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Abstract

We define a Pixel Intensity Distribution Model (PIDM) to
study the discretization of direct reconstruction schemes in a
proper way. For the Filtered BackProjection (FBP) algorithm,
this leads to a derivation of the filter for a B-spline PIDM and
its discretization, a simple but exact implementation for this
class of functions, and a rule for the sampling ratio relating
pixel size to projection cell size according to the device
characteristics. Actual phantom reconstructions are presented
both for standard and spline FBP schemes. The degree of the B-
spline reconstruction is discussed in connection with the
angular sampling and the kind of detection task to be applied
on the image.

I. INTRODUCTION

The filtered backprojection (FBP) is a technique widely
used for tomographic reconstruction. In order to regularize the
Ramp filter, only low frequencies are kept in the algorithm
through the use of a so-called apodisation window. The
obtained reconstruction is then a band-limited approximation
of the original function. In this paper we will use the space of
B-spline functions to derive a new algorithm. In the second
section, we will present the derivation of the regularized Ramp
filter for the the standard band-limited approximation and for
Vo(IR2), the space of piecewise constant functions. Using this
latter space corresponds to assuming a constant Pixel Intensity
Distribution Model (PIDM), also called Haar system in the
literature. In section ITI, we will generalize this approach to the
class of B-spline PIDM with the use of spaces Vp(IR2)
composed by polynomial splines of degree n. We will discuss
in section IV the applications and limitations of both
approaches for the evaluation of detection tasks.

II. CONTINUOUS FBP AND DISCRETE
REPRESENTATIONS

In this section, we derive the main formulas for the FBP
reconstruction in S', and its application to the subspace of
bandlimited functions and the B-spline space of degree 0 (Haar
system). The proof of the Haar system reconstruction is
explained in more details in [1]. The differences between
classical bandlimited and spline reconstruction will be pointed
out. We will also derive the discrete filter for Vo.

A. Continuous Reconstructions
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The continuous FBP reconstruction of a function f(x,y) €
S’ (the space of tempered distributions) from its projections
p,(:,e) is well understood theorically [10]. This process can be
described by the following identity:
fx»=R*KR fxy) =R*K ps(1,6) ¢y
where the operators R*, K and R are defined as follows. The
projections pft,8) of f(x,y) (with t = x cos 6 - y sin 6) are
obtained by the Radon operator R :
R [f xy)]=pf(0.6)

pf(t,G) =ji+~f_“f(x,y) &t - xcos0 +ysin6) dxdy .

The operator K represents the filtering part of the algorithm
in which each projection is convolved with the inverse Fourier
transform of the infinite Ramp:

~ -1
K ps(t.6) = pr(t,6) = py(1,0) * F | [z]v]] -

The backprojection (BP) operator R" is the dual operator of R
and is defined by:

R* [pr60)=r e =1f praoas. @

These results apply for the reconstruction of functions of
the continuous variables x and y. What one is seeking in
practice is a discrete implementation of this algorithm. For
this purpose, we consider the standard approach to the
discretization of a function f{x,y) which consists of applying a
prefilter to the image and sampling thereafter

fep = bery)* fey [t . ®

The sampling kemel b(x,y) is an anti-aliasing filter such as,
for example, the idcal lowpass filter dictated by Shannon
sampling thcorem.

We will now start from this latter equation and use the
continuous FBP reconstruction scheme (1) in order to derive
the discrete version of this algorithm. It is not difficult to
show that we have the following identity for the non-sampled
version of (5) :

b**f =R*K (s *pr). ©®
In other words, the 2D convolution of functions b and f is the
reconstruction of the 1D convolution of their projections py
and pg. After sampling this last equation, we obtain the
general form of the discrete reconstruction algorithm

}k,l = R‘K (bb(”e)* pf(lye)) Ix-k .

y=1

@

©)]

Q)
Further, we can combine the infinite ramp and the projection
of the sampling kernel in a single filter, which yields

Jii= R* (k@O* p.0) |s=s ®
i
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where the filter & (¢,6) is given by:
-1
k(.8)=F (z|v] Pp(v.0) ©

and Py, is the Fourier transform of pp. Note that k(t,0) is a
function of the angle @ in this formulation.

Eq. (9) summarizes the continuous-discrete FBP algorithm for
all PIDM representations. We will now consider some
examples. First, we will show that this algorithm includes the
standard procedure as a particular case. We will then apply it to
the case of polynomial splines of degree zero (piecewise
constant functions).

