pendence relationships [[I75].

Then, the probability density function (pdf) p(x,|z..) is estimated in two steps:
prediction of the state and update after the new measurement z, is available.

In the prediction step, the system model and the estimated posterior density
from the previous frame are combined in the Chapman-Kolmogorov equation to
obtain the prior density

P(X¢|Z1:0—1) = f D(X¢[X¢—1) p(X—1Z1.¢—1) dX, 1. (6.1

Next, in the update step, Bayes’ rule is used to modify the prior density and
obtain the desired posterior

p(%¢1Z..) o< L(z, %, ) p(X¢|21.—1)- (6.2)

The solution of the problem defined by (6.1) and (6.2) is analytically tractable
in a limited number of cases (e.g., linear Gaussian models). For most practical
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models, sequential Monte Carlo methods are used as an efficient approximation.
In these methods, the posterior p(x,|z;.,) is represented with a set of N, random

weighted samples, usually referred as particles, {xgi), wﬁi)}ﬁv;l as

NS
p(x |z )~ Y w60k, —x),

i=1
where & is the Dirac delta and the sum of the weights is normalized to the unity.

In the classical approach, the particles are chosen using the principle of im-
portance sampling. This principle relies on the availability of an importance
function q(x,|x,_;,2,) that describes the state space. The idea is to sample the
areas of the state space where the importance function is large and to avoid gen-
erating samples with low weights, since they provide a negligible contribution
to the posterior. Thus, we generate a set of new particles using the importance
function, that is _ ‘

xt) ~ q(x XY, 2,). (6.3)
Generally, the importance function can be chosen arbitrarily. The only require-
ments are the possibility to easily draw samples from it, and to have the same
support as p(x;|z;.,). When using the importance density function q(x,|x,_;,Z.),
the expectation of any function f (x,) with respect to the probability p(x,|z;.;)
can be rewritten as

P(X|z1.0)

——q(x,|x,_1,2,) dx,,
1(x,|%1,2,) q(x¢|xe—1,2,) dx,

f f(x)p(Xclzy.) dx, :J fx)
where the integration is performed only over the common support of the prob-
ability p(x,|z;..) and q(%,|x;_;,2,). By drawing N, samples as in (6.3), the ex-
pectation can be approximated as

Ns . .
f FxIpCxelzr ) dx, ~ Y ) wl?, (6.4)
i=1

where o
1
() p(x;’zy.¢)
t ; : s
g%, 2,)

t—1°

and Zf];l ng) = 1. Thus, the Chapman-Kolmogorov equation can be approxi-
mated using the right hand side of (6.4). Taking advantage of the fact that we
have a robust observation model given by our snakes, we propose to replace
the classical importance sampling function by the optimizer of the variational
scheme. This novel approach drives the particles towards regions in the state

space with high probability.
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6.1.2 Variational Importance Sampling

In our setting, the snakes developed in Chapter |4 and Chapter [5| provide an ac-
curate observation model that can be used to describe the shape of any blob-like

cell. In such circumstances, the state vector xgi) corresponds to control points
of the snake, i.e., x(tl) = (c[0],...,eD[M; — 1]), and the measurement vector
corresponds to the pixel values z, = {I,} of the image within the boundaries of

the snake. Note that each particle can have a different number of control points.

At each frame, we propagate each particle from the previous frame following the
state evolution model, which generates the predicted set of particles {iﬁl)}f’;l.
Since each particle f(El) is built from a snake, it can be associated with an energy

value Es(ri;ke(c(")) measuring the goodness of fit of the snake to the target being
tracked. We optimize the energy value of the predicted set of particles follow-
ing the gradient-based optimizer of the snake. This defines the optimized set
of particles {xifgpt}?;l with an optimized set of snake energies {Es(;lke(cggt)}?l;l.
Following the principle of maximum entropy, we assume that Eg.;.(c) is a ran-
dom variable with exponential distribution, which leads to assign the particle
weights w' to
wh o e_”;?ﬂke(cm),
where A is a parameter that controls the sharpness of p(x,|z;..)-

Using the proposed scheme, the importance sampling of the particle filter, usu-
ally performed by (6.3), is given implicitly by the optimization algorithm used in
the variational method. This interpretation arises naturally since the role of the
optimizer is to attract the snakes, and therefore the particles, to the target under
inspection. As a consequence, the weights of the particles within the region of
convergence of the optimizer will gain importance compared to the ones that
are not. Therefore, a much smaller set of particles is necessary to describe the
high-probability regions of the state space.

