
Parametric Shape Processing
in Biomedical Imaging

Mathews Jacob



Thèse No 2857 (2003)
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Abstract

In this thesis, we present a coherent and consistent approach for the estimation
of shape and shape attributes from noisy images. As compared to the traditional
sequential approach, our scheme is centered on a shape model which drives the
feature extraction, shape optimization, and the attribute evaluation modules.

In the first section, we deal with the detection of image features that guide
the shape-extraction process. We propose a general approach for the design of 2-
D feature detectors from a class of steerable functions, based on the optimization
of a Canny-like criterion. As compared to previous computational designs, our
approach is truly 2-D and yields more orientation selective detectors.

We then address the estimation of the global shape from an image. Specif-
ically, we propose to use cubic-spline-based parametric active contour models
to solve two shape-extraction problems: (i) the segmentation of closed objects
and (ii) the 3-D reconstruction of DNA filaments from their stereo cryo-electron
micrographs. We present several enhancements of existing snake algorithms for
segmentation. For the detection of 3-D DNA filaments from their orthogonal
projections, we introduce the concept of projection-steerable matched filtering.
We then use a 3-D snake algorithm to reconstruct the shape.

Next, we analyze the efficiency of curve representations using refinable basis
functions for the description of shape boundaries. We derive an exact expression
for the error when we approximate a periodic signal in a scaling-function basis.
Finally, we present a method for the exact computation of the area moments of
such shapes.

i



ii



Résumé

Dans cette thèse, nous présentons une approche logique et cohérente pour
l’évaluation de la forme et des attributs de forme à partir d’images bruitées.
Par rapport à l’approche séquentielle traditionnelle, notre approche est basée
sur un modèle de la forme qui pilote l’extraction de primitives, l’optimisation
des formes et les modules d’évaluation d’attributs.

Dans la première section, nous nous intéréssons à la détection des primitives
d’image qui guident le processus d’extraction des formes. Nous proposons une
approche générale—basée sur l’optimisation d’un critère de type Canny—pour
la conception de détecteurs de primitives 2–D à partir d’une classe de fonc-
tions orientables. Comparée aux méthodes de calcul précédents, notre approche
est véritablement 2–D et engendre des détecteurs dont l’orientation est plus
sélective.

Nous abordons ensuite l’évaluation de la forme globale à partir d’une im-
age en utilisant les primitives préalablement détectées. Spécifiquement, nous
proposons d’employer les modèles actifs paramétriques basés sur les splines cu-
biques pour résoudre deux problèmes d’extraction de forme : (i) la segmenta-
tion d’objets fermés et (ii) la reconstruction 3-D de filaments d’ADN à partir
de leurs micrographes stéréos obtenus par microscopie cryo-électronique. Nous
proposons plusieurs améliorations aux algorithmes de snakes pour la segmen-
tation déjà existants. Pour la détection des filaments d’ADN 3–D à partir de
leurs projections orthogonales, nous introduisons le concept de filtrage adapté à
projections orientables. Nous employons alors un algorithme de snake 3-D pour
reconstruire la forme.

Ensuite, nous analysons l’efficacité des représentations de courbes en util-
isant des fonctions de base raffinables pour la description des bords des formes.
Nous dérivons une expression exacte pour l’erreur quand nous approximons un
signal périodique dans une base de fonctions d’échelle. En conclusion, nous
présentons une méthode pour le calcul exact des moments des zones définies
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Chapter 1

Introduction

The sense of vision is fundamental to our perception of the world. The shape,
size, color, and texture of an object are the visual attributes that differentiate
it from its surroundings. Of these, the shape and size are perhaps the most
important attributes.

The concept of shape is crucial in many areas of science. For example, it
plays an important role in biochemistry where it is the shape of a molecule that
determines for the most part its ability to interact with other molecules. It
is widely used in evolutionary biology where the distinctions within a particu-
lar species are often quantified in terms of shape; a systematic study of these
shape changes is called morphometry[1, 2]. Over the years, biologists have in-
vestigated shape changes during the embryonic development of an organism,
bacterial colonies when subjected to different stimuli, etc. [3]. The quantifi-
cation of shape and shape changes (shape analysis) play an equally important
role in understanding the dynamics of cellular organells, growth of cells, etc. It
is also a key tool in medicine for understanding various body functions and for
detecting abnormalities. Traditionally, shape analysis is performed by visual in-
spection or by direct measurement of some geometrical properties of the object
such as its length, area, angles, etc.

The study of shape in the biomedical sciences is often performed using sophis-
ticated imaging techniques. Microscopy, for example, enable us to see minute
objects beyond the resolution limits of the eye, while x-ray imaging let us non-
invasively observe the internal structure of objects. Recording techniques such
as photography and video make the storage and transmission of visual infor-
mation possible, thus breaking the spatial and temporal constraints. Many of
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these modern imaging techniques require sophisticated signal processing tools.
Thanks to the increasing power of digital computers, it is also possible to per-
form complex mathematical transformations on the visual information. There
is a strong interest in computer-aided shape analysis from image data because
it is more precise, faster and more reproducible than manual approaches.

In this thesis, we focus our attention on the processing of shapes in the broad
area of biological and medical imaging. Computer-aided shape analysis is now
an accepted tool in clinical diagnosis. Inspite of extensive research in this area,
automatic shape processing still remains a challenging problem—based on our
current knowledge, it seems unlikely that there will ever be a general solution
that fits all applications. Thanks to the recent technological advances in high-
resolution approaches, imaging is also emerging as a key tool for understanding
various biomolecular processes. The biological constraints present several new
challenges for shape extraction and processing. In biology, one is often forced
to push the instrument to its limits, which results in a very low signal-to-noise
ratio and reduced image contrast. The challenge is to create robust algorithms
that can efficiently extract the valuable information from the available image
data. In this context, we present a coherent model-based framework for the
processing of shapes. Specifically, we focus on the robust extraction of image
features, the estimation of shapes, and the derivation of shape features.

1.1 Shape

The word ”shape” is widely used in common language to characterize the ap-
pearance of an object. Usually, our perception of the shape of an object is
independent of its exact location, orientation and size. Hence an intuitive defi-
nition of shape may be given as follows [4, 5].

Definition 1 The shape of an object is the geometrical information that re-
mains when location, scale and rotational effects are filtered out from it.

In mathematical terms, the shape information consists of the geometrical fea-
tures of an object that are invariant to Euclidean similarity transformations.
Two objects have the same shape if one can be mapped onto the other by
scaling, rotation and translation.

The spatial description of an object may be provided in many equivalent
ways. The most popular representations are:
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Geometrical
Information

Object

Shape

Differential
Properties

 Moment
Invariants

Shape Attributes

Boundary
   curve

       Region 
representation      Skeleton

Description

   schemes

Green's theorem

             Shape
Classification/Quantification

 Skeletal
Features

Figure 1.1: Overview

1. A region-based scheme where the shape is represented by the region Ω,
as shown in Fig 1.2. Here, each pixel of the image has a binary label
that indicates whether or not it belongs to the object. This approach has
the advantage of being able to handle complex topologies naturally. Its
downside is that the representation is not concise at all. Also, it is best
adapted to the description of objects on a discrete grid as opposed to a
continuum.

2. An explicit boundary representation [6, 7, 8, 9, 10] where the boundary
dΩ (curve for planar object and surface for 3-D) defines the shape of the
object. Note that the boundary representation can be obtained from the
region description and vice versa; the two are duals.

