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Abstract

In this paper, we discuss the sampling problem with-
out a condition that was assumed in conventional
sampling theorems. This means that we cannot per-
fectly reconstruct all functions in the reconstruction
space. The perfect reconstruction is possible only
for functions in an arbitrary complementary subspace
of the intersection of the reconstruction space and
the orthogonal complement of the sampling space.
We propose a sampling theorem that reconstructs
the oblique projection onto the complementary sub-
space along the orthogonal complement of the sam-
pling space. The sampling theorem guarantees the
perfect reconstruction of functions of special interest
in the reconstruction space, such as the constant func-
tion in image processing applications. In addition, we
explain why a conventional sampling theorem is not
suitable for the present case.

1 Introduction

Sampling is the process of reconstructing functions
of continuous variables from their discrete measure-
ments. The best known result is the sampling theorem
for bandlimited functions [1]. For real world signals
or images, this theorem is applicable only after a pre-
filtering since they are never exactly bandlimited. In
this case, the bandlimited sampling is an approxima-
tion.

There are a number of works that take this ap-
proximation theoretic point of view [2, 3, 4, 5, 6].
They can be summarized as follows: Let V; and V.,
be the sampling space and the reconstruction space
that are spanned by sampling functions and recon-
struction functions, respectively. When we are free
to choose either the sampling functions or the recon-
struction functions, we can obtain the minimal-error
approximation, which is the orthogonal projection of

an original function onto V., by selecting Vs = V.
When the sampling functions are given a priori, Vs is
not equal to V,. in general. In this case, the minimum
error approximation can no longer be obtained from
Then, one possibility is to ob-
tain the oblique projection of the original signal onto
V, along V;- since its measurements are equal to the
original ones.

the measurements.

Within these discussions, the condition V, N V.t =
{0} has been assumed. It ensures that the functions
in V,. can be perfectly reconstructed. However, it is
easy to display cases where the condition does not
hold. For example, let us think of the following sit-
uation: The numbers of sampling and reconstruction
functions are the same, and these functions are lin-
early independent. We denote the sampling space by
Vorg, and assume that V, NV, = {0}. If one of
sampling functions is lost in the acquisition process,
then the sampling space Vs is now a proper subspace
of V,.4, and the condition V,. N V.t = {0} does not
hold anymore. Another simple example related to the
spline sampling theory is shown in Section 2.

In this paper, we discuss the sampling problem for
the case where V. N V- # {0}. In this case, V, is de-
composed into V;. N V- and its arbitrary complemen-
tary subspace in V,., say L. The perfect reconstruction
is possible only for functions in L. We first propose a
sampling theorem that reconstructs the oblique pro-
jection onto L along V;-. Then, we propose the main
sampling theorem which is the special form of the first
sampling theorem with a specific L. It is chosen so
that the following two conditions are satisfied. First,
if we have some functions of special interest in V., and
if those functions do not belong to V. N V., then L
contains those functions. The subspace spanned by
such functions is denoted by V;. The second condi-
tion is that the rest of V; @ (V,NV21) is its orthogonal
complement in V,., which is denoted by V.. The main
theorem guarantees not only the perfect reconstruc-



tion for functions in V;, but also provides the mini-
mum error approximation for functions in the direct
sum of V, and V, NV .

In addition, we compare the proposed sampling the-
orem to the the approach presented in [6]. Although
this is the result for the standard case V,, NV = {0},
it remains well-defined in the present situation. We
investigate the behavior of this type of solution and
show that it is less attractive than the present solution
in the case where V,, N V.- # {0}.

1.1 Mathematical Preliminaries

The following notations are used in this paper.
CY and CX stand for the N-dimensional and
K-dimensional Hermitian space, respectively. Let
{e,(lN) N | and {e(kK)}f:1 be the standard bases in
CY and CX, respectively. That is, e%N) and e(kK) are
the N-dimensional and K-dimensional vectors con-
sisting of zero elements except for the n-th and k-th
elements equal to 1, respectively. Let I be the identity
operator.

The orthogonal complement of a closed subspace S
is denoted by S*. R(A) and N'(A) stand for the range
and the null space of an operator A, respectively. Let
A* be the adjoint operator.

Let AT and Ps denote the Moore-Penrose general-
ized inverse of an operator A and the orthogonal pro-
jection operator onto S, respectively. It holds that

AAT = PRy, ATA=Pp ., (1)

)7
AT = A*(AA")T = (4 4)T A7, (2)
Ps(APs)t = (APs)t and (PsA)'Ps = (PsA)T. (3)

2 Problem Formulation

Let f be an original signal defined on the domain D.
We assume that f lies in a Hilbert space H. The mea-
surements of f, denoted by ¢i[n] (n = 1,2,...,N),
are given by the inner product of f with the sampling
functions {t,}_;:

cifn] = (f, ¢n). (4)

The N-dimensional vector whose n-th element is ¢4 [n]
is denoted by ¢;. Let A; be the operator that maps
f into cy:
c = A f. (5)
The reconstructed signal fis given by a linear com-
bination of reconstruction functions, {ps }%_;:

~ K
F=Y el (6)
k=1

Figure 1: Sampling and Reconstruction Formulation.

