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Thèse présentée à la faculté des sciences et techniques de l’ingénieur
pour l’obtention du grade de docteur ès sciences
et acceptée sur proposition du jury

Prof. Pierre Vandergheynst, président
Prof. Michael Unser, directeur de thèse
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Abstract

Magnetic resonance imaging (MRI) scanners produce raw measurements
that are unfit to direct interpretation, unless an algorithmic step, called
reconstruction, is introduced. Up to the last decade, this reconstruction
was performed by algorithms of moderate complexity. This worked be-
cause substantial efforts were devoted to adjust the MRI hardware to suit
the algorithmic component. More recently, new techniques have reversed
this trend by putting more emphasis on the algorithms and alleviating the
constraints on the hardware. Whereas many new methods suffer from
a marked increase in computational complexity, this thesis focuses on
the development of reconstruction algorithms that are faster and simpler
than state-of-the-art solutions, while preserving their quality.

First, we present the physical principles that underlie the acquisition of
MRI data and motivate the classical linear model. Based on this contin-
uous equation, we derive efficient implementations of a discrete model.
Standard and state-of-the-art reconstruction algorithms are reviewed and
presented in a general framework where reconstruction is regarded as an
optimization problem that can naturally integrate regularization.

Next, we propose novel simulation tools for the validation of reconstruc-
tion methods. Those tools model the sensitivity of the receiving coil,
which allows for the simulation of parallel MRI experiments. To honor
the continuous nature of the underlying physics, we suggest the use of
analytical phantoms. Unlike rasterized simulations, our phantoms do not
introduce aliasing artifacts. Instead, they allow us to study how rasteri-
zation itself impacts the quality of reconstruction. To achieve this goal,
we were able to work out closed-form solutions for the Fourier trans-
form of parametric regions that can realistically reproduce anatomical
features. Our results show that the inverse-crime situation impairs sig-
nificantly the assessment of the performance of reconstruction methods,
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particularly, the nonlinear ones.

Finally, we investigate the design of algorithms that achieve reconstruc-
tion with a sparsity constraint expressed in a wavelet domain. Based on
the latest developments in large-scale convex optimization, we derive an
acceleration strategy that can be tailored to the MRI setup and provide
theoretical evidence of its benefit. We develop it into a practical method
that combines the advantages of speed and quality. Applied on challeng-
ing reconstruction problems, with simulated and in-vivo data, we sig-
nificantly reduce the reconstruction time over state-of-the-art techniques
without compromising quality.

Keywords: MRI, inverse problem, wavelets, sparsity, nonlinear recon-
struction, undersampling, spiral, non-Cartesian, total variation, compressed
sensing, iterative-shrinkage thresholding algorithm, ISTA, FISTA, FWISTA,
analytical simulation, Shepp-Logan phantom, inverse crime, parallel MRI



Résumé

Les appareils d’imagerie par résonance magnétique (IRM) fournissent
des données brutes dont l’interprétation nécessite un processus algorith-
mique nommé reconstruction. Jusqu’à la dernière décennie, cette recons-
truction se faisait au moyen d’algorithmes de complexité modérée, no-
tamment grâce à d’importants efforts dans l’optimisation de l’instrumen-
tation. Récemment, de nouvelles techniques ont inversé cette tendance
en permettant, avec un renfort de la partie algorithmique, de réduire les
contraintes instrumentales. Alors que ces nouvelles méthodes souffrent
d’une complexité de calcul de plus en plus élevée, cette thèse se concentre
sur le développement d’algorithmes de reconstruction algorithmiquement
plus efficaces.

Dans un premier temps, nous présentons les principes sous-jacents à l’ac-
quisition des données IRM et nous justifions le modèle linéaire classique.
Sur la base de cette équation continue, nous présentons des implémenta-
tions efficaces du modèle discret équivalent. Une revue des algorithmes
standards et des solutions actuellement proposées est présentée dans un
cadre général où la reconstruction est vue comme un problème d’optimi-
sation pouvant naturellement inclure une régularisation.

Nous présentons ensuite de nouveaux outils de simulation destinés à la
validation des méthodes de reconstruction. Ces outils, modélisant la sen-
sibilité de l’antenne de réception, permettent de simuler des expériences
d’IRM parallèle. Pour tenir compte de la nature continue de la physique,
nous proposons l’utilisation de fantômes analytiques. Contrairement aux
simulations discrètes, ces fantômes ne génèrent pas de repliement spec-
tral, nous offrant ainsi la possibilité d’étudier comment ce repliement
spectral affecte la qualité des reconstructions. Dans ce but, nous résol-
vons analytiquement la transformée de Fourier de régions paramétriques
permettant de reproduire de manière réaliste des caractéristiques ana-
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tomiques. Nos résultats montrent que la situation dite de crime inverse
affecte de manière significative l’évaluation de la performance des mé-
thodes de reconstruction ; plus particulièrement celles non linéaires.

Finalement, nous examinons la conception d’algorithmes réalisant la re-
construction avec une contrainte de parcimonie dans un domaine d’onde-
lettes. En nous appuyant sur les dernier développements en optimisation
convexe à large échelle, nous proposons une stratégie d’accélération qui
tient compte du problème d’IRM et nous apportons des preuves théo-
riques de son avantage. Nous développons ceci en une méthode pratique
combinant les bénéfices de la rapidité et de la qualité. Appliquée sur des
problèmes ambitieux, avec des données simulées et in vivo, notre mé-
thode réduit significativement le temps de reconstruction par rapport à
d’autres méthodes de pointe, sans compromettre la qualité de reconstruc-
tion.

Mots-clés : IRM, problème inverse, ondelettes, parcimonie, reconstruc-
tion non-linéaire, sous-échantillonnage, spirale, non-Cartésien, variation
totale, acquisition comprimée, algorithme de seuillage itératif, ISTA, FISTA,
FWISTA, simulation analytique, fantôme de Shepp et Logan, crime in-
verse, IRM parallèle
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Chapter 1

Introduction

MAGNETIC resonance imaging (MRI) is a non-invasive imaging tech-
nique that dates back to the 70s [1]. It is now commonly used in

medicine and biology because of its specific advantages over other imag-
ing modalities: versatile contrasts, speed, good spatial resolution, mul-
tidimensional imaging capabilities, and structural as well as functional
information. Still, MRI is subject of active research. While, in the past,
efforts were mainly concentrated towards the improvement of the ac-
quisition hardware, the focus is now shifting towards the use of more
sophisticated post-acquisition processes. The idea is that, by relying on
proper signal processing, one can relax the acquisition requirements. The
prospects are of different kinds:

– Fast acquisition is a key point to increase resolution in MRI. It can be
achieved by reducing the number of acquired samples. This compli-
cates the reconstruction task.

– Some scanner defects can be compensated provided that the distor-
tions are accurately modeled. An improved reconstruction process
would then allow the use of lower-quality, and potentially cheaper
hardware.

– In a clinical perspective, one would like to reduce acquisition time
and use smoother acquisition schemes—to lower the acoustic noise—
in order improve the comfort of the patients.

Some recent techniques are indicative of this trend: off-resonance correc-
tion [2], parallel MRI [3], motion correction [4, 5], compressed-sensing [6],
and higher-order field imaging [7].
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1. INTRODUCTION

This thesis originates from a collaboration between the Biomedical Imag-
ing Group of EPFL and the Institute for Biomedical Engineering of the
University and ETH in Zürich. The aim is to develop reconstruction meth-
ods specific to magnetic resonance imaging relying upon the hypothesis
that nonlinear reconstruction—for instance, wavelet regularization—are
capable of enhancing image quality in challenging reconstruction tasks.
Following the same research trend, several recent works [6, 8–16] con-
firm the potential benefits of nonlinear reconstruction for MRI. Another
idea of this project is that significant acceleration of the reconstruction
process can be achieved if the structure of the physical model is exploited.
Surprisingly, this aspect is not yet subject to much investigation in the
MRI community.

In signal-processing terms, the reconstruction problem can be stated as
follows. We must estimate a discrete image that represents an existing
continuous function. The MRI scanner samples the Fourier domain of
this function. Medical and instrumental constraints influence the design
of the trajectory in the Fourier domain. The resulting sampling locations
are not uniformly distributed and this situation yields undesirable arti-
facts in conventional image reconstructions. We consider this kind of
challenging reconstruction task and regard it as a linear inverse problem.
Two characteristics must be considered:

– The problem is large-scale as it involves a considerable amounts of
data and unknowns. Efficient algorithms are required to apply the
data-formation model and the reconstruction process is performed it-
eratively.

– Due to the presence of noise and a potential lack of data, the prob-
lem is ill-conditioned. This is to say that many, possibly very different,
images can explain the measured data. This is where nonlinear re-
construction schemes come into play for their ability to favor certain
classes of solutions.

The downside is that iterative algorithms are much slower than tradi-
tional FFT-based reconstruction. While this is already true in the linear
case, where convergence speed directly depends on the conditioning, cur-
rent nonlinear reconstruction algorithms are even slower. In this context,
our goal is to develop nonlinear reconstruction algorithms that enhance
quality over standard reconstructions while being practically fast enough
to compete with linear reconstruction.
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1.1. Main Contributions

1.1 Main Contributions

During our in-depth investigation of the MRI reconstruction pipeline, the
problem of the proper assessment of the quality of reconstructions was
pervasive. Simulations facilitate the evaluation and comparison of re-
construction software because the experimental conditions are perfectly
controlled and ground-truth data are well-known. As first contribution,
we introduce a new theoretical framework that allows for the analytical
description of realistic phantoms in both the spatial and Fourier domains.
This solution shall be preferred to standard discrete simulations that in-
troduce aliasing artifacts impairing the evaluation of the reconstruction
quality. Some analytical phantoms are already available for MRI simu-
lation but, contrarily to the brain phantom that we propose, they suffer
from a lack of realism in describing anatomical regions and are limited to
the simulation of MRI with a homogeneous receiving antenna. The orig-
inal framework we present is general enough to simulate parallel MRI
experiments and the parametric shapes that describe our phantom are
very flexible. We propose experiments that validate our method and il-
lustrate the impact of using discrete simulations in the assessment of the
performance of several reconstruction techniques. It turns out that the
performance bias can be very pronounced, particularly with state-of-the-
art reconstruction techniques. This emphasizes the importance of our
contribution.

A second innovative aspect of this thesis consists in a new reconstruction
method that imposes a wavelet-domain regularization. The starting point
for our work is ISTA [17–19], a simple and robust iterative algorithm that
achieves sparsity-promoting reconstruction. Recent developments have
shown that this algorithm can be substantially accelerated using a mul-
tistep method [20] (fast ISTA, aka FISTA). The convergence rate of both
ISTA and FISTA have been derived. An alternative acceleration strategy,
namely SISTA [21], was proposed that adjusts the operations depend-
ing on the wavelet subband in order to accelerate reconstruction. We
revisit all these algorithms using weighted norms. This perspective gives
birth to a new algorithm that combines the FISTA and SISTA accelera-
tion strategies synergistically. We derive the convergence bounds for the
proposed algorithm, showing its theoretical advantage in terms of speed.
Random shifting [17] (RS) is a modification in wavelet-based algorithms
that brings sensible image quality enhancements but lacked a theoretical
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1. INTRODUCTION

foundation. We provide a new interpretation of RS as a greedy and prac-
tically efficient method to perform shift-invariant wavelet regularization.
We come up with an algorithm for MRI that benefits from the advantages
of all these techniques: convergence efficiency and reconstruction qual-
ity. Based on realistic MRI and parallel MRI simulations, we study the
influence of the wavelet basis and the use of RS on reconstruction qual-
ity. We also verify the convergence superiority of our new algorithm. Fi-
nally, compared with other state-of-the-art reconstruction techniques on
both simulated and in vivo data, our practical method proves to converge
rapidly while achieving competitive reconstruction quality.

1.2 Organization of the Thesis

This thesis is organized as follows: In Chapter 2, we expose the princi-
ples of magnetic resonance imaging. We follow a conceptual path from
the spin magnetic moment to the production of an image. The origin of
scanner data is presented and the mathematical data-formation model is
established. In Chapter 3, we describe the discrete model together with
efficient implementations. Classical and state-of-the-art reconstruction
techniques for MRI are presented within a general framework for recon-
struction. Then, in Chapter 4, we present a new analytical simulation
tool that is adapted to parallel MRI and addresses the issues occurring
with standard rasterized simulations. The theory is exposed and exper-
iments show the interest of the tool. Finally, in Chapter 5, we discuss
an algorithmic strategy to perform competitive nonlinear reconstructions
using wavelet regularization. The performance of the method is studied
and its potential is demonstrated in several challenging MRI and parallel
MRI experiments.
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Chapter 2

MRI Principles

IN THIS chapter, we present the basics of magnetic resonance imaging.
Advanced concepts are covered by Haacke et al. [22] as well as Liang

and Lauterbur [23].

This chapter is structured as follows: In Section 2.1, we present the phys-
ical principles of magnetic resonance. Then, in Section 2.2, we show
how the signal in MRI is observed using receiving antennas and exploit-
ing the magnetic resonance effect. In Section 2.3, we explain the special
approach to imaging that is adopted in MRI, which relies on gradients of
magnetic field. Finally, in Section 2.4, we present the most common MR
imaging modalities with a particular focus on parallel MRI.

2.1 Nuclear Magnetic Resonance

2.1.1 Spins and Magnetization

Quantum physics [24] postulate the existence of a spin quantity associ-
ated to nucleon particles. Depending on the spin value, the particle may
have a magnetic moment. It turns out that the proton presents such a
magnetic moment. The proton is also a hydrogen nucleus, a compound
which is present in water molecules. Its density in biological tissues
makes it of major interest for biomedical imaging.

In the absence of an external magnetic field, a set of nuclei has no bulk
(that is to say, macroscopic) magnetization because the spin magnetic
moments have independent and randomly distributed directions. In pres-
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2. MRI PRINCIPLES

ence of a static magnetic field B0, the magnetic moments tend to align in
the direction of the field, which decreases the energy of the system. This
effect is counteracted by the thermal energy, which ensures that some
nucleons retain anti-parallel spins. Boltzmann statistics rules the distri-
bution of these populations at thermal equilibrium as

N↑ = N↓ exp
�
γħhB0/(kB T )
�

, (2.1)

where N↑ and N↓ are the numbers of parallel and anti-parallel spins in a
given volume, γ is their gyromagnetic ratio, ħh is Planck’s constant, kB is
Boltzmann’s constant, and T is the temperature.

In practice, the ratio of the populations is accurately described by a first-
order approximation. 1 Consequently, the bulk magnetization M, defined
as the volume density of the spin magnetic moments, is aligned and pro-
portional to the magnetic field. Its intensity characterizes the imbalance
between the two spin populations.

2.1.2 Motion Law for the Magnetization

The kinetic moment resulting from the magnetization is M/γ. In presence
of an external field B, the torque generated on the magnetization writes
M× B. This leads to the motion law

dM/dt = γM× B. (2.2)

This relation implies that dM/dt is perpendicular to M. In turn, the mag-
netization intensity �M� is conserved.

Let us denote by B0 a static magnetic field. We define its direction to be
the longitudinal axis. The plane that is perpendicular is referred to as the
transverse plane. In presence of such a static field, the angle formed be-
tween M and the longitudinal axis is conserved. Specifically, M precesses
clockwise around B0 at the angular frequency ω0 = γ

��B0

��, known as
the Larmor frequency. We illustrate in Figure 2.1 the precession of the
magnetization vector in a static field.

At thermal equilibrium, the magnetization is perfectly aligned with the
static magnetic field, because the phases of the spin magnetic moments

1. At temperature T = 300 K, with a magnetic field B0 = 1T and for protons of gyro-
magnetic ratio γ= 2.678× 108 rad T−1 s−1, the ratio γħhB0/(kB T ) is equal to 6.8× 10−6.
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2.1. Nuclear Magnetic Resonance

B0

i j

k
M

Figure 2.1: In presence of a static magnetic field, the spin magnetic mo-
ments and the resulting bulk magnetization precesses at the Larmor fre-
quency.

are uncorrelated. 2 The detection of the magnetization is difficult in this
situation.

2.1.3 Excitation Pulse and Resonance

The nuclear magnetic resonance (NMR) is a phenomenon that makes
the magnetization measurable. It was first observed by Rabi [25] for a
beam of atoms. The absorption of radio frequency waves by matter was
characterized few years later by Purcell and Bloch [26, 27].

To provoke NMR, a pulse of oscillating electromagnetic field is applied
transversally. Depending on its angular frequency ω, it excites the spin
magnetic moments. Let us consider the magnetic field component B1
of this pulse. To facilitate the analysis, we define a frame of reference
(O, I,J,K) that rotates at the same angular frequency ω around the lon-
gitudinal axis B0. In this rotating frame, the magnetic fields B0 and B1
appear static at point O. The frames of reference are depicted in Fig-
ure 2.2.

In the rotating frame of reference, the motion law for the magnetization
(2.2) rewrites

dM
dt

����
(O,I,J,K)

= γM× Beff, (2.3)

with γBeff = ∆ω − ω1, ∆ω = ω − ω0, ω = ωk, ω0 = −γB0, and
ω1 = −γB1. The magnetization vector precesses around the effective
magnetic field Beff at the angular frequency γBeff. This movement takes

2. A consequence of local variations in the magnetic field and spin-spin interactions
that we further discuss in Section 2.1.3.
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B0

i j

k,K

B1
I

J

ωt

Figure 2.2: The rotating reference frame shares the longitudinal axis with
the laboratory reference frame and rotates at the frequency of the excita-
tion pulse.

∆ω/γ

B1

Beff

I J

KM

Figure 2.3: In the rotating frame, the magnetization precesses around the
effective magnetic field.

place in the rotating frame and is illustrated in Figure 2.3. In the labora-
tory reference frame, this movement is composed with a rotation around
the longitudinal axis at frequency ω.

Depending on the frequency of the excitation pulse, three situations can
occur:

– �∆ω� �
��ω1

��, which means that Beff is almost aligned with B0. The
bulk magnetization is precessing at angular frequency γ

��B0

�� around
k, as it does at thermal equilibrium. The impact of the excitation pulse
on magnetization is insignificant.

– �∆ω� ≈
��ω1

��. The effective field affecting the magnetization is in
the plane (O, I,k) between vectors k and I (see Figure 2.3). The mag-
netization is affected by the excitation pulse but the resonance is not
total. The magnetization never flips completely.

– �∆ω� �
��ω1

��, which corresponds to nuclear magnetic resonance.
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2.1. Nuclear Magnetic Resonance

Figure 2.4: Motion of the magnetization as observed in the laboratory
frame of reference in response to excitation pulses: From left to right:
�∆ω�= 10
��ω1

��, �∆ω�=
��ω1

��/10, and �∆ω�=
��ω1

��.

In this case, Beff ≈ B1 and ω ≈ ω0. In the rotating frame, the bulk
magnetization is precessing around B1 at angular frequency γ

��B1

��.

These three cases are illustrated in Figure 2.4.

2.1.4 Relaxation

The Bloch equation (2.2) imposes:

– A constant projection of the magnetization onto the longitudinal axis.
In other words, the energy coming from the excitation pulse that re-
sulted in a modified balance in the spins populations must be perpet-
ually conserved by the system of spins.

– A constant intensity of magnetization in the transverse plane. This
implies that the precessing magnetic moments of the spin remain syn-
chronized in phase so as to maintain the transverse magnetization.

Contrarily to these predictions, the magnetization vector is observed to
return to the thermal equilibrium state M0 = M0k, where the energy of
the system of spins is minimal. This relaxation is exponential with two
characteristic times: T1 for the longitudinal magnetization and T2 for
the transverse component. In the reference frame rotating at angular
frequency γB0, the relaxation of the magnetization is modeled by the
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2. MRI PRINCIPLES

phenomenological Bloch equations

dM⊥
dt

����
(O,I,J)

= −M⊥
T2

, (2.4)

dM//
dt

=
M0−M//

T1
, (2.5)

where X⊥ denotes the projection of X on the longitudinal axis and X//
denotes its projection on the transverse plane.