3. A skeleton representation [11]. The skeleton of an object is the locus of
all points in the shape that do not have a unique nearest boundary point
upon the shape (c.f. Fig 1.2). The complete representation of the shape
requires the skeleton as well as the width function. The width function at
a specified point on the skeleton is defined as the distance to any of the
set of equidistant boundary points. This representation is ideal for the
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representation of wiggly shapes whose skeleton may be deformed without
the width function; e.g a worm.

Skeleton

Width

Ω

d Ω

Figure 1.2: Equivalent Shape representations

Once the spatial description of an object is obtained, it may be used to
extract some global shape attributes, with a preference being given to attributes
that are invariant to similarity transforms. Examples of shape attributes include
moment invariants[12], curvature scale-space of the bounding curve [13], etc.
The shape attributes are then typically used for classification, for quantifying
shape variations. See Fig. 1.1.

Here, we focus on explicit boundary representations due to their efficiency.
In particular, they need much fewer degrees of freedom than region-based ap-
proaches and they are much simpler to implement and process than skeleton-
based techniques. The various types of digital contour representations are dis-
cussed in Section 1.3. A clear advantage of having such an explicit description
is that it is quite straightforward to derive curve-dependent shape attributes
such as curvature or other differential geometric features. Thanks to Green’s
theorem, the area dependent shape features (e.g. area moments) can also be
extracted efficiently from it.

1.2 Shape processing

The real-world objects are available to us as digital images; the shape attributes
have to be estimated for classification, quantification or identification. The

4



standard approach for the parameter estimation is sequential (c.f. Fig 1.3). It
consists of the following steps:

1. Feature extraction: features such as edges, ridges, corners are extracted
from the image using appropriate operators. The algorithm gives a mea-
sure of the likeliness of the feature and its orientation at every pixel in the
image; the derivation of the likeliness measure is performed independently
for every pixel.

2. Shape estimation/segmentation: The geometric information of the object
is estimated from the detected features using an appropriate segmentation
algorithm; e.g. active contour models, edge-connecting algorithms, etc.

3. Evaluation of shape attributes: The detailed shape description is reduced
to a more global representation in terms of a few shape attributes that
may be derived from it.

  Feature 
extraction

Segmentation

Image

  Attribute
 Evaluation	

          Shape attributes
 Final 
Shape

Figure 1.3: Estimation of shape attributes from images

This sequential approach is simple because it involves standard modules that
can be combined very easily. It has been quite successful in a number of applica-
tions including computer vision and multi-media, where the images are relatively
noise-free. In this work, however, we are dealing with biomedical images that
are typically blurred and quite noisy. Hence, a more robust algorithm for shape
recovery is highly desirable. This motivates us to investigate a more global and
consistent model-based approach where the various modules are linked together
as shown in Fig. 1.4. A shape model is central to all the steps of the algorithm;
it drives both the feature extraction and the shape extraction algorithms. The
shape attributes are also evaluated from the same model.

We introduce the concept of a steerable feature space, which provides an
effective mean of computing a measure of likeliness of having a particular fea-
ture (e.g. edge, ridge, corner etc) at a specified location and orientation. The
precomputation of a steerable map of elementary features makes it practically
feasible to couple the feature extraction and the shape estimation algorithms.
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The shape optimization algorithm starts with an initial guess that is refined
iteratively based on the confidence measure provided by the feature estimation
algorithm. The feature estimation stage takes in the current shape and com-
putes a figure of merit; typically a weighted sum of likeliness of desired features
along the boundary. We may use different features at different curve points
depending on the local curve properties. For example, in contour regions with
a high curvature, it may be more appropriate to use a corner detector rather
than an edge detector. This concept is explained in detail in Chapter 5.

Note that, unlike classical schemes where the feature estimation at each pixel
is performed independently, this approach performs a joint estimation of the
features. Since the coefficients of the curve model are typically much fewer than
the number of pixels through which the curve passes, we expect this approach
to be more robust to noise. It is also more consistent than the traditional two-
step approach: for instance, the local orientation that is provided by a classical
edge detector (e.g. Canny’s operator) may be different from the orientation
of the tangent vector of the estimated contour line that is the result of the
segmentation.

In the classical approaches, shape features such as moment-invariants are
estimated using a discrete approximation. The estimated shape is rasterized
to label the regions inside and outside of it, from which the moments are com-
puted numerically. We use Green’s theorem to compute these directly and from
the contour model; note that this approach is mathematically exact and also
numerically efficient.

In many biomedical problems the average shape of the object is known,
which can be used to constrain the reconstruction process. Thanks to the effi-
cient algorithms for the moment computation, this constraint can be added at
relatively low cost. The user can also provide other constraints to manually aid
the algorithm.

1.3 Curve representation

We have seen that the use of a curve model is central to our shape estimation
algorithm. All the steps of the algorithm can profit from a good curve represen-
tation scheme. Ideally, we would like to have a curve model that can represent
the shape well with the fewest coefficients as possible. Such a model will lead
to a robust estimation algorithm at a low computational cost.
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Figure 1.4: Our approach

1.3.1 Discrete approaches

The simplest representation of a discrete curve is an ordered collection of points.
However, this approach does not ensure smoothness nor even continuity of the
contour. In shape estimation algorithms that use this type of representation,
the smoothness is often ensured by introducing extra constraints [8]. Another
scheme that is popular is the Freeman code[7]. There, the discrete curve can only
jump from the current position to one of its eight neighboring pixels. The curve
is represented by a chain of integers from zero to seven, coding for the orientation
of the current segment. The starting point is usually specified separately. Note
that this approach results in a curve that is continuous which is not necessarily
the case with the first approach.

In addition to their lack of implicit smoothness, discrete representations
usually require many parameters to encode even a simple shape. The large
number of parameters to be estimated can therefore impair the robustness of
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the shape recovery algorithms. This may also result in a high computational
complexity when sophisticated cost functions are being used.

1.3.2 Continuous representations

Most of the continuous approaches enjoy implicit continuity and smoothness. If
the model is appropriate, they can yield sub-pixel accurate segmentation. More-
over, when compared with the discrete approaches, they usually require fewer
coefficients. There are many different techniques for representing continuous
curves. For a complete review, refer to [14].

The most popular among these approaches are the parametric curve repre-
sentations. In this scheme, the curve is represented in terms of an arbitrary
parameter t. The component functions (x (t) , y (t)) are represented as a linear
combination of some basis functions. In computer graphics, curves are often
represented using non-uniform or uniform B-spline functions [15], and more re-
cently NURBS1. NURBS, which are a generalization of Bezier curves, is the
preferred approach in computer graphics since these functions are closed under
perspective transformations (needed in computer graphics) and can represent
conic sections exactly [16]. On the other hand, curve descriptions based on
Fourier exponentials [6, 10] and uniform B-spline functions [9, 17] are popular
in image processing and computer vision. The popularity of these approaches
are due to the existence of efficient signal processing algorithms and their invari-
ance to similarity transformations. Of these, the B-spline curves have the extra
advantage of locality of control; a change in one of the knot points will only
affect a small region of the curve. We discuss the parametric representation of
curves in detail in the next chapter.

1.3.3 Level set curve description

A recent trend is to represent the curve as a level set of an an appropriate
potential function [18, 19, 20, 21]. This implicit scheme tries to preserve the
advantages of region-based representations; it can naturally handle shapes of
complex topologies. In recent years, this research area has undergone an exten-
sive development. One downside of the level-set approach is its computational
complexity. This is because, during the segmentation process, one is evolving
a surface rather than a curve. It is also not straightforward to introduce shape
constraints.

1Non-Uniform Rational B-Spline.
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1.3.4 Framework of our research work

In this thesis, we concentrate on parametric representations due to their sim-
plicity and computational efficiency. In addition, we restrict ourself to simple
shapes that are topologically equivalent to a circle. In other words, these are
entirely specified by a single closed curve that defines their outer boundary.