Finally, we perform a resampling step to eliminate particles that have small
weights and to focus on particles with large weights. The resampling step
involves generating a new set by sampling (with replacement) N, times from
{xgpt}fl;l, which leads to the equiprobable set of particles {xgi), 1% iV:l The es-
timation at each frame of the location and shape of the target befng tracked at
each frame can be carried out efficiently with the MAP estimator as follows:

%, = argmax{p(x,|z,.)} ~ argmax{w(’}.
X, i

Thus, the maximum a posteriori (MAP) estimation of the target corresponds to
the optimized particle with highest weight. All these operations are summarized
in Algorithm
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Algorithm 1: Snake-based particle filter

input: Particle set {in_)l iV:l and current image I,

output: MAP estimation X, and particle set {xgi)}?l;l

fori < 1to N, do
i(ti) <« Propagate xgi_)l with the motion model,;
{x(tgpt, Es(:l)ake(cggt)} < Adjust the snake to I,;
ng) — e’AEs(;lke(c(i)om);

end

fori — 1to N, do

[ ol 5l

end

X, — argmaxi{wgi)}

{x@}?’;l <—Resampling({x(t’;())pt, ng)}iv;l);

Application to Time-Lapse Microscopy

In this section, we use our snake-based particle filter to construct the lineage
of migrating HeLa cells, and outline their nuclei. We used the 2D spline-based
snake from Chapter [4 with M = 3 and region energy only.
Biphasic Motion Model The HMM is a classical signal processing model that
is not capable of handling the different behavior that the cells exhibit during the
cell division process. A more complex model is the switching linear dynamical
systems (SLDS) which breaks the time series into segments, each modeled by a
potentially different motion model. We show in the associated belief network in
Figure
For our particular application, two different motion models are considered de-
pending on the state of the cell cycle. Both models are considered to be linear,
with

X, =X, +1n,(s.), (6.5)

where n, is a random vector that depends on the state of the cell s, at time t.
The two cell states are:

— Non-mitotic, where the nuclei are essentially circular, and move and deform
without any preferred direction, as shown in Figure and Figure [6.3p;

— Mitotic, where nuclei are more elongated and brighter than in the non-
mitotic state, and where the movement during the splitting is fast and per-
pendicular to the main axis of the cell, as shown in Figure and Fig-
ure [6.34.
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Figure 6.2: Belief network representation of the SLDS. Square nodes denote
discrete switch variables s,; x, are continuous latent/hidden variables and z,
continuous observed/visible variables. The discrete state s, determines which
linear dynamical systems (LDS) is operational at time t.

(a) (b) © (d)

Figure 6.3: Migrating HeLa cell nuclei: (a) non-mitotic state at time (t — 1),
(b) non-mitotic state at time t, (¢) mitotic state at time (t — 1), (d) mitotic state
at time t.

For the non-mitotic stage, the natural choice in is to assume Gaussianity
and independence for each component of n,. For the mitotic stage, we adopt
a purely translational model perpendicular to the main orientation axis. A cell
is considered to enter in the mitotic state if its MAP estimation is brighter and
more eccentric than a certain threshold values. At that point, the motion model
switches to the mitotic one, and eventually returns to the non-mitotic one once
the values of the brightness and eccentricity get below the thresholds.
Experimental Results To illustrate our method, we applied our algorithm to a
time-lapse sequence of images of HeLa nuclei expressing fluorescent core histone
2B on an RNAI live cell array.F_] We focused on building the cell lineage of a single
cell. We only used a total of 20 particles. The thresholds, A, and the standard
deviations for n, were chosen empirically.

1. Courtesy of D. Gerlich, Institute of Biochemistry, ETHZ, Ziirich.
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(b) (d

Figure 6.4: Different steps of Algorithm [1| with non-mitotic motion model.
(a) Initial. (b) Propagated. (c) Optimized. (d) Resampled.

(a) (b) © (d)

Figure 6.5: Different steps of Algorithm [Ijwith mitotic motion model. (a) Initial.
(b) Propagated. (c) Optimized. (d) Resampled.

In Figure we show the behavior of Algorithm [1| when a non-mitotic mo-
tion model is used. In particular, we observe in Figure the outlines of the
snakes representing the particles from the previous frame. These particles are
propagated following the non-mitotic motion model to the locations shown in
Figure [6.4p. After optimizing the snakes, we obtained the particles shown in
Figure [6.4k, and, finally, after the resampling, the particles in Figure[6.4d. Note
that, after the optimization, one snake converged to a local minima, but its
weight was negligible compared to the others. Therefore, it was eliminated in
the resampling step. In Figure[6.5] we show the behavior of Algorithm [I|when a
mitotic motion model is used and when the cell division occurs. In particular, we
observe in Figure the outlines of the snakes representing the particles from
the previous frame located at the same position. These particles are propagated
following the mitotic motion model to the locations shown in Figure [6.5p. Af-
ter running the snake optimizer we obtained the particles shown in Figure 8
and after the resampling we obtained the particles shown in Figure [6.5d. Note
that, after the optimization, some snakes converged to different targets, and this
information was preserved in the resampling step.