The relaxation times T1 and T2 have different origins.

– The longitudinal relaxation time T1 describes the rate of the energy
transfer from the spins to the environment. This transfer is mostly
explained by the emission of the electromagnetic signal that might be
captured by MRI receiving coils. As far as spins are concerned, this
energy loss corresponds to a transfer of population from anti-parallel
spins (higher energy) to parallel spins. The relaxation time T1 can be
interpreted as the average lifetime of anti-parallel spins.

– The transverse relaxation time T2 characterizes the rate of desynchro-
nization of the magnetic moments that takes place at the microscopic
scale where the magnetic moments randomly influence each other. A
second phenomenon causes dephasing. At the macroscopic scale, the
B0 field inhomogeneities provoke slight local changes in the preces-
sion frequency, leading to a transverse magnetization loss as the mo-
ments get out of phase. This trend can be reverted using a 180◦ pulse
(see Section 2.1.5 and Figure 2.9 for further details). The combina-
tion of the two dephasing factors is characterized by the T ∗2 transverse
relaxation time directly observed in the magnetization decay.

In Table 2.1 we report the order of magnitude of T1 and T2 for various
types of biological tissues. They are of particular importance in medicine;
Damanian showed early on that their value can discriminate malignant
from benign tumors [28].

During the excitation, relaxation times can be neglected as they are many
times longer than the duration of the excitation pulse. 3

3. For a 90◦ flip of proton magnetic moments with excitation field intensity B1 =
10−5 T at temperature 300K, the required duration is about 590µs, which is at least two
orders of magnitude shorter than the characteristic times reported in Table 2.1.
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2.1. Nuclear Magnetic Resonance

Table 2.1: Typical characteristics of human brain tissues for B0 = 1.5T:
Relative spin density, T1, and T2 relaxation times (according to the values
gathered in [29]). CSF, GM, and WM stand for cerebrospinal fluid, gray
matter, and white matter, respectively.

Tissue CSF GM WM Scalp Marrow
ρ/ρwater 0.98 0.745 0.617 0.8 0.12

T1 (in ms) 4200 1000 680 340 550
T2 (in ms) 2000 100 80 70 50
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Figure 2.5: The motion of magnetization during a Free Induction Decay.

The transverse signal, which is measured, is called Free Induction Decay
(FID). It carries the information on the tissue in the intensity of its en-
velope and the relaxation times. We show in Figure 2.5 an example of
FID.
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Figure 2.6: The motion of magnetization in response to a 90◦ excitation
pulse.

2.1.5 Pulses

If the excitation pulse oscillates at the Larmor frequency γB0 for a du-
ration Tpulse, the magnetization gets flipped by an angle θ = ω1Tpulse.
An excitation pulse of duration T90◦ = π/(2γB1) moves the magnetiza-
tion from the longitudinal axis to the transverse plane where it can be
detected with maximal intensity. The effect of this pulse is illustrated in
Figure 2.6.

During the relaxation, pulses that provoke a 180◦ flip (twice longer than
the 90◦ ones) can be applied. The interest is to recover the loss of trans-
verse signal caused by the static field inhomogeneities. The duration
TE/2 (for “Time Echo”) is the time interval between the 90◦ and the 180◦

pulse. An echo in the FID is observed at time TE/2 after the 180◦ pulse,
as the spin phases get resynchronized. The signal loss that is due to the
spin-to-spin interactions is not recovered, due to its stochastic nature. If
several 180◦ pulses are performed, the characteristic time T2 character-
izes the decay in the intensity of the echoes as a function of TE . The
effect of a 180◦ pulse is shown in the laboratory reference frame in Fig-
ure 2.7. The production of a echo by means of a 180◦ pulse is illustrated
in Figure 2.9.

2.2 Detection

In this section, we adopt a signal-processing perspective to analyze the
signals provided by MRI scanners. The physical relationship with the
magnetization is shown. As a reference, we suggest the book by Haacke [22].
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Figure 2.7: The motion of magnetization in response to a 180◦ excitation
pulse.

2.2.1 Original Signal

The information of interest is the space distribution of the spin density.
The magnetization vector M(r, t) resulting from an excitation pulse is
proportional to this quantity (see its definition in Section 2.1.1). We ne-
glect the decay phenomena because their influence on signal detection is
negligible. We model the transverse magnetization by a complex quantity
M(r, t) = M(r)exp

�−j
�
ω0 t + θ (r, t)
��

, where M(r) is the initial mag-
netization (proportional to the spin density), ω0 = γB0, and θ (r, t) ac-
counts for a non-uniform and time-varying phase map of magnetization
vectors.

2.2.2 Physics: Coil Sensitivity

The magnetization state is detected by a receiving antenna or coil. The
principle is that the precessing magnetization generates a time-varying
magnetic field that, in turn, induces an electromotive force in the coil.

First, the magnetization distribution admits an equivalent current distri-
bution JM(r, t) = ∇ × M(r, t). By choosing the Coulomb gauge 4 and
neglecting propagation times 5, the magnetic vector potential is given by

A(r, t) =
µ0

4π

�

�3

JM(r�, t)
�r− r�� dr�. (2.6)

4. The Coulomb gauge is defined such that ∇ ·A= 0.
5. The propagation speed is close to the speed of light in vacuum.
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2. MRI PRINCIPLES

The magnetic field is then expressed as B(r, t) =∇×A(r, t). Using Stokes’
theorem, the flux of magnetic field through the coil surface � writes

Φ(t) =
�

∂�
A(r, t) · dr. (2.7)

Using the relation ∇× (av) = (∇a)× v+ a∇× v, and the triple product
rules, we expand the flux expression into

Φ(t) =
�

�3
M(r�, t) ·Bu(r�)dr�, (2.8)

with

Bu(r�) =
µ0

4π

�

∂�

dr× (r− r�)

�r− r��3
. (2.9)

Note that (2.9) is the Biot-Savart law for a magnetic field generated at
point r� by a unit-value steady current in the coil. This result is consistent
with the principle of reciprocity.

The electromotive force induced in the coil is defined as e(t) = −dΦ(t)/dt.
Since the decay of the longitudinal magnetization is neglected, its expres-
sion simplifies to

e(t) = Re

�
− d

dt

�

�3
M(r, t)S(r)dr

�
, (2.10)

with the coil sensitivity map defined as S(r) = Bu
x(r)− jBu

y(r).

By definition of M , thanks to Fubini’s theorem, and assuming that |dθ/dt| �
ω0, the electromotive force rewrites 6

e(t) = −ω0 Im

�
e−jω0 t

�

�3
S(r)M(r)e−jθ (r,t)dr

�
. (2.11)

2.2.3 Demodulation

The spectrum of the electromotive force induced in the coil is concen-
trated around the angular frequency ω0. For further processing, it is

6. For protons in a field B0 = 1 T, the Larmor frequency is f0 = 42.6 MHz and the
bandwidth in MRI is typically in the range of 1kHz.
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2.3. Gradients of Field for Imaging

convenient to shift this spectrum to the low frequencies. This operation
is realized through phase-sensitive demodulation, as done in telecommu-
nications with a Quadrature Amplitude Modulation (QAM) signal. First,
the electromotive force is multiplied by two sines at frequency ω0 which
are in quadrature. This operation transposes the spectrum around the
frequencies ω = 0 and ω = 2ω0. Second, a low-pass filter is used to
attenuate the spectrum at 2ω0. This type of demodulation returns two
signals that are the real and imaginary parts of the MR scanner signal
m(t) which is complex-valued. Finally, the MR scanner signal is related
to the magnetization through the linear integral

m(t) =
�

�3
S(r)M(r)e−jθ (r,t)dr. (2.12)

2.3 Gradients of Field for Imaging

The concept of phase encoding, introduced by Lauterbur [1], allows one
to reconstruct spatial maps from the MR measurements. The idea is to
exploit field gradients in order to express (2.12) as a Fourier transform.
After sampling enough frequencies, the image is formed using an inverse
discrete Fourier transform. In this section, the signal of interest is the spin
density ρ(r), rather than the magnetization. For simplicity, the receiving
coil sensitivity is assumed to be homogeneous.

2.3.1 Spin Density Profile

We consider the case where the physical quantities only depend upon the
transverse coordinate x , such that ρ(r) = ρ(x) and θ (r, t) = θ (x , t).
According to (2.12), the MR scanner signal is

m(t) =
�
ρ(x)e−jθ (x ,t)dx .

By superposing to B0 a field with a gradient G that is constant in both
space and time, the phase term becomes θ (x , t) = γxGt. In turn, the MR
scanner signal writes

m(t) = ρ̂(γGt), (2.13)

where ρ̂(ω) =
�
ρ(x)e−jωxdx stands for the Fourier transform of ρ. As

a consequence, the spectrum of ρ is linearly scanned as time goes by.
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2. MRI PRINCIPLES

It is reasonable to consider that the density of excited spins has a finite
spatial support. Then, according to Shannon’s sampling theorem applied
in the k-space domain, the density of excited spins ρ can be exactly re-
constructed from the samples of its spectrum if the k-space sampling fre-
quency is higher than the width of the spatial support.

2.3.2 Phase Encoding for Imaging

The concept of phase encoding generalizes the idea of 1-D k-space scan-
ning by the use of linear gradients along multiple directions.

A spatially-linear field component is added to the main static field B0.
The corresponding spatial gradient, which may vary over time, is noted
G(t). The phase of the magnetization in the rotating frame of reference
evolves accordingly as

θ (r, t) = γ
� t

0
G(τ) · rdτ. (2.14)

It is customary in MRI to refer to the spatial frequency domain as the
k-space. The gradient trajectory determines the k-space position through
the relation

k(t) =
γ

2π

� t

0
G(τ)dτ, (2.15)

and the corresponding data is given by

m(k) =
�
ρ(r)e−2πjk·rdr= ρ̂(2πk), (2.16)

where ρ̂ stands for the multidimensional Fourier transform.

2.3.3 Slice Selection

When performing 2-D MRI, it is usual to let resonate only the spins lo-
cated in a thin slice along the longitudinal axis. This selection is made
possible by the superposition of a field gradient to the homogeneous lon-
gitudinal field. Thus, the static field intensity B0 + Gz(z − z0) varies
with the position. Consequently, an excitation pulse of bandwidth W
centered around the frequency ω excites only the spins located in the
slice of longitudinal coordinate z = z0 + (ω/γ− B0)/Gz with a thickness
∆z = W/(γGz). The relationships between the parameters involved in
slice selection are illustrated in Figure 2.8.
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Figure 2.8: Illustration of the slice selection when applying an excitation
pulse.

2.3.4 Sampling Strategies

According to (2.15), a displacement ∆k in k-space can be obtained by
maintaining a constant gradient of intensity G oriented like ∆k, during
the time γG/(2π).

Several approaches to scan the k-space have been investigated. They
have different advantages in terms of versatility, scan time, constraints
on gradient switching, and robustness to reconstruction artifacts.

– Cartesian trajectories have been the first to be investigated. When
the k-space is fully sampled that way, the reconstruction scheme comes
trivially as an inverse discrete Fourier transform. This scheme leads
to rapid acquisitions but puts hard constraints on the magnetic field
gradients.

– Radial trajectories naturally favor a denser sampling in the center of
the k-space where most of the information is concentrated. Thanks
to the Fourier slice theorem, which relates a profile in k-space to a
projection onto a line in space, this acquisition scheme benefits from
the advanced reconstruction algorithms developed for tomography.

– Spiral trajectories can offer smooth gradient switching and are quite
robust to off-resonance artifacts (inhomogeneities in the main field).
Moreover, their design is versatile and they can be made to result in a
reduced total scan time.

2.4 Imaging Modalities

In this section, we present the basic MRI contrasts that are used clinically.
Next, we introduce parallel MRI, which is an advanced MRI technique
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Figure 2.9: Time evolution of the magnetization after excitation and dur-
ing the spin-echo provoked by a 180◦ pulse.

that we discuss in more details in the following chapters. It is beyond
the scope of this thesis to present other advanced techniques such as dif-
fusion MRI, functional MRI, real-time MRI, magnetization-transfer MRI,
and compensation methods—e.g., flow, motion, and field inhomogeneity.

2.4.1 Basic Contrasts

Classical MRI sequences offer several degrees of freedom one can play
with to influence the contrast. The two main families of sequences,
Gradient-Echo and Spin-Echo, aim at producing echoes in the FID sig-
nal. The echo is provoked in a way that is specific to each sequence. At
time TE after the excitation pulse, which can be controlled, the echo oc-
curs. We illustrate the behavior of magnetization during a spin echo in
Figure 2.9.

Other degrees of freedom include the repetition time TR, which is the
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Table 2.2: Basic MR contrasts and corresponding choices of TE and TR for
Spin-Echo sequences.

Contrast Spin density T1 T2

TR � T1 ≈ T1 � T1
TE � T2 � T2 ≈ T2

period between two excitation pulses, and the flip angle provoked by the
excitation.

For a tissue with spin density ρ and characteristic times T1, T2, and T ∗2 , it
is well-known (see for instance [23]) that the amplitude of the echo and,
consequently, the signal being imaged, are proportional to the quantity

ρ
�
1− exp(−TR/T1)

�
. (2.17)

In addition, the signal in a Spin-Echo sequence is weighted by

exp(−TE/T2) (2.18)

whereas, in a Gradient-Echo sequence using excitations pulses of flip an-
gle α, it is weighted by

exp(−TE/T ∗2 ) sin(α)
1− cos(α)exp(−TR/T1)

. (2.19)

It can be noticed that the contrast of the two sequences is functionally
equivalent if the excitation flip angle is close to 90◦. In that case, the
only difference is that the Spin-Echo sequence gets rid of the dephasings
inherent to field inhomogeneities, thus exhibiting a T2 dependency, while
Gradient-Echo sequences depend upon the shorter T ∗2 time. For both
sequences, the impact of T1 on the contrast is weighted by TR, while the
impact of T2 is weighted by TE . The conditions favoring the different
contrasts are listed in Tables 2.2 and 2.3.

T1-weighted MRI images present a good contrast between fat, which ap-
pears dark, and water, which appears brighter. This type of contrast is
used, for instance, in brain imaging to distinguish gray matter from white
matter. Pathologies are often revealed by T2-weighted MRI. Edemas (ab-
normal accumulation of fluids) appear bright, while tumors often appear
darker than normal tissues.

Examples of T1 and spin-density weighted images are shown in Figure 2.10.
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Table 2.3: Basic MR contrasts and corresponding choices of TE and TR for
Gradient-Echo sequences.

Contrast Spin density T1 T ∗2
TR � T1 ≈ T1 � T1
TE � T ∗2 � T ∗2 ≈ T ∗2
α � 90◦ � 0◦ � 90◦

Figure 2.10: Sagittal MRI scans of the author’s knee with different con-
trasts. Left: T1 (TE = 15 ms and TR = 517ms). Right: spin density
(TE = 11 ms and TR = 2630ms).

2.4.2 Parallel MRI

In this section, we briefly describe the principle of parallel imaging and
we present the main approaches to reconstruction. For further details, we
suggest that the reader consults the detailed topical reviews by Blaimer
et al. [30] and by Larkman and Numes [31].

2.4.2.1 Motivations

Parallel MRI (pMRI) is a method developed in the past decades to reduce
the scan duration, breaking the limits imposed to the fastest gradient se-
quences. The scan time constraint is of particular importance in medicine
as it conditions the discomfort underwent by the patients. It is also the
limiting factor in crucial applications such as cardiac imaging. pMRI ex-
ploits the complementary spatial information of several receiving coil. A

20



2.4. Imaging Modalities

well-designed array of receiving coils combined with an adequate recon-
struction algorithm allows for the reduction of scan time, while preserv-
ing image details and contrast. The speedup achieved with pMRI is due
to the multiple measurements being recorded by several coils in parallel,
whereas classical MRI, relying on a single measurement coil, needs more
time to get the data necessary for imaging.

2.4.2.2 Effect of Undersampling in Classical MRI

In early applications of pMRI, only Cartesian k-space sampling schemes
were considered. We focus on Cartesian sampling strategies for the sake
of simplicity. Specifically, in this section, we assume that the k-space
trajectory is formed by scanning lines along the so-called frequency en-
coding direction. At the end of each line, a field gradient in the phase-
encoding direction creates a perpendicular shift. That way, the next
frequency-encoding step explores a new adjacent line in k-space. The
lines acquired are generally equidistant. With such Cartesian sampling
scheme, the scan-time is in direct in proportion to the number of lines
scanned.

The physical speed limit for the acquisition of each line mainly resides in
the performance of gradient switching. Once this hardware has been opti-
mized, the only approach left to accelerate the scanning time is to reduce
the number of lines. Sacrificing the highest frequency lines is a possible
choice, but it directly impacts on the resolution of the reconstructed im-
ages. A second approach, which is dealt with in pMRI, is to increase the
distance between lines. This frequency spacing is inversely proportional
to the reconstruction FOV in the corresponding phase-encoding direction.
According to Shannon’s sampling theory, a loosely sampled k-space leads
to an image suffering from aliasing artifacts. More precisely, when the
object imaged is larger than the reconstruction FOV, its extremities ap-
pear folded in the reconstructed image. The effect of both approaches to
reduce the number of lines is illustrated in Figure 2.11.

pMRI techniques aim at utilizing the localization of receiving coils in or-
der to unfold the aliasing artifacts associated to the increased distance
between k-space lines. From the k-space domain point of view, pMRI ex-
ploits the convolution properties of the receiving coil sensitivities in order
to interpolate the missing k-space lines.
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Figure 2.11: Reconstructed images from incomplete k-space measure-
ments. Left: High frequency lines missing. Right: Each second line is
missing.

2.4.2.3 Frequency-Domain Approaches

Frequency-domain approaches rely on linear combinations of the coil sen-
sitivities. If they can reproduce sufficiently many spatial harmonics, the
coefficients can be utilized to combine the acquired k-space lines such
as to fill the entire k-space of the target image. The first technique of
this kind proposed is SMASH [32]. It relies on prescanned coil sensi-
tivities. Later, autocalibrated variants were proposed, with names like
auto-SMASH [33] and VD-Auto-SMASH [34]. They save the time of the
prescans. The coil calibration, which is realized by means of the acquisi-
tion of extra lines at the center of the k-space, robustifies reconstructions
with respect to motion. GRAPPA [35] improves fitting of the extra cali-
bration lines and differs from its predecessors in the sense that it recovers
full k-space data for every coil channel. The image is reconstructed by in-
verse Fourier transform and a root sum of squares combination of the
images from each channel.

2.4.2.4 Spatial-Domain Approaches

Alternative pMRI techniques such as PILS [36] and SENSE [3] undertake
the reconstruction problem in the spatial domain. Both of them require
prescans to estimate coil sensitivities. PILS is limited to particular coil-
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array designs because it assumes very localized sensitivities, while SENSE
deals with much more general situations. It is interesting to note that
SENSE allows for a theoretical analysis of the physical limits of pMRI
in terms of SNR. The so-called g-factor quantifies the noise sensitivity
for each pixel of the final image. This factor can vary abruptly in space
depending on the k-space trajectory and the coil-array configuration. A
second major advantage of SENSE is that it can be mapped to an in-
verse problem approach which allows for very versatile k-space sampling
strategies [37]. This inverse problem approach is the subject of the fol-
lowing chapter.
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Chapter 3

Reconstruction Methods

WHILE in a majority of biomedical modalities, images are produced di-
rectly, in MRI they are only obtained after a reconstruction process.

In this chapter, we present the current approaches to MRI reconstruction.
We recall in Section 3.1 the continuous model of the data-collection pro-
cess in MRI and derive its discretized version. In Section 3.2, we review
the different approaches that lead to linear reconstructions and we intro-
duce the key concepts of the inverse problem formalism. This approach
maps image reconstruction into an optimization problem with the possi-
bility to impose a priori constraints to distinguish the solution from other
possible candidates and improve reconstruction quality. We legitimate in
Section 3.3 the use of sparsity-promoting priors in MRI and explain how
they can be imposed via a proper regularization term. Finally, we review
in Section 3.4 the algorithmic procedures that are theoretically capable of
achieving the desired reconstructions while being suited to the practical
constraints encountered in MRI.