Let A, be the operator that maps f into
Ele (f, cpk>e§cK). The K-dimensional vector consist-
ing of ¢y [k] is denoted by e€5. Then, it holds that

f=A4zc. (7)
Let T be a K x N matrix that maps ¢; to ¢s:
c;=Te. (8)
Then, Eqs.(7), (8), and (5) yield
f=ATA.f. 9)

With this formulations, the sampling problem be-
comes a problem of finding T so that f satisfies some
criterion. The sampling and reconstruction formula-
tion is illustrated in Fig.1.

Let V; and V, be subspaces spanned by {¢,}_;
and {¢x} | respectively. They are called the sam-
pling space and the reconstruction space, respectively.
It holds that

Ve = R(A), (10)

V, = R(AY). (11)

So far, the sampling problem was discussed under
the assumption that

V.nV;} = {0} (12)

[4, 5, 6]. This ensures that any f in V,. can be perfectly
reconstructed from the measurements ¢; by choosing
T in Eq.(8) appropriately. However, it is easy to find a
case where Eq.(12) does not hold, as mentioned in the
introduction. Let us present another example. The
B-splines of degree 0 and 1, denoted by 3°(x) and
BY(x), are defined by

o J1(0<z<T),
B (m)_{O(a:<0,:r21), (13)



and
B(z) = (8% * 8°)(2), (14)
respectively, where * is the convolution operator.

Example 1 Assume that N = K and the domain
D =[0,N]. Let o, and @y, be

Ya(z) = B(z —n+1), (15)

pi(z) = B (e —k+1), (16)

respectively, where
Bi(z) = B (z) + B (z — K). (17)
If N is even, then f in Eq.(7) with
e =(1,-1,...,1,-1) (18)
belongs to V;-.

Even in this simple example, Eq.(12) does not hold.
This further motivates our investigation of the case

V., NV #{0). (19)

3 New Sampling Theorem

Eq.(19) implies that all f in V,. cannot be perfectly
reconstructed. Indeed, f in V. N V> yields f=0
because Asf = 0. The perfect reconstruction is possi-
ble only for functions in an arbitrary complementary
subspace of V. N V.- in V,. It is denoted by L, and
satisfies

Le(V,nVH =V, (20)

where @ denotes the direct sum.
We assume one more condition in this paper, which
is
V., + V>, =H. (21)

For example, if the dimension of V; is less than or
equal to that of V,., then Eq.(21) holds.

Eqs.(20) and (21) imply that H can be decomposed
into the direct sum of

H=LeoV> . (22)

Then, we can define the oblique projection operator
onto L along V-, which is denoted by P, y+. We can
achieve

f=PLy:f (23)

for any f in H. In fact, the following theorem holds.

Theorem 1 The oblique projection in Eq.(23) is re-
constructed by Eq.(6) if and only if T in Eq.(8) is
given by

T=(A) Py AT +Y — A, ATV AAT (24)
where Y is an arbitrary operator from CV to CK,

(Proof) Assume that f is the oblique projection in
Eq.(23). Then, it follows from Eq.(9) that

ATAf =Ppyof forany f€H, (25)
which is equivalent to
A:TAS = PL,VSL‘ (26)

Since L is a subspace in V,., it follows from Eq.(11)
that
R(A:) = Vr D) L = R(PL,VSL)‘ (27)

Further, it holds that
N(4s) = N(Ppys). (28)

These two equations imply that Eq.(26) always has a
solution, and its general form is given by Eq.(24) [7].

Conversely, assume that T is given by Eq.(24). It
follows from Eq.(27) that

AX(ANT Py = Pry..
Further, it follows from Eq.(28) that
Py AlA, = Pry..
Hence, from Eqgs.(9) and (24), we have
f=ATAf = AN (A Py ATAf = Ppyaf,
which implies Eq.(23). [ |

Based on Theorem 1, we propose a special sampling
theorem with a specific subspace L. It is chosen so
that the following two conditions are satisfied. First,
if we have some functions of special interest in V., and
if those functions do not belong to V,, N V-, then L
includes those functions. For example, the constant
function is very important in image processing appli-
cations. Let {¢;}/_, be such functions in V,. Let
V; be the subspace spanned by {¢;}._, and A; the
operator defined by

1
Aif = (f. o)el”). (29)
i=1

The subscript ¢ means ‘interest’.
If the direct sum of V, N V- and V; is equal to V.,
that is, if
Vie(Ven VSL) =V, (30)



then L is uniquely determined so that L = V;. Oth-
erwise, we need a second condition. Here, we adopt
the condition that the remainder of V; @ (V, N V1) is
its orthogonal complement in V,., which is denoted by
V.. The subscript ¢ means ‘complement’.
Consequently, the subspace L is determined so that

L=V;®V,, (31)

and the application of Theorem 1 yields to our next
result.