1.4 Organization of this thesis

Following the global introduction that has just been made, the thesis proceeds
with a review in Chapter 2 of mathematical concepts that are used extensively
throughout the work. Special attention is given to the parametric representa-
tion of curves and signals in a basis composed of integer shifts of a generating
function.

The subsequent part (Chapters 3-7) present the scientific contributions of
the research. All the chapters correspond to work that has been published (or
is currently under review) in peer-reviewed journals.

In Chapter 3, we concentrate on the detection of image features to guide the
shape extraction process. We propose a general approach for the design of 2-D
feature detectors from a class of steerable functions based on the optimization
of a Canny-like criterion. In contrast with previous computational designs, our
algorithm is truly 2-D and provides filters that have closed form expressions.
It also gives operators that are more orientation selective than the classical
gradient or Hessian-based detectors.

We then address the estimation of the global shape from an image using
the detected features. Specifically, we use cubic spline-based parametric active
contour models to address two shape extraction problems: (i) the segmentation
of closed objects in Chapter 4, and, (ii) the 3-D reconstruction of DNA filaments
from their stereo cryo-electron micrographs in Chapter 5. In both approaches,
we profit from the optimality properties of cubic B-spline curves and efficient
B-spline algorithms.

We present several enhancements over the classical parametric active contour
algorithm for the segmentation of closed regions. We introduce a new edge-based
energy that overcomes the shortcomings of the conventional one. We re-express
this energy as a surface integral, thus unifying it naturally with the region-based
schemes. We show that parametric snakes can guarantee low curvature curves,
but only if they have a constant arc-length. Hence, we propose a new internal
energy term to enforce this configuration.

9



For the detection of 3-D DNA filaments from their orthogonal projections,
we introduce the concept of projection-steerable matched filtering. We design
a 3-D template such that its orthogonal projections onto the image planes are
steerable, i.e., the projections can be expressed as linear combinations of a few
2-D basis functions, for any orientation of the template. We use a 3-D active
contour algorithm for the shape estimation. The feature detection algorithm
returns a confidence measure by integrating the likeliness measures of the 3-D
ridges along the contour; the likeliness measures are computed efficiently from
the 2-D steerable feature space.

In Chapter 6, we analyze the efficiency of scaling function curves for the
representaton of shapes. We derive an exact expression for the error when we
approximate a periodic signal in a scaling function basis. The formula takes the
simple form of a Parseval’s like relation, where the Fourier coefficients of the sig-
nal are weighted against a frequency kernel that characterizes the approximation
operator.

Finally in Chapter 7, we present a method for the exact computation of the
moments of a region bounded by a curve represented by a scaling function or
wavelet basis. Using Green’s Theorem, we show that the computation of area
moments is equivalent to applying a suitable multidimensional filter on the curve
coefficients and thereafter computing a scalar product. The multidimensional
filter coefficients are pre-computed exactly as the solution of a two-scale relation.

10



Chapter 2

Parametric signal and curve
representation

In this chapter, we briefly review some mathematical concepts that will be used
extensively in this thesis. We consider a number of popular signal represen-
tation schemes and show how these approaches can be used for the compact
representation of parametric closed curves in the plane (e.g. shapes).

2.1 Representation of continuous signals

The description of a general signal f (x) ∈ L2 (R), requires the knowledge of its
values for every point x; it is not suitable for digital transmission or storage.
Since most signals of practical interest have a finite rate of information, it is
a general practice to assume them to be in some well defined vector space. A
classical example is the representation of a signal in a bandlimited space in
terms of sinc functions. In this case, only the coefficients of the basis functions
at the sampling locations need to be stored. The choice of the vector space is
crucial since it determines the quality of the representation and the time taken
for the computations. We now review the signal models that are relevant for
our purpose.

11



2.1.1 Shift-invariant representation

One popular approach is to describe the signal in a shift-invariant basis. Here,
the bases are generated by the integer shifts of a single function. An arbitrary
signal in this class is given by

f (x) =
∞∑

k=−∞

c (k) ϕ (x− k) . (2.1)

ϕ is called the generating function [22, 23] and c (k) are the coefficients. If
ϕ (k) = δk (the Kroneker delta function), we have c (k) = f (k); the coefficients
are the signal samples themselves. Such a ϕ is called an interpolating function.
An simple example is shown in Fig. 2.1.

-1 0 1

1
ϕ (x)

x

f (x)

Figure 2.1: Shift invariant representation of a function f (x). The dotted func-
tions are the basis functions that are obtained by the integer shifts of ϕ. Since
ϕ (k) = δ (k), the coefficients are the samples of f (x) at x = k.

The representation is stable1 and unambiguous if ϕ (x) generates a Riesz ba-
sis of V (ϕ) = span {ϕ (x− k) ; k ∈ Z}; i.e., there must exist two strictly positive

1By stable, we mean that a small variation of the c (k)’s should result in a small variation
of the function
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constants A and B such that

∀c (k) ∈ l2, A · ‖c‖2l2 ≤

∥∥∥∥∥∑
k∈Z

c (k) ϕ (x− k)

∥∥∥∥∥
2

L2

≤ B · ‖c‖2l2 , (2.2)

where ‖c‖2l2 =
∑

k |c (k)|2. In other words, we have an equivalence between the
discrete and continuous norms. The L2 norm ‖f‖2L2

= 〈f, f〉L2
is derived from

the standard L2 inner-product

〈f, g〉L2
=
∫ ∞

−∞
f (x) g (x) dx (2.3)

A sequence c (k) ∈ l2 implies that it is square summable.

2.1.2 Scaling function representation

A generating function that satisfies the two-scale relation

ϕ
(x

2

)
=

∞∑
k=0

h (k) ϕ (x− k) , (2.4)

is called as a scaling function [22]. h (k) ↔ ĥ (z) is the two-scale mask or
refinement filter of ϕ. The above equation implies that the function ϕ

(
x
2

)
as well as any of its integer shifs ϕ

(
x
2 − k

)
; k ∈ Z is contained in the space

V (ϕ) = V1 (ϕ), where

VT (ϕ) = span
{

ϕ
( x

T
− k
)

; k ∈ Z
}

(2.5)

This, inturn, implies that V2j+1 (ϕ) ⊆ V2j (ϕ). The nested nature of the sub-
spaces enables us to represent a signal at different resolutions (multi-resolution
representation), which may be useful in various image processing algorithms[24].
This class of representations is sufficiently general to accommodate the widely
used signal descriptions such as bandlimited (using the sinc basis function),
B-spline and the wavelet representations.

2.2 Sampling of continuous signals

The continuous domain input signal f (x) is not usually known directly. Rather,
it is specified in terms of its uniform measurements

gT (k) =
〈
f (x) , ϕ̃

( x

T
− k
)〉

L2

, (2.6)
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f(x) gT(k)

∑
k δ (x− kT )

h (x) = ϕ̃ (−x)

Figure 2.2: Sampling.

where ϕ̃ is an appropriate model for the measurement device (cf. Fig 2.2). For
example, when ϕ (x) = δ (x)—the Dirac’s delta distribution— the measurements
are uniform samples of f . In the context of the classical bandlimited sampling,
h (x) = ϕ̃ (−x) = sinc (x) is the ideal low-pass anti-aliasing filter.