3.1 Model for MRI

3.1.1 Physics

A radio-frequency pulse is emitted to initiate nuclear magnetic resonance
(NMR). It excites the spins in a 2-D plane or a 3-D volume, depending
of the type of acquisition format. After excitation, the excited spins be-
have as radio-frequency emitters and have their precessing frequency and
phase modified depending on their positions. This is achieved thanks to
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3. RECONSTRUCTION METHODS

the time-varying magnetic gradient fields that are applied during the re-
laxation, defining a trajectory k in the k-space domain. The modulated
part of the signal received by a coil of sensitivity Si(r) is given by

mi(k) =
�

�2
Si(r)ρ(r)e−2jπk·rdr. (3.1)

The signal ρ is referred to as object. This signal is proportional to the spin
density, but might also depend upon other local characteristics. More
details on the derivation of relation (3.1) are provided in Chapter 2.

For an array of R receiving coils with sensitivities denoted by S1 · · ·SR and
a k-space trajectory sampled at N points kn, we represent the measure-
ments concatenated in a global RN × 1 vector

m=
��

m1,1, . . . , mN ,1

�
, . . .
�

m1,i , . . . , mN ,i

�
, . . .
�

m1,R, . . . , mN ,R

��
.

3.1.2 Model for the Original Data

3.1.2.1 Spatial Discretization of the Object

From here on, we consider that the Fourier domain and, in particular,
the sampling points kn, are scaled to make the Nyquist sampling interval
unity. This can be done without any loss of generality if the space domain
is scaled accordingly. Therefore, we model the object as a linear combi-
nation of pixel-domain basis functions ϕp that are shifted replicates of
some generating function ϕ, so that

ρ =
�

p∈�2

c[p]ϕp, with (3.2)

ϕp(r) = ϕ
�
r− p
�

. (3.3)

Given a sampled version of the coil sensitivity si[p], the sensitivity-weighted
object is modeled by

Siρ =
�

p∈�2

si[p]c[p]ϕp. (3.4)

The standard implicit choice for ϕ is Dirac’s delta even if it is hardly jus-
tified from an approximation theoretic point of view. Different discretiza-
tions have been proposed, for example by Sutton et al. [38] with ϕ as a
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3.1. Model for MRI

boxcar function or later by Delattre et al. [39]with B-splines. It is only re-
cently [40] that the details have been worked out to get back the image
for general ϕ that are non-interpolating, which is the case for instance
for B-splines of degree greater than 1. The image to be reconstructed—
i.e., the sampled version of the object ρ(p)—is obtained by filtering the
coefficients c[p] with the discrete filter

P
�

ejω
�
=
�

h∈�2

ϕ̂ (ω+ 2πh) , (3.5)

where ϕ̂ denotes the Fourier transform of ϕ.

Since a finite field of view (FOV) determines sets of coefficients c and si
with a finite number M of elements, we handle them as a vectors c and
si , keeping the discrete coordinates p as implicit indexing.

3.1.2.2 Wavelet Discretization

Due to sparsity properties that are discussed later in this chapter, it might
be preferable to represent the object in terms of wavelet coefficients. In
the wavelet formalism, some constraints apply to ϕ. It must be a scal-
ing function that satisfies the properties for a multiresolution [41]. In
that case, the wavelets can be defined as linear combinations of the ϕp
and the object is equivalently characterized by its coefficients in the or-
thonormal wavelet basis. We refer to Mallat’s reference book [42] for a
full review on wavelets. There exists a discrete wavelet transform (DWT)
that bijectively maps the coefficients c to the wavelet coefficients w that
represent the same object ρ in a continuous wavelet basis. In the rest of
the chapter, we represent this DWT by the synthesis matrix W. Note that
the matrix-vector multiplications c = Ww and w = W−1c have efficient
filterbank implementations.

3.1.3 Matrix Representation of the Model

The data-formation model (3.1) and the object parameterization (3.4)
are combined to model the measurement corresponding to every point
kn sampled in k-space. Accordingly, the measurement vector m is related
to the coefficients c through the linear relation

m= Ec, (3.6)
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where the MRI encoding matrix E is formed as

E=
�
IR⊗ E0
��

diag
�
s1
�

, . . . , diag
�
sR
��T, (3.7)

with the symbol ⊗ standing for the Kronecker product, IR representing
the R×R identity matrix, and E0 being the encoding matrix for the same
MRI scan with a single homogeneous receiving coil

E0 = diag
��
ϕ̂(2πk1), . . . , ϕ̂(2πkN )

���
v1, . . . ,vN
�T. (3.8)

There, vn are vectors indexed like c such that vn[p] = exp
�−2jπkn · p
�
.

Due to the presence of noise and other scanner inaccuracies, the intro-
duction of a new term b, accounting for an additive perturbation, makes
the data-formation model

m= Ec+ b (3.9)

more realistic. Equivalently, if the parameters of interest are the wavelet
coefficients w, the model writes

m=Mw+ b (3.10)

with M= EW.

In MRI, the major source of noise is a radio-frequency signal originating
from the thermal motion in the object under investigation. When ob-
served with a receiving array of coils, this noise presents non-negligible
correlations across channels. In other terms, the R × R channel cross-
correlation matrix Θ has non-null off-diagonal entries. Accordingly, the
additive perturbation is generally modeled as the realization of a cen-
tered multivariate Gaussian process b�� (0,Ψ) with covariance matrix
Ψ = Θ⊗ IN .

3.2 Linear Solutions

The problem of imaging is to recover the M coefficients c (or equiva-
lently w) from the N corrupted measurements m. In this section, we
review the popular approaches that lead to reconstructions that depend
linearly upon the observations. We show that they are functionally equiv-
alent. Two of these approaches rely on a stochastic interpretation of the
problem, where the matrices Ψ and Υ are the known covariance matrices
of the noise b and the object c, respectively. The corresponding global
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variances are given by vn = Tr
�
Ψ
�
/N = Tr
�
Θ
�

and vs = Tr
�
Υ
�
/M . We

define the normalized covariance matrices as Ψ0 = Ψ/vn and Υ0 = Υ/vs.
Most linear solutions involve a balancing parameter λ which is necessar-
ily positive and can be interpreted in terms of the signal-to-noise ratio
λ−1 = Tr
�
Υ
�
/Tr
�
Ψ
�
= M vs/(N vn).

3.2.1 Pseudoinverse

Depending on the scanner settings, the encoding matrix E is generally
neither square nor invertible. In such cases, the Moore-Penrose pseudoin-
verse offers a solution to the reconstruction problem. The reconstruction
matrix is then defined as

E† = lim
ε→0+

�
EHE+ εIM

�−1
EH. (3.11)

The Hermitian matrix transpose is used, denoted by the superscript H, be-
cause in MRI matrices have complex-valued entries. The problem of in-
verting a non-square matrix is tackled by considering the backprojected 1

problem
EHm= EHEc, (3.12)

because the matrix EHE is square.

Considering the singular value decomposition E = UΣVH, where Σ is an
RN × M matrix whose diagonal entries are the singular values σn, one
gets E† = VΣ†UH, with singular values

σ†
n =

�
0 if σn = 0,

1/σn otherwise.

The major concern with pseudoinverse reconstruction resides in the prop-
agation of noise. Indeed, very small but non-null singular values lead to
drastic amplification of the corresponding noise components. This effect
is quantified by the condition number, defined as κ(E) =maxnσn/minnσn.
This number, which is greater or equal to 1, is also representative of the
numerical challenge faced when inverting E. A linear inverse problem
is termed “ill-conditioned” when the corresponding condition number is

1. Backprojection is a term used in tomography that refers to the multiplication by
the transpose of the encoding matrix.
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large. When the null space of E is not limited to {0}, the problem is said
to be ill-posed.

The aim of regularized reconstruction schemes is to improve reconstruc-
tion with respect to the pseudoinverse approach by limiting the propaga-
tion of noise in the images.

It is remarkable that (3.12) rewrites as ∇c

�
�m− Ec�22
�
= 0, with ∇c

standing for the gradient operator with respect to c. The More-Penrose
pseudoinverse provides a least-squares solution c� = E†m to the recon-
struction problem because it ensures EHm = EHEc�. This least-squares
solution makes sense when the noise term b is independent and identi-
cally distributed.

Instead, when the noise correlation matrix Ψ0 is available, this knowl-
edge can be exploited using the weighted pseudoinverse

E†
X = lim

ε→0+

�
EHXE+ εIM

�−1
EHX (3.13)

with the weighting matrix X= Ψ†
0. The interest of that type of solution is

that it takes into account noise correlations and that it relies less on the
noisier samples. Thanks to the relation EHXEE†

Xm= EHXm, the weighted
pseudoinverse provides a (weighted) least-squares solution.

3.2.2 Quadratic Regularization

The approach proposed by Phillips [43] and Twomey [44], for finite
dimensional problems, and by Tikhonov [45], for infinite dimensional
problems, defines the reconstruction as the minimization of the func-
tional

�m− Ec�2X+λ�Rc�2 , (3.14)

where the notation �·�X with X positive-definite stands for a weighted
norm such that �v�2X = vHXv. The functional is a trade-off between a
fidelity term, which enforces consistency with the measurements, and a
regularization term, which penalizes non-regular solutions with respect
to the regularization matrix R. The tuning parameter λ balances the in-
fluence of these two terms. The role of the regularization term is to limit
the amplification of noise that can be dramatic for ill-conditioned prob-
lems (in MRI, see for instance [46]). In practice, it is often designed with
a derivation operator to favor smooth solutions. Similar to the weighted
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pseudoinverse solution, the weighting matrix can be chosen as X = Ψ†
0

yielding a reconstruction matrix that gives importance to the samples in
inverse proportion to their level of noise. Another common choice is to
take X diagonal such as to compensate for an inhomogeneous k-space
sampling density [37]. This choice facilitates the reconstruction.

The minimization of a quadratic functional yields a linear solution. In-
deed, by taking the gradient of the functional and setting it to zero, we
find that the reconstruction matrix writes

FQUAD =
�
EHXE+λRHR
�−1EHX. (3.15)

3.2.3 Maximum a posteriori

Here, the reconstruction problem is tackled within a stochastic frame-
work. The unknowns c and b are modeled as realizations of centered
multivariate Gaussian distributions: c�� (0,Υ) and b�� (0,Ψ).

According to the numerical model (3.9), the measurements also follow a
multivariate Gaussian distribution m�� (0,EΥEH+Ψ).

The maximum a posteriori solution (MAP) c is the vector that maximizes
the posterior distribution given the measurements m. Using Bayes’ the-
orem, the probability density function of the posterior distribution of c
writes

p(c |m)∝ p(m | c) p(c).

In the present stochastic setting, the probability density function can be
expanded in

p(c |m)∝ exp
�
−�m− Ec�2Ψ†

�
exp
�
−�c�2Υ†

�
. (3.16)

Finally, the MAP solution is the vector c that minimizes the functional

�m− Ec�2
Ψ†

0
+λ�c�2

Υ†
0
. (3.17)

We introduced the normalized covariance matrices in the later expression
in order to have the parameter λ, which is the inverse of the signal to
noise ratio, appear explicitly.

Similarly to the previous approaches, the functional to be minimized is
composed of quadratic terms. As a consequence, the solution is linear,
characterized by the reconstruction matrix

FMAP =
�
EHΨ†

0E+λΥ†
0
�−1

EHΨ†
0. (3.18)
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3.2.4 Linear Minimum Mean Squared Error estimator

The Gaussian model used in the MAP approach is hardly justified for true
MRI images c. This assumption can be substituted by the constraint that
the reconstruction is affine with respect to the measurements. Accord-
ingly, we write the reconstructed image Fm+ g.

To determine adequate parameters F and g, one can rely on the two first
order statistics of the unknown data; that are, the expectation vectors c̄
and b̄, and covariance matricesΥ andΨ. According to the data-formation
model (3.9), the expectation and covariance of the reconstruction error
e= Fm+ g− c are given by

� {e}= F(Ec̄+ b̄) + g− c̄ (3.19)

and

�
�
(e−� {e}) (e−� {e})H

�
= (FE− I)Υ(FE− I)H+FΨFH+� {e}� {e}H.

(3.20)

An unbiased reconstruction 2 is obtained when g= c̄−F(Ec̄+ b̄). For the
choice of F, one would reasonably like to minimize the variance of the
reconstruction error. Given that the estimator is unbiased, the variance
also corresponds to the expectation of the mean-square error. It is is given
by the trace of the covariance matrix

Var {e}= Tr
�
(FE− I)Υ(FE− I)H

�
+ Tr
�
FΨFH�. (3.21)

Interestingly, this relation reveals two distinct contributions to the error.

– The term (FE− I)Υ(FE− I)H accounts for the reconstruction artifacts.
They appear when the matrix F is not a left inverse of E. Specifically,
this situation occurs when E has a null space.

– The term FΨFH corresponds to the noise propagated in the recon-
structed image. It is significantly amplified if F presents large singular
values.

The matrix F that minimizes the error variance, also referred to as mean-
square error, can be computed using matrix calculus. Using the normal-
ized covariance matrices, it writes

FMMSE = Υ0EH(EΥ0EH+λΨ0)
−1. (3.22)

2. That is to say � {e}= 0.
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3.2.5 Connections

First, Equations (3.15) and (3.18) show that quadratic regularization and
MAP approaches are equivalent provided that X= Ψ†

0 and Υ†
0 = RHR. 3

Second, the three following equalities reveal the connection between
MAP and LMMSE solutions, (3.18) and (3.22), in the case where both
matrices Υ0 and Ψ0 are invertible:

EHΨ−1
0 EΥ0EH+λΥ−1

0 Υ0EH = EHΨ−1
0 EΥ0EH+λEHΨ−1

0 Ψ0

(EHΨ−1
0 E+λΥ−1

0 )Υ0EH = EHΨ−1
0 (EΥ0EH+λΨ0)

Υ0EH�EΥ0EH+λΨ0
�−1 =
�
EHΨ−1

0 E+λΥ−1
0
�−1EHΨ−1

0 .

Last, the weighted pseudoinverse solution with X = Ψ†
0 corresponds to

the other solutions in the limiting case where λ tends to 0. This is also the
case for the regular Moore-Penrose pseudoinverse when the noise is inde-
pendent and identically distributed; that is to say Ψ0 = IRN/R. As already
mentioned, the pseudoinverse solutions are only valid when noise propa-
gation is negligible. This situation occurs with well-conditioned (κ(E) ≈
1) reconstruction problems that are largely overdetermined (M � RN)
and/or subject to very little noise (Tr

�
Υ
�� Tr
�
Ψ
�
).

About the invertibility of Ψ0 and Υ0: There is no particular reason
for Ψ0 to be singular. Most of the time, the correlation between pixels
in the image are not modeled; this translates in a matrix Υ0 which is
diagonal. When no signal is expected from some pixels of the image, (for
instance outside a predetermined ROI), it could be tempting to set to 0
the corresponding entries in Υ0, resulting in a singular matrix. However,
a reasonable problem setting would exclude such entries in the unknown
vector c, restoring the invertibility of Υ0.

3.3 Non-Quadratic Regularizations

We just saw that the linear approaches to reconstruction can be derived
from the solution of some optimization problems. The corresponding

3. Let us mention that Υ being a covariance matrix, it is necessarily Hermitian sym-
metric. Its pseudoinverse is also Hermitian symmetric and admits the same eigenvectors.
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functionals were quadratic, yielding closed-form solutions. In this sec-
tion, we consider other approaches that are popular in MRI and which
involve non-quadratic regularization terms.

3.3.1 Inverse Problem Formalism

The solution c� is defined as the minimizer of a cost function that involves
two terms: the data fidelity � (b) and the regularization �(c) that pe-
nalizes undesirable solutions. This is summarized as

c� = arg min
c
� (m− Ec) +λ�(c), (3.23)

where the regularization parameter λ ≥ 0 balances the two constraints.
In MRI, the noise term b = m− Ec is usually assumed to be the realiza-
tion of a Gaussian process with normalized covariance matrix Ψ0. From
a Bayesian point of view, this justifies the choice � (b) = �b�2

Ψ†
0
= bHΨ†

0b

as a proper log-likelihood term. A more practical motivation for this
choice is that a quadratic fidelity term yields a simple closed-form gradi-
ent that greatly facilitates the design and performance of reconstruction
algorithms.

When the k-space sampling is dense enough and the signal-to-noise ra-
tio is high, the quadratic regularization terms (presented in the previous
section) yield satisfying reconstructions. But, the constraints to reduce
the scan duration favor setups with reduced SNR and k-space trajectories
that present regions of low sampling density. In these situations where
the reconstruction problem is more challenging, the reconstructed image
can often be enhanced by the use of a more suitable regularization term
�(c).

3.3.2 Total Variation

Total Variation (TV) was introduced as an edge-preserving denoising method
by Rudin et al. [47]. It is now a very popular approach to tackle image
enhancement problems.

The TV regularization term corresponds to the sum of the Euclidean
norms of the gradient of the object. In practice, it is defined as �(w) =
�∇c��1 . In this context, the operator ∇ returns pixelwise the �2-norm of
finite differences. The use of TV regularization is particularly appropri-
ate for piecewise-constant objects such as the Shepp-Logan (SL) phantom
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Figure 3.1: Sparse approximation errors of a typical MRI brain image
using different orthonormal transforms. The Mean Squared Error is rep-
resented as a function of the percentage of coefficients kept. Wavelet
transforms achieve the best sparse approximations.

used for simulations in tomography and MRI. Textured and noisy images
exhibit a much larger total variation.

3.3.2.1 Sparsity-Promoting Regularization

Another popular idea is to exploit the fact that the object can be well
represented by few non-zero coefficients (sparse representation) in an
orthonormal basis of M functions φp. Formally, we write that

– ∃S ⊂ �2, |S| � M (sparse support) and

– ∃a :
���ρ−
�

p∈S a[p]φp

����
��ρ
�� (small error).

It is well-documented that typical MRI images admit sparse represen-
tation in bases such as wavelets or block DCT [6]. We illustrate this
property in Figure 3.1.
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The �1-norm is a good measure of sparsity with interesting mathemat-
ical properties (e.g., convexity). Thus, among the candidates that are
consistent with the measurements, we favor a solution whose wavelet
coefficients have a small �1-norm. Specifically, the solution is formulated
as

w� = arg min
w
� (w), (3.24)

with

� (w) = �m−Mw�2�2 +λ�w��1 . (3.25)

This is the general solution for wavelet-regularized inverse problems con-
sidered by [19] as well as by many other authors.

3.4 Algorithms

MRI gives rise to a large-scale inverse problem in the sense that the num-
ber of degrees of freedom—that is to say, the unknown pixel values—is
large. Consequently, the matrices are generally too large to be stored
in memory not to mention the fact that direct matrix multiplication in-
volves too many operations. 4 We summarize in this section the strategies
that make the reconstruction in MRI feasible with reasonable computer
requirements and acceptable computation times.

3.4.1 Matrix-Vector Multiplications

The matrix-vector multiplications y = E0x and y = EH
0 x are two basic

operations in MRI reconstruction. They can be implemented efficiently
using the FFT algorithm. For non-Cartesian samples kn, the gridding
method, based on FFT and interpolation, can provide accurate computa-
tions (see [48] for instance). Algorithms 1 and 2 describe the implemen-
tation of the operations y= E0x and y= EH

0 x, respectively.

4. Take a single channel MRI problem with M = 256 × 256 unknowns and N =
256×256 measurements. The corresponding encoding matrix E is 65536×65536. With
double precision floats that are required for accurate calculations, the storage of this
complex-valued matrix would require 64GiB of RAM memory which is a too large value
for current personal computers. Performing direct matrix-vector multiplications involves
an overwhelming amount of scalar multiplications and additions.

