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Realistic Analytical Phantoms for Parallel
Magnetic Resonance Imaging
M. Guerquin-Kern*, L. Lejeune, K. P. Pruessmann, and M. Unser

Abstract—The quantitative validation of reconstruction algo-
rithms requires reliable data. Rasterized simulations are popular
but they are tainted by an aliasing component that impacts the
assessment of the performance of reconstruction. We introduce
analytical simulation tools that are suited to parallel magnetic
resonance imaging and allow one to build realistic phantoms.
The proposed phantoms are composed of ellipses and regions
with piecewise-polynomial boundaries, including spline contours,
Bézier contours, and polygons. In addition, they take the channel
sensitivity into account, for which we investigate two possible
models. Our analytical formulations provide well-defined data
in both the spatial and k-space domains. Our main contribution
is the closed-form determination of the Fourier transforms that
are involved. Experiments validate the proposed implementation.
In a typical parallel magnetic resonance imaging reconstruction
experiment, we quantify the bias in the overly optimistic results
obtained with rasterized simulations—the inverse-crime situation.
We provide a package that implements the different simulations
and provide tools to guide the design of realistic phantoms.

Index Terms—Fourier analytical simulation, inverse crime,
magnetic resonance imaging (MRI), Shepp–Logan.

I. INTRODUCTION

A N ACTIVE area of research in magnetic resonance
imaging (MRI) is the development of reconstruction

algorithms. In particular, the inverse-problem approach is get-
ting popular [2], where one relies on an accurate model of the
measurement process and possibly on additional information
about the object being imaged.
In general, the development of any reconstruction approach

requires that it be evaluated and compared to others. There are
several reasons to rely on simulations in a first step:
• saving the costs inherent to getting real scanner data;
• testing the suitability of the implemented discrete forward
model;
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• quantitatively evaluating the performance of the recon-
struction software;

• providing reliable ground-truth data to compare with.
However, for the results to be meaningful, simulations must be
accomplished carefully. For instance, the inverse-crime situa-
tion, where exactly the same discrete model is used for simu-
lation and reconstruction, leads to artificially good results. In
the context of MRI, many developers of algorithms base their
simulations on rasterized images. One should just be aware that
such testing does not account for the full continuous-domain re-
ality, because it neglects the aliasing that is inherent to spatial
discretization. More realistic simulations are required to remove
this bias and to ensure that the methods will perform adequately
in practice.
A method to obtain resolution-independent simulations is to

formulate the simulation analytically in the continuous domain.
This approach goes back to Shepp and Logan [3], who intro-
duced an ellipse-based phantom (SL) for X-ray tomography.
For MRI, several analytical phantoms have been proposed. The
first works, based on the SL phantom, are by Smith et al. [4],
followed by Van de Walle et al. [5]. More recently, Koay et
al. [6] worked out the MR contribution of an ellipsoid for the
3-D extension of the SL phantom. Gach et al. [7] adapted these
elliptical phantoms specifically for MRI, introducing realistic
physical parameters as well as and relaxation times. The
family of analytical phantoms is extended by two recent works
by Greengard and Stucchio [8] that use Gaussian functions, and
Ngo et al. [9] that introduce 3-D polyhedra.
The attractiveness of currently known analytical phantoms

is limited for two reasons. First, the vast majority of currently
available phantoms (except [9]) use ellipses as basic elements.
While such simple shapes have the advantage of mathematical
tractability, they do not lend themselves well to the generation of
images with realistic anatomical features. Secondly, to the best
of our knowledge, no analytical phantom has been proposed that
would take into account MRI receiving-coil sensitivities in the
context of the simulation of parallel MRI experiments [10].
In this work, we extend the class of available analytical phan-

toms by introducing regions parameterized by spline contours
which are general enough to reproduce polygons and Bézier
contours. Our shapes are well suited for the description of real-
istic anatomical regions [11]. To accurately simulate image for-
mation in parallel MRI, we also make use of analytical models
for the coil sensitivity maps. Specifically, we investigate the use
of two classes of basis functions—polynomials [10] and com-
plex sinusoids—which both have the ability to generate maps
that are physically realistic. These parametric forms are used
to derive closed-form solutions for the MRI coil data. We have
implemented and tested both models. Our conclusion is that the
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TABLE I
GLOSSARY