The common adopted solution for FBP combines a
lowpass window (called apodisation window A(V)) with the
infinite ramp filter, for example the Ram-Laks, Shepp-Logan,
Butterworth, Haming filters. The standard filter in (9) reduces
to:

k() = F'll(nlle(v)). (10)

This is in effect equivalent to choosing a particular sampling
kemnel in (5). The link with our formalism is provided by the
formula

by =H (AW, (11)

where H is the Hankel transform (2D Fourier transform for
rotational symetric functions). Instead of choosing a rotatio-
nally symetric function for the sampling kernel, we will now
present the simplest separable case : the Haar system.

B. Reconstruction in Vj (IR 2)

Splines of degree zero are piecewise constant
functions. They can be represented by the following formula

folxy) —2 Zfo(kI)SoA(x k.y - l) 12)
where the basis functions, which define our PIDM, are
50,4(%,Y) = 504(%) . 504 0), (13)
These are simply obtained from the product of rectangular
pulses of support A (the pixel size, in our case) along the x
and y directions:

if |z|< a2
12if |z|=4/2 -

if |z|> an2
The space of all L functions of the form (12) is denoted by
Vo (IR 2). It has been shown [5] that the optimal prefilter for
the projection of a function f{x,y) in Vg (IR2) is also given by
Eq. (13). Hence, Eq. (8) with b(x,y)=sp,a(x,y) provides us
with an algorithm for determining the coefficients fy(k,/) in
(12) that best represent a function f(x,y) in the least square
sense; in other words, fo(x,y) is the least squares
approximation of f(x.y).

By using our previous results (Egs (7) and (13)), we obtain

the reconstruction algorithm:

Sqa(@) = (14)

folkh) =R*K (wo1.6) * pf(1.0)) = s
where
WO(I’Q = R SO.A(X! Yy ) ’ (16)

The corresponding filter in the reconstruction algorithm (8) is:

ko8 =F (x|vIWo (v,0) an

where Wy(v,0) is the Fourier transform of wy(¢,6).
Computation of the Radon transform of the 2D Haar system
basis defined in Eq. (13), leads to a generic trapezoidal function
wo(t,0) depending on the angle 8 [2]. Degenerate cases are a
square for 8=0 and a triangle for 6=r/4 . Another elegant way
to express this function uses the Haar basis :
wo(t,0) = s0acat () * 50440 () (18)
since the Fourier transform of the trapezoidal function is a
product of 2 sinc functions:

2
Wo(v,0) =4 sinc (nvAcos6) sinc (nvAsin6). 19
Therefore, the Fourier transform of kg(t,0) is:
2
Ko(v,6) =4 n|v| sinc (mvAcos6) sinc (nvAsiné). (20)

Finally, the explicit formula for k¢(¢,6) is obtained by taking
the inverse Fourier transform (for 10 and 620) which gives :

2 A2 ,
1 t - T(l + 5in 20)

ko(t,0) =
o6 = e

@n
2 A2
t -—4—(1 - 5in 26)

C. Differences between standard and Haar FBP

Clearly, the main difference between the standard and
Vo (IR 2y FBP algorithms is in the design of the filter k(,6) .
Most notably, the standard filter kg(t) is the same for all
projections. In the spline case, it depends on the angle 6. This
difference will be especially noticeable for projection
sampling.

1. Angular sampling. When the FBP scheme is
implemented, only a finite number of projections are available.
The Haar filter will take into account the respective position of
the projection with respect to the pixel grid orientation. The
underlying discrete image representation is not isotropic: this
filter is then particularly adapted to the pixel representation
because it depends on the size A.

2. Linear sampling. The standard FBP is generally
implemented with a cell size in the projections T equals to the
pixel size A. This bandlimited reconstruction may exhibit
aliasing [2],[3]. To reduce these artifacts, we have shown that
an oversampling ratio p between pixel size and projection cell
size is needed :

A
P==. (22)
For the Haar filter defined in (21), the oversampling ratio p is
also nceded to ensure having enough knots in wy(t,0) tc
perform the convolution and not reduce this kernel to a delta
function as it is the case for p = 1.