36
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Algorithm 1: Matrix-Vector multiplication y = E0x, according to
(3.8).

input : x, p1,. . . , pM , k1,. . . , kN , and ϕ̂;
y← Gridding(x, p1,. . . , pM , k1,. . . , kN) (going to k-space
domain);
for n← 1 to N do

yn← ϕ̂(2πkn)yn;
return y;

Algorithm 2: Matrix-Vector multiplication y = EH
0 x, according to

(3.8).
input : x, k1,. . . , kN , p1,. . . , pM , and ϕ̂;
for n← 1 to N do

xn← ϕ̂(2πkn)∗xn (superscript ∗ indicates the conjugate
transpose);

y← Gridding(x, −k1,. . . , −kN , p1,. . . , pM) (going to spatial
domain);
return y;

An interesting work by Wajer [49] identifies EH
0 E0 as a convolution matrix

associated to the kernel

G[p] =
N�

n=1

��ϕ̂(2πkn)
��2 exp
�
2jπkn · p
�

. (3.26)

When the kernel is precomputed for the lattice points belonging to the
set S = {p−q | p ∈ FOV, q ∈ FOV}, one can avoid the use of Algorithms 1
and 2. An efficient implementation of the operation y = EH

0 E0x, which
uses zero-padded multidimensional FFTs, is described in Algorithm 3.

Most of the time, in parallel MRI, the covariance matrices are block diag-
onal. In that case, they are sparse matrices and one can benefit from the
related efficient memory storage and matrix operations. As already men-
tioned, Ψ0 is fully characterized by the channel cross-correlation matrix
Θ0 = Θ/vn such that Ψ0 = Θ0 ⊗ IN . Its pseudoinverse or inverse is then
given by Ψ†

0 = Θ
†
0⊗ IN . The matrix-vector multiplications with EHΨ†

0 and
EHΨ†

0E are implemented as described in Algorithms 4 and 5, respectively.

37



3. RECONSTRUCTION METHODS

Algorithm 3: Matrix-Vector multiplication y = EH
0 E0x, according to

(3.8) and (3.26).
input : x, S and G;
Precompute G← FFT(G) (DFT coefficients);
x← ZERO-PADDING(x, S) (zero-padding x to the dimensions of
G);
x← FFT(x) (computing DFT coefficients);
for n← 1 to number of elements of G do

xn← Gn xn (multiplication of DFTs);

x← IFFT(x) (inverse DFT);
for p ∈ FOV do

y[p]← x[p];
return y;

Algorithm 4: Matrix-Vector multiplication y= EHΨ†
0x, according to

(3.7).

input : x, s1,. . . , sR, Θ†
0 and EH

0 ;�
x1, . . . ,xR
�← x;

for r ← 1 to R do
xr ← EH

0 xr (using Algorithm 2);

y← 0;
for r ← 1 to R do

yr ← 0;
for r � ← 1 to R do

yr ← yr + [Θ
†
0]r,r �xr �;

for p ∈ FOV do
(yr)[p]← (sr)∗[p](yr)[p];

y← y+ yr ;
return y;
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Algorithm 5: Matrix-Vector multiplication y = EHΨ†
0Ex, according

to (3.7).

input : x, s1,. . . , sR, Θ†
0 and EH

0 E0;
for r ← 1 to R do

for p ∈ FOV do
(xr)[p]← (sr)[p]x[p];

xr ← EH
0 E0xr (using Algorithm 3);

y← 0;
for r ← 1 to R do

yr ← 0;
for r � ← 1 to R do

yr ← yr + [Θ
†
0]r,r �xr �;

for p ∈ FOV do
(yr)[p]← (sr)∗[p](yr)[p];

y← y+ yr ;
return y;

3.4.2 Conjugate Gradient

The conjugate gradient method (CG) [50] is an iterative algorithm that
is among the most efficient in solving large-scale linear problems Ac= b,
characterized by symmetric and positive-definite matrices A. The only
operations involving the matrix A are matrix-vector multiplications Ax.
In parallel MRI, it is the method of reference [37] to perform linear re-
constructions. The quadratic-regularized solution characterized by the
reconstruction matrix in (3.15) is computed with CG solving the linear
problem defined by the matrix A= EHXE+λRHR and vector b= EHXm.

The idea of the method is to decompose the solution in a basis of mu-
tually conjugate vectors; that is to say c =

�
i αipi , with pH

i Ap j = 0
for i �= j. At iteration i, the estimate is ci =

�
j≤i α jp j and the corre-

sponding residue writes ri = b− Aci . For the next direction, the choice
pi+1 = ri −
�

j≤i(p
H
j Ari)p j/
��p j
��

A ensures the conjugacy constraint. In

this direction, the coefficient αi+1 = Re
�

pH
i+1Ari

�
/
��pi+1

��
A is optimal

with respect to the cost � (c) = cHAc−cHb−bHc. An efficient implemen-
tation of the method is described in Algorithm 6.
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Algorithm 6: CG solving Ac = b with A symmetric and positive-
definite

input : A, b, and c0 (optional, default: c0 = 0);
Initialization: r0 = b−Ac0, p0 = r0, and i = 0;
repeat

qi ← Api;
αi ← rH

i ri/(pH
i qi);

ci+1← ci +αipi;
ri+1← ri −αiqi;
pi+1← ri+1+ rH

i+1ri+1/(rH
i ri)pi;

i← i + 1;
until desired tolerance is reached;
return ci ;

The CG algorithm theoretically converges within a finite number of it-
erations. In practice, this result is compromised by the propagation of
round-off errors. In the context of MRI, the property of practical interest
is the linear convergence rate achieved by CG. Indeed, the distance to the
desired solution decreases as a power of the iteration number, with the
convergence rate

0≤ r(A) =
��
κ(A)− 1
�
/
��
κ(A) + 1
�
< 1.

When the condition number κ(A) is large, the rate r(A) gets close to the
unity, characterizing a slower convergence. Using the weighted norm
�x�A =
�

xHAx, the distance is upperbounded by
��ci − c�
��

A ≤ 2
��c0− c�
��

A r(A)i . (3.27)

With the regular Euclidean distance, the bound is looser
��ci − c�
��

2 ≤ 2κ(A)
��c0− c�
��

2 r(A)i . (3.28)

3.4.3 Iteratively Reweighted Least-Squares

The Iteratively Reweighted Least-Squares algorithm (IRLS), which is also
known as the positive form of half-quadratic minimization[51], can be
used to compute the solutions defined as

c� = arg min
c
�m− Ec�2X+λ�Rc�p�p . (3.29)
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In this context, the functional is strictly convex for p > 1. This condition
ensures the unicity of the minimizer.

The principle of IRLS is to design an upperbounding quadratic proxy for
the regularization term, tailored to the neighborhood of ci . In practice,
one chooses the functional

�i(c) = p/2�Rc�2Di
+ (1− p/2)
��Rci
��p
�p , (3.30)

where Di is a diagonal matrix with entries |�Rci
�

n |p−2. It has the follow-
ing desirable properties

(i) �i(ci) =
��Rci
��p
�p ,

(ii) ∇c�i(ci) =∇c �Rc�p�p |(c=ci),

(iii) �i(c)> �Rc�p�p for all c �= ci and p < 2,

(iv) arg minc �m− Ec�2X+λ�i(c) =
�

EHXE+ (λp/2)RHDiR
�−1

EHXm.

An implementation of the IRLS is described in Algorithm 7.

Algorithm 7: IRLS solving c� = arg minc �m− Ec�2X+λ�Rc�p�p .

input : A= EHXE, a= EHXm, R, p, λ, and c0;
i← 0;
repeat

ri = Rci;
for n← 1 to number of elements of ri do
δn← (λp/2)|�ri

�
n |p−2;

Ai ← A+RHdiag([δ1, . . . ,δn, . . .])R;
ci+1← CG(Ai ,a,ci) (using Algorithm 6);
i← i + 1;

until desired tolerance is reached;
return ci ;

Let us remember that for p ≤ 1 the minimization problem might not
admit a unique solution. When the minimizer c� is unique, it is also the
unique fixed-point of the algorithm. As long as p < 2, the sequence of
functional values � (ci) =

��m− Eci
��2

X+λ
��Rci
��p
�p generated by the IRLS

is monotonically decreasing. This guarantees the convergence since the
sequence is lower-bounded by the finite quantity � � =minc �m− Ec�2X+
λ�Rc�p�p .
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The IRLS algorithm can be simply adapted in order to solve the mini-
mization with mixed-norm regularization terms. A particular case is the
total variation penalty which corresponds to the �1-norm of the pixel-
wise �2-norm of the spatial gradient [52]. The IRLS algorithm for TV
regularization was first proposed by Wohlberg and Rodríguez [53]. It is
described in Algorithm 8.

Algorithm 8: IRLS solving c� = arg minc �m− Ec�2X+λ�c�TV.

input : A= EHXE, a= EHXm, λ, and c0;
Define the finite difference matrices Rd along every spatial
dimension d;
i← 0;
repeat

for d ← 1 to number of spatial dimensions do
rd ← Rdci;

for n← 1 to number of elements of ci do

δn← λ/
�

2
��

d |(rd)n|2
�

;

Ai ← A+
�

d RH
d diag([δ1, . . . ,δn, . . .])Rd ;

ci+1← CG(Ai ,a,ci) (using Algorithm 6);
i← i + 1;

until desired tolerance is reached;
return ci ;

Duality-based algorithms proved to be an efficient alternative to achieve
TV regularization [54, 55].

3.4.4 Iterative Shrinkage/Thresholding Algorithm

The Iterative Shrinkage/Thresholding Algorithm (ISTA)[17–19], also known
as thresholded Landweber (TL), aims at minimizing the functional

� (w) = �m−Mw�2X+λ�w��1 . (3.31)

Here, we use the notation w because ISTA is often applied on wavelet
coefficients.

An important observation to understand ISTA is to see that the nonlinear
shrinkage operation, sometimes called soft-thresholding, solves a mini-
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Figure 3.2: The shrinkage function Tλ.

mization problem[56], with

Tλ(u) = (|u| −min(λ/2, |u|)) · sgn(u) (3.32)

= arg min
w∈�
|u− w|2+λ|w|.

By separability of norms, this applies component-wise to vectors of �N :

Tλ(u) = arg min
w
�u−w�2�2 +λ�w��1 .

This means that the �1-regularized denoising problem (i.e., when M and
X are identity matrices) is precisely solved by a shrinkage operation.

The ISTA generates a sequence of estimates wi that converges to the min-
imizer w� of (3.31) when it is unique. The idea is to define at each step
a new functional � �(w,wi) whose minimizer wi+1 will be the next esti-
mate

wi+1 = arg min
w
� �(w,wi). (3.33)

Two constraints must be considered for the definition of � �.
(i) It is sufficient for the convergence of the algorithm that � �(w,wi)

is an upper bound of � (w) with equality at w = wi; this guaran-
tees that the sequence

�� (wi)
�

is monotonically decreasing.

(ii) The inner minimization (3.33) should be performed by a simple
shrinkage operation to ensure the rapidity and accuracy of the
algorithm.

In accordance with Constraint (i), � � can take the generic quadratically
augmented form

� �(w,wi) = � (w) +
��w−wi
��2
Λ−MHXM , (3.34)
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with the constraint that (Λ−MHXM) is positive definite, where the weight-
ing matrix Λ plays the role of a tuning parameter.

Then, ISTA corresponds to the trivial choice Λ = L
2 I, with the value of L

chosen to be greater or equal to the Lipschitz constant of the gradient of
�Mw�2X, so that L ≥ 2λmax

�
MHXM
�

.

Let us define a=MHXm, A=MHXM, and

zi =wi + 2(a−Awi)/L. (3.35)

Then, using standard linear algebra, we can write

wi+1 = arg min
w

��w− zi
��2
�2
+ (2λ/L)�w��1

= T2λ/L
�
zi
�

.

This shows that Constraint (ii) is automatically satisfied.

Note that both the intermediate variable zn in (3.35) and the threshold
values will vary depending on L.

Algorithm 9: ISTA solving w� = arg minw �m−Mw�2X+λ�w��1
input : A=MHXM, a=MHXm, w0, and L;
i← 0;
repeat

zi+1←wi + 2(a−Awi)/L;
wi+1← T2λ/L
�
zi+1
�
;

i← i + 1;
until desired tolerance is reached;
return wi ;

Beck and Teboulle[20, Thm. 3.1] showed that this algorithm decreases
the cost function in direct proportion to the number of iterations i.

Proposition 3.4.1. Let
�
wi
�

be the sequence generated by Algorithm 9 with
L ≥ 2λmax (A). Then, for any i > i0 ∈ �,

� (wi)−� (w�)≤
L

2(i − i0)

��wi0 −w�
��2
�2

. (3.36)
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Selecting L as small as possible will clearly favor the speed of conver-
gence. It also raises the importance of a “warm” starting point.

Among the variants of ISTA, FISTA, proposed by Beck and Teboulle[20],
ensures state-of-the-art convergence properties while preserving a com-
parable computational cost. Thanks to a controlled over-relaxation at
each step, FISTA quadratically decreases the cost function, with

� (wi)−� (w�)≤
2L

(i + 1)2
��w0−w�
��2
�2

. (3.37)

More details on FISTA, as a particular case of FWISTA with the trivial
choice Λ = L

2 I, can be found in Section 5.2.3.

An implementation of FISTA is given Algorithm (10).

Algorithm 10: FISTA solving w� = arg minw �m−Mw�2X+λ�w��1
input : A=MHXM, a=MHXm, w0, and L;
Initialization: i = 0, v0 =w0, t0 = 1;
repeat

wi+1← T2λ/L
�
vi + 2(a−Avi)/L

�
(ISTA step);

ti+1←
�

1+
�

1+ 4t2
i

�
/2;

vi+1←wi+1+ (ti − 1)
�
wi+1−wi
�
/ti+1;

i← i + 1;
until desired tolerance is reached;
return wi ;
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Chapter 4

Simulation

IN THIS chapter, 1 we present a new method for generating synthetic
MRI data. The quantitative validation of reconstruction algorithms

requires reliable data. Rasterized simulations are popular but they are
tainted by an aliasing component that impacts the assessment of the per-
formance of reconstruction. We introduce analytical simulation tools that
are suited to parallel magnetic resonance imaging and allow one to build
realistic phantoms. The proposed phantoms are composed of ellipses
and regions with piecewise-polynomial boundaries, including spline con-
tours, Bézier contours, and polygons. In addition, they take the channel
sensitivity into account, for which we investigate two possible models.
Our analytical formulations provide well-defined data in both the spatial
and k-space domains. Our main contribution is the closed-form determi-
nation of the Fourier transforms that are involved. Experiments validate
the proposed implementation. In a typical parallel MRI reconstruction
experiment, we quantify the bias in the overly optimistic results obtained
with rasterized simulations—the inverse-crime situation. We provide a
package that implements the different simulations and contains tools to
guide the design of realistic phantoms.

4.1 Motivations

An active area of research in magnetic resonance imaging (MRI) is the
development of reconstruction algorithms. In particular, the inverse-

1. This chapter is partly Copyright c�, 2012, IEEE. Adapted, with permission,
from [57].
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problem approach is getting popular [58], where one relies on an ac-
curate model of the measurement process and possibly on additional in-
formation about the object being imaged.

In general, the development of any reconstruction approach requires that
it be evaluated and compared to other existing methods. There are sev-
eral reasons to rely on simulations in a first step

– saving the costs inherent to getting real scanner data

– testing the suitability of the implemented discrete forward model

– quantitatively evaluating the performance of the reconstruction soft-
ware

– providing reliable ground-truth data to compare with.

However, for the results to be meaningful, simulations must be accom-
plished carefully. For instance, the inverse-crime situation, where ex-
actly the same discrete model is used for simulation and reconstruction,
leads to artificially good results. In the context of MRI, many developers
of algorithms base their simulations on rasterized images. One should
just be aware that such testing does not account for the full continuous-
domain reality, because it neglects the aliasing that is inherent to spatial
discretization. More realistic simulations are required to remove this bias
and to ensure that the methods will perform adequately in practice.

A method to obtain resolution-independent simulations is to formulate
the simulation analytically in the continuous domain. This approach goes
back to Shepp and Logan [59], who introduced an ellipse-based phantom
(SL) for X-ray tomography. For MRI, several analytical phantoms have
been proposed. The first works, based on the SL phantom, are by Smith
et al. [60], followed by Van de Walle et al. [61]. More recently, Koay
et al. [62] worked out the MR contribution of an ellipsoid for the 3-D
extension of the SL phantom. Gach et al. [29] adapted these elliptical
phantoms specifically for MRI, introducing realistic physical parameters
as well as T1 and T2 relaxation times. The family of analytical phantoms
is extended by two recent works by Greengard and Stucchio [63] that use
Gaussian functions, and Ngo et al. [64] that introduce 3-D polyhedra.

The attractiveness of currently known analytical phantoms is limited for
two reasons. First, the vast majority of currently available phantoms (ex-
cept [64]) use ellipses as basic elements. While such simple shapes have
the advantage of mathematical tractability, they do not lend themselves
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well to the generation of images with realistic anatomical features. Sec-
ondly, to the best of our knowledge, no analytical phantom has been
proposed that would take into account MRI receiving-coil sensitivities in
the context of the simulation of parallel MRI experiments [3].

In this work, we extend the class of available analytical phantoms by in-
troducing regions parameterized by spline contours which are general
enough to reproduce polygons and Bézier contours. Our shapes are well
suited to the description of realistic anatomical regions [65]. To accu-
rately simulate image formation in parallel MRI, we also make use of an-
alytical models for the coil sensitivity maps. Specifically, we investigate
the use of two classes of basis functions—polynomials [3] and complex
sinusoids—which both have the ability to generate maps that are phys-
ically realistic. These parametric forms are used to derive closed-form
solutions for the MRI coil data. We have implemented and tested both
models.

This chapter is organized as follows: in Section 4.2, we present the dif-
ferent models considered for the parallel MRI measurement process, the
analytical phantom, and the coil sensitivities. We motivate and com-
pare the polynomial and the proposed sinusoidal models. In Section 4.3,
we propose the main theoretical elements that make the analytical MRI
simulation possible, deferring the more technical considerations until Ap-
pendices A.1, A.2, and A.3. Finally, we present in Section 4.4 the exper-
iments that validate our implementation of the theoretical tools and an
application that quantifies the bias of rasterized simulations on linear and
nonlinear reconstructions, in a typical parallel MRI setup.

4.2 Modeling

In this section, we present the MRI measurement model and building
blocks that are used to define our phantom.

4.2.1 Parallel MRI

We use the well-established linear model for parallel MRI that relates the
object ρ to the k-space signal mSn

observed by each receiving coil, via the
Fourier integral

mSn
(k) =
�

Sn(r)ρ(r)e−j2πk·rdr, (4.1)
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where Sn accounts for the sensitivity map of the n-th receiving channel.
We refer to Chapter 2 for more details, in particular, the relation with the
Biot-Savart law.

4.2.2 Analytical Phantom

We mathematically define the phantom ρ as a simple function, involving
R regions �i of constant intensity ρi

ρ(r) =
R�

i=1

ρiχ�i
(r). (4.2)

The term region refers to a connected and bounded set of �d . The symbol
χ� denotes the characteristic function of a region � . Such a phantom
has a limited spatial support (

�R
i=1�i) that we call a region of interest

(ROI).

This model allows us to render realistic phantoms of two kinds

– piecewise-constant phantoms that mimic segmented data with sharp
contours (e.g., the SL brain phantom)

– textured phantom via a triangular-mesh approach.

We investigate the first approach in this chapter. The contours that are
considered are ellipses, polygons, and quadratic-spline curves. We show
in Figure 4.1 three such phantoms that we use in our experiments.

4.2.3 Sensitivity Models

For computations, we need to parameterize the complex sensitivity maps.
It is commonly admitted that they are smooth and slowly-varying spa-
tially. It is therefore possible to generate physically-realistic sensitivity
maps using a reasonably small number of low-pass basis functions. Here,
we discuss two models that are well-suited for this task. They both relate
linearly the parameters to the complex sensitivity values. Moreover, their
corresponding MRI models involve the Fourier integrals of monomials
over the regions of the phantom.