new sinusoidal one is preferable because it is better conditioned
and robust to roundoff errors, while offering of the modeling
flexibility that is required. The polynomial model works well
with ellipses and polygons, but tends to display numerical insta-
bilities with Bézier contours when the order becomes too high.
Thisdocument isorganizedasfollows.InSectionII,wepresent

the different models considered for the parallel MRI measure-
ment process, the analytical phantom, and the coil sensitivities.
We motivate and compare the polynomial and the proposed si-
nusoidal models. In Section III, we propose the main theoretical
elements that make the analytical MRI simulation possible, de-
ferring the more technical considerations until the Appendix. Fi-
nally, we present in Section IV the experiments that validate our
implementation of the theoretical tools and an application that
quantifies the bias of rasterized simulations on linear and non-
linear reconstructions, in a typical parallel MRI setup.

II. MODELING

In this section, we present the MRI measurement model and
building blocks that are used to define our phantom. The main
notations adopted are summarized in Table I.

A. Parallel MRI

Weuse thewell-established linearmodel for parallelMRI that
relates the object to the k-space signal observed by each

receiving coil, via the Fourier integral

(1)

where accounts for the sensitivity map of the th
receiving channel. The sensitivity map is defined as

, where, by the principle of reci-
procity, corresponds to the
magnetic field generated at point by a unit-value steady
current in the coil. The Biot–Savart law relates this field to the
coil geometry through the relation

(2)

B. Analytical Phantom

Wemathematically define the phantom as a simple function,
involving regions of constant intensity

(3)

The term region refers to a connected and bounded set. The
symbol denotes the characteristic function of a region .
Such a phantom has a limited spatial support that
we call a region of interest (ROI).
This model allows us to render realistic phantoms of two

kinds
• piecewise-constant phantoms that mimic segmented data
with sharp contours (e.g., the SL brain phantom);

• textured phantom via a triangular-mesh approach.
We investigate the first approach in this paper. The contours

that are considered are ellipses, polygons, and quadratic-spline
curves. We show in Fig. 1 three such phantoms that we use in
our experiments.

C. Sensitivity Models

For computations, we need to parameterize the complex sen-
sitivity maps. It is commonly admitted that they are smooth
and slowly-varying spatially. It is therefore possible to gen-
erate physically-realistic sensitivity maps using a reasonably
small number of lowpass basis functions. Here, we discuss two
models that are well-suited for this task. They both relate lin-
early the parameters to the complex sensitivity values. More-
over, their corresponding MRI models involve the Fourier inte-
grals of monomials over the regions of the phantom.
Definition II-1: For and a region of

(4)

Here, we adopted the multi-index notation defined in
Table I.
1) Polynomial Sensitivity: This model, first proposed in [10]

to represent the local behavior of the sensitivity, assumes that
the coil sensitivity is represented by a polynomial of degree
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Fig. 1. Phantoms parameterized by elliptical and Bézier-defined regions. From left to right: rectangle phantom used for validation, the Shepp–Logan phantom,
and a proposed brain phantom. The PDF and SVG versions of these phantoms are available online at http://bigwww.epfl.ch/algorithms/mriphantom/.