D. Discrete filter values for V (IR ?)

In practice, the derivation of the discrete filter values from
(23) needs some special care because of potential singularities
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at n=0 and 6=n/4. Using the oversampling ratio p, the
projection sampling is

A
t=ntT=n—
Py 23)
and (21) is rewritten, for n#0 and 60, as
2

)-l-sin26

e
In
2
(&) -1+sin20
p

For n=0 and/or 8=0, the results are derived in [1] and
summerized here. To avoid singularities, we have introduced
the additional condition for n=p/2;

A 1
ko(n =, 6) =
oln 0 7 sin 20

24

ko (‘21,0) =0, 25)
This leads to the formulas

2
ko(’l%:o):—_zL : 26)

2 2

nén -p)

when n#0 and n#p/2. The value at the origin depends directly
onp:

k(,(o,0)=”iifp= 1, @7
k0(0,0) = ;3— if p=2p, p integer
For n=0, the central value of the regularized filter is :
sinc @2 V1~ sin 26)
ko0 =—2_in 2 28)
% sin sinc (1'23 Y1 + sin 26)

which is in agreement with (21) when goes to zero. This last
formula ensures both the numerical stability of the filter
for@=n/4 and the zero gain of the filter at v=0 [1].

p=2
3 ko(na/2,0)
kg(na/2,15)
2k ko(n4/2,30)
ko(nA/2,45)
1
0 .\/ \/A,.—a
-1/n v v v . v -
~24 -A 0 A 24

Figure 1-a: Graphs of kg(nA/2,6)
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ko(nA/4,45)
ko(nA/430) -—
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-4/n . . . , . -
—-A -A/2 0 A/2 A

Figure 1-b: Graphs of kp(nA/4,6)

Figure 1 shows the impulse response of this filter for p=2

and 4 and for some values of 8 which examplify the role of the
oversampling ratio and the angular dependance.
For p =2 (Figure 1-a), the differences in the filter values are
too small to be perceived on the graph which looks very much
like the Shepp and Logan Ramp filter, At the opposite, for
p=4 (Figure 1-b), we clearly see the angular dependances for
each value of 6. Especially for 0, we see the regularization
effect of Eq. (28) whereas for 8= 15 degrees, the central value
of the filter decreases.

L. V,(IR?) PIDM

A. Vi (IR ?) basis functions and implementation

To generalize our approach to splines of higher degree, we
will use the results of [4],[5] . Equation (5) may be used to
represent the prefiltering and sampling operations of the Figure
2. This block diagram describes a computational solution for
obtaining the projection of the function f(x,y) onto Vi (IR2)
(the space of polynomial splines of degree n). One notable
difference is that the sampled coefficients in this block diagram
are now different from the sampled value of the spline image;
ie, Crl#f(kl), n>0.

fxy) sampling C | Folxy)

.

prefilter postfilter

Figure 2: Construction of fu(x)y) from f(x.y)

In the dual spline representation, the prefilter is the 2D B-
spline of degree n which can be defined by the classical
recurrence relationship:

Sna (X,}’) =Sa1,4 (x,}’) * 50,4 (x,y) ’ (29)
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Note that this sampling function is not confined into the
pixel, but extended to its neighbours : it has a support length
(n+1)A. The reconstruction of the continuous function is
obtained by

frt)=Y ¥ CZ,,E’,.,A (x-ky-1).

R (30)
The basis functions are obtained from the dual spline (D-

spline) so,,‘ Alx,y) defined by:
400 oo 1
$n,ax0) =3 T (s2ni1d kil ) suaCx-ky-1), (D
k =00} =00

where (.)-1 denotes the discrete convolution inverse. For more
details, see [5].

By applying the results of Section 2.B, we get the following
reconstruction algorithm for the D-spline coefficients in (30):

Cra =R*(P 0O o O)* w\.1 (.0))

x=k (32)
y=1

with the same recurrent relationship for the kernel wj, than for
the basis function itself:

Wa (I’Q = Wea (&Q *wo (I’g) . (33)
By using an additional postfiltering step, we can obtain the
sampled image values f,(k,!). This postfilter step, necessary
for n>0, is decomposed in practice into a product of 2 1D
functions applied in x and y; see [4,5] for the definition of the
discrete postfilter and its implementation in terms of recursive
filtering.

If we omit this last step and choose to display the coefficients
image Cy; directly, we will end up with a smoothed version
of the reconstructed image. This property can be of interest for
reducing noise SPECT reconstructions [6].

p(,6)
* ’6("9)

* wp (1.0) ~

~ * 0 ... ~

— = "— p Pn(1,6)

BP
n
C(l)(,l C}(,l ..... Ck 1
' (postfilter) * postfilter {
fo(xy) fiixy) ... fn(x3)

Figure 3 : Reconstruction of fn(x,y) from p(t,6)

Using Egs. (31)-(33) an efficient implementation of the
FBP, which gives each image (for i=0,1...n) corresponding to
the degree of spline, can be realized and is summarized in
Figure 3.