Definition 4.2.1. For α ∈ �d and � a region of �d

f α� (ω) =
�

�
rαe−jω·rdr. (4.3)
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4.2. Modeling

Figure 4.1: Phantoms parameterized by elliptical and Bézier-defined
regions. From left to right: rectangle phantom used for validation,
the Shepp-Logan phantom, and a proposed brain phantom. The PDF
and SVG versions of these phantoms are available online at http:

//bigwww.epfl.ch/algorithms/mriphantom/.

Here, we adopted the multi-index notation rα defined as zα =
�

zαi
i ∈

�.

4.2.3.1 Polynomial Sensitivity

This model, first proposed in [3] to represent the local behavior of the
sensitivity, assumes that the coil sensitivity S is represented by a polyno-
mial of degree D inside the ROI as

S(r) =
D�

d=0

�

|α|=d

sd,αrα, ∀r ∈ ROI. (4.4)

As the degree D increases, the model will reproduce sharper transitions.
The number of polynomial coefficients in 2-D is Np = (D+ 1)(D+ 2)/2.

The corresponding MR response is given by

mS(k) =
R�

i=1

ρi

D�

d=0

�

|α|=d

sd,α f α�i
(2πk). (4.5)
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Figure 4.2: Grid of the angular frequencies involved in the sinusoidal
model.

4.2.3.2 Sinusoidal Sensitivity

Alternatively, the coil sensitivity is defined by the linear combination of
complex exponentials

S(r) =
�

v
svejr·v, ∀r ∈ ROI. (4.6)

We propose to constrain the problem to the angular frequencies v on
a Cartesian grid with spacings that correspond to twice the considered
field of view (FOV). The low-frequency properties are ensured by only
considering the L × L angular frequencies around the origin (see Figure
4.2).

Similarly to the effect of the polynomial degree D, an increase in the
parameter L allows one to reproduce sharper transitions. The number of
coefficients in 2-D is given by Ns = L2. The corresponding MR response
is given by

mS(k) =
R�

i=1

ρi

�

v
sv f 0
�i
(2πk− v). (4.7)

4.2.3.3 Comparison

In order to evaluate and compare the ability of the two models to de-
scribe realistic sensitivity maps, we considered a 256× 256 rasterization
of the SL phantom and the 27 648 pixels of its ROI. Using Biot-Savart’s
law (2.9), we simulated the complex sensitivity maps of a 24-channel
circular head coil array (FOV: 28 cm, distance to center: 17 cm, radius:
5 cm) distributed around the phantom. In Figure 4.3, the average fitting
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4.3. Analytical MRI Measurements

properties of the two models are presented as a function of the number
of parameters.

We observe that the fitting accuracy of both models rapidly increases with
the number of parameters, with a sensible advantage for the sinusoidal
model. The downside is an increased condition number for the fitting
operations. With respect to that criterion, the sinusoidal model behaves
also better. The maximal spatial errors are comparable for both models.

4.3 Analytical MRI Measurements

4.3.1 Overview of Analytical Fourier Computations

In this section, we present the theoretical tools that are necessary to de-
rive the analytical expression of the MRI measurements. Proofs and ad-
ditional calculation details are provided in Appendices A.1, A.2, and A.3.

The models presented in the previous section allow us to decompose the
analytical MRI measurements into Fourier integrals of the sensitivity over
the regions that compose the phantom. Depending on the type of re-
gion or sensitivity model, we propose tailored methods to decompose the
analytical response as a sum of special functions that can be computed
accurately and rapidly. In Figure 4.4, we present the road map of these
decompositions that are defined and worked out in the sequel.

4.3.2 Elliptical Regions

Let us consider an elliptical region � in 2-D parameterized by its center
rc , the angle θ formed between its semimajor axis A and the abscissa, and
its semiminor axis B. The linear transformation

r �→ u= D−1RT �r− rc
�

, (4.8)

with D = diag(A, B) and R the rotation matrix of angle θ , maps � into a
unit disk, that is to say, � = {u | �u� ≤ 1}. The Fourier transform of the
unit disk involves the functions

Gn(x) = Jn(�x�)/�x�n , (4.9)

where Jn denotes the n-th order Bessel function of the first kind [66].
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Figure 4.3: Fitting properties of the two sensitivity models as a function
of the number of parameters. From left to right: approximation signal to
error ratio (SER) in dB, maximal absolute error, and condition number of
the fitting matrix.

54



4.3. Analytical MRI Measurements
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Figure 4.4: Road map of analytical Fourier computations.

Using the sinusoidal sensitivity model, the integral f 0
� can be worked

out [61] as
f 0
� (ω) = 2π|D|e−jω·rc G1

�
DRTω
�

, (4.10)

where |D| represents the absolute value of the determinant of matrix D.

When considering the polynomial sensitivity model, we suggest to first
consider the change of variables (4.8), rather than computing f α� directly.
We write that
�

�
uαe−jω·rdr= 2π|D|j|α|e−jω·rc

�
∂ |α|G1

∂ xα

��
DRTω
�

. (4.11)

The interesting point is that the partial derivatives ∂ |α|G1/∂ xα can be
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Table 4.1: Closed-form MR contribution of elliptical and quadratic Bézier
regions for the proposed sensitivity models.

Model Contribution of the region to MR measurements

El
lip

se

Sinusoidal 2π|D|e−2πjk·rc
�

v
svejv·rc G1 (DR(−θ )(2πkvcv))

Polynomial 2π|D|e−2πjk·rc

D�

d=0

�

|α|=d

j|α| td,α
∂ |α|G1

∂ xα
(2πDR(−θ )k)

Bé
zi

er

Sinusoidal
�

v
sv f 0
� (2πk− v)

Polynomial
D�

d=0

�

|α|=d

sd,α f α� (2πk)

decomposed recursively as a sum of Gn thanks to the property

∇Gn(x) = −xGn+1(x). (4.12)

The coefficients of the polynomial in terms of the new coordinates (4.8)
are required to satisfy

S(r) =
D�

d=0

�

|α|=d

sd,αrα =
D�

d=0

�

|α|=d

td,αuα. (4.13)

They can be computed by inverting the matrix that relates the Np coeffi-
cients to the sensitivity values at N ≥ Np randomly chosen points in terms
of the new coordinates.

The MR contribution of such an elliptical contour is presented in the up-
per part of Table 4.1.

4.3.3 Piecewise-Quadratic Contours

In this section, we first provide relations for the computation of the d-
dimensional Fourier transform of a monomial delimited by a connected
subset � of �d . With methods that are similar to the ones employed
in [67], we show how to decompose the d-dimensional Fourier integral
into a sum of integrals over the contour ∂� . These summed integrals
are of reduced dimensionality. In a second step, we show how quadratic-
spline curves involve a family of 1-D integrals.
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4.3. Analytical MRI Measurements

4.3.3.1 Fourier Transform of Monomials over a Connected Set

We show that the surface integral f α� in (4.3) can be decomposed into a
sum of contour integrals.

Definition 4.3.1. We define

gα� (0) =
�

∂�

rα+ek

1+αk
ek · ndσ, ∀k ∈ [1, d], (4.14)

gα� (ω) =
�

∂�
rα

e−jω·r

�ω�2
ω · ndσ, ∀ω ∈ �d \ {0} , (4.15)

where n stands for the outward-pointing unit normal of boundary ele-
ment dσ. Note that gα� is not continuous at the origin ω = 0.

Theorem 4.3.2. For ω ∈ �d \ {0} and α ∈ �d , with Definitions 4.2.1 and
4.3.1

f α� (ω) = j
α�

m=0

�
−jω

�ω�2

�α−m

|α−m|!
�
α

m

�
gm
� (ω), (4.16)

and
f α� (0) = gα� (0). (4.17)

The consequence of Theorem 4.3.2 is that the d-dimensional integral f α�
can be decomposed into a sum of (d − 1)-dimensional integrals. The
proof is provided in Appendix A.1.

Note that the case ω = 0, which corresponds to the calculation of the
moments of the region, has been worked out first by Jacob et al. [68] for
parametric 2-D spline contours.

4.3.3.2 Parameterization of a Contour in 2-D

The region � is defined by its boundary, the contour ∂� . In 2-D , a
convenient way to parameterize the contour is by the use of a B-spline
generating function ϕ such that

∀r ∈ ∂� ,∃t ∈ �, r(t) =
�

p∈�
cpϕ(t − p). (4.18)

The considered contour is closed. Consequently, the vector-valued func-
tion r must be periodic. In addition, the number N of coefficients cp that
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characterize the curve must be finite. The simplest way to satisfy these
constraints is to impose that the sequence of coefficients cp be N -periodic.
This enforces the N -periodicity of r.

If we note ϕp the N -periodized version of ϕ, the contour is parameterized
either globally as

∀t ∈ [0, N[ , r(t) =
N−1�

q=0

cqϕp(t − q) (4.19)

or piecewise, with 0≤ t = n+λ < M , n ∈ 0 . . . N − 1 and λ ∈ [0,1[, as

r(λ+ n) =
N−1�

q=0

cn−qϕp(λ+ q). (4.20)

4.3.3.3 Decomposition of the Contour Integrals

We introduce the notation z⊥ for the vector perpendicular to z with same
norm and pointing outwards the region � at the considered point (see
Figure 4.5). We write r�(t) = ∂ r

∂ t (t). The piecewise representation of
the contour (4.20) can be exploited to decompose the contour integral of
interest, for instance (4.14) or (4.15), which leads to the form

�

∂�
F(r) · ndσ =

N−1�

q=0

� 1

0
F
�
r(q+λ)
� · r�⊥(q+λ)dλ. (4.21)

4.3.3.4 Quadratic Bézier Curves

In the sequel, we focus on contours represented by linear and quadratic
B-splines. The former describe polygons while the latter give a piece-
wise description of quadratic Bézier curves. Three equivalent piecewise
representations can be useful and are given in Table 4.2 with their rela-
tionships.

Definition 4.3.3.

h(m)(a, b) =
� 1

0
λme−jλ(a+λb)dλ. (4.22)
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r�⊥(t)
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Figure 4.5: Example of a quadratic-spline-defined region with N = 6
control points. The boundary is counter-clockwise and the normal vector
is outward-pointing. The contour is represented piecewise by quadratic
Bézier curves.

Table 4.2: Piecewise representations of quadratic-B-spline contours.

Representation r(t) = r(λ+ n) with n ∈ � and λ ∈ [0,1]
B-spline λ2

2 cn+
�

1
2 +λ−λ

2
�

cn−1+
1
2 (1−λ)

2 cn−2
Polynomial rn+λβn+λ2γn
Bézier curve (1−λ)2rn+ 2λ(1−λ)cn−1+λ2rn+1

Relations
rn =

1
2

�
cn−1+ cn−2
�

βn = 2
�
cn−1− rn
�

γn = rn+1+ rn− 2cn−1

Proposition 4.3.4. For ω ∈ �d \ {0} and a contour ∂� parameterized
piecewise by r(λ+ n) = rn+λβn+λ2γn, with n ∈ � and λ ∈ [0,1], using
Definitions 4.3.1 and 4.3.3, we have that

gα� (ω) =
N−1�

n=0

e−jω·rn

2|α|+1�

i=0

dn,ih
(i)(ω ·βn,ω · γn) (4.23)

while

gα� (0) =
N−1�

n=0

2|α|+3�

i=0

d �n,ih
(i)(0,0), (4.24)
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where, with the notation σp = |p2|+ 2|p3|, the symbol dn,i stands for

�

p1+p2+p3=α

rp1
n β

p2
n γ

p3
n α!

p1!p2!p3!
ω ·
�
β⊥n δσp,i + 2γ⊥n δσp,i−1

�
, (4.25)

and d �n,i stands for

�

p1+p2+p3=α+ek

rp1
n β

p2
n γ

p3
n α!

p1!p2!p3!
ek ·
�
β⊥n δσp,i + 2γ⊥n δσp,i−1

�
. (4.26)

The values h(m)(a, b) follow a three-term recurrence relation [69]. More
details on their numerical computation are given in Appendix A.2.

Note that the piecewise parameterization of the contour of a polygon
corresponds to the particular case of a quadratic parameterization with
βn = rn+1 − rn and γn = 0. Such simpler polygonal models with homo-
geneous sensitivities have been considered in prior work [63, Prop. 3.2]
using a similar formulation.

4.4 Experiments

4.4.1 Implementation Details

Our implementation uses Matlab 7.12 (Mathworks, Natick). The exper-
iments run on a 64-bit 8-core computer, clock rate 2.8GHz, 8GiB RAM
(DDR2 at 800MHz), Mac OS X 10.6.7.

We implemented the analytical computations as described by the scheme
in Figure 4.4, with double float precision. For efficient computations of
the error function of a complex variable, we coded the critical parts of
erfz in C++/MEX, with POSIX multithreading, following Marcel Leuteneg-
ger’s recommendations. 2 The code implementing Theorem 4.3.2 uti-
lizes Matt Fig’s npermutek. 3 The rasterization of spline-defined regions,
which is performed without approximation, partly relies on Bruno Lu-
ong’s MEX implementation of insidepoly. 4 Our package also includes

2. Available online at https://documents.epfl.ch/users/l/le/leuteneg/
www/ .

3. Available at http://www.mathworks.com/matlabcentral/fileexchange/
11462-npermutek/ .

4. Available at http://www.mathworks.com/matlabcentral/fileexchange/
27840-2d-polygon-interior-detection/ .
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graphical tools to design the analytical phantoms. For purposes of ad-
equate visualization, export to the popular vector-graphics formats SVG
1.1 and PDF (via the PGF/Tikz LATEX package) is supported. The pack-
age is distributed 5 in order to provide sensitivity fitting, phantom-design
interface, analytical simulation tools, and to allow replication of the ex-
periments of this section.

Unlike the sinusoidal model which is very robust to numerical errors,
our current implementation of the three-term recurrence relation (see
Appendix A.2) leads to instabilities when using the polynomial model.
The theoretical relation |h(m)(a, b)| ≤ 1/(m + 1) is sometimes violated
for orders m ≥ 2 and large values of the first argument. This prevented
us to present valid simulations of piecewise quadratic contours combined
with a polynomial sensitivity. Given the comparison of the two models in
Section 4.2.3.3, we considered the sinusoidal model with parameter L =
7, that is Ns = 49 in Figure 4.3, which lead to accurate representations of
the physical sensitivities and numerically tractable inversions.

As an alternative to our analytical method, we consider the traditional
simulation procedure that consists in i) sampling the phantom with a grid
of a given size and ii) resampling the DFT of this discrete image accord-
ing to the desired k-space trajectory. We call this procedure a rasterized
simulation. It is expected to be consistent with our analytical method
only when considering an infinitely dense sampling.

For reconstructions, we consider an optimization problem of the form

x� = arg min
x
�m− Ex�22+λ� (x), (4.27)

where x represents an image, x� is the reconstructed one, m is the con-
catenated scanner data vector, and � is a regularization function. The
MRI encoding matrix E is formed as defined in (3.7) using the usual im-
plicit choice of Dirac’s delta for the generating function.

We used two types of regularizations in our experiments

– � (x) = �x�22 corresponds to a Tikhonov regularization, which leads
to linear reconstructions that we implemented with the conjugate-
gradient method.

– � (x) = �x�TV is the isotropic total-variation pseudo-norm, which
leads to a nonlinear reconstruction problem. This reconstruction scheme

5. Available online at http://bigwww.epfl.ch/algorithms/mriphantom/ .
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Table 4.3: Errors of our analytical simulations with the Rectangle phan-
tom.

NRMSE
max. error max. error
in k-space inverse DFT

1.5e-15 2.8e-16 7.0e-15

is often used in compressed-sensing research and is particularly suited
for dealing with piecewise-constant images such as our phantoms.
We implemented it using the iteratively reweighted least-squares al-
gorithm, also known as the additive form of the half-quadratic mini-
mization [51, 70].

Please refer to Chapter 3 for more details on these regularization schemes.

4.4.2 Validation of the Implementation

4.4.2.1 Simple Example with Homogeneous Sensitivity

As first validation, we consider the simple phantom composed of a rect-
angular region that is represented in Figure 4.1. Under a proper change
of variables, it yields a square and its Fourier transform is given by a
product of sinc functions. This phantom is composed of a polygon and
consequently falls in the category of the spline-defined contours. We test
the accuracy of our proposed simulation method and of the rasterized
approach against the closed-form solution. To do so, we consider the MR
response associated with a homogeneous receiving coil sensitivity and a
256×256 Cartesian k-space sampling. The simulation errors are reported
in Tables 4.3 and 4.4.

As expected, the error of rasterized simulations decreases when the sam-
pling density increases. Meanwhile, the accuracy of our analytical im-
plementation is as good as the machine double float precision would
allow. Thus, we conclude that we can indistinctly use the closed-form
ground truth or our proposed analytical model in the conditions of Sec-
tion 4.4.2.1.
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Table 4.4: Rasterized simulation errors with the Rectangle phantom.

Resolution NRMSE
max. error max. error
in k-space inverse DFT

256 5.58e-02 5.5e-03 5.5e-01
352 2.51e-02 2.0e-03 1.9e-01
400 2.01e-02 1.5e-03 1.6e-01
512 1.25e-02 1.1e-03 1.0e-01
704 7.45e-03 5.5e-04 6.2e-02
800 6.04e-03 5.3e-04 5.4e-02

1024 3.85e-03 3.6e-04 3.9e-02
1408 1.59e-03 1.2e-04 1.5e-02
1600 1.27e-03 1.0e-04 1.2e-02
2048 8.32e-04 5.8e-05 6.7e-03

4.4.2.2 Validation with non-Homogeneous Sensitivity

We now use our analytical phantom as a gold standard to evaluate the
accuracy the measurements obtained from rasterized simulations. We
consider the SL and brain phantoms. The single sensitivity map is com-
puted using Biot-Savart’s law and is approximated on the support of each
phantom with the sinusoidal model. The k-space is on a 128×128 Carte-
sian grid. Errors are reported in Tables 4.5 and 4.6.

We observe that the errors decrease with the same trend as in the rect-
angle case, which strongly suggests that our gold standard is accurate.
Meanwhile, for a given sampling density, the errors occurring with the SL
phantom are consistently larger than the ones corresponding to the brain
phantom. This is explained by the fact that the SL phantom presents edge
transitions of larger intensity.

4.4.3 Applications

4.4.3.1 Investigation of Aliasing Artifacts

Let us consider the function f (u) = Sρ(Mu)which depends on the spatial
sampling step matrix M. According to (4.1), the analytical MR data are
given by mS(k) = |M| f̂ (2πMk).

When the benefits of an analytical model are forsaken, the MRI data are
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Table 4.5: Rasterized simulation errors versus our analytical simulations
with the Brain phantom.

Resolution NRMSE
max. error max. error
in k-space inverse DFT

128 1.45e-01 1.1e-02 2.3e-01
176 9.26e-02 5.7e-03 1.4e-01
256 5.45e-02 3.3e-03 1.1e-01
352 3.48e-02 2.6e-03 7.9e-02
512 2.13e-02 1.4e-03 5.1e-02
704 1.02e-02 6.6e-04 2.0e-02

1024 6.70e-03 4.1e-04 2.1e-02
1408 4.06e-03 2.4e-04 1.4e-02
2048 2.03e-03 1.5e-04 4.8e-03
2816 1.49e-03 9.5e-05 5.6e-03

Table 4.6: Rasterized simulation errors versus our analytical simulations
with the SL phantom.