Consistent sampling

Since the reconstruction of a general f (x) ∈ L2 (R) from its uniform measure-
ments is ill-posed, it is a general practice to reconstruct in a subspace of L2 (R).
The choice of the subspace dictates the quality of the reconstruction. One
popular approach is to choose an fT (x) ∈ VT (ϕ) which give the same measure-
ments gT (k), if re-injected into the measurement system [25]. This approach
is called consistent reconstruction. The measurement function ϕ̃ is called the
analysis function and ϕ the synthesis function. The above scheme gives perfect
reconstruction for signals in VT (ϕ) [25].

An arbitrary signal in VT (ϕ) is given byfT (x) =
∑

c (k) ϕ
(

x
T − k

)
. We

have to choose c (k) ; k ∈ Z such that:∑
k

c (k)
〈
ϕ
( x

T
− k
)

, ϕ̃
( x

T
− l
)〉

︸ ︷︷ ︸
aϕ,ϕ̃(k−l)

= gT (l) ; ∀l ∈ Z (2.7)

This implies that the sequence c (k) can be obtained from the measurements as
(assuming that âϕ,ϕ̃ (z) do not vanish on the unit circle)

ĉ (z) =
(
1/âϕ,ϕ̃

(
z−1
))︸ ︷︷ ︸

q̂(z)

ĝT (z) , (2.8)

where ĉ (z) is the Z-transform of c (k). The above expression implies that
gT (k) = c (k) iff aϕ,ϕ̃ (k) = δk; if this condition holds then ϕ and ϕ̃ are bi-
orthogonal to each other. The general reconstruction procedure is shown in
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gT (k)
q (k) c (k)

ϕ (x) f̂ (x)

Figure 2.3: Reconstruction.

Fig. 2.3. In this case, there exists an equivalent generating function

ϕ1 (x) =
∑

q (k) ϕ (x− k) (2.9)

that is bi-orthogonal to ϕ̃. Thus fT (x) is an oblique projection of f onto VT (ϕ).

Projection error

The quality of the reconstruction is decided by the signal space, the measure-
ment system, and, the reconstruction space. The exact expressions for the shift
invariant error (the average error over all shifts of f) is derived in the Fourier
domain as [26]

ε2f (T ) ∆=
1
T

∫ T

0

‖f (· − τ)− fT (· − τ)‖2 dτ (2.10)

=
1
2π

∫ ∞

−∞
Eϕ,ϕ̃ (Tω)

∣∣∣f̂ (ω)
∣∣∣2 dω, (2.11)

where the error kernel Eϕ,ϕ̃ (ω) is

Eϕ,ϕ̃ (ω) =
∣∣∣1− ˆ̃ϕ (ω) ϕ̂ (ω)

∣∣∣2 +
∣∣∣ ˆ̃ϕ (ω)

∣∣∣2∑
k 6=0

|ϕ̂ (ω + 2kπ)|2 (2.12)

= 1− |ϕ̂ (ω)|2

âϕ,ϕ (ω)︸ ︷︷ ︸
Emin(ω)

+ âϕ,ϕ (ω)
∣∣∣ ˆ̃ϕ (ω)− ϕ̂d (ω)

∣∣∣2︸ ︷︷ ︸
Eres(ω)

, (2.13)

where ϕ̂d (ω) = ϕ̂ (ω) /âϕ,ϕ (ω) is the dual of ϕ. Note that we obtain the mini-
mum possible error when ϕ̃ = ϕd.
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The approximation error tend to zero as the sampling step T → 0, iff
Eϕ,ϕ̃ (0) = 0; this implies the partition of unity constraint on the scaling func-
tion: ∑

k

ϕ (x− k) = 1 (2.14)

This condition ensures that the constant is indeed in the space V (ϕ). The
asymptotic decay of the approximation error (behavior as the T → 0) is often
used to compare representation schemes. If Eϕ,ϕ̃ (ω) = C2

ϕ,ϕ̃ω2L + O
(
ω2L+2

)
(this implies that ϕ satisfies the Strang-Fix conditions of order L [22]), then

‖f − fT ‖ ≤ Cϕ,ϕ̃ · TL‖f (L)‖L2 (2.15)

Here, Cϕ,ϕ̃ is a known constant and f (L) is the Lth derivative of f . A ϕ that give
such an error decay is called as an Lth order generating function. The constant
Cϕ,ϕ̃ is dependent on the analysis and the synthesis functions.

2.3 Examples of scaling function representations

2.3.1 B-spline basis

The B-spline basis functions possess several interesting properties that make
them attractive for signal representation. A B-spline function of degree n is
defined as the (n + 1)-fold convolution of the rectangular function:

β0 (x) =

 1, − 1
2 < x < 1

2
1
2 , |x| = 1

2
0, otherwise

(2.16)

βm (x) = β0 ∗ β0 . . . ∗ β0︸ ︷︷ ︸
(m+1) times

(2.17)

The B-spline functions of degrees 0 to 3 are shown in Fig 2.4. Note that these
functions are are all non-negative. They are interpolating only for n = 0 and
n = 1. We now discuss various remarkable properties of B-spline functions that
make them attractive for signal processing.

Approximation Properties

The B-splines of degree n have an approximation order L = n + 1. They are
the smoothest and the shortest scaling functions of order L. This makes them
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Figure 2.4: B-spline functions of different degrees.

optimal in the trade-off between computational cost 2 and performance [27].

Variational formulation

The B-spline representation is also optimal in a variational framework. Consider
the interpolation problem where we have uniform samples of a signal denoted
as fk; k ∈ Z. We have seen that this problem can be made well-defined by
restricting the reconstructions to a subspace of L2 (R). Another approach is to
add a regularization term and solve it as a variational problem [28].

In this formulation, one tries to derive a function f (x) that satisfies the in-
terpolation constraints f (k) = fk; k ∈ Z and minimizes a certain regularization

2Computational cost is proportional to the length of the generating function.
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term which penalizes the norm of the derivative of f given by
∫∞
−∞

∣∣∣f̂ (m) (x)
∣∣∣2 dx.

The standard approach to solve this problem is the Lagrange’s multiplier’s
method where the criterion is given by

J (f) =
∫ ∞

−∞

∣∣∣f (m) (x)
∣∣∣2 dx +

∑
k∈Z

λk (f (xk)− fk) , (2.18)

subject to the constraints f (xk) = fk; k ∈ Z. Here, λk are the weights and
f (m) (x) stands for the mth derivative of f . The xk wherek ∈ Z are the sampling
locations. We consider a small perturbation of f as f + αg and observe the
corresponding change in the criterion3

J (f + αg)− J (f) = α

(∑
k∈Z

λk g (xk) + 2
∫ ∞

−∞

(
f (m) (x) g(m) (x)

)
dx

)

= α

∫ ∞

−∞
g (x)

(∑
k∈Z

λk δ (x− xk) + 2f (2m) (x)

)
dx

(2.19)

In the last step, we used integration by parts to transfer the order of differ-
entiation from the compactly supported g to f . If f∗ is the solution to the
variational problem, it will correspond to the minimum of the criterion. Hence,
J (f∗ + αg)− J (f∗) has to be zero for any g. This implies that

2f∗(2m) (x) = −
∑
k∈Z

λk δ (x− xk) ;∀x ∈ R (2.20)

The solution to this differential equation is given by

f∗ (x) = −
∑
k∈Z

λk

2
(x− xk)2m−1

+ + c2m−2 x2m−2 + . . . + c1 x + c0︸ ︷︷ ︸
Kernel

, (2.21)

where

x+ =
{

x if x ≥ 0
0 else (2.22)

Now, the optimal weights λk; k ∈ Z have to be chosen so that the interpolation
constraints are met.

3g is a finitely supported smooth test function
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The kernel is a polynomial of order 2m − 2. Now, if we restrict ourselves
to the uniform sampling case xk = k, it can be shown that the kernel can be
represented in the space

span
{

(x− k)2m−1
+ ; k ∈ Z

}
.