Theorem 2 The oblique projection of any f in H
onto L in Eq.(31) along V- is reconstructed by Eq.(6)
if and only if T in Eq.(8) is given by

= (ANTAM)T +Y - 4, ATV A, AL (32)
where W is an operator defined by

t
W =A]A,; +PR(PVT Vi)
(PR(PV Vs )A )(PR(PV Vs )A*) (33)

In order to prove Theorem 2, we use the following
lemma. Proofs of all lemmas are deferred the ap-

pendix.
Lemma 1 The subspace V. is given by
V. =Py V.NVt (34)

(Proof of Theorem 2) It is obvious that the first
term in the right-hand side of Eq.(33) is the orthogo-
nal projection operator onto V;. The rest of the right-
hand side has the following meaning. Theorem 4 in
[8] implies that Py Vi can be decomposed into the
orthogonal direct sum of

Py, Vi =Pp, v,Vi® (Py,V.N V5.  (35)

Hence, the orthogonal projection operator onto
Py, V, N Vit is given by the difference of those onto
Py, Vs and Pp, v,V;, which is the rest of the right-
hand side of Eq.(33). Since V; and Py, V; NVt are
perpendicular to each other, the sum of these two or-
thogonal projection operators becomes that onto L in
Eq.(31).

Proposition 1 in [6] implies that W (A;W)T A, is the
oblique projection operator onto L along V.-. Since
W is the orthogonal projection operator, it follows
from Eq.(3) that

W (AW = (4, W) (36)
Then, the first term of Eq.(24) yields

(A5)TPpya AT = (A7)T(A )T A AL (37)

Figure 2: Reconstruction f by Theorem 2. Note that
V; and V,. N V- are not perpendicular in general.
Further, it follows from Eq.(2) that

(AW AAL = [{(AW) (A W)} (A W) "] A, AT

= {(AW)* (A W) T W AT A AT
= {(AW)" (A W)} WA
(A1,
so that
(AW A AL = (A, W), (38)
The use of Theorem 1 together with Eqs.(37) and (38)
finally yields Eq.(32). [ |

In order to verify our second condition of the or-
thogonal complement, let us decompose f in L into
two components of

f=1ri+fi (39)

where f; and f; lie in V; and {V. @ (V. N V1)}, re-
spectively. The first component f; is perfectly re-
constructed because it is in V; C L. On the other
hand, the second component f; is not perfectly re-
constructed, but projected onto V.. The projection is
denoted by f.. Then, the reconstruction for f is given
by

f=Ffi+fe (40)

Note that, since V. is perpendicular to V, N V>, f. is
the minimum error approximation of f; in V.. This
guarantees that our sampling theorem provides a good
approximation. These interpretations are illustrated
in Fig.2.
In the extreme case of V; = {0}, the subspace L in
Eq.(31) becomes
L=V, (41)



which is the orthogonal complement of V,, N V.- in
V... Then, Theorem 2 reduces to the following special
form.

Corollary 1 The oblique projection of any f in H
onto L in Eq.(41) along V- is reconstructed by Eq.(6)
if and only if T in Eq.(8) is given by

(Proof) In the case of V; = {0}, the operator W in
Eq.(33) reduces to

W = PR py, v.)- (43)
Hence, it follows from Egs.(1) and (10) that

AW = A (Py, A7) (Py, A7)
= (Py, A7) (Py, A2)(Py, A%)!
= AsPVM

which implies Eq.(32) yields Eq.(42). [ |

The predominant term of the operator 7" in either
Theorem 2 or Corollary 1, is the first one. It involves
the factors A;W and A, which are operators from the
function space H to the vector spaces CV and C¥,
respectively, and which are therefore not suitable for
computer calculations. Hence, by using Eq.(2), we
convert the first term into

(A:)T(ASW)T = (ATA:)TATWA: (ASWA:)T' (44)

Note that the operator A, Ay, A.WA?, and A, WA}
are the K x K, K x N, and N x N matrices, respec-
tively. Hence, they can be calculated numerically in
this form. A similar conversion is possible for Eq.(42).

In this case, the second term becomes A, A%.

4 Discussion

The result proposed in [6] can be applied to the

present case. We compare it to our result. First,

let us review the result.