Resolution NRMSE
max. error max. error
in k-space inverse DFT

128 2.76e-01 2.9e-02 4.7e-01
176 1.79e-01 1.6e-02 3.0e-01
256 9.74e-02 8.8e-03 1.6e-01
352 5.38e-02 4.9e-03 1.1e-01
512 2.85e-02 2.6e-03 6.5e-02
704 2.01e-02 1.7e-03 3.9e-02

1024 1.28e-02 1.0e-03 3.3e-02
1408 6.23e-03 6.1e-04 1.3e-02
2048 3.34e-03 3.0e-04 7.0e-03
2816 2.03e-03 1.7e-04 5.0e-03
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generated from a rasterized version of the phantom and the sensitivity,
using the (non-necessarily uniform) discrete Fourier transform (DFT)

mM(k) = |M|F
�

e−2πjMk
�

, (4.28)

with �Mk�∞ ≤ 1/2 and

F
�

e2jπν
�
=
�

p∈�2

f (p)e−2jπp·ν =
�

q∈�2

f̂
�
ν + q
�

. (4.29)

The right-hand side of (4.29) can be worked out using Poisson’s summa-
tion formula. The terms with q �= 0 represent the aliasing that occurs
with rasterized simulations. Due to the intrinsically discontinuous nature
of the phantom ρ, the Fourier transform f̂ decreases slowly, leading to
significant aliasing artifacts. However, as the sampling density increases
(Tr
�
M
� → 0), the impact of aliasing is reduced, as we saw in Section

4.4.2.

Let us define an ideal anti-aliasing filter h in the Fourier domain as

ĥ(ν) =

�
1 if �ν�∞ ≤ 1/2,
0 otherwise.

(4.30)

For normalized frequencies ν such that �ν�∞ ≤ 1/2, the analytical sim-
ulation (unaliased) is characterized as the DFT of the samples of the
lowpass-filtered continuous signal

f̂ (ν) =
�

p∈�2

�
h ∗ f
�
(p)e−2jπp·ν , (4.31)

where
�
h ∗ f
�

represents the spatial continuous convolution of h and f .

When using a full Cartesian k-space sampling, the classical approach to
reconstruction is to perform an inverse DFT. In this case, the samples of
the signal f will be perfectly recovered out of the rasterized simulation
(4.29) which is not desired because it conceals the existence of the Gibbs
phenomenon due to the antialiasing filter (see, for instance, [71]). By
contrast, the data provided by our analytical model lead to a fairer recon-
struction where the Gibbs phenomenon appears. This effect is illustrated
in Figure 4.6.

Counterintuitively, the reconstructions out of rasterized simulations lead
to aliasing effects that have a positive impact on visual quality. This
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Figure 4.6: 64×64 SL full Cartesian sampling reconstructions. From left
to right: analytical simulation, rasterized “inverse crime” simulation, and
corresponding line profiles.

situation, which occurs when the same model is used for both simula-
tion and reconstruction, is sometimes referred to as “inverse crime”. It
arises because of the artificially imposed consistency between the com-
putational forward models used for simulation and reconstruction. In
such an inverse-crime situation, the continuous nature of the underlying
physical model is not taken into account.

4.4.3.2 Impact of Rasterized Simulations on Reconstruction

We consider a plausible pMRI setup. It involves an array of 8 receiver
head-coils that are uniformly distributed around the phantom. The cor-
responding sensitivity maps are computed thanks to Biot-Savart’s law.
Spiral and EPI k-space trajectories are considered, both supporting a
256× 256 reconstruction matrix with reduction factor R = 4. The chan-
nel data are generated using our analytical method as well as 256× 256
and 512×512 rasterized simulations (see Section 4.4.3.1). The same re-
alization of complex Gaussian noise is added to the simulated data with
different intensities, according to three scenarios: very low noise (40 dB
SNR), normal data (30 dB SNR), and very noisy data (20dB SNR). Re-
constructions are performed using quadratic (Tikhonov linear solution)
and TV regularizations. The reconstruction algorithms exploit the same
forward model, in the form of the same encoding matrix E. The experi-
ments only differ in terms of the input data. The regularization parameter
is tuned to optimize the SER with respect to the ground-truth phantom
(256× 256 rasterization of the phantom). We report our results in Table
4.7 for the spiral trajectory and in Table 4.8 for the EPI experiments. Re-
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Table 4.7: Reconstruction bias of rasterized simulations on Quadratic
and TV regularization reconstructions of the brain phantom for the spiral
SENSE experiment. Optimized SER and corresponding bias are shown in
dB.

Channel data SNR 40dB 30dB 20dB
Sampling density 256 512 256 512 256 512

Linear
SER 24.61 19.92 20.31 17.99 14.09 13.45
Bias 5.07 0.37 2.56 0.24 0.75 0.11

TV
SER 33.75 20.80 27.60 20.26 19.61 17.72
Bias 13.45 0.49 7.75 0.42 2.43 0.54

Table 4.8: Reconstruction bias of rasterized simulations on Quadratic and
TV regularization reconstructions of the brain phantom for the EPI SENSE
experiment. Optimized SER and corresponding bias are shown in dB.

Channel data SNR 40dB 30dB 20dB
Sampling density 256 512 256 512 256 512

Linear
SER 36.25 20.77 26.30 19.79 16.73 15.31
Bias 16.02 0.54 6.95 0.44 1.61 0.19

TV
SER 42.25 20.98 32.75 20.73 23.92 19.29
Bias 21.85 0.58 12.57 0.55 5.02 0.39

constructed images are shown in Figures 4.7 and 4.8, together with their
error maps, in order to illustrate the impact of the inverse-crime situation
(the 256× 256 rasterized simulation) in the different scenarios.

The reconstructions in the spiral experiment are penalized compared to
the EPI ones, in the sense that the high-frequency corners of the k-space
are not sampled which leads to slightly inferior resolution. This explains
that, all other parameters remaining constant, the EPI reconstructions
outperform the spiral ones qualitatively and quantitatively.

We observe that the reconstructions from rasterized simulations consis-
tently outperform the ones obtained from analytical measurements. While
large differences can occur between the inverse-crime scenario (the 256×
256 rasterized simulations) and the analytical simulation data, the 512×
512 simulations yield much closer performance, with at most a 0.6 dB
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Figure 4.7: Reconstructed brain phantom and error maps for the spiral
SENSE experiments.
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Figure 4.8: Reconstructed brain phantom and error maps for the EPI
SENSE experiments.
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SER difference. This is explained by the reduced aliasing artifacts when
doubling the sampling density (see Section 4.4.3.1). As expected for
this type of piecewise-constant phantom, the TV reconstructions consis-
tently outperform the linear ones. Whatever the simulation method is,
TV brings a significant improvement in the very noisy scenario. However,
for the other scenarios (SNR 30dB and 40dB), the improvement over
linear reconstruction is modest when using the analytic measurements,
whereas it is artificially spectacular using the 256× 256 rasterized sim-
ulations. We believe that our quality assessment, obtained analytically,
offers fairer predictions of the practical worth of a reconstruction method
than its overly optimistic rasterized version.

4.5 Summary

We proposed a method to develop realistic analytical phantoms for par-
allel MRI. Our analytical phantom approach offers strong advantages for
the quantitative validation of MRI and pMRI reconstruction software: it
is flexible enough to represent general imaging targets, it provides highly
accurate representation of the physical continuous model and avoids overly
optimistic reconstructions. This kind of framework is also applicable to
the assessment of advanced MRI reconstruction methods such as autocal-
ibrating parallel imaging, B0 correction [2], motion correction [4, 5], or
higher order field imaging [7].

Implementations of the phantom are made available to the community.
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Chapter 5

Efficient Wavelet-Based
Reconstruction

IN THIS chapter, 1 we exploit the fact that wavelets can represent mag-
netic resonance images well, with relatively few coefficients. We use

this property to improve MRI reconstructions from undersampled data
with arbitrary k-space trajectories. Reconstruction is posed as an op-
timization problem that could be solved with the iterative shrinkage/
thresholding algorithm (ISTA) [17–19] which, unfortunately, converges
slowly. To make the approach more practical, we propose a variant that
combines recent improvements in convex optimization and that can be
tuned to a given specific k-space trajectory. We present a mathematical
analysis that explains the performance of the algorithms. Using simu-
lated and in vivo data, we show that our nonlinear method is fast, as it
accelerates ISTA by almost two orders of magnitude. We also show that
it remains competitive with TV regularization in terms of image quality.

5.1 Motivations

MRI scanners provide data that are samples of the spatial Fourier trans-
form (also known as k-space) of the object under investigation. The
Shannon-Nyquist sampling theory in both spatial and k-space domains
suggests that the sampling density should correspond to the field of view

1. This chapter is partly Copyright c�, 2011, IEEE. Adapted, with permission,
from [40] and [72].
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(FOV) and that the highest sampled frequency is related to the pixel
width of the reconstructed images. However, constraints in the imple-
mentation of the k-space trajectory that controls the sampling pattern
(e.g., acquisition duration, scheme, smoothness of gradients) may impose
locally reduced sampling densities. Insufficient sampling results in re-
constructed images with increased noise and artifacts, particularly when
applying gridding methods.

The common and generic approach to alleviate the reconstruction prob-
lem is to treat the task as an inverse problem [3]. In this framework,
ill-posedness due to a reduced sampling density is overcome by intro-
ducing proper regularization constraints. They assume and exploit ad-
ditional knowledge about the object under investigation to robustify the
reconstruction.

Earlier techniques used a quadratic regularization term, leading to so-
lutions that exhibit a linear dependence upon the measurements. Un-
fortunately, in the case of severe undersampling (i.e., locally low sam-
pling density) and depending on the strength of regularization, the re-
constructed images still suffer from noise propagation, blurring, ringing,
or aliasing errors. It is well known in signal processing that the blurring of
edges can be reduced via the use of nonquadratic regularization. In par-
ticular, �1-wavelet regularization has been found to outperform classical
linear algorithms such as Wiener filtering in the deconvolution task [17].

Indicative of this trend as well is the recent advent of Compressed Sensing
(CS) techniques in MRI [6, 9]. These let us draw two important conclu-
sions.

– The introduction of randomness in the design of trajectories favors
the attenuation of residual aliasing artifacts because they are spread
incoherently over the entire image.

– Nonlinear reconstructions—more precisely, �1-regularization— out-
perform linear ones because they impose constraints that are better
matched to MRI images.

Many recent works in MRI have focused on nonlinear reconstruction via
Total Variation (TV) regularization, choosing finite differences as a spar-
sifying transform [6, 8, 10, 12]. Nonquadratic wavelet regularization has
also received some attention [6, 11, 13, 14, 16, 73, 74], but we are not
aware of a study that compares the performance of TV against �1-wavelet
regularization.
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Various algorithms have been recently proposed for solving general lin-
ear inverse problems subject to �1-regularization. Some of them deal
with an approximate reformulation of the �1 regularization term. This
approximation facilitates reconstruction sacrificing some accuracy and
introducing extra degrees of freedom that make the tuning task labori-
ous. Instead, the iterative shrinkage/ thresholding algorithm [17–19]
(ISTA) is an elegant and nonparametric method that is mathematically
proven to converge. A potential difficulty that needs to be overcome is
the slow convergence of the method when the forward model is poorly
conditioned (e.g., low sampling density in MRI). This has prompted re-
search in large-scale convex optimization on ways to accelerate ISTA. The
efforts so far have followed two main directions:

– generic multistep methods that exploit the result of past iterations
to speed up convergence, among them: two-step iterative shrinkage/
thresholding [75] (TwIST), Nesterov schemes [76–78], fast ISTA [20]
(FISTA), and monotonic FISTA [79] (MFISTA);

– methods that optimize wavelet-subband-dependent parameters with
respect to the reconstruction problem: multilevel thresholded Landwe-
ber (MLTL) [80, 81] and subband adaptive ISTA (SISTA) [21].

In this work, we exploit the possibility of combining and tailoring the
two generic types of accelerating strategies to come up with a new algo-
rithm that can speedup the convergence of the reconstruction and that
can accommodate for every given k-space trajectory. Here, we first con-
sider single-coil reconstructions that do not use sensitivity knowledge. In
a second time, we confirm the results with SENSE reconstructions [3].

We propose a practical reconstruction method that turns out to sensi-
bly outperform linear reconstruction methods in terms of reconstruction
quality, without incurring the protracted reconstruction times associated
with nonlinear methods. This is a crucial step in the practical develop-
ment of nonlinear algorithms for undersampled MRI, as the problem of
fixing the regularization parameter is still open. We also provide a math-
ematical analysis that justifies our algorithm and facilitates the tuning of
the underlying parameters.

This chapter is structured as follows: In Section 5.2, we propose a fast
algorithm for solving the nonlinear reconstruction problem and present
theoretical arguments to explain its superior speed of convergence. Fi-
nally, we present in Section 5.3 an experimental protocol to validate and
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compare our practical method with existing ones. We focus mainly on
reconstruction time and signal-to-error ratio (SER) with respect to the
reference image.

5.2 Wavelet Regularization Algorithms

In this section, we present reconstruction algorithms that handle con-
straints expressed in the wavelet domain while solving the classical �1-
regularized minimization problem

w� = arg min
w
� (w), (5.1)

with
� (w) = �m−Mw�2X+λ�w��1 (5.2)

that is justified in Section 3.3.2.1.

By introducing weighted norms instead of simple Lipschitz constants, we
revisit the principle of ISTA algorithm and simplify the derivation and
analysis of this class of algorithms. We end up with a novel algorithm
that combines different acceleration strategies and we provide a conver-
gence analysis. Finally, we propose an adaptation of the fast algorithm
to implement the random-shifting technique that is commonly used to
improve results in image restoration.

5.2.1 ISTA with weighted norms

The standard algorithm ISTA is particularly well-suited for this minimiza-
tion task. Let us recall the key properties of ISTA that are detailed in
Section 3.4.4.

In ISTA, each iteration aims at minimizing in a simple shrinkage step a
surrogate functional that is locally tailored to the objective. The func-
tional

� �(w,wi) = � (w) +
��w−wi
��2
Λ−MHXM (5.3)

satisfies the constraints provided that:

– Λ is diagonal,

– Λ−MHXM is positive-definite.

ISTA corresponds to the trivial choice Λ = L
2 I with L ≥ 2λmax

�
MHXM
�

.
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5.2.2 Subband Adaptive ISTA

SISTA is an extension of the ISTA that was introduced by Bayram and
Selesnick [21]. Here, we propose an interpretation of SISTA as a partic-
ular case of (5.3) with a weighting matrix that replaces advantageously
the step size 2/L. The idea is to use a diagonal weighting matrix Λ−1 =
diag(τ) with coefficients that are constant within a wavelet subband.

Accordingly, SISTA is described in Algorithm 11.

Algorithm 11: SISTA solving w� = arg minw �m−Mw�2X+λ�w��1
input : A=MHXM, a=MHXm, w0, and τ;
Λ−1← diag(τ);
i← 0;
repeat

zi+1←wi +Λ−1(a−Awi);
wi+1← Tλτ
�
zi+1
�
;

i← i + 1;
until desired tolerance is reached;
return wi ;

5.2.2.1 Convergence Analysis

By considering the weighted scalar product
�
x , y
�
Λ instead of L

2

�
x , y
�
,

we can adapt the convergence proof of ISTA by Beck and Teboulle (see
Proposition 3.4.1). This result is new, to the best of our knowledge.

Proposition 5.2.1. Let
�
wi
�

be the sequence generated by Algorithm 11
with Λ−A positive definite. Then, for any i > i0 ∈ �,

� (wi)−� (w�)≤
1

i − i0

��wi0 −w�
��2
Λ . (5.4)

Therefore, by comparing Propositions 3.4.1 and 5.2.1, an improved con-
vergence is expected. The main point is that, for a “warm” starting point
w0 or after few iterations (i0), the weighted norm in (5.4) can yield sig-
nificantly smaller values than the one weighted by L/2 in (3.36). The
proof is provided in Appendix B.1.
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5.2.2.2 Selection of Weights

Bayram and Selesnick [21] provide a method to select the values of τ for
SISTA. To present this result, let us introduce some notations. We denote
by s an index that scans all the S wavelet subbands, coarse scale included,
by τs the corresponding weight constant, and by Ms the corresponding
block of M. We also define γs1,s2

=
�
λmax(MH

s2
Ms1

MH
s1

Ms2
). The authors

of [21] show that, for each subband, the condition

1
τs
>

S�

s�=1

γs,s� (5.5)

is sufficient to impose the positive definiteness of (Λ−MHM) that is re-
quired in Equation 5.3. In the present context, we propose to compute
the values γs,s� by using the power iteration method, once for a given
wavelet family and k-space sampling strategy.

5.2.3 Best of Two Worlds: Fast Weighted ISTA

Taking advantage of the ideas developed previously, we derive an algo-
rithm that corresponds to the subband adaptive version of FISTA. In the
light of the minimization problem (5.2), FWISTA generalizes the FISTA
algorithm using a parametric weighted norm. We give its detailed de-
scription in Algorithm 12, where the difference with respect to FISTA
resides in using the SISTA step.

Algorithm 12: FWISTA
input : A, a, w0, and τ;
Initialization: i = 0, v0 =w0, t0 = 1, Λ−1 = diag(τ);
repeat

wi+1← Tλτ
�

vi +Λ−1(a−Avi)
�

(SISTA step);

ti+1←
�

1+
�

1+ 4t2
i

�
/2;

vi+1←wi+1+ (ti − 1)
�
wi+1−wi
�
/ti+1;

i← i + 1;
until desired tolerance is reached;
return wi ;

In the same fashion as for SISTA, we revisit the convergence results of
FISTA [20, Thm. 4.4] for FWISTA.
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Proposition 5.2.2. Let
�
wi
�

be the sequence generated by Algorithm 12
with Λ−A positive definite. Then, for any i ≥ 1,

� (wi)−� (w�)≤
�

2
i + 1

�2 ��w0−w�
��2
Λ . (5.6)

If � is ε-strongly convex, i.e. ε= 2λmin(ATA)> 0, then

��wi −w�
��

2 ≤ 2

�
2
ε

��w0−w�
��
Λ

i + 1
. (5.7)

The proof is provided in Appendix B.2.

This result shows the clear advantage of FWISTA compared to ISTA (Propo-
sition 3.4.1) and SISTA (Proposition 5.2.1). Moreover, we note that
FWISTA can be simply adapted in order to impose a monotonic decrease
of the cost functional value, in the same fashion as MFISTA. The same
convergence properties apply [79, Thm. 5.1].

5.2.4 Random Shifting

Wavelet bases perform well the compression of signals but can introduce
artifacts that can be attributed to their relative lack of shift-invariance.
In the case of regularization, this can be avoided by switching to a re-
dundant dictionary. The downside, however, is a significant increase in
computational cost. Alternatively, the practical technique referred to as
random shifting (RS) [17] can be used. Applying random shifting is much
simpler and computationally more efficient than considering redundant
transforms and leads to sensibly improved reconstruction.

Here, we propose a variational interpretation that motivates our imple-
mentation of FWISTA with RS (see Algorithm 13). We consider the DWT
[W1 · · ·WNs

]H, with Ws = SsW, where Ss represent the different shift-
ing operations required to get a translation-invariant DWT. The desired
reconstruction would be defined as the minimizer of

� (c) = �m− Ec�2�2 +
λ

Ns

��[W1 · · ·WNs
]Hc
��
�1

. (5.8)

In 1-D , this formulation includes TV regularization, that is the �1-norm of
a single-level undecimated Haar wavelet transform without coarse-scale.
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Rewriting (5.8) in terms of wavelet coefficients, we get

Ns� (c) =
�

s
�s(W−1

s c), (5.9)

with
�s(ws) =
��m−MS−1

s ws
��2
�2
+λ
��ws
��
�1

. (5.10)

For a current estimate, we select a transform Wi and perform a step to-
wards the minimization of the cost with respect to ws while keeping ws� ,
for s� �= s fixed. As the minimization subproblem (5.10) takes the form
(5.2), a SISTA iteration is appropriate. It is expected to have the minimiz-
ers of the functionals �s and the minimizer of (5.8) look very similar. In
the first iterations of the algorithm, the minimization steps with respect
to any ws are functionally equivalent (i.e., the modification is mostly ex-
plained by the gradient step). This is why FWISTA can be used to speedup
the first iterations. When the solution gets close to the solution ISTA steps
are used.

As the scheme is intrinsically greedy, we do not have a theoretical guar-
antee of convergence. Yet, in practice, we have observed that the SER
stabilizes at a much higher value than it does when using ISTA schemes
without RS (see Figure 5.4).