Hence the solution to the variational problem in the uniform setting simplifies
to

f∗ (x) = −
∑
k∈Z

λk (x− k)2m−1
+ , (2.23)

where the optimal weights are obtained from the interpolation constraints. In
fact, the interpolant is a unique function in the space generated by the basis{

(x− k)2m
+ ; k ∈ Z

}
that satisfies the constraints.

Note that the basis functions (x− k)2m−1
+ are not finitely supported; they

grow with respect to increasing x. The derivation of the optimal weights λk from
the interpolation constraints involves the solution of a linear system of equations
of the form AX = B. The condition number of the matrix A will be very large
since (x− k)2m−1

+ are increasing functions. This means that the solution to
the linear system will be numerically unstable. Fortunately for us, there exist
other basis functions in this space that are finitely supported. Specifically, the
function x2m−1

+ can be localized using the (2m)th order finite difference operator
denoted by ∆2m, where ∆f (x) = f (x + 1/2)− f (x− 1/2).

∆2m
(
x2m−1

+

)
= β2m−1 (x) (2.24)

Thus we see that the reconstruction of f in a shift-invariant subspace of L2 (R)
is optimal in the variational setting, provided the basis functions are shifted
B-splines of degree 2m− 1.

The fact that the solution can be expressed as a linear combination of B-
splines also makes it obvious that the polynomial kernel in (2.21) is not needed,
since it is well known that the uniform B-splines of degree 2m−1 reproduce the
polynomials of degree 2m− 1.

Explicit formula

Since the B-spline function is obtained as a linear combination of one sided
power functions as in (2.24), it is piecewise polynomial in nature. For example,
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a cubic B-spline function can be expressed as [29].

β3 (x) =


2
3 − |x|2 + |x|2

2 0 ≤ |x| ≤ 1
(2−|x|)3

6 1 ≤ |x| ≤ 2
0 else

(2.25)

Efficient Algorithms

The existence of fast algorithms make them even more attractive.

• Interpolation by digital filtering: In many applications, the signal is known
by its uniformly spaced samples. One has to derive the value of the func-
tion at non integer samples for many applications like zooming, rotations,
image registration etc. In this case we have ϕ̃ (x) = δ (x); g1 (k) = f (k).
Thus aϕ,ϕ̃ (k) = βm (k). Hence, the B-spline coefficients are obtained as
(2.8). Since βm (k) is a symmetric FIR filter, the B-spline filter given by
(βm)−1 is an all-pole system that can be efficiently implemented using a
cascade of causal and anti-causal recursive filters [29, 30].

• Fast zooming: In many applications, one needs a zoomed version of the
signal onto a finer uniform grid. In this case the kernel values can be
precomputed; zooming can be performed with as little as 3 multiplica-
tions/sample for cubic B-splines [29, 27]

• Arbitrary Resizing: In the context of signal resizing by arbitrary size
factors (non-integer or non-rational), one can use the efficient least-squares
resampling approach [31].

• Computation of derivatives: The derivatives of the B-spline functions have
explicit expressions which are very useful in several algorithms [29, 27].
Since the B-spline of degree m is obtained as the m + 1 fold convolution
of the rectangular pulse, its Fourier transform is

β̂m (ω) =
(

ejω/2 − ejω/2

jω

)m+1

(2.26)
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Thus, the Fourier transform of the differential of βm (x) is:

F
(

∂

∂x
βm (x)

)
= jω

(
ejω/2 − ejω/2

jω

)m+1

=
(
ejω/2 − ejω/2

)
︸ ︷︷ ︸

F(δ(x+1/2)−δ(x−1/2))

(
ejω/2 − ejω/2

jω

)m

︸ ︷︷ ︸
β̂m−1(ω)

(2.27)

From the above expression, we obtain

∂

∂x
(βm (x)) = βm−1

(
x +

1
2

)
− βm−1

(
x− 1

2

)
(2.28)

This simple relation enables us to compute the derivative of spline func-
tions at any point very efficiently.

2.3.2 Bandlimited representation using sinc scaling functions

The sinc function is a valid scaling function with a bandlimited two-scale mask.
However, the function is not finitely supported in time; a direct implementation
of the interpolation algorithm will be very expensive.

If the signal is finitely supported, one can extend it using periodic boundary
conditions. A periodic signal f (t) = f (t + kM) ; k ∈ Z can be expressed in the
sinc basis as

f (t) =
M∑

k=0

c (k) sincp (t− k) , (2.29)

where

sincp(t) =
∞∑

k=−∞

sinc(t− k M) (2.30)

Due to the slow decay of the sinc function, sincp does not converge when M
is even. However, when M is odd, it converges to a well defined function in
L1 ([0,M ]). In this case, the signal representation can be reformulated as a
Fourier series; one can draw upon FFT based techniques to speed up the com-
putations [32]. It involves the computation of its FFT, padding the Fourier
samples with zeros and computing the inverse FFT. This operation will give a
complex signal if M is even and hence is not equivalent to the sinc interpolation
of the real samples. However for odd M , the result is ensured to be real.
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This model is not well suited to obtain the function sample for an arbitrary
value of t, since it depends on all the coefficients c0 . . . cM−1. Also note that
sinc corresponds to a spline interpolator with the degree n →∞ [33].
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Figure 2.5: Scaling function representation of a polygon. The dotted lines in
(b) indicate the corresponding linear B-spline basis functions. Note that in this
special case the knots are the vertices of the polygon themselves.

2.4 Parametric description of closed curves

The shapes of objects are often represented by their bounding curves. Tra-
ditionally, the bounding curve is described as an ordered collection of points
[8]. However, this scheme does not give a compact representation. Another
approach involves the representation of the object boundary as a level set of
a surface. Although this technique can handle complex topologies effectively,
the computational complexity of the algorithms that use this representation is
quite significant. Moreover, it is not very easy to introduce shape constraints
into boundary extraction algorithms. For all these reasons, we prefer to use a
parametric representation for describing the shape boundary.

A curve in the 3-D space can be described in terms of an arbitrary parameter
t as r(t) = (x(t), y(t)) [6, 9, 10, 17]. When the curve is closed, the function vector
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r(t) is periodic. The component curve functions can be represented in a scaling
function basis as

r(t) =
[

x (t)
y (t)

]
=

∞∑
k=−∞

c (k)ϕ(t− k), (2.31)

where c (k) = [cx (k) , cy (k)] is the coefficient vector; they are often called as
knot points. If the period—M—is an integer, we have c (k) = c (k + M). This
reduces the infinite summation to

r (t) =
M−1∑
k=0

c (k) ϕp(t− k), (2.32)

where ϕp is the M - periodization of ϕ:

ϕp(t) =
∞∑

k=−∞

ϕ(t− k M) (2.33)

A representation of a planar closed curve r(t) = (x(t), y(t)) in the linear B-spline
basis is shown in Fig. 2.5. It also permits a multiresolution representation of the
curve[34, 35]. Moreover, the scaling function representation is affine-invariant;
an affine transformation of the curve is achieved simply by transforming the
coefficient vector bk, k = 0, 1, . . . ,M − 1. This is because of the linearity of the
representation and the partition of unity condition:

∞∑
k=−∞

ϕ(t− k) = 1, (2.34)

which is satisfied by all valid scaling functions in wavelet theory.
We use B-splines for the representation of curves due to their advantages

discussed before. This yields spline curves which are frequently used in computer
graphics [15] and computer vision [36, 37, 38]. In addition to the advantages
mentioned above, the compact support of the functions provide local control
of the contour; by changing a coefficient, we change only a small section of
the shape. In contrast, if we were dealing with a Fourier series representation,
such a change would affect the whole shape. Moreover, the curve rendering
can be performed efficiently using the approach used for zooming. Many shape
estimation algorithms requires the computation of the curve tangents which can
be easily be obtained by using (2.28).
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Chapter 3

Optimal steerable filters for
feature detection

The first step of our shape estimation algorithm (c.f Fig. 1.4) involves the
generation of a steerable feature space from the image. In this chapter1 we
discuss the design of steerable filters for the detection of specific image features.
We also deal with the local detection of features based on the steerable feature
space pre-computed from the images.