Fig. 2. Grid of the angular frequencies involved in the sinusoidal model.

inside the ROI as

(5)

As the degree increases, the model will reproduce sharper
transitions. The number of polynomial coefficients is

.
The corresponding MR response is given by

(6)

2) Sinusoidal Sensitivity: Alternatively, the coil sensitivity
is defined by the linear combination of complex exponentials

(7)

We propose to constrain the problem to the angular frequencies
on a Cartesian grid with spacings that correspond to twice the

considered field-of-view (FOV). The low-frequency properties
are ensured by only considering the angular frequencies
around the origin (see Fig. 2).
Similarly to the effect of the polynomial degree , an in-

crease in the parameter allows one to reproduce sharper tran-
sitions. The number of coefficients is given by . The
corresponding MR response is given by

(8)

3) Comparison: In order to evaluate and compare the ability
of the two models to describe realistic sensitivity maps, we con-
sidered a 256 256 rasterization of the SL phantom and the

27 648 pixels of its ROI. Using Biot–Savart’s law (2), we sim-
ulated the complex sensitivity maps of a 24-channel circular
head coil array ( cm, distance to cm,

cm) distributed around the phantom. Then, the pa-
rameters of the two models where selected to fit the maps. In
Fig. 3, the average fitting properties of the two models are pre-
sented as a function of the number of parameters.
We observe that the fitting accuracy of both models rapidly

increases with the number of parameters, with a sensible ad-
vantage for the sinusoidal model. The downside is an increased
condition number for the fitting operations. With respect to that
criterion, the sinusoidal model behaves also better. The max-
imal spatial errors are comparable for both models.

III. ANALYTICAL MRI MEASUREMENTS

A. Overview of Analytical Fourier Computations

In this section, we present the theoretical tools that are nec-
essary to derive the analytical expression of the MRI measure-
ments. Proofs and additional calculation details are provided in
the Appendix.
The models presented in the previous section allow us to

decompose the analytical MRI measurements into Fourier
integrals of the sensitivity over the regions that compose the
phantom. Depending on the type of region or sensitivity model,
we propose tailored methods to decompose the analytical
response as a sum of special functions that can be computed
accurately and rapidly. In Fig. 4, we present the roadmap of
these decompositions that are defined and worked out in the
sequel.

B. Elliptical Regions

Let us consider an elliptical region parameterized by its
center , the angle formed between its semimajor axis and
the abscissa, and its semiminor axis . The linear transforma-
tion

(9)

with and the rotation matrix of angle ,
maps into a unit disk, that is to say, . The
Fourier transform of the unit disk involves the functions

(10)
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Fig. 3. Fitting properties of the two sensitivity models as a function of the number of parameters. From left to right: approximation SER in dB, maximal absolute
error, and condition number of the fitting matrix.

Fig. 4. Roadmap of analytical Fourier computations.

where denotes the th-order Bessel function of the first kind
[12].
Using the sinusoidal sensitivity model, the integral can be

worked out [5] as

(11)

where represents the absolute value of the determinant of
matrix .
When considering the polynomial sensitivity model, we sug-

gest to first consider the change of variables (9), rather than com-
puting directly. We write that

(12)
The interesting point is that the partial derivatives
can be decomposed recursively as a sum of thanks to the
property

(13)

The coefficients of the polynomial in terms of the new coordi-
nates (9) are required to satisfy

(14)

They can be computed by inverting the matrix that relates the
coefficients to the sensitivity values at randomly

chosen points in terms of the new coordinates.
TheMR contribution of such an elliptical contour is presented

in Table II.

C. Piecewise-Quadratic Contours

In this section, we first provide relations for the computation
of the -dimensional Fourier transform of a monomial delimited
by a connected subset of . With methods that are similar to
the ones used in [13], we show how to decompose the -dimen-
sional Fourier integral into a sum of integrals over the contour
. These summed integrals are of reduced dimensionality. In

a second step, we show how quadratic-spline curves involve a
family of 1-D integrals.
1) Fourier Transform of Monomials Over a Connected Set:

We show that the surface integral in (4) can be decomposed
into a sum of contour integrals.
Definition III-1: We define

(15)

(16)

where stands for the outward-pointing unit normal of
boundary element . Note that is not continuous at the
origin .
Theorem III-2: For and

(17)

and

(18)