We show in Figure[6.6|and Figure[6.7]the temporal evolution of the mean bright-
ness intensity and the eccentricity of a single nucleus respectively. We can ob-
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Figure 6.6: Mean intensity within the elliptical MAP estimation. Three stages
can be clearly differentiated. The first one prior to frame 180 in which the cell
is not in mitotic stage. The second one occurs between Frame 180 and 188 in
which the cell becomes brighter and undergoes mitosis.Finally, the third one in
which the cell returns to a non-mitotic stage.
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Figure 6.7: Eccentricity of the elliptical fit of the MAP estimation. Three stages
can be clearly differentiated. The first one prior to frame 180 in which the cell
is not in mitotic stage. The second one occurs between Frame 180 and 188 in
which the cell becomes more elongated and undergoes mitosis.Finally, the third
one in which the cell returns to a non-mitotic stage.
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serve a simultaneous peak in both graphs between frames 180 and 188, which
corresponds to the mitotic stage of the cell.

The use of our biphasic motion model would not have been possible if we had
not used the optimized snake to obtain an accurate estimation of the orienta-
tion of the cell during the mitotic stage with a reasonable number of particles.
Moreover, due to the capability of the particle filter to describe multimodal dis-
tributions, our algorithm is capable of building the cell lineage, which the snake
could not have achieved on its own.

The computation time is usually directly related to the number of particles used
in the particle filter. Since our variational importance sampling provides a bet-
ter description of the high-probability regions of p(x,|z,..), a reduced number
of particles is necessary. Moreover, the optimization of each snake during the
variational importance sampling stage can be carried out independently, which
makes the algorithm fully parallelizable.

High-Throughput Multi-Target Tracker

The simplicity of tracking one cell is lost when tracking a whole population
of densely packed cells. Joint optimization tracking techniques provide good
results in such cases, but the computational complexity increases dramatically
(161, [176]. This is partly due to the fact that the cells all interact with each
other, and no independence relations in the probability model can be easily
established. Therefore, the joint probability space of all targets must be used for
tracking every single cell within the whole population.

Here, we consider high-density crowd scenes. It has been observed, in the con-
text of human crowd tracking, that the locomotive behavior of an individual in a
crowded scene is a function of collective patterns evolving from the space-time
interactions of individuals among themselves [177].

In this section, we present a fast algorithm which is specialized for tracking bio-
logical cells within crowds. It relies on graph-theoretic techniques to minimize
a cost functional that models the characteristic motion in highly packed scenes
and imposes a certain level of coherence in the displacement field while being
capable of handling large movements (i.e., coarse temporal resolution). The
output of this algorithm can be easily incorporated as a base displacement field
in a motion model for the tracker introduced in Section[6.1]

Notation

We denote Mk = {méf} j=1..n, the set of measurements m;? = (x;?,s;?) at frame
k, where each measurement contains information about the position x;‘ and
features s;‘ of each target. In our snake framework, the features sf contain, but
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Figure 6.8: Bipartite graph representation of the sets M*~! (left side), M* (right
side) with (a) all possible correspondences given by 2, (b) the most likely cor-
respondences given by G, and (c) a possible pairing AF.

are not limited to, shape descriptors from the snake control points. Analogously,
we define the set of positions and features at a given frame by X = {X;(} j=1..N;

and Sk = {sﬁ.‘}jzlme.

We are interested in finding the best pairing between two consecutive frames
given the measurements in these frames. Formally, a pairing is as a subset

AcQ={1...N_;} x{1...N.},
where (i,j) € A* indicates that the measurement mf’l in frame (k — 1) cor-
responds to the measurement m* in frame k. We restrict the admissible so-
lution by disallowing multiple assignments to the same measurement. Given
(i,),(1,n) € A", then m{~* = m{! if and only if m;‘ = mF (see Figure .
Note that the cell-tracking problem is equivalent to finding the corresponding
A¥ at each transition interval.

Probabilistic Graph Formulation

We consider the measurement sets as random variables. This implies that we
are also looking for a pairing which is a random element within the space of
all possible pairings. We are interested in finding a pairing that maximizes its
conditional probability given the known information, that is, the measurements

AL = argmax{P(A‘ M1, M)}, (6.6)
AccQ

where P(A*|M*~1,M¥) is the probability associated to the pairing A* conditioned
to the sets of measurements M~ and MF.
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Using an approach similar to the one in the Bayesian filtering framework, and
assuming mutual independence between the positions and the features, we re-
state the maximization criteria (6.6) as

Ak, = argmax{P(aA) P(X*|x1, AF) P(S¥[s*T, AR}, 6.7)
A cQ

where P(AY) is the marginal probability of A*, and reflects our prior knowledge
about the preferred pairings, P(X*|X*~!, AX) corresponds to a measure of like-
lihood of the positions given that we know the position in the previous frame
through the pairing AX, and P(S|S*~!, A¥) corresponds to a measure of how
likely the feature values are given the knowledge of the feature values in the
previous frame through the pairing A*.