3.1 Introduction

In his seminal paper on computational edge detection, Canny identified the
desirable qualities of a feature detector and proposed an appropriate optimality
criterion. Based on this criterion, he developed a general approach to derive the
optimal detector for specific image features such as edges[39]. This work had
a great impact on the field and stimulated further developments in this area,
particularly on alternate optimality criteria and design strategies [40, 41].

All the above authors considered the derivation of optimal 1-D operators.
For 2-D images, they applied the optimal 1-D operator orthogonal to the feature
boundary while smoothing in the perpendicular direction (along the boundary).
This extension is equivalent to computing inner-products between the image

1Based on the article ”M.Jacob and M.Unser, IEEE Transactions on Pattern Analysis and
Machine Intelligence, in press”
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and a series of rotated versions of a 2-D reference template (tensor product
of the optimal 1-D profile and the smoothing kernel). With this detector, the
rotation angle of the template that yields the maximum inner product, gives
the feature orientation. Since the optimal 1-D template did not have explicit
formulae, they were typically approximated by simple first or second order dif-
ferentials of a Gaussian. In practice, they were extended using Gaussian kernels
of the same variance since the resulting 2-D template could be applied in a direc-
tional manner inexpensively via the computation of smoothed image gradients
or Hessians.

An alternative to these differential approaches to rotation independent fea-
ture detection is provided by the elegant work of Freeman and Adelson on
steerable filters [42]. The underlying principle is to generate the rotated ver-
sion of a filter from a suitable linear combination of basis filters; this sets some
angular bandlimiting constraints on the class of admissible filters. Perona et.
al., Simoncelli and Teo et. al. used this framework to approximate and design
orientation-selective feature detectors [43, 44, 45, 46]. The concept of steerablity
was also applied successfully in other areas of image processing such as texture
analysis [47, 48] and image denoising [49].

In this chapter, we propose to reconcile the two methodologies—
computational approach and steerable filterbanks— by presenting a general
strategy for the design of 2-D steerable feature detectors. We derive the fil-
ter directly in 2-D as opposed to the 1-D schemes (1-D optimization followed by
an extension to 2-D) of Canny and others. Moreover, in contrast with the work
of Perona [43], we do not approximate a given template within a steerable solu-
tion space, but search for the filter that gives the best response according to an
optimality criterion. Our filter is specified so as to provide the best compromise
in terms of signal-to-noise ratio, false detections and localization. We illustrate
the method with the design of optimal edge and ridge templates. The detectors
that we obtain analytically have better performance and improved orientation
selectivity, yet they are still computationally quite attractive.

The chapter is organized as follows. In Section 3.2, we introduce the concept
of steerable matched filtering and reinterpret some of the classical detectors
within this framework. In Section 3.3, we propose an optimality criterion and
show how to determine the best filter from a class of steerable functions. In
Section 3.4, we concentrate on specific 2-D feature detectors and demonstrate
their use in different applications. Though our algorithm is general, in this
chapter, we focus only on the detection of edge and ridge features. In Section
3.5, we introduce the concept of shape adaptive feature extraction and illustrate
it with an example.
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3.2 Orientation independent matched filtering

3.2.1 Detection by rotating matched filtering

Suppose our task is to detect some feature in an image f (x, y) at some un-
known position and orientation. The detection procedure can be formulated as
a rotated matched filtering. It involves the computation of inner-products with
the shifted and rotated versions of a 2-D feature template f0 (x, y) = h (−x,−y)
at every point in the image. A high magnitude of the inner-product indicates
the presence of the feature and the angle of the corresponding template gives
the orientation. Some simple examples of templates are shown in Fig. 3.1.
Mathematically, the estimation algorithm is

θ∗ (x) = arg max
θ

(f (x) ∗ h (Rθ x)) (3.1)

r∗ (x) = f (x) ∗ h (Rθ∗ x) , (3.2)

where r∗ is the magnitude of the feature and θ∗ its orientation at the position
x = (x, y); Rθ is the rotation matrix

Rθ =
[

cos (θ) sin (θ)
− sin (θ) cos (θ)

]
(3.3)

and u∗ v stands for the convolution between u and v. Equations (3.1) and (3.2)
correspond to the matched filter detection. They give the maximum likelihood
estimation of the angle θ and weight r for the signal model

f (x) = r · f0 (Rθ (x− x0) + x0) + n (x0) ,

where n (x) denotes Gaussian white noise. However, this scheme of detection is
not very practical, for it requires the implementation of a large number of filters
(as many as the quantization levels of the angle).

3.2.2 Steerable filters

To cut down on the computational load, we select our detector within the class of
steerable filters introduced by Freeman et. al [42]. These filters can be rotated
very efficiently by taking a suitable linear combination of a small number of
filters. Specifically, we consider templates of the form

h (x, y) =
M∑

k=1

k∑
i=0

αk,i
∂k−i

∂xk−i

∂i

∂yi
g (x, y) , (3.4)
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(a) Ideal-
ized edge
template

(b) Ideal-
ized ridge
template

(c) Pop-
ular edge
template

(d) Pop-
ular ridge
template

Figure 3.1: Examples of feature templates. Feature detection is performed by
convolution of the rotated versions of the template with the image

where g (x, y) is an arbitrary isotropic window function. We call such a h (x, y)
an M th order detector.

Proposition 1 The filter h (x, y) is steerable. In other words, the convolution
of a signal f (x, y) with any rotated version of h (x, y) can be expressed as

f (x) ∗ h (Rθx) =
M∑

k=1

k∑
i=0

bk,i (θ) fk,i (x) , (3.5)
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where the functions fk,i (x, y) are filtered versions of the signal f (x, y)

fk,i (x, y) = f (x, y) ∗
(

∂k−i

∂xk−i

∂i

∂yi
g (x, y)

)
︸ ︷︷ ︸

gk,i(x,y)

. (3.6)

The orientation-dependent weights bk,i (θ) are given by

bk,i (θ) =

 k∑
j=0

αk,j

∑
l,m∈S(k,j,i)

(
k − j

l

)(
j

m

)
(−1)m cos (θ)j+(l−m) sin (θ)(k−j)−(l−m)


(3.7)

where, S (k, i, j) is the set

S (k, i, j) = {l, m | 0 < l < k − i; 0 < m < i; k − (l + m) = j} .

The proof is given in the Appendix 3-A. A graphical representation of the
implementation is given in Fig. 3.2. Once the fk,i (x, y) is available, f (x) ∗
h (Rθx) can be evaluated very efficiently via a weighted sum with its coefficients
that are trigonometric polynomials of θ. Since the number of partial differentials
in (3.5) for a general M th order template is M (M + 3) /2, h (x) is steerable in
terms of as many individual separable functions. Using some simplification,
we can show that such a general h (x) can also be rotated using 2M + 1 non-
separable filters2 (an example of such a simplification is given by (3.39)—(3.42)).