The consequence of Theorem III-2 is that the -dimensional
integral can be decomposed into a sum of -dimen-
sional integrals. By recursion, the can be computed via 1-D
integrals. The proof is provided in Appendix A.
Note that the case , which corresponds to the calcula-

tion of the moments of the region, has been worked out first by
Jacob et al. in [14] for parametric 2-D spline contours.
2) Parameterization of a Contour in 2-D: The region is

defined by its boundary, the contour . In 2-D, a convenient
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TABLE II
CLOSED-FORM MR CONTRIBUTION OF ELLIPTICAL AND QUADRATIC BéZIER REGIONS FOR THE PROPOSED SENSITIVITY MODELS

Fig. 5. Example of a quadratic-spline-defined region with control
points. The boundary is described counter-clockwise and the normal vector
is outward-pointing. The contour is represented piecewise by quadratic Bézier
curves.

way to parameterize the contour is by the use of a B-spline gen-
erating function such that

(19)

The considered contour is closed. Consequently, the vector-
valued function must be periodic. In addition, the number
of coefficients that characterize the curve must be finite. The
simplest way to satisfy these constraints is to impose that the
sequence of coefficients be -periodic. This enforces the
-periodicity of .
If we note the -periodized version of , the contour is

parameterized either globally as

(20)

or piecewise, with , and
, as

(21)

3) Decomposition of the Contour Integrals: We introduce
the notation for the vector perpendicular to with same norm
and pointing outwards the region at the considered point (see
Fig. 5). We write . The piecewise representa-
tion of the contour (21) can be exploited to decompose the con-
tour integral of interest, for instance (15) or (16), which leads to

(22)

4) Quadratic Bézier Curves: In the sequel, we focus on con-
tours represented by linear and quadratic B-splines. The former
describe polygons while the latter give a piecewise description

of quadratic Bézier curves. Three equivalent piecewise repre-
sentations can be useful and are given in Table III with their
relationships.
Definition III-3:

(23)

Proposition III-4: For and a contour pa-
rameterized piecewise by , with

and , we have that

(24)

while

(25)

where, with the notation , the symbol
stands for

(26)

and stands for

(27)
The values follow a three-term recurrence relation

[15]. More details on their numerical computation are given in
Appendix B.
Note that the piecewise parameterization of the contour of a

polygon corresponds to the particular case of a quadratic param-
eterization with and . Such simpler
polygonal models with homogeneous sensitivities have been
considered in prior work [8, Prop. 3.2] using a similar formula-
tion.

IV. EXPERIMENTS

A. Implementation Details

Our implementation uses Matlab 7.12 (Mathworks, Natick,
MA). The experiments run on a 64-bit 8-core computer, 8 GB
RAM, Mac OS X 10.6.7.
We implemented the analytical computations as described by

the scheme in Fig. 4, with double float precision. For efficient
computations of the error function of a complex variable, we
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TABLE III
PIECEWISE REPRESENTATIONS OF QUADRATIC-B-SPLINE CONTOURS

coded the critical parts of in C++/MEX, with POSIX
multithreading, following Marcel Leutenegger’s recommen-
dations.1 The code implementing Theorem III-2 utilizes Matt
Fig’s .2 The rasterization of spline-defined regions,
which is performed without approximation, partly relies on
Bruno Luong’s fast MEX implementation of .3

Our package also includes graphical tools to design the an-
alytical phantoms. For purposes of adequate visualization,
export to the popular vector-graphics formats SVG 1.1 and
PDF (via the PGF/Tikz LATEX package) is supported. The
package is distributed4 in order to provide sensitivity fitting,
phantom–design interface, analytical simulation tools, and to
allow replication of the experiments of this section.
Unlike the sinusoidal model which is very robust to numer-

ical errors, our current implementation of the three-term recur-
rence relation (see Appendix B) leads to instabilities when using
the polynomial model. The theoretical relation

is sometimes violated for orders and large
values of the first argument. This prevented us to present valid
simulations of piecewise quadratic contours combined with a
polynomial sensitivity. Given the comparison of the two models
in Section II-C3, we considered the sinusoidal model with pa-
rameter , that is in Fig. 3, which lead to accu-
rate representations of the physical sensitivities and numerically
tractable inversions.
As an alternative to our analytical method, we consider the

traditional simulation procedure that consists in 1) sampling the
phantom with a grid of a given size and 2) resampling the DFT
of this discrete image according to the desired k-space trajec-
tory. We call this procedure a rasterized simulation. It is ex-
pected to be consistent with our analytical method only when
considering an infinitely dense sampling.
For reconstructions, we consider an optimization problem of

the form

(28)

where represents an image, is the reconstructed one, is
the concatenated scanner data vector, is the encoding matrix,
and is a regularization function. With receiving channels
and k-space measurements at positions , the
MRI encoding matrix is formed as