Using the maximum-entropy principle, we finally model the probabilities as

PCRHXE, AF) oc e Tt X040
P(SHSE, AY) oc e Toast 1884,

where uy is a compatibility measure of the joint movement and ug is a feature
compatibility measure.

Efficient Graph-Based Algorithm

opt
graph-optimization problem. First of all, we consider the complete bipartite

graph whose nodes represent the measurement sets M*"! and M¥, and whose
edges are represented by Q. Our goal is to select a subgraph such that the sum
of the weights w;; of the edges is maximized subject to the restriction that all
vertices in this graph have a degree less or equal to one, so that each target
detection from set MF~! is assigned to at most one target detection on M* and
vice versa. This set of edges receives the name of matching [[178]. It exactly
corresponds to the pairing AX if we appropriately choose the edge weights w; je
Despite the fact that we are maximizing a criterion based on graph edges, we
are not biasing the solution toward high connectivity, as is usually the case for
non-weighted graph matchings [[179] [180].

We now cast the problem of finding the best pairing A in Ii as a global

This graph-optimization problem corresponds to a known problem in graph the-
ory called maximum weighted bipartite graph matching [[179} [180]], which can
easily be expressed in the context of binary linear programming (BLP). In this
framework, the objective functional to maximize is

N1 Ng

Z ZWU‘ Xij (6.8)

i=1 j=1
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subject to Z?]zkil 2ii =1, Zivil xij <1, and y;; €{0,1}.
The solution to the BLP would be either y;; = 0 or y;; = 1, where y;; =0
denotes (i, j) ¢ A* and xij = 1 denotes (i,) € AL,

In our case, we know beforehand that many pairings between measurements
of M*~! and M* are unlikely. These incompatibilities are usually known when
designing the experimental setup (e.g., a cell will not be able to move more than
a certain distance, the shape of a target cannot change through time).

In our formulation, the probability of any matching that includes one of these
unlikely edges is set to P(AK) = 0. Therefore, the solution has to be found
in a sparse-graph G (see Figure [6.8p), where the edges only connect possible
correspondences (i.e., measurements located within a certain region). For all
possible matchings within this sparse graph, we can chose a non-zero value for
P(A") such that the solution of corresponds to the solution in with

wi; = —us((i, 1), 871, 85, A) — A ux (1, ), X1, x5, A9),

where A is a positive tradeoff parameter between the compatibility measure
of the joint movement and the feature compatibility measure. For A = 0 the
solution of the pairing is totally based on target features, and for high values
of A, the solution is dominated by the joint movement criteria. Note that the
compatibility measure of the joint movement acts as a regularization term; that
is, modifies the optimal solution of the problem given our prior knowledge of
the flow behavior. Therefore, the compatibility measure of the joint movement
cannot act independently and should always work together with the feature
compatibility measure.

Note that it is necessary to have a pairing A‘ to compute the edge weights w; i
This is resolved by the following iterative algorithm:

Algorithm 2: Iterative multi-target tracker

Initialization of G, A*;
repeat
Us, Uy < Ak (update compatibility measures);
w;j < Ug, Uy (update edge weights);
Af «— Maximum Weighted Graph Matching (G, w; j);
until convergence;
return A*

The most costly part of the algorithm corresponds to the execution of the Max-
imum Weighted Graph Matching function. Some graph algorithms can perform
this function in @(N E + N2 log(N)) steps, where N = N;_; + N;, and E is the
number of edges, or equivalently, the number of possible correspondences.
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Figure 6.9: Schematic representation of the optimal configuration when pairing
a set of neighboring targets from frame (k — 1) (left) to frame k (right) using the
compatibility measure uy favouring joint displacements. Given an initial pairing
A¥ mapping the shaded targets, the optimal configuration is reached when xf’l

is paired to x;‘.

Motion Model

Blocks of cells often tend to move together in heavy populated environments, so
that the cells preserve a certain spatio-temporal continuity in their movement.
We model this behavior using a displacement model in the compatibility mea-
sure of the joint movement uy, as follows:

AU’X((i:j)’Xk_lﬁxk:Ak)
1
=—— D, & H-—xD-E—xD 1, 6.9

k-1
e/Vi T e —
l i neighbor [ displacement  j—j displacement

where Jt/ik_l is the non-empty set of neighbors of the detected cell at xg‘_l, and
where ./ is a mapping induced by A* that satisfies .o/ (xf‘l) = x}‘ whenever
(i,7) € A~

The regularization term uy measures the average relative displacement of the
neighboring targets given a pairing A*. As shown in Figure the minimization
of imposes that neighboring target detections go to neighboring target

detections. This term becomes crucial when all targets look alike, which is the
case when imaging living cells.
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6.2.5 Application to Time-Lapse Microscopy

In order to validate the efficacy of the method in tracking individual cells in
large crowds, the algorithm was applied to a sequence of images obtained from
yeast cell populations.