A case of special interest corresponds to g (x) being the Gaussian; indeed
the Gaussian is optimally localized in the sense of the uncertainty principle and
the corresponding filters in (3.6) are all separable. Interestingly, the Gaussian
family is equivalent to the class of moment filters (polynomials multiplied by
Gaussian window) discussed in [42], but the filters are not identical. We will now
show that the family described by (3.4) includes some popular feature detectors
as particular cases.

3.2.3 Conventional detectors revisited

Canny’s edge detector

As already observed by Freeman et. al., the widely-used Canny edge detection
algorithm can be reinterpreted in terms of steerable filters [42]. This algorithm

2This is the minimum number of filters required to steer a general Mth order tempate.
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g0,0 (x)

gM,M (x)

f0,0 (x)

fM,M (x)

f (x)

bM,M(  )0

b0,0(  )0
g(R x)*f 0

Figure 3.2: Implementation of steerable filtering (c.f (3.5) )

involves the computation of the gradient-magnitude of the Gaussian-smoothed
image. The direction of the gradient gives the orientation of the edge. Mathe-
matically,

θ∗ = arctan
( (f ∗ g)y

(f ∗ g)x

)
(3.8)

r∗ =

√
((f ∗ g)x)2 +

(
(f ∗ g)y

)2

, (3.9)

where gx = ∂g/∂x and gy = ∂g/∂y; g is a 2-D Gaussian of a specified variance.
The above set of equations can be shown to be the solution of (3.1) and (3.2),
with h = gx. Substituting M = 1; α1,0 = 1, α1,1 = 0 in (3.7) we get b1,0 (θ) =
cos (θ) , b1,1 (θ) = sin (θ). Thus,

θ∗ (x) = arg max
θ

(f (x) ∗ gx (Rθx)) (3.10)

= arg max
θ

(f ∗ (gx cos (θ) + gy sin (θ))) . (3.11)

Here, we used the steerability of gx from (3.5). To compute the maximum of
the above expression, we set the differential of (3.11) with respect to θ to zero:

(f ∗ gx) sin (θ)− (f ∗ gy) cos (θ) = 0, (3.12)
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which results in (3.8) and (3.9). The corresponding feature template is shown
in Fig.3.1-c.

Ridge detector

Less well known is the fact that a popular ridge estimator based on the eigen-
decomposition of the Hessian matrix [50, 51, 52] can also be interpreted in terms
of steerable filters. Assuming the template to be gxx (the second derivative
of a Gaussian), ridge detection can be formulated exactly as (3.1) and (3.2).
The corresponding detector is shown in Fig.3.1-d. In this case, the steerability
relation (3.5) can be expressed in a matrix form as

gxx (Rθx) = uT
θ

[
gxx (x) gxy (x)
gxy (x) gyy (x)

]
︸ ︷︷ ︸

Hg

uθ, (3.13)

where Hg is the Hessian matrix and uθ = (cos (θ) , sin (θ)). Using the linearity
of convolution, f (x) ∗ gxx (Rθx) = uT

θ Hf∗g uθ. We would like to obtain the
maximum of uT

θ Hf∗g uθ, subject to the constraint uT
θ uθ = 1. We solve this

constrained optimization problem using Lagrange’s multiplier method by setting
the gradient of uT

θ Hf∗guθ + λ uT
θ uθ to zero:

Hf∗guθ = −λ uθ. (3.14)

This implies that −λ is an eigen value of Hf∗g; the corresponding normalized
eigenvectors are the possible solutions to the problem. Since we are looking for
the maximum of uT

θ Hf∗g uθ, the optimal response and the angle are given by

r∗ = λmax (3.15)
uθ∗ = vmax. (3.16)

Here λmax and vmax are the maximum eigenvalue and the corresponding eigen-
vector respectively.

It can be seen from Fig.3.1-c and 3.1-d that these classical detectors do
not have a good orientation selectivity. In the next section, we propose a new
approach for the design of detectors that attempts to correct for this deficiency.

3.3 Design of steerable filters for feature detection

The widely-used contour extraction algorithm[39] has three steps: (a) feature
detection, (b) non-maximum suppression, and, (c) thresholding. In this section,
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we present a general strategy for the design of steerable filters for feature detec-
tion, while keeping in mind the subsequent steps. We propose a criterion similar
to that of Canny and we analytically derive the optimal filter—or equivalently
the optimal weights—within our particular class of steerable functions specified
by (3.4).

3.3.1 Optimality criterion

We now review Canny’s criterion and modify it slightly to enable analytical
optimization. To derive the optimal 2-D operator, we assume that the feature
(edge/ridge) is oriented in some direction3 (say along the x axis) and derive
an optimal operator for its detection. As the operator is rotation-steerable
by construction, its optimality properties will be independent of the feature
orientation.

The 3 different terms in Canny’s criterion are as follows:

Signal-to-Noise Ratio

The key term in the criterion is the signal-to-noise ratio. The response of a filter
h (x) to a particular signal f0 (x) (e.g. an idealized edge) centered at the origin
is given by

S =
∫
R2

f0 (x, y) h (−x,−y) dx dy (3.17)

S is given by the height of the response at its maximum. If the input is corrupted
by additive white noise of unit variance, then the variance of the noise at the
output is given by the energy of the filter:

Noise =
∫
R2
|h (x, y)|2 dx dy (3.18)

We desire to have a high value of S for a given value of Noise; S2

Noise is the
amplification of the desired feature provided by the detector. The detection
stage is preceded by non-maximum suppression. The estimated feature position
corresponds to the location of the local maximum of the response in the direction
orthogonal to the feature boundary (y axis in our case). The presence of noise
can cause an undesirable shift in the estimated feature location. The direct

3In 2-D the features of interest have boundaries of dimension 1.
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extension of Canny’s expression for the shift-variance (due to white noise of
unit variance) to 2-D gives

E
[
(∆y)2

]
=

∫
R2 |hy (x, y)|2 dx dy∣∣∫

R2 f0 (x, y)hyy (−x,−y) dx dy
∣∣2 (3.19)

Canny has proposed to maximize the reciprocal of this term. The numerator of
(3.19) is a normalization term which will be small automatically if the impulse
response of the filter is smooth along the y axis (low norm for the derivative).
Since we are imposing this type of smoothness constraint elsewhere via an addi-
tional regularization term (see next subsection), it is not necessary to optimize
this term here, which also keeps the effects well separated. Therefore, we propose
to maximize the second derivative of the response, orthogonal to the boundary,
at the origin

Loc = − d2

dy2
(f0 ∗ h)

= −
∫
R2

f0 (x, y) hyy (−x,−y) dx dy (3.20)

which is the square-root of the denominator in (3.20). The above expression is
ensured to be positive because the second derivative of the response is negative
at the maximum (assuming S > 0). Note that the new localization term is a
measure of the width of the peak. The drift in position of the maximum due
to noise will decrease as the response becomes sharper. In this work, we are
neglecting the effect of neighboring signals on the localization.

Elimination of false oscillations

Canny observed that when the criterion is optimized only with the SNR and the
localization constraint, the optimal operator has a high bandwidth; the response
will be oscillatory and hence have many false maximas. In 2-D, we desire that
the response be relatively free of oscillations orthogonal to the feature boundary.
This can be achieved by penalizing the term:

Ro =
∫
R2
|hyy (x, y)|2 dx dy (3.21)

Note that this term is the numerator of the expression for the mean distance
between zero crossings proposed by Canny. It is a thin-plate spline like regular-
ization which is a standard technique to constrain a solution to be smooth (low
bandwidth).
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The thresholding step is easier if the response is flat along the boundary.
The oscillation of the response along the boundary (x axis) can be minimized
by penalizing

Rp =
∫
R2
|hxx (x, y)|2 dx dy (3.22)

These terms will force the filter to be smooth making the response less oscilla-
tory, thus resulting in fewer false detections.