Our method is described in Algorithm 13. Note that it has no more
matrix-vector multiplications per iteration than ISTA, SISTA and FISTA.
Therefore, the computational cost of an iteration is expected to be equiv-
alent.

5.3 Experiments

5.3.1 Implementation Details

Our implementation uses Matlab 7.9 (Mathworks, Natick). The recon-
structions run on a 64-bit 8-core computer, clock rate 2.8 GHz, 8GiB RAM
(DDR2 at 800MHz), Mac OS X 10.6.5. For all iterative algorithms, a
key point is that matrices are not stored in memory. They only repre-
sent operations that are performed on vectors (images). In particular,
a = MHm is computed once per dataset. Matrix-to-vector multiplication
with A=MHM, specifically, EHE, have an efficient implementation thanks
to the convolution structure of the problem [49, 82]. For these Fourier
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Algorithm 13: Our method (uses FWISTA+RS and moves to
ISTA+RS in the neighborhood of the solution)

input : A= EHE, a= EHm, c0, Λ−1 = diag(τ), K;
Consider the sequence of DWT with RS: Wi;
Initialization: i = 0, k = 0, γ= 1, t0 = 1, C0 = � (c0), y0 = c0;
repeat

wi ←Wi
−1yi;

ci+1←WiTλτ
�

wi +Λ−1W−1
i (a−Ayi)
�

;
Ci+1←� (ci) (cost-function evaluation);
if Ci+1 > Ci then

k← k+ 1;

if k = K then
γ← 0;
Λ−1←max{τ}I;
τ←max{τ}1;

ti+1←
�

1+
�

1+ 4t2
i

�
/2;

yi+1← ci+1+ γ
ti−1
ti+1
(ci+1− ci);

i← i + 1;
until stopping condition is met;
return ci ;

precomputations, we used the NUFFT algorithm [48] that is made avail-
able online. 2 For wavelet transforms, we used the code provided online 3

by the authors of [81]. This Fourier-domain implementation proved to
be faster than Matlab’s when considering reconstructed images smaller
than 256× 256 and the Haar wavelet. It must also be noted that the 2-D
DFT was performed using the FFTW library which efficiently parallelizes
computations.

For Tikhonov regularizations, we implemented the classical conjugate
gradient (CG) algorithm, with the identity as the regularization matrix.
For TV regularizations, we considered the iteratively reweighted least-
squares algorithm (IRLS), which corresponds to the additive form of half-
quadratic minimization [51, 70]. We used 15 iterations of CG to solve the

2. Available at http://www.eecs.umich.edu/~fessler/code/ .
3. Available at http://bigwww.epfl.ch/algorithms/mltldeconvolution .
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linear inner problems, always starting from the current estimate, which
is crucial for efficiency. For the weights that permit the quadratic approx-
imation of the TV term, we stabilized the inversion of very small values.

We implemented ISTA, SISTA, and FWISTA as described in Section 5.2,
with the additional possibility to use random shifting (see Section 5.3.3.2).
For the considered reconstructions using our method, described in Algo-
rithm 13, K = 30 was a reasonable choice. The Haar wavelet transform
was used, with 3 decomposition levels when no other values are men-
tioned. As is usual for wavelet-based reconstructions, the regularization
was not applied to the coarse-level coefficients.

Reconstructions were limited to the pixels of the ROI for all algorithms.
The regularization parameter λ was systematically adjusted such that
the reconstruction mean-squared error (MSE) inside the ROI was min-
imal. For practical situations where the ground-truth reference is not
available, it is possible to adjust λ by considering well-established tech-
niques such as the discrepancy principle, generalized cross validation, or
L-curve method [83].

5.3.2 Spiral MRI Reconstruction

In this section, we focused on the problem of reconstructing images of
objects weighted by the receiving channel sensitivity, given undersam-
pled measurements. This problem, which involves single-channel data
and hence differs from SENSE, is challenging for classical linear recon-
structions as it generates artifacts and propagates noise. We considered
spiral trajectories with 50 interleaves, with an interleave sampling den-
sity reduced by a factor R = 1.8 compared to Nyquist for the highest
frequencies and an oversampling factor 3.5 along the trajectory. Spiral
acquisition schemes are attractive because of their versatility and the fact
that they can be implemented with smooth gradient switching [84, 85].

We validate the results with the three sets of data that we present below.
The corresponding reference images are shown in Figure 5.1.

5.3.2.1 MR Scanner Acquisitions

The data were collected on a 3T Achieva system (Philips Medical Sys-
tems, Best, The Netherlands). A field camera with 12 probes was used to
monitor the actual k-space trajectory [86]. An array of 8 head coils pro-
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vided the measurements. We acquired in vivo brain data from a healthy
volunteer with parameters TR = 1000 ms and TE = 30 ms. The excitation
slice thickness was 3 mm with a flip angle of 30◦. The trajectory was de-
signed for a FOV of 25 cm with a pixel size 1.5mm. It was composed of
100 spiral interleaves. The interleaf distance for the highest frequencies
sampled defined a fraction of the Nyquist sampling density (R= 0.9).

The subset used for reconstruction corresponds to half of the 100 inter-
leaves. The corresponding reduction factor, defined as the ratio of the
distance of neighboring interleaves with the Nyquist distance, is R= 1.8.

5.3.2.2 Analytical Simulation

We used analytical simulations of the Shepp-Logan (SL) brain phantom
with a similar coil sensitivity, following the method described in [87].
The values of these simulated data were scaled to have the same mean
spatial value (i.e., the same central k-space peak) as the brain reference
image. A realization of complex Gaussian noise was added to this syn-
thetic k-space data, with a variance corresponding to 40 dB SNR. The
176× 176 rasterization of the analytical object provided a reliable refer-
ence for comparisons.

5.3.2.3 Simulation of a Textured Object

A second simulation was considered with an object that is more realistic
than the SL phantom. We chose a 512× 512 MR image of a wrist that
showed little noise and interesting textures. We simulated acquisitions
with the same coil profile and spiral trajectory (176 × 176 reconstruc-
tion matrix), in presence of a 40dB SNR Gaussian complex noise. The
height of the central peak was also adjusted to correspond to that of the
brain data. The reference image was obtained by sinc-interpolation, by
extracting the lowest frequencies in the DFT.

5.3.3 Results

In this section, we present the different experiments we conducted. The
two main reconstruction performance measures that we considered are

– Reconstruction duration, which excludes all aforementioned pre-
computations and the superfluous monitoring operations.
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Figure 5.1: Reference images from left to right: in vivo brain, SL refer-
ence, and wrist.

– Signal to error ratio with respect to a reference, defined as

SER(�ρ,ρref) =
��ρref

��
�2
/
��ρref− �ρ
��
�2

and SERdB(�ρ,ρref) = 20 log10
�
SER(�ρ,ρref)
�
. Practically, the refer-

ences are either the ground-truth images or the minimizer of the cost
functional. It is known that SER is not a foolproof measure of visual
improvement but large SER values are encouraging and generally cor-
relate with good image quality.

5.3.3.1 Convergence Performance of IST-Algorithms

In this first experiment, we compared the convergence properties of the
different ISTA-type algorithms, as presented in Section 5.2, with the Haar
wavelet transform. The data we considered are those of the MR wrist
image. The regularization parameter was adjusted to maximize the re-
construction SER with respect to the ground-truth data. The actual min-
imizer of the cost functional, which is the common fixed-point of this
family of algorithms, was estimated by iterating FWISTA 100000 times.

The convergence results are shown in Figures 5.2 and 5.3 for the simula-
tion of the MR wrist image. Similar graphs are obtained using the other
sets of data.

For a fixed number of iterations, FISTA schemes (FISTA and FWISTA) re-
quire roughly 10% additional time compared to ISTA and SISTA. In spite
of this fact, their asymptotic superiority appears clearly in both figures.
The slope of the decrease of the cost functional in the log-log plot of Fig-
ure 5.3 reflects the convergence properties in Propositions 3.4.1, 5.2.1,
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Figure 5.2: Time evolution of the SER with respect to the minimizer for
several ISTA algorithms. Times to reach 30dB are delineated.
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Figure 5.3: Time evolution of the difference in cost function value with
respect to the minimizer for several ISTA algorithms.
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Table 5.1: Values of the optimal SER and corresponding regularization
parameters are shown for the different wavelet bases.

Wavelet Without RS With RS
Basis λ opt. SER (dB) λ opt. SER (dB)

SL

Haar 1 870 12.65 5 650 13.38
Spline 2 2 510 12.16 3 900 12.53
Spline 4 830 10.75 7 770 11.58
Spline 6 1 460 9.70 1 370 10.38

W
ri

st

Haar 1 600 15.93 1 490 18.70
Spline 2 946 17.33 850 18.24
Spline 4 1 070 17.32 1 190 18.05
Spline 6 1 350 17.07 1 260 17.87

and 5.2.2. When considering the first iterations, which are of great-
est practical interest, the algorithms with optimized parameters (SISTA
and FWISTA) perform better than ISTA and FISTA (see Figure 5.3). The
times required by each algorithm to reach a 30 dB SER (considered as
a threshold value to perceived changes) are 415s (ISTA), 53 s (SISTA),
12.7 s (FISTA), and 4.4 s (FWISTA). With respect to this criterion, SISTA
presents an 8-fold speedup over ISTA, while FWISTA presents a 12-fold
speedup over SISTA and nearly a 3-fold speedup over FISTA. It follows
that FWISTA is practically close to two orders of magnitude faster than
ISTA.

5.3.3.2 Choice of the Wavelet Transform and Use of Random Shifting

The algorithms presented in Section 5.2 apply for any orthogonal wavelet
basis. For the considered application, we want to study the influence of
the basis on performance. In this experiment we considered the Battle-
Lemarié spline wavelets [42]with increasing degrees, taking into account
the necessary postfilter mentioned in (3.5).

We compared the best results for several bases. They were obtained with
FWISTA after practical convergence and are reported in Table 5.1. Fig-
ure 5.4 illustrates the time evolution of the SER using ISTA and FWISTA
in the case of the SL reconstruction. Similar graphs are obtained with the
other sets of data.

It is known that the Haar wavelet basis efficiently approximates piecewise-
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Figure 5.4: Time evolution of the SER for several algorithms for the SL
simulation using Haar wavelets.

constant objects like the SL phantom, which is consistent with our results.
On the other hand, splines of higher degree, which have additional van-
ishing moments, perform better on the textured images (upper part of
Table 5.1).

We present in the lower part of Table 5.1 the performances observed
when using ISTA with RS. We conclude that, in the case of realistic data,
it is crucial to use RS as it improves results by at least 0.7dB, whatever
the wavelet basis is. The remarkable aspect there is that the Haar wavelet
transform with RS consistently performs best. Two important things can
be seen in Figure 5.4: FWISTA is particularly efficient during the very
first iterations, while SISTA with RS yields the best asymptotic results in
terms of SER and stability. Our method combines both advantages.

In Table 5.2, we present the results obtained using different depths of
the wavelet decompositions. Our reconstruction method is used together
with the Haar wavelet transform and RS. The performances are similar
but there seems to be an advantage in using several decomposition levels
both in terms of SER and reconstruction speed. The FWISTA scheme
seems to recoup the cost of the wavelet transform operations associated
to an increase in the depth of decomposition.
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Table 5.2: Results of the proposed wavelet method for different wavelet
decomposition depths. Values of the regularization parameter, the final
SER, the relative maximal spatial domain error, and the time to reach
−0.5 dB of the final SER.

Depth λ opt. SER (dB) �∞ error (%) t−0.5 dB (s)

SL

1 5 330 13.25 50 6.56
2 5 110 13.34 51 6.19
3 5 680 13.39 54 6.93
4 5 200 13.35 53 7.59

W
ri

st

1 1 500 18.54 15.5 5.88
2 1 520 18.66 16 5.23
3 1 570 18.71 16 5.33
4 1 700 18.70 16.5 4.25

Br
ai

n

1 9 650 18.78 17.3 8.99
2 10 800 19.00 17.5 7.03
3 11 400 18.99 17.49 6.33
4 11 400 18.96 17.0 7.97

5.3.3.3 Practical Performance

We report in Table 5.3 the results obtained for different reconstruction ex-
periments using state-of-the-art linear reconstruction, TV regularization,
and our method. The images obtained when running the different algo-
rithms after approximately 5 s, and after practical convergence as well,
are shown in Figure 5.5. We display in Figure 5.6 the time evolution of
the SER for the different experiments. In each case, we emphasize the
time required to reach −0.5dB of the asymptotic value of SER. Finally,
we present in Figure 5.7 the reconstructions and in Figure 5.8 the error
maps of the different IST-algorithms at different moments of reconstruc-
tion. This was done with the wrist simulated experiment using the Haar
wavelet basis and RS.

Firstly, we observe that TV and our method achieve similar SER (Ta-
ble 5.3) and image quality (Figure 5.5). They both clearly outperform
linear reconstruction, with a SER improvement from 1.5 to 3dB, depend-
ing on the degree of texture in the original data. Moreover, the pointwise
maximal reconstruction error appears to always be smaller with nonlin-
ear reconstructions. Due to the challenging reconstruction task, which
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Figure 5.5: Result of different reconstruction algorithms for the three ex-
periments. For each reconstruction, the performance in SER with respect
to the reference (top-left), the reconstruction time (top-right) and the
number of iterations (bottom-right) are shown.
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Figure 5.6: Evolution of the performance of the algorithms. From top to
bottom: SL simulation, wrist simulation, and brain data. Times required
to reach −0.5dB of the asymptotic value are indicated.
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Figure 5.7: Reconstructions of different IST-algorithms with RS for the
wrist experiment. For each reconstruction, the performance in SER with
respect to the reference (top-left), the reconstruction time (top-right) and
the number of iterations (bottom-right) are shown.
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Figure 5.8: Error maps of different IST-algorithms with RS for the wrist
experiment. The performance in SER with respect to the reference (top-
left), the reconstruction time (top-right) and the number of iterations
(bottom-right) are shown.
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Table 5.3: Results of the algorithms CG (linear), IRLS (TV), and our
method (wavelets). Values of the regularization parameter, the final SER,
the relative maximal spatial domain error, and the time to reach −0.5 dB
of the final SER.

Method λ opt. SER (dB) �∞ error (%) t−0.5dB (s)

SL

linear 0.0247 8.46 48 0.286
TV 4 090 13.82 49 18.1

wavelets 6 380 13.17 51 5.40

W
ri

st linear 0.436 16.14 21 0.209
TV 760 18.41 16 10.5

wavelets 1 620 18.64 16 4.64

Br
ai

n linear 0.471 15.81 29 0.205
TV 6 050 18.88 12 15.2

wavelets 16 800 18.93 11 6.13

significantly undersamples of the k-space, residual artifacts remain in the
linear reconstructions and at early stages of the nonlinear ones. Although
the k-space trajectory is exactly the same in the three cases, artifacts are
less perceived in the in vivo reconstructions, while they stand out for the
synthetic experiments.

Secondly, it clearly appears that the linear reconstruction, implemented
with CG, leads to the fastest convergence, unfortunately with suboptimal
quality. For a reconstruction time one order of magnitude longer, our
accelerated method provides better reconstructions. This is illustrated in
Figure 5.5 for reconstruction times of the order of five seconds (rows 1,
2, and 4).

Finally, we observe in Figures 5.7 and 5.8 the superiority of the pro-
posed FWISTA over the other IST-algorithms. For the given reconstruction
times, it consistently exhibits better image quality as can be seen in both
reconstructions and error maps.

5.3.4 SENSE MRI Reconstruction

Our reconstruction method is applicable to linear MR imaging modalities.
In this section, we report results obtained on a SENSE reconstruction
problem.
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5.3.4.1 Sensitivity Weighted Reconstruction

For illustration, let us consider a simple MRI problem with one receiving
channel and a full k-space Cartesian sampling. In such a case, the mea-
surements are expressed as m = Ecorig + b. The system matrix is E = FS
where F corresponds to a unitary Fourier matrix and S is the diagonal
receiving sensitivity matrix.

Applying FISTA with L = 2τ−1 �S�2∞ and τ ≈ 1 results in a gradient step
of the form ci +τ�s�−2

∞ SHS(corig− ci) +τ�s�−2
∞ SHFHb. The latter tends

to be ineffective for the pixels whose locations correspond to a relatively
small sensitivity, this fact being measured by the condition number of S;
i.e., the product �S�∞

��S−1
��
∞. In regard to the convergence result in

Proposition 5.2.2, we see that the constant term of the upper bound for
FISTA is proportional to �S�2∞ as it amounts to �S�2∞

��c0− c�
��2

2.

FWISTA, by contrast, can take advantage of step sizes (gradient and
threshold) that are tailored to the individual pixel sensitivities. In our
simple example, we apply FWISTA with Λ = τ−1SHS. This results into
the simplified gradient step ci + τ(corig − ci) + τSFHb. For the conver-

gence bound, we achieve a constant that is τ−1
��c0− c�
��2

SHS and tends
be significantly smaller than the one obtained with FISTA, especially if
the range of sensitivity values is large.

That is why we propose, in this section, to adapt the threshold and
step-sizes in FWISTA depending both on the spatial localization and the
wavelet subband of the coefficients.

5.3.4.2 Synthetic Data

We first considered a 2-D brain imaging setup. The data are recorded by
four head coils with known sensitivity maps distributed around the sam-
ple. Meanwhile, a radial k-space trajectory with 90 lines that supports a
176× 176 reconstruction is imposed. Our simulation is achieved with a
704× 704 rasterized version of the SL phantom. We are also using real-
istic coil sensitivities computed using Biot-Savart’s law. The 2-levels Haar
wavelet basis is chosen to impose the sparsity constraints. The sum-of-
squares sensitivity is considered for the weights of FWISTA. We exploit
the localization properties of the wavelets to impose the weights on the
wavelet coefficients. The wavelet regularization parameter is the same
across the wavelet subbands except for the coarse coefficients where the
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Figure 5.9: SENSE MRI simulation.
��xk − x�
��

2.

value 0 is imposed. The value λ is optimized for MSE performance. The
initial estimate is c0 = 0.

We compare the convergence speed of ISTA, FISTA, and FWISTA in the
reconstruction task described above. The reference minimizer was de-
termined by running FISTA for 100 000 iterations. Results are shown in
Figures 5.9 and 5.10.

We observe that FWISTA yields nearly 3-fold acceleration over FISTA in
terms of cost functional. The asymptotic rates of FISTA and FWISTA both
on the cost functional value and the distance to the minimizer are similar
and the speedup of FWISTA seems primarily due to a better constant,
which is consistent with our theoretical prediction.

5.3.4.3 Scanner Data

The data were acquired with the same scanner setup as in Section 5.3.2.1.
This time, the data from the 8 receiving channels were used for recon-
struction, as well as an estimation of the sensitivity maps. An in vivo
gradient echo EPI sequence of a brain was performed with T ∗2 contrast.
The data was acquired with the following parameters: excitation slice
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Figure 5.10: SENSE MRI simulation. � (xk)−� (x�).

thickness of 4 mm, TE = 35 ms, TR = 900ms, flip angle of 80◦, and trajec-
tory composed of 13 interleaves, supporting a 200× 200 reconstruction
matrix with pixel resolution 1.18 mm×1.18 mm. The oversampling ratio
along the readout direction was 1.62.

The reference image was obtained using the complete set of data and per-
forming an unregularized CG-SENSE reconstruction. The reconstruction
involved 3 of the 13 interleaves, representing a significant undersampling
ratio R= 4.33.

The images obtained using regularized linear reconstruction (CG), TV
(IRLS), and our method are presented in Figure 5.11. In Figure 5.12, the
SER evolution with respect to time is shown for the three methods. The
times to reach −0.5dB of the asymptotic SER value are 5.9 s (CG), 49.1 s
(IRLS), and 22.8 s (our method).