S. cerevisiae strains (ATCC 201388) were grown within a microfluidic cham-
ber in YPD medium at 30°C. Monolayer-grown cell crowds were imaged with a
Nikon Ti-E microscope (Nikon instruments inc., Melville, U.S.A.), a 60x objec-
tive (plan apo, 1.4 oil), and a 1.5% scope, resulting in a total 90 x magnification.
An iXonEM camera (Andor technology plc., Belfast, U.K.) controlled by a VB6
based software was used to acquire 14-bit images of (1024 x 1024) pixel with
an exposure time of 50ms, an analogical gain of 2.4, and an EM gain of 2.

We used a watershed transform to split the image domain in non-overlapping
regions and serve to us an automatic initialization for our active contours. This
segmentation provides us with several important parameters for the construc-
tion of our graph G. In particular we identify the centroid of each watershed
region as the position xff_l, and the grayscale values within a bounding box cov-
ering the watershed region as the features sf‘l. The watershed segmentation
also gives information about neighboring regions: regions that share dams with
other regions are considered neighbors. We use this information to determine
the non-empty sets of neighbors in (6.9). For the watershed region detector to
succeed, we need dense areas of targets within crowds. Otherwise, some heuris-
tic methods can be applied to eliminate regions that do not represent cells.

We define the similarity criteria ug between two targets as the mean-squared
error of the grayscale values between the two corresponding cell shapes. In
order to avoid misalignments of the images when computing the MSE, we used
the Three-Step Search (TSS) block-matching algorithm [[I81]]. Some typical
results are presented in Figure In the simulations presented in this section
we used an initial matching A* based on features only (i.e., we run the Maximum
Weighted Graph Matching function once with A = 0).

To illustrate the adequacy of our motion model, we compared in Figure the
use of ug alone to the joint use of ug and uy. In this setup, all targets look very
similar, and the ug measure is not able to discriminate well between all possible
pairings. Introducing uy notably improves the solution even after one single
iteration.

For the purpose of assessing tracking performances, we manually identified cell
trajectories within an area of interest with an average population of 120 yeast
cells over a span of 50 frames. We quantified the quality of the pairing process
by computing the rate of successful connections made by the algorithm over the
total number of connections in each frame. We summarize the results obtained
by our method in Table
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Figure 6.10: Flow-like behavior of the constrained movement of a crowd of cells.
The red lines point towards the position in the subsequent frame.

(b)

Figure 6.11: Pairing between two consecutive frames. The red lines point
towards the location of the corresponding region in the subsequent frame.
(a) Pairing obtained using only on the similarity measure ug (A = 0). (b) Pair-
ing obtained using a weighted combination of both measures after one iteration
using (a) as initial matching (A = 100).

A | Max. rate [%] Min. rate [%] Average rate [%]
0 100.0 67.0 95.5

50 100.0 72.0 97.6

100 100.0 90.0 98.6

Table 6.1: Success rate when tracking yeast cells.
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6.3. Conclusions

The similarity measure ug is sufficient for obtaining a correct pairing when cell
movements are small (i.e., past and present positions overlap). However, when
pressure inside the device exceeds a critical level, cells tend to displace in clus-
ters pushing the neighboring ones. This situation cannot be appropriately han-
dled by using ug alone, and tracking is then improved with the introduction of
ux. The appropriate choice of A strongly depends on the behavior of the motion
vector field and should be further investigated.

Conclusions

In the first part of this chapter, we have proposed a new methodology that fuses
in a single tracker the two major tracking philosophies and that retains the ad-
vantages of both. We showed that, by using a robust variational method, it is
possible to replace the importance sampling function of the particle filter and
obtain an alternative scheme. The resulting algorithm is capable of creating an
accurate segmentation of elliptic targets with a reduced number of particles, and
capable of detecting and tracking cells undergoing mitosis.

In the second part of the chapter, we have presented a new algorithm for multi-
cell tracking in crowded areas. It is fast and easy to implement. It runs in real
time and is able to deal with thousands of cells. We have specifically designed
model-based cost functions that take account of multiple cell interactions. The
parameter A of the algorithm needs to be chosen so as to strike a balance be-
tween the frequently conflicting goals of having flow-like trajectories and en-
forcing the similarity of individual cells across frames.
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Chapter 7

Conclusion

In this chapter, we first recap all the technical contributions presented in this
thesis. Then, we briefly show some life-sciences research projects in which our
tools have been incorporated within larger image analysis pipelines. Finally, we
comment on the future research possibilities.