Proposition 1 [6] Any f € H can be consistently
reconstructed from the measurements ¢, by FEq.(6) if
T in Eq.(8) is given by

T = (A AN, (45)
and the consistent reconstruction is unique.

This is the result for the case of Eq.(12). However,
the operator in Eq.(45) is well-defined even if Eq.(12)
does not hold. The behavior of the operator for the
case of Eq.(19) is clarified in the following theorem.

Theorem 3 The oblique projection of any f in H
onto R(A*A,A?) along V- is reconstructed by Eq.(6)
if and only if T in Eq.(8) is given by

T =(AANT +V — A ATY A AL (46)

In order to prove Theorem 3, we use the following
two lemmas.

Lemma 2 The function space H can be decomposed
into the direct sum of

H=TR(A*A A & V> . (47)

Lemma 3 The operator A%(A,AX)T A, is the oblique
projection operator onto R(A*A,A*) along V-

(Proof of Theorem 3) If we substitute Pp y. by
AX(A AT A, in Eq.(24), it follows from Eqs.(1) and
(3) that

(AP v AT = (A)TAT(A,A7) T A AL

=PRa,) (PR(AS)AsA:PR(AT))TPR(AS)
= (PR(AS)ASA:PR(AT))Ir = (4,401,

ie.,

(AN v Al = (44D (48)

Hence, Lemma 3 implies that Theorem 1 reduces to
the above theorem. [ ]

Theorem 3 means that the reconstruction f by
(AsAX)T lies in R(A%A,A%). Note that this sub-
space changes depending on the sampling operator
A%. There is not a clear reason to use this subspace.
Further, the perfect reconstruction for functions in V;
is not guaranteed, while it is guaranteed in Theorem
2. Hence, to use (A4,A4%)" is not suitable for the case
of Eq.(19).

One might say that we should use some regulariza-
tion technique for the case of Eq.(19). This is a rea-
sonable assertion. However, the technique does not
guarantee the perfect reconstruction for functions in
V;, either.

5 Conclusion

In this paper, we discussed the sampling problem for
the case where the intersection of the reconstruction
space V. and the orthogonal complement of the sam-
pling space V; is not empty. This is a situation that
may happen in practice, as examplified in Sections 1
and 2. In this case, we cannot reconstruct all func-
tions in V. perfectly. The perfect reconstruction is
possible only for functions in an arbitrary complemen-
tary subspace of V,, N V- in V;, which is denoted by



L. We first proposed a sampling theorem that re-
constructs the oblique projection onto L along V. .
Then, we proposed the main sampling theorem which
was the special form of the first sampling thoerem
with a special L. It was chosen so that (1) L contains
a subspace V; spanned by functions of special interest
in V.., and (2) the remainder of V; ® (V, N V,}) is its
orthogonal complement in V., which is denoted by V..
The main theorem guarantees not only the perfect re-
construction for functions in V;, but also yields the
best approximation for functions in the direct sum of
V. and V,, N V5. We also clarified the fact that the
solutions given by conventional projection-based sam-
pling theorems are not suitable for situations where
VNV # {0}, even when the problem is not ill-posed.
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A.1 Proof of Lemma 1

Theorem 4 in [8] implies that V.. can be decomposed
into the orthogonal direct sum of

V, =Py Vo® (V,NVHh).

That is, Py, Vs is the orthogonal complement of V,. N
VSJ- in V.. V. is the intersection of the orthogonal
complements of V; and V,. N VSL. Hence, V, is given
by Eq.(34). [ |

A.2 Proof of Lemma 2

Let u be an element in R(A*A,A*)* NV,. Then, it
holds that
| A,ul|? = (AfA,u,u) = 0,
which implies
N(A,) D R(AXA AN NV, (49)

Taking orthogonal complement of the equation yields
Ve C R(AZAAZ) + V2. (50)
Hence, it follows from Eq.(21) that
H=V, +V}: CR(AIAA) + V1,
which implies
H=TR(AIA A+ V1. (51)

Let u be an element in R(A*A,A%) N V. Then,
u satisfies Asu = 0, and there exist some v such that
u=ArA,A%v. It holds that

0= (Agu,v) = (A, A7 A, A%v,v) = || A A%

Hence, A, AZv = 0 which implies v = 0. Therefore,
the right-hand side of Eq.(51) is a direct sum, and
Eq.(47) holds. [ |

A.3 Proof of Lemma 3

It is obvious from [6] that the operator is projection
along V.. Hence, we show that

R(AZ(AADTA) = R(AIA A, (52)

It holds that
R(AF(AsADTAL) € R(A7(AAD)T)
R(AL(AsAD)") = R(A7AAT)
(AF(AADTAAL(AAD)
(Ar(A.ADTA,),

=R
CR
which implies Eq.(52). [ |
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