(29)

1Available online at https://documents.epfl.ch/users/l/le/leuteneg/www/
2Available at http://www.mathworks.com/matlabcentral/fileexchange/

11462-npermutek/
3Available at http://www.mathworks.com/matlabcentral/fileexchange/

27840-2d-polygon-interior-detection/
4Available online at http://bigwww.epfl.ch/algorithms/mriphantom/

TABLE IV
ERRORS OF OUR ANALYTICAL SIMULATIONS FOR THE RECTANGLE

with representing the identity matrix, the symbol
standing for the Kronecker product, and being the th coil
sensitivity map vector in the same way as . The encoding ma-
trix corresponds to the same MRI scan with a single homo-
geneous receiving coil and is defined as

(30)

There, are vectors such that, for a pixel of coordinates ,
.

We used two types of regularizations in our experiments.
• corresponds to a Tikhonov regularization,
which leads to linear reconstructions that we implemented
with the conjugate-gradient method.

• is the isotropic total-variation pseudo-
norm, which leads to a nonlinear reconstruction problem.
This reconstruction scheme is often used in compressed-
sensing research and is particularly suited for dealing with
piecewise-constant images such as our phantoms. We im-
plemented it using the iteratively reweighted least-squares
algorithm, also known as the additive form of the half-
quadratic minimization [16], [17].

B. Validation of the Implementation

1) Simple Example With Homogeneous Sensitivity: As first
validation, we consider the simple phantom composed of a rect-
angular region that is represented in Fig. 1. Under a proper
change of variables, it yields a square and its Fourier transform
is given by a product of sinc functions. This phantom is com-
posed of a polygon and consequently falls in the category of the
spline-defined contours. We test the accuracy of our proposed
simulation method and of the rasterized approach against the
closed-form solution. To do so, we consider the MR response
associated with a homogeneous receiving coil sensitivity and
a 256 256 Cartesian k-space sampling. The simulation errors
are reported in Tables IV and V.
As expected, the error of rasterized simulations decreases

when the sampling density increases. Meanwhile, the accuracy
of our analytical implementation is as good as the machine

precision would allow. Thus, we conclude that
we can indistinctly use the closed-form ground truth or our
proposed analytical model in the conditions of Section IV-BI.
2) Validation With Nonhomogeneous Sensitivity: We now

use our analytical phantom as a gold standard to evaluate the ac-
curacy the measurements obtained from rasterized simulations.
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TABLE V
ERRORS OF THE RASTERIZED SIMULATIONS FOR THE RECTANGLE PHANTOM

TABLE VI
ERRORS OF THE RASTERIZED SIMULATIONS FOR THE BRAIN AND SL PHANTOMS VERSUS OUR ANALYTICAL SIMULATIONS

We consider the SL and brain phantoms. The single sensitivity
map is computed using Biot–Savart’s law and is approximated
on the support of each phantom with the sinusoidal model. The
k-space is on a 128 128 Cartesian grid. Errors are reported in
Table VI.
We observe that the errors decrease with the same trend as in

the rectangle case, which strongly suggests that our gold stan-
dard is accurate. Meanwhile, for a given sampling density, the
errors occurring with the SL phantom are consistently larger
than the ones corresponding to the brain phantom. This is ex-
plained by the fact that the SL phantom presents edge transitions
of larger intensity.