Technical Contributions

Our schemes are centered on shape models that ease feature extraction of blob-
like shapes. We have optimized the computational efficiency and have provided
a quantitative and qualitative assessment of our methods. The main technical
contributions of this thesis grouped by topic are as follows:

Contributions in the fields of approximation and spline theory.

— We fully characterized a new family of basis functions with shortest support
that allows one to reproduce exponential polynomials.

— We provided subdivision schemes and nonstationary multiresolution algo-
rithms based on these functions.

— We characterized the order of approximation of such nonstationary multires-
olution schemes.

— We used these minimum-supported basis functions to design spline curve
models that reproduce ellipses and higher-order harmonics. In particular,
we tailored these bases to obtain maximal-smoothness basis functions, and
interpolatory basis functions.

Contributions in the field of 2D image segmentation.

— We used the minimum-supported bases that reproduce ellipses to construct
parametric active contours. These models can be characterized exactly by as
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few as three control points, but they can reproduce any planar closed curve,
with arbitrary precision, by adding a sufficient number of nodes.

We also provided closed expressions to compute the best elliptical approxi-
mation, in a least-squares sense, of a contour described by an arbitrary num-
ber of control points.

We applied our snakes to a variety of problems that involve synthetic simu-
lations and real data.

Our active contours are general, and compatible with any traditional energy
functional. To exemplify our method, we designed a combination of contour
and region-based energies. The former uses the gradient direction in order
to impose consistency constraints during the segmentation process. This has
proved to be very useful when segmenting or tracking cells in crowded envi-
ronments. In the second case, the energy depends on the contrast between
two regions, one being delineated by the curve itself, and the other by an
ellipse of double area.

We accelerated the implementation of our snakes by taking advantage of
Green’s theorem. This was possible thanks to the availability of explicit ex-
pressions for the basis functions.

Contributions in the field of 3D image segmentation.

We extended our planar parametric snake to a fully 3D spline-based paramet-
ric snake with a sphere-like topology. Our snake can approximate any blob-
like structure with arbitrary precision. Thanks to the underlying B-spline
representation, the modification of one control point affects a limited region
of the snake surface, which results in intuitive interactions with the user.
This is made possible by a parameterization based on splines.

We have applied our snakes to a variety of problems that involve synthetic
simulations and challenging real datasets, where the object contours were
not well defined.

We designed an edge-based energy that is capable of maintaining the con-
sistency of the segmentation in the presence of clutter. This is accomplished
by penalizing mismatches in the directions of the image gradients. Further-
more, we combined it with a robust region-based energy.

We accelerated the implementation of our snakes by taking advantage of
Gauss’ theorem in 3D. Again, this was possible thanks to the availability of
explicit B-spline expressions.

We introduced a novel technique to detect self-intersection in order to know
when our 3D snake loses the sphere-like topology based on the computation
of the Euler characteristic.

Contributions in the field of spatio-temporal object tracking.



7.2. Contributions to Research Projects in Life Sciences

—  We have designed a new methodology that combines in a single algorithm
the two major tracking philosophies and that retains the advantages of both
using our snakes as building blocks. We were able to handle object division
and track a large number of cells in crowded environments.

7.2 Contributions to Research Projects in Life Sciences

The design of the segmentation and tracking algorithms presented in this thesis
was initially motivated for the analysis of blob-like biological objects. However,
our algorithms are general enough to be applicable in a wider range of situ-
ations. Now, we show some research projects in life sciences where our tools
have been incorporated within larger analysis pipelines. Some of the projects
required particular customizations to the characteristics of each problem (e.g.,
specific energy functionals for the snakes). These modifications are just briefly
described in order not to overload this thesis, and they will result in future joint
publications.

7.2.1 The DynamiX Project

As it was mentioned in the introduction, the design of algorithms in this the-
sis had been motivated by the DynamiX Project (see Section [1.3]for a detailed
description).

The microfluidic live cell imaging platform designed in the project can generate
a large quantity of images in a short time. For example, an experiment with
1152 strains, running for 12 hours, generates more than 40000 images, grouped
in 1152 time-lapse sequences of 36 frames [[182]]. Single cell analysis is not
possible under such conditions within any reasonable amount of time. Thus, an
efficient fully automated image analysis scheme is required. To respond to the
specific needs of the datasets of the project, we implemented the custom image
analysis pipeline shown in Figure[7.1