C.r Discrete and continuous versions of wp (t,6)

The previous figure is valid only for the continuous case:
even if the image has been sampled it is not the case of
projections and kernel. The discretization of the kernel wy (1,6)
convolved with itself does not give exactly the discrete kernel
wj (1,6). More generally, we have :
Wall.O)| o =Wo(m,8)* ....*wo(m,0).

n times
The discretized version of this filter can be implemented using
a cascade of moving average filters followed by an additional
small correction kernel. The corresponding algorithm is
described in details in [4].

(34

D. Example of B-spline reconstruction

Many experiments have already been done to check the
properties of this algorithm. Discrete reconstructions exhibit
good robustness to translational shift [2]. They do not have the
2D aliasing property inherent to the pixel sampling, and tend
preserve edges better than the standard algorithm even in a
noisy context [7]. For a SPECT device, the oversampling ratio
p was defined by the characteristics of the y-camera :
uncertainty of the position of the center of rotation and blur.
The acquired signal is bandlimited and there is no reason to
sample at a rate p > 4. Since p = 4 is also the low bound for
the filtering step, this value has been retained for practical
implementation.

Shepp-Logan filter B-spline 0O filter

B-spline 1 filter

B-spline 3 filter

Figure 4 : Reconstruction of a Jaszczack phaniom

Reconstructions of a Jazszcack phantom for the standard FBP
with a Shepp-Logan filter and linear interpolation for the BP,
and the spline reconstructions for n=0,1,2 and 3 have been
done. For these experiments, we chose not to apply the
postlilter. This process is in fact equivalent to lowpass filter
the reconstructed image, which has the advantage of reducing
the noise. The smoothing effect is more pronounced for higher

2066



order splines and the representation of degree 2-3 is very close
to the standard one. If one applies this last step (not shown
here), the result will looks much more like the 0-1 degree B-
spline images. More experiments and especially more specific
detection tasks are to be defined fore an objective evaluation.
We also need to address practical problems such as the
distribution of counts per projection and the number of
projection which give the "best" estimate of the object for a
defined PIDM (see [6] for more details about the SPECT
implementation).

IV. DISCUSSION

The PIDM has the advantage of linking the continuous

function with a discrete representation.
The use of spline PIDM suppresses 2D aliasing problems in
the reconstruction. This is explained (using the oversampling
of the projections) by the use of an optimal prefilter (the
trapezoidal function wp) on the projections before the
sampling step in the reconstruction plane.

The spline FBP implementation does not suppress the
angular artifacts but it acts differently than the standard FBP. It
smears the singularity of the pixel edges along an angular
sector, according to the shape of the discrete function wQ.
Since this stability comes from the shape of the pixel, the
connection with the Katz theory [8] for the angular sampling
is direct : the numbers of pixels and the pixel vertices induce
how to ebtain the number of angles and their respective
positions using a Farey series, in order to keep the maximum
amount of information in the discrete projections. Another
consequence is that, by modifying the shape of the pixel, the
kernel behavior changes. The more the pixel shape tends to the
disk, the higher the stability (the singularity is smeared all
around the pixel). In our case, the use of hexagonal pixels
would improve the stability of the 0-order reconstruction. For
higher order, this singularity tends to disappear, as the angular
variations.

The Vg reconstruction is very different in terms of spatial-
frequency content than the frequency-limited based reconstruc-
tion; its uses all the frequency information for a limited spatial
representation. Increasing the order of spline basis generate
different spectral contents for the representation of a pixel.
Based on the asymptotic results in [5] and [9], it can be shown
that the present procedure is equivalent to performing a
bandlimited reconstruction as n tends to infinity. In the
reconstruction case, this means that all the different solutions
can be generated from the discrete filter derived in 11-B.

The approach described here is also well suited for
performing spline-based magnifications and reductions
operations that can be described in terms of filters [41,[5]. In
order to perform detection tasks onto a magnified part of a
reconstruction, the consistency of the whole process, from the
acquisition to the detection task, will be an important factor.
The differences in terms of spatial-spectral content in these
reconstructions will be analysed using this framework.
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