C. Applications

1) Investigation of Aliasing Artifacts: Let us consider the
function which depends on the spatial sam-
pling step matrix . According to (1), the analytical MR data
are given by .
When the benefits of an analytical model are forsaken, the

MRI data are generated from a rasterized version of the phantom
and the sensitivity, using the (nonnecessarily uniform) discrete
Fourier transform (DFT)

(31)

with and

(32)

The right-hand side of (32) can be worked out using Poisson’s
summation formula. The terms with represent the
aliasing that occurs with rasterized simulations. Due to the
intrinsically discontinuous nature of the phantom , the
Fourier transform decreases slowly, leading to significant
aliasing artifacts. However, as the sampling density increases

, the impact of aliasing is reduced, as we saw in
Section IV-B.
Let us define an ideal anti-aliasing filter in the Fourier do-

main as

if
otherwise.

(33)

For normalized frequencies such that , the ana-
lytical simulation (unaliased) is characterized as the DFT of the
samples of the low pass-filtered continuous signal

(34)

where represents the spatial continuous convolution of
and .
When using a full Cartesian k-space sampling, the classical

approach to reconstruction is to perform an inverse DFT. In this
case, the samples of the signal will be perfectly recovered out
of the rasterized simulation (32) which is not desired because it
conceals the existence of the Gibbs phenomenon due to the an-
tialiasing filter (see, for instance, [18]). By contrast, the data pro-
videdbyouranalyticalmodel lead toafairer reconstructionwhere
theGibbsphenomenonappears.This effect is illustrated inFig. 6.
Counterintuitively, the reconstructions out of rasterized sim-

ulations lead to aliasing effects that have a positive impact on vi-
sual quality. This situation, which occurs when the same model
is used for both simulation and reconstruction, is sometimes
referred to as “inverse crime.” It arises because of the artifi-
cially imposed consistency between the computational forward
models used for simulation and reconstruction. In such an in-
verse-crime situation, the continuous nature of the underlying
physical model is not taken into account.
2) Impact of Rasterized Simulations on Reconstruction: We

consider a plausible pMRI setup. It involves an array of eight re-
ceiver coils that are uniformly distributed around the phantom.
The corresponding sensitivity maps are computed according to
Biot–Savart’s law. Spiral and EPI k-space trajectories are con-
sidered, both supporting a 256 256 imagewith reduction factor

. The simulated raw data are generated using our analyt-
ical method as well as 256 256 and 512 512 rasterized sim-
ulations (see Section IV-C1). The same realization of complex
Gaussiannoise is added to the simulateddatawithdifferent inten-
sities, according to three scenarios: very low noise (40 dB SNR),
normal data (30 dB SNR), and very noisy data (20 dB SNR). Re-
constructions are performedusingquadratic (Tikhonov linear so-
lution)andTVregularizations.Thereconstructionalgorithmsuse
the same forward model, in the form of the same encoding ma-
trix . The experiments only differ in terms of the input data. The
regularization parameter is tuned to optimize the signal-to-error
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Fig. 6. 64 64 SL full Cartesian sampling reconstructions. From left to right: analytical simulation, rasterized “inverse crime” simulation, and corresponding
line profiles.

Fig. 7. Reconstructed brain phantoms and error maps for the spiral SENSE experiment.

ratio (SER)with respect to the ground-truth phantom (256 256
rasterization of the phantom). We report our results in Table VII
for the spiral trajectory and inTableVIII for theEPI experiments.
Reconstructed images are shown in Figs. 7 and 8, together with
their error maps, in order to illustrate the impact of the inverse-
crime situation (the 256 256 rasterized simulation) in the dif-
ferent scenarios.
The reconstructions in the spiral experiment are penalized

compared to the EPI ones, in the sense that the high-frequency
corners of the k-space are not sampled which leads to slightly

inferior resolution. This explains that, all other parameters re-
maining constant, the EPI reconstructions outperform the spiral
ones qualitatively and quantitatively.
We observe that the reconstructions from rasterized simula-

tions consistently outperform the ones obtained from analytical
measurements. While large differences can occur between the
inverse-crime scenario (the 256 256 rasterized simulations)
and the analytical simulation data, the 512 512 simulations
yield much closer performance, with at most a 0.6 dB SER dif-
ference. This is explained by the reduced aliasing artifacts when
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Fig. 8. Reconstructed brain phantoms and error maps for the EPI SENSE experiment.