In order to minimize the acquisition mechanism, two distinct cell chambers were
imaged at the same time. The drift in the position of the chambers and the sep-
aration of the two chambers was performed in a preprocessing step. Then, the
active contours described in Chapter [4 were used to obtain an accurate repre-
sentation of the boundaries of the cells. This was performed in a multireso-
lution fashion: first an elliptic fit was performed, and then a refinement was
obtained by increasing the number of control parameters of the model. The
ellipse-reproducing property and the inherent properties of the basis functions
designed in Chapter[3|were crucial in order to perform the refinement efficiently.
At the next step of the analysis, the segmented objects were filtered based on
several shape descriptors in order to remove dead cells and segmentation errors
(i.e., size, circularity, snake energy). Then, the filtered set of cell boundaries
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Figure 7.1: Schematic of the image analysis pipeline in the DynamiX project for
computing single-cell protein abundance and protein localization.

were used for statistical single cell analysis and feature extraction. In particular,
the protein abundance and localization were computed based on the amount
and spatial distribution of the fluorescence. Finally, a few sequences were man-
ually annotated in order to provide a cross validation set of features for the
automatic algorithm.

This analysis pipeline can record protein abundance and noise, cell size and
protein localization of the 40000 images (12 hours experiment) in less than a
day.

The WingX Project

The WingX project is also part of the SystemsX.ch consortium. The aim of this
project is to quantify the genetic program that governs the growth and shape
of the wing of the Drosophila fly. This organ is a model uniquely suited for a
systems biology study.

Advances in developmental genetics provide us today with the toolkit of organo-
genesis (e.g., morphogens, transcription factors). This toolkit will be used to
build the Drosophila wing, in a reproducible fashion, determining the size and
form. For that purpose, an interaction between the computational and the ex-
perimental stages of the project is crucial.

The goal is to provide a quantitative description of wing development at a mul-
tiscale systems level as determined by the interaction of processes at the molec-
ular, cellular, and tissue level.

We embedded the active contours exposed in Chapter [4 within an image analysis
tool specifically developed to automatically quantify morphological properties
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of the wing and gene expression information on fluorescent confocal images.
The parametric model of the snakes provides a convenient way to describe the
structural properties of the wing and offers the final user an intuitive mechanism
to edit the segmentation through manipulation of the control points of the snake
(see Figure [7.2). Here, the snake model presented in Chapter [4 was modified
by adding an internal cross-like structure to better fit the anatomy.

Evaluating the effect of a single mutation on the gene expression requires to
analyze around 30 wings in order to obtain statistically meaningful results. We
note that there are thousands of genes expressed in a biological system like the
Drosophila fly. So far, hundreds of wings have been analyzed.

Figure 7.2: Segmentation of the wing pouch structure of the Drosophila fly using
fluorescent confocal images of the gene expression Wg-Ptc-AB. The snake con-
tour is shown as a smooth curve, while the '+’ elements are the spline control
points connected by a control polygon.

Drosophila Fly Locomotion Study

The aim of this project is to understand how voluntary locomotion is orches-
trated by the brain. Addressing this fundamental question requires studying vol-
untary motion in an animal that can be experimentally manipulated to generate
and test hypotheses. In the project, the Drosophila fly is used as a model due
to its relatively simple nervous system and complex locomotor behaviour. It is
possible to activate, inhibit, and kill specific neurons of interest in the fly to dis-
sect their role in locomotor neural circuits. Furthermore, one can sequence and
manipulate the entire genome of the fly to see what role genes play in behavior.

In order to study locomotion in Drosophila, one must be able to quantify their
walking behaviors with high precision. This allows to measure the effects of
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experimental perturbations such as neuron activation or knockdown as well
as genetic manipulations on walking. Such experiments allow to test models
of how the fly can produce complicated and robust locomotor sequences (e.g.,
traversing cluttered environments, escaping from traps).

Currently the state-of-the-art for Drosophila behavioral image processing is Ctrax
(The Caltech Multiple Walking Fly Tracker), which can only determine the posi-
tion and orientation of the body. We incorporated the active contours exposed in
Chapter [4| within a new image analysis tool specifically developed for automati-
cally segmenting and tracking the bodies of the Drosophila flies as well as their
legs. The mechanism of modifying the snake curve through the manipulation
of control points was a key feature to design prior shapes adapted to the flies
(see Figure[7.3). Our tracking algorithms exposed in Chapter [6] are also being
introduced in order to consider several motion models.

€Y (b)

Figure 7.3: (a) Prior-shape model of the body of the Drosophila fly. (b) Seg-
mentation of the body of the Drosophila fly. The snake contours are shown as
smooth curves, while the '+’ elements are the spline control points connected by
a control polygon.

Estimation of Local Aortic Elastic Properties with MRI

The aim of this project was to use a non-invasive technique to measure elasticity
properties of the aorta. More precisely, the parameters of interest were the the
Pulse Wave Velocity (PWV) and the aortic compliance. These parameters are
considered as important determiners of heart load and clinically useful indices
of cardiovascular risk.
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For that purpose, we used 3D time-lapse sequences of flow-sensitive magnetic
resonance imaging (MRI). In these sequences we obtain two different kind of
measurements: the magnitude and the phase. The former provided us anatom-
ical information that can be used to segment the aorta, and the latter provided
us information concerning the blood flow through the imaged cross-section (see
Figure[7.4).