With this high undersampling, the errors maps show that reconstructions
suffer from noise propagation mostly in the center of the image. It ap-
pears that TV and our method improve qualitatively and quantitatively
image quality over linear reconstruction (see Figure 5.11). As it was ob-
served in Section 5.3.2 with the spiral MRI reconstructions, this in vivo
SENSE experiment confirms that our method is competitive with TV. In
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Figure 5.11: Reconstructions (top row) and error maps (bottom row)
for the SENSE EPI experiment using CG (first column), IRLS-TV (second
column), and our method (third column). For each reconstruction, the
performance in SER with respect to the reference (top-left corner), the
reconstruction time (top-right corner), the number of iterations (bottom-
right corner) and a magnification of the central part (bottom-left) are
shown.

terms of reconstruction duration, our method proves to converge in a
time that is of the same order of magnitude as CG (see Figure 5.12).

5.4 Summary

We proposed an accelerated algorithm for nonlinear wavelet-regularized
reconstruction that is based on two complementary acceleration strate-
gies: use of adaptive subband thresholds plus multistep update rule. We
provided theoretical evidence that this algorithm leads to faster conver-
gence than when using the accelerating techniques independently. In the
context of MRI, the proposed strategy can accelerate the reference algo-

95



5. EFFICIENT WAVELET-BASED RECONSTRUCTION

0 50 100 150
4

6

8

10

12

14

16

time (s)

S
E

R
 (

d
B

)

 

 

Linear

TV

Our method

Figure 5.12: Evolution of the performance of the algorithms. Times re-
quired to reach −0.5dB of the asymptotic value are indicated.

rithm up to two orders of magnitude. Moreover, we demonstrated that,
by using the Haar wavelet transform with random shifting, we are able
to boost the performance of wavelet methods to make them competitive
with TV regularization. Using different simulations and in vivo data, we
compared the practical performance of our reconstruction method with
other linear and nonlinear ones.

The proposed method is proved to be competitive with TV regularization
in terms of image quality. It typically converges within five seconds for the
single channel problems considered. This brings nonlinear reconstruction
forward to an order of magnitude of the time required by the state-of-the-
art linear reconstructions, while providing much better quality.
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Chapter 6

Conclusion

IN THIS thesis, we presented a collection of new and competitive solu-
tions for the reconstruction of magnetic-resonance images. We now

summarize the main research directions and results in the first section of
this chapter. The potential areas of interest for future research related to
our work are listed in the second section.

6.1 Summary of Results

Modeling the MRI acquisition setup We described the principles of
magnetic resonance imaging (MRI) from a signal-processing perspective.
This allowed us to derive a clean linear discrete model which is consistent
with the equations that govern the continuous physical world. For a given
MRI setup, this numerical model relates the parameters that characterize
the object under investigation to the corresponding scanner data. We
detailed careful and efficient implementations of this model which is the
cornerstone of any reconstruction method.

Realistic simulations for validation The use of simulations of the MRI
data-acquisition process is very convenient for assessing the validity of
reconstruction methods. To that end, we introduced a new theoretical
framework. Among its important novel aspects are the facts that (i) it
fully accounts for the continuous nature of the equations that govern
the physics and that (ii) the parameterization is flexible enough to allow
for the analytical description of realistic MRI setups and phantoms. We
succeeded in designing such a realistic setup and did conduct validation
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experiments with the help of this new simulation tool. In particular, we
measured the image quality obtained from state-of-the-art reconstruction
methods that were applied on data synthesized with both the conven-
tional simulation approach—which is based on a discrete model—and
our analytical method. The results differ significantly: the reconstruction
performance is systematically overestimated in conventional simulations.
This tendency is particularly pronounced with the nonlinear reconstruc-
tion schemes that are increasingly popular in MRI research. Our conclu-
sion is that MRI reconstruction algorithms should not be evaluated using
conventional simulations only. The novel simulation framework that we
propose is a reliable alternative.

Competitive reconstruction of MRI images We presented MRI recon-
struction as a general inverse problem which, in turn, is reformulated
as a minimization problem. We detailed the known approaches leading
to linear reconstruction and demonstrated their strong connections. Ap-
plied on challenging reconstruction tasks such as imaging when k-space
samples are missing, these methods can be largely outperformed by some
promising nonlinear approaches. Among those, we particularly focused
on wavelet regularization. From our investigations about the influence
of the choice of the wavelet transform on image quality, it appears that
the wavelet basis has a limited impact and that it is vain to decompose
the data beyond three levels. We provided a new variational interpreta-
tion that motivates the use of random shifting and deepens the under-
standing of its benefits on computational complexity and reconstruction
quality. In our MRI experiments, random shifting led to a substantial
gain in reconstruction quality, particularly when used together with the
Haar wavelet transform. We also investigated acceleration strategies for
wavelet-based iterative reconstruction. Based on theoretical grounds, we
demonstrated that two recently proposed strategies can be combined syn-
ergistically. In practice, one can tailor the reconstruction scheme to the
MRI setting—k-space trajectory and sensitivity of the receiving coil—to
improve reconstruction speed. We ended up with a practical algorithm
that is optimized for performance in terms of reconstruction quality and
time. We conducted experiments to validate the method with challeng-
ing reconstruction tasks involving single and multiple channel, simulated,
and real-world data. Linear reconstructions were observed to fail in pro-
viding acceptable image quality, contrarily to our reconstruction method
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which is on a par with total-variation regularization for the quality of
the reconstructed images. Typically, our nonlinear method requires few
seconds on a personal computer to perform a reconstruction, which is
comparable to the time required by conventional linear reconstruction
methods but brings a substantial increase in quality.

6.2 Outlook

Extending the analytical phantom The analytical simulation frame-
work we described allows the integration of temporal aspects, for in-
stance moving phantoms (of interest for cardiac MRI) or region-dependent
T1 and T2 parameters.

The phantom we proposed still lacks some texture to look fully realistic.
Good candidates for the description of image texture would arise from
the simulation of mesh-based structures, an aspect of our framework that
we left without investigation.

It is not clear yet how to extend the Bézier-based contour parameteri-
zation to a third dimension while keeping the benefits of a closed-form
description of the simulated data. Since very popular 3-D phantoms are
defined using nonuniform rational B-splines (NURBS) [65], it would be
a great achievement to work out the corresponding analytical solution.

Cross-fertilization The ideas behind our analytical phantom can po-
tentially have an impact in other domains such as spectroscopy.

Adjustment of the regularization parameter The problem of setting a
proper regularization parameter, which is nontrivial for nonlinear recon-
struction in the context of ill-posed problems, makes the reconstruction
time a crucial point for methods involving regularization. Current ap-
proaches to tune this parameter include generalized cross validation [88],
the L-curve method [89], and Monte-Carlo SURE [90]. A recent work
focused on MRI and Gaussian noise seems promising for non-linear re-
construction in MRI [91].

Further speedup in reconstruction time Substantial speedups in the
reconstruction process have been recently reported using parallelization
on dedicated GPU units [92, 93]. There is no apparent obstacle that
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would prevent to employ the same parallelization strategy with our method
to further speedup the reconstruction.

Another promising direction is the recently proposed i-LET approach [94]
that performs well on deconvolution problems. This method provides a
general framework that includes the different multi-step first-order ap-
proaches proposed in recent years to solve large-scale �1-regularized min-
imization problems.

Design of the MRI acquisition setup In this work, we focused on im-
proving the quality of MRI images reconstructed out of data obtained
through conventional acquisition setups. However, the recent trend of
Compressed sensing or Compressive sampling in MRI has brought to light
the potential benefits in revisiting the design of the acquisition setup. The
first observation is that the reconstruction artifacts are less striking when
the undersampling trajectory is randomized. Other designs of the k-space
trajectory are currently under investigation [95]. It is likely that future
research will increasingly involve signal processing in the design of the
MRI setup.

Advanced MRI problems We considered in this thesis the estimation
of the image out of MRI data. This is a linear problem. However, several
challenging MRI problem settings do not fall in this category. This is the
case of the estimation of the receiving coil sensitivity (possibly estimated
jointly with the image), B0 estimation and correction [2], motion correc-
tion [4, 5], or higher-order field imaging [7]. Efficient solutions to these
problems might be found in the future, based on the results obtained with
linear problems.
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Appendix A

Simulation

A.1 Proof of Theorem 4.3.2

First, we consider the case ω = 0.

Proof. Take ψ(r) = rα and ϕ(r) = (ek · r)2/2= r2
k/2. Then, ∇ψ(r) · ek =

αkrα−ek ,∇ϕ(r) = rkek, and∆ϕ(r) = 1. Using Green’s first identity yields

(1+αk) f α� (0) =
�

∂�
rα+ekek · ndσ = (1+αk)gα� (0).

For the case ω �= 0, we need an intermediate result.

Lemma A.1.1. For ω ∈ �d \ {0} and α ∈ �d ,

f α� (ω) = jgα� (ω) +
�

i

�
−jωi

�ω�2

�
αi f α−ei
� (ω). (A.1)

Proof. Use Green’s first identity with ψ(r) = rα, and ϕ(r) = −e−jω·r.
Then, x·∇ψ(r) =

�
i xiαirα−ei ,∇ϕ(r) = je−jω·rω, and∆ϕ(r) = �ω�2 e−jω·r.

Let us continue the proof of Theorem 4.3.2 by induction on n = |α|.
For n = 0, α = 0 and the result holds true according to Lemma A.1.1.
When considering n = 1, α = ei , and Lemma A.1.1, we obtain f ei

� (ω) =
jgei
� (ω)+

ωi

�ω�2 g0
� (ω). This is true for all i, hence the result holds true for
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n = 1. Now, we suppose the result holds true at order n and we consider
α such that |α| = n + 1. From Lemma A.1.1, we have that f α� (ω) =
jgα� (ω) +
�

i

�
−jωi

�ω�2
�
αi f α−ei
� (ω). Since |α− ei |= n, we substitute f α−ei

�
using the induction hypothesis and, after simplifications, we obtain

f α� (ω) = jgα� (ω) + j
�

i

α�

m=0

�
−jω

�ω�2

�α−m

× |α−m|!di(α−m)
�
α

m

�
gm
� (ω)

with di(x) = xi/|x| for x �= 0 and di(0) = 0. By permutation of the sums
and noting that

�
i di(x) = 1 for x �= 0 and

�
i di(0) = 0, we get

f α� (ω) = j
α�

m=0

�
−jω

�ω�2

�α−m

|α−m|!
�
α

m

�
gm
� (ω).

This is valid for all α such that |α| = n+ 1. Hence, we just proved the
result for n+ 1 assuming it holds true for n.

A.2 Characterization and Computations of a Family of
1-D Integrals

Proposition A.2.1. For m ∈ �, h(m) follows the recursion rule

2jbh(m+1)(a, b)+ jah(m)(a, b)−mh(m−1)(a, b)+e−j(a+b)−δm = 0. (A.2)

Proof. Integrate
� 1

0 −j(a+2bλ)λme−jλ(a+λb)dλ by parts and identify h(m+1),
h(m) and h(m−1) if m> 0.

Corollary A.2.2. For small values of a and b, one can rely on the backward
iteration starting from a higher order M > m to get accurate results

– h̃(M+1)(a, b) = h̃(M)(a, b) = 0

– h̃(m)(a, b) =
�

2jbh̃(m+2)(a, b) + jah̃(m+1)(a, b) + e−j(a+b)
�
/(m+ 1).

Proposition A.2.3. For b nonzero and m≥ 1, the forward iteration is used

– h(0)(a, b) =
�
πe

ja2
4b

2
�

jb

�
erf
�
(a+2b)
�

j
2
�

b

�
− erf
�

a
�

j
2
�

b

��
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– h(m+1)(a, b) =
�

mh(m−1)(a, b)− jah(m)(a, b) + e−j(a+b)
�
/(2jb)

with erf(z) = 2z�
π

� 1
0 e−z2 t2

dt.

Proof. From Proposition A.2.1 with m = 0 and b = 0, we get h(0)(a, 0) =
e−ja/2sinc(a/(2π)). In the case b �= 0, we define t = λ + a

2b such that

λ(a+ bλ) = a2

4b − bt2. By Definition (4.22), we get

e−j a2

4b

� a
2b+1

a
2b

e−jbt2
dt,

after the change of variable. Splitting this integral, we get

ej a2

4b

�� a
2b+1

0
e−jbt2

dt −
� a

2b

0
e−jbt2

dt

�
.

The result follows from normalizing the integration intervals.

Proposition A.2.4. For b small, the truncated Taylor series in b = 0 pro-
vides accurate results

h(m)(a, b) =
∞�

n=0

(−jb)nγ(m+ 2n+ 1, ja)
n!(ja)m+2n+1 , (A.3)

where the lower incomplete gamma function is defined as

γ(s, z) = zs

� 1

0
λs−1e−λzdλ.

Proof. Note that e−jλ(a+λb) = e−jλa
�∞

n=0(−jλ2 b)n/n!. By virtue of Fu-
bini’s theorem, we get

h(m)(a, b) =
∞�

n=0

(−jb)nh(m+2n)(a, 0)/n!.

Identify h(m+2n)(a, 0) to γ(m+ 2n+ 1, ja)/(ja)m+2n+1.
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A.3 Proof of Proposition 4.3.4

Proof. We rewrite gα� using Equation (4.21) with F(r) = rαe−jω·rω/�ω�2
for ω �= 0 and F(r) = rα+ekek/(1+αk) for ω = 0. The piecewise param-
eterization of the contour (Table 4.2) is then used, and by virtue of the
multinomial theorem, we expand the terms rα and rα+ek .

104

http://en.wikipedia.org/wiki/Multinomial_theorem


Appendix B

Efficient Wavelet-Based
Reconstruction

B.1 Proof of Proposition 5.2.1

Proof. We rewrite the cost function (5.2) with the change of variable
w� = Λ1/2w. We then apply ISTA to solve the problem in terms of w�.
The new parameters are a� = Λ−1/2a, A� = Λ−1/2AΛ−1/2, and thresholds
λ
�
τk that are specific to each coefficient. Noting that Λ− A is positive-

definite if and only if I − A� is positive-definite leads us to L = 2. The
iteration w�i+1 = Tλ�τ

�
w�i + (a

� −A�w�i)
�

can be rewritten, in terms of
the original variable, as wi+1 = Tλτ

�
wi +Λ−1(a−Awi)

�
. The latter

is nothing but an iteration of SISTA (see Algorithm 11). According to

Proposition 3.4.1, we have� (Λ−1/2w�i)−� (w�)≤
���w�i0 −Λ

1/2w�
���

2
/(i−

i0), which translates directly into the proposed result.

B.2 Proof of Proposition 5.2.2

Proof. In the spirit of the proof of Proposition 5.2.1, we consider the
change of variable w� = Λ1/2w and apply FISTA to solve the new re-
construction problem. The ISTA step w�i+1 = Tλ�τ

�
v�i + (a

� −A�v�i)
�

is equivalent to a SISTA step in terms of the original variable wi+1 =
Tλτ
�

vi +Λ−1(a−Avi)
�

. The convergence results of FISTA [20, Thm.
4.4] applies on the sequence

�
w�i
�

, which leads to� (Λ−1/2w�i)−� (w�)≤
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�
2

i+1

�2 ��w�0−Λ1/2w�
��2. In the strongly convex case, we have

ε

2

��wi −w�
��2

2 ≤ � (wi)−� (w�).

106



Bibliography

[1] P. Lauterbur, “Image formation by induced local interactions: Ex-
amples employing nuclear magnetic resonance,” Nature, vol. 242,
pp. 190–191, 1973.

[2] L. Man, J. Pauly, and M. A., “Multifrequency interpolation for fast
off-resonance correction,” Magnetic Resonance in Medicine, vol. 37,
no. 5, pp. 785–792, April 1997.

[3] K. Pruessmann, M. Weiger, M. Scheidegger, and P. Boesiger,
“SENSE: Sensitivity encoding for fast MRI,” Magnetic Resonance
in Medicine, vol. 42, no. 5, pp. 952–962, October 1999.

[4] M. Zaitsev, C. Dold, G. Sakas, J. Hennig, and O. Speck, “Magnetic
resonance imaging of freely moving objects: prospective real-time
motion correction using an external optical motion tracking sys-
tem,” NeuroImage, vol. 31, no. 3, pp. 1038–1050, 2006.

[5] M. B. Ooi, S. Krueger, W. J. Thomas, S. V. Swaminathan, and T. R.
Brown, “Prospective real-time correction for arbitrary head motion
using active markers,” Magnetic Resonance in Medicine, vol. 62, no.
4, pp. 943–954, 2009.

[6] M. Lustig, D. L. Donoho, and J. M. Pauly, “Sparse MRI: The ap-
plication of compressed sensing for rapid MR imaging,” Magnetic
Resonance in Medicine, vol. 58, pp. 1182–1195, 2007.

[7] B. J. Wilm, C. Barmet, M. Pavan, and K. P. Pruessmann, “Higher
order reconstruction for MRI in the presence of spatiotemporal field
perturbations,” Magnetic Resonance in Medicine, vol. 65, no. 6, pp.
1690–1701, 2011.

107



BIBLIOGRAPHY

[8] K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI
with multiple coils. Iterative image reconstruction using a total vari-
ation constraint,” Magnetic Resonance in Medicine, vol. 57, no. 6, pp.
1086–1098, 2007.

[9] U. Gamper, P. Boesiger, and S. Kozerke, “Compressed sensing in
dynamic MRI,” Magnetic Resonance in Medicine, vol. 59, no. 2, pp.
365–373, 2008.

[10] L. Ying, L. Bo, M. C. Steckner, W. Gaohong, W. Min, and L. Shi-
Jiang, “A statistical approach to SENSE regularization with arbitrary
k-space trajectories,” Magnetic Resonance in Medicine, vol. 60, pp.
414–421, 2008.

[11] B. Liu, E. Abdelsalam, J. Sheng, and L. Ying, “Improved spiral sense
reconstruction using a multiscale wavelet model,” in Proceedings of
ISBI, 2008, pp. 1505–1508.

[12] B. Liu, K. King, M. Steckner, J. Xie, J. Sheng, and L. Ying, “Regu-
larized sensitivity encoding (SENSE) reconstruction using Bregman
iterations,” Magnetic Resonance in Medicine, vol. 61, pp. 145–152,
January 2009.

[13] L. Chaâri, J.-C. Pesquet, A. Bebazza-Benyahia, and P. Ciuciu, “Au-
tocalibrated regularized parallel MRI reconstruction in the wavelet
domain,” in Proceedings of ISBI, Paris, France, May, 14-17 2008, pp.
756–759.

[14] L. Chaâri, J.-C. Pesquet, A. Benazza-Benyahia, and P. Ciuciu, “A
wavelet-based regularized reconstruction algorithm for SENSE par-
allel MRI with applications to neuroimaging,” Medical Image Anal-
ysis Journal, vol. 15, no. 2, pp. 185–201, April 2011.

[15] F. Knoll, K. Bredies, T. Pock, and S. R., “Second order total general-
ized variation (TGV) for MRI,” Magnetic Resonance in Medicine, vol.
65, no. 2, pp. 480–491, Feb 2011.

[16] G. Puy, J. Marques, R. Gruetter, J. Thiran, D. Van De Ville, P. Van-
dergheynst, and Y. Wiaux, “Spread spectrum magnetic resonance
imaging,” IEEE Transactions on Medical Imaging, vol. 31, no. 3, pp.
586–598, March 2012.

108



Bibliography

[17] M. A. T. Figueiredo and R. D. Nowak, “An EM algorithm for wavelet-
based image restoration,” IEEE Transactions on Signal Processing,
vol. 12, no. 8, pp. 906–916, 2003.

[18] J. Bect, L. Blanc-Féraud, G. Aubert, and A. Chambolle, “A �1-unified
variational framework for image restoration,” Lecture Notes in Com-
puter Science, vol. 3024, pp. 1–13, 2004.

[19] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,”
Communications on Pure and Applied Mathematics, vol. 57, no. 11,
pp. 1413–1457, 2004.

[20] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM Journal on Imaging
Sciences, vol. 2, no. 1, pp. 183–202, 2009.
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