TABLE VII
RECONSTRUCTION BIAS OF RASTERIZED SIMULATIONS ON QUADRATIC AND
TV REGULARIZATION RECONSTRUCTIONS OF THE BRAIN PHANTOM FOR THE

SPIRAL SENSE EXPERIMENT. OPTIMIZED SER AND CORRESPONDING BIAS
ARE SHOWN IN DB

TABLE VIII
RECONSTRUCTION BIAS OF RASTERIZED SIMULATIONS ON QUADRATIC AND
TV REGULARIZATION RECONSTRUCTIONS OF THE BRAIN PHANTOM FOR THE

EPI SENSE EXPERIMENT. OPTIMIZED SER AND CORRESPONDING BIAS ARE
SHOWN IN DB

doubling the sampling density (see Section IV-C1). As expected
for this type of piecewise-constant phantom, the TV reconstruc-
tions consistently outperform the linear ones. Whatever the sim-
ulation method is, TV brings a significant improvement in the
very noisy scenario. However, for the other scenarios (SNR

30 dB and 40 dB), the improvement over linear reconstruction is
modest when using the analytic measurements, whereas it is ar-
tificially spectacular using the 256 256 rasterized simulations.
We believe that our quality assessment, obtained analytically,
offers fairer predictions of the practical worth of a reconstruc-
tion method than its overly optimistic rasterized version.

V. CONCLUSION

We proposed a method to develop realistic analytical phan-
toms for parallel MRI. Our analytical phantom approach
offers strong advantages for the quantitative validation of MRI
and pMRI reconstruction softwares: it is flexible enough to
represent general imaging targets, it provides highly accurate
representation of the physical continuous model and avoids
overly optimistic reconstructions. This kind of framework is
also applicable to the assessment of advanced MRI recon-
struction methods such as autocalibrating parallel imaging, B0
correction [19], motion correction [20], [21], or higher order
field imaging [22].
Implementations of the phantom are made available to the

community.

APPENDIX

Proof of Theorem III-2: First, we consider the case .
Proof: Take and .

Then, , , and . Using
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Green’s first identity yields
.

For the case , we need an intermediate result.
Lemma A1: For and

(35)

Proof: Use Green’s first identity with ,
, and the fact that .

Let us continue the proof of Theorem III-2 by mathematical
induction on . For , and the result holds
true according to Lemma A1.When considering , ,
and Lemma A1, we obtain .
This is true for all , hence the result holds true for . Now,
we suppose the result holds true at order and we consider
such that . From Lemma A1, we have that

. Since ,

we substitute using the induction hypothesis and, after
simplifications, we obtain

with for and . By permuta-
tion of the sums and noting that for and

, we get

This is valid for all such that . Hence, the induction
hypothesis was proved at order assuming it holds true at
order .

Characterization and Computations of a Family of 1-D In-
tegrals:

Proposition A-2: For , follows the recursion
rule

Proof: Integrate by parts
and identify , and if .

Corollary A-3: For small values of and , one can rely
on the backward iteration starting form a higher order
to get accurate results
•
•

.
Proposition A-4: For nonzero and , the forward

iteration is used
•

•

with .
Proof: From Proposition A.2 with and , we

get . In the case , we de-
fine such that .
By Definition (23), we get . By a
change of variable and splitting the integral, we obtain

. The result fol-
lows from normalizing the integration intervals.

Proposition A-5: For small, the truncated Taylor series
in provides accurate results

(36)

where the lower incomplete gamma function is defined as
.

Proof: Note that .
By virtue of Fubini’s theorem, we get

Identify to .
Proof of Proposition III-4:
Proof: We rewrite using Characterization (22)

with for and
for . The piecewise parameterization

of the contour (Table III) is then used, and by virtue of the
multinomial theorem, we expand the terms and .
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