We used the active contours exposed in Chapter[4]to segment and track a cross-
section of the aorta. The ellipse-reproducing property of our snakes showed to
be very useful for reducing the number of parameters involved in the model,
increasing the performance of the segmentation and the tracking.

(a)

Figure 7.4: Segmentation of the cross-section of the aorta in a flow-sensitive
MRI. (a) Magnitude image with the contour of the snake overlying the ascending
aorta. (b) Phase image with the contour of the snake overlying the ascending
aorta.

Assessment of Chromosomal Size Variation in CHO Cells

The aim of this project was to analyze metaphase chromosome length in Chinese
hamster ovary (CHO) cells. CHO cells are widely used for the production of
recombinant proteins. Currently, the pharmaceutical industry relies on stable
CHO cell clones for therapeutic protein production. Most of the currently used
methods to analyze clonality and stability in recombinant cell lines only take
into consideration the cellular phenotype. However, few methods are available
to study clonality and genomic stability in recombinant cell populations.

We customized the active contours exposed in Chapter [4 within an image anal-
ysis tool to segment the chromosomes, sort them according to size, and extract
different length patterns. Again, the mechanism of modifying the snake curve
through the manipulation of control points was a key feature to provide biolo-
gists with an user-friendly and agile platform to work with. Moreover, the ex-
plicit expression of our active contours made possible to introduce prior-shapes
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and enforce topology. This is necessary when interaction of chromosomes occur
(e.g., chromosomes touching or even laying on top of each other).

The method was applied to parental and recombinant CHO cells. Metaphase
chromosome spreads were prepared from growth-arrested cells and visualized
with a confocal microscope after fluorescence staining. In studies of seven dif-
ferent CHO cell lines (20 metaphase spreads for each cell line), it was noticed
that the average chromosome number was not homogenous and each cell line
had a specific chromosomal length pattern. This pattern can be used to identify
the CHO cell lines and to assess the degree of homo- or heterogeneity in clonal
populations [[183].

Outlook for Future Research

The research presented here opens several interesting avenues for future inves-
tigations. Some of them are listed below.

— Interpolatory basis functions: The family of minimum-support basis func-
tions introduced in Chapter [3|focuses on computational efficiency and repro-
duction properties, while leaving the interpolation property aside. This is not
an issue when dealing with 2D curves due to the usage of control polygons.
However, the interaction feels less natural for the 3D snakes. We would like
to investigate the set of interpolatory and 4* smooth basis functions with
certain reproduction properties while maintaining a short support.

— Snakes with singularities: We can find in nature cells that are mostly smooth,
but present some sharp kinks. This can be handled in our current model
by stacking several control points at the place where kink is located. We
would like to investigate how the multiplicity of control points affects the
convergence of the optimization algorithm, and how this can be handled
efficiently.

— Prior shapes and atlases: In regular biomedical segmentation problems, the
shape of the target to segment is usually known up to some extend. We
would like to provide a library with several shapes that our snake can use as
reference models. The natural way to use the reference model would be by
the introduction of an energy function that penalizes deformations from the
reference shapes.

— Extend the supported snake topologies: We have limited ourselves to blob-
like objects in this thesis. Therefore, the 2D snake curves presented in Chap-
ter [4] are closed curves, and the 3D snake surfaces presented in Chapter
exhibit a sphere-like topology. We would like to account for other kind of
topological properties such as open curves in 2D, or tori in 3D.
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— Usage of GPUs: With the recent explosion of computation power provided
by GPUs, we think it would be interesting to move part of the computation
load to these kind of devices. Specially the part related to the user display.

— Application of the snakes to more projects in life-sciences: Our active con-
tours have shown a remarkable capability to adapt to many different biomed-
ical structures: endocardial heart walls, aorta cross sections, HeLa cell nuclei,
water droplets, spleens, murine brain cells, olfactory glomerulus, yeast cells,
and Drosophila wings and bodies. We believe that our active contours can
be still used in many more applications by designing customized the energy
functions.

— Moving on from on-line tracking: The current tracking algorithms used in
bioimaging and computer vision are based in earlier algorithms from the
radar community, where targets are tracked in real-time. This had led to
the bioimaging community to believe that real-time on-line tracking is the
only possibility. However, in biology, the acquisition and analysis stages take
place in different moments in time. Therefore, all the time-lapse sequences
of images are usually available at the time of the analysis. We would like to
investigate the implications of using the whole time-lapse sequence during
the tracking.
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