3.3.2 Derivation of the optimal detector

We combine the individual terms to obtain a single criterion

C = S · Loc− µ (Ro + Rp)︸ ︷︷ ︸
R

(3.23)

The filter in the family described by (3.4) that maximizes this criterion, subject
to the constraint4 Noise = 1, is our optimal detector. The free parameter
µ > 0 controls the smoothness of the filter; a high value makes the response less
prone to false maxima and reduces oscillation along the ridge. However, these
properties impose a tradeoff on the localization of the response.

In this work, we are also interested in performing a scale-independent design.
In other words, if we dilate the window by a factor σ, using gσ (x) = σ−

1
2 g
(
x
σ

)
,

we want our solution to retain the shape independently of σ. This requires that
we weight each of the terms in (3.23) using an appropriate power of the dilation
factor. This issue is discussed later for each feature model separately.

For the ease of notation, we collect the component functions of (3.4) into a
function vector g of length

(
M(M+3)

2

)
, whose components are

[g]i (x, y) =
∂k−n

∂xk−n

∂n

∂yn
g (x, y) with i =

(k − 1) (k + 2)
2

+ n

k = 0...M, n = 0..k.

Hence, an arbitrary function in the family is represented in a compact form as

h (x) = aTg (x) (3.24)

4This constraint is just a normalization factor. Setting Noise to another constant will give
detectors of the same shape, but with a different energy.
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where a is the vector containing the αi,k’s in (3.4); it has the same length as
the function vector. Now we express the terms of the criterion in a matrix form
as S = aTs, Loc = aTq, Noise = aTPa and R = aTRa, where

[s]i = 〈f0 (x) , [g (−x)]i〉 (3.25)

[q]i =
〈
f0 (x) , ([g (−x)]i)yy

〉
(3.26)

[P]i,j =
〈
[g]i , [g]j

〉
(3.27)

[R]i,j =
〈

([g]i)yy ,
(
[g]j
)

yy

〉
+
〈
([g]i)xx ,

(
[g]j
)

xx

〉
. (3.28)

gyy (x, y) and gxx (x, y) denote ∂2g (x, y) /∂y2 and ∂2g (x, y) /∂x2 respectively.
P and R are matrices of size M(M+3)

2 ×M(M+3)
2 , while the vectors q and s are of

length M(M+3)
2 . Here P is ensured to be nonsingular. In the above expressions,

the inner product of two functions is defined as

〈f1, f2〉 =
∫
R2

f1 (x, y) f2 (x, y) dx dy.

Thus, the criterion (3.23) can be expressed in the matrix form as

C = aT [Q− µR]a, (3.29)

where
Q = s qT (3.30)

Since all the terms in the criterion are quadratic, the solution for the optimal
parameters can be found analytically by using Lagrange’s multiplier method.
To maximize the criterion subject to the constraint, we set the gradient of
C + λ Noise to zero:

2 [Q− µR + λ P]a = 0 (3.31)

Rearranging the terms, we get

P−1 [Q− µR] a = −λ a (3.32)

which implies that λ is an eigenvalue of the matrix
(
−P−1[Q− µR]

)
. The

total number of eigenvalues is given by the dimension of a. The corresponding
eigenvectors aλi

need to be scaled so that the constraint aT
λi

Paλi
= 1 is satisfied.

The optimal solution is therefore given by

a = max
{
aT

λi
[Q− µR]aλi ; i = 0...M (M + 3) /2

}
(3.33)
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Thus the design of the optimal feature detector boils down to an eigen-
decomposition followed by an appropriate weighting of the eigen-vectors so as
to satisfy the constraint.

3.3.3 Feature detection by local optimization

Due to (3.5), the optimal angle θ∗ in (3.1) is obtained as the solution of

∂

∂θ
(f (x) ∗ h (Rθ∗x)) =

M∑
k=1

k∑
i=0

fk,i (x, y)
∂

∂θ
(bk,i (θ)) |θ=θ∗︸ ︷︷ ︸

ck,i(θ∗)

(3.34)

= 0

It is easy to see from (3.7) that each of the terms in bk,i (θ) are of degree k in
cos (θ) and sin (θ); ck,i (θ) is of degree k as well. Hence, (3.34) is a polynomial
of order M (in cos (θ) and sin (θ)) and thus the estimation of the optimal angle
involves the solution of an M th order polynomial in two variables.

If h (x, y) has only odd/even order partial derivatives (this is the case for
many detectors), then bk,i (θ) will be a polynomial with only odd/even degree
terms (of cos (θ) and sin (θ)) present. Consequently, (3.34) can be reduced5 to
a form where only terms of degree M are present. In this case, (3.34) can be
further simplified (by dividing both the sides by (cos (θ))M ) to a polynomial
in only one variable—tan (θ). We then have an analytic solution if M <= 3
[53]. This case is illustrated in Section 3.4.1. When M = 2, the solution can
also be computed as an eigen-decomposition of the Hessian matrix, which is
better known (but also boils down to the above mentioned solution). This
case is described in Section 3.4.2. When the solution of (3.34) is not trackable
analytically, it can be solved numerically using an iterative root finder such as
the Newton-Raphson method.

3.4 2-D feature detectors

We now design operators optimized for the detection of different 2-D features.
We chose the window function to be a Gaussian6 g (x;σ), where σ is the standard

5if there is a term of degree M − 2n, we can multiply it by
“
cos (θ)2 + sin (θ)2

”n
to make

it of degree M
6it is the only function that is isotropic and separable.
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deviation. When it is clear from the context, we will suppress the dependence
on σ to simplify the notation.

3.4.1 Edge detection

As model for the edge, we choose the ideal step function

f0 (x, y) =
{

1 if y ≥ 0
0 else (3.35)

Since it is an odd function of y, the even order derivatives do not contribute to
the signal energy; we therefore ignore7 them in (3.4).

Case 1: M = 1

To illustrate the derivation of the optimal filter, we explain all the steps in
detail in this simple case. Substituting the function vector g = [gx, gy] in the
corresponding expressions, we get

s = −σ
√

π [0, 1]

q = −2
√

π

σ
[0, 1]

P =
π

2

[
1 0
0 1

]
R =

9π

σ4

[
1 0
0 1

]
Thus,

Q = qTs = 2π

[
0 0
0 1

]
The matrices Q and P are independent of σ while R is inversely proportional
to σ4. So we weigh R by σ4 to have a scale-invariant solution. Hence

P−1
[
Q− µσ4R

]
=
[
−18µ 0

0 4− 18µ

]
(3.36)

The eigenvalues of P−1
[
Q− µσ4R

]
are λ1 = −18µ and λ2 = 4 − 18µ, respec-

tively. The corresponding scaled eigenvectors (so as to satisfy the constraint)
7If we were to include them in the solution, their optimal coefficients would turn out to be

zero anyway.
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are
[
0,−

√
2
π

]
and

[
−
√

2
π , 0
]
, respectively. When substituted in the criterion,

they yield 4− 18µ and −18µ, respectively. Thus, the optimal solution is

a =

[
0,−

√
2
π

]
(as µ > 0), which corresponds to Canny’s edge detector (c.f. Fig. 3.1-c).

(a) Canny’s edge detector (b) M = 3; µ = 0.09

(c) M = 3; µ = 0.2 (d) M=5; µ = 0.15

Figure 3.3: Edge Detectors for different parameters. The detectors become
more orientation selective as M increases.
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Higher order cases

For higher M , we obtain a family of solutions that are increasingly smooth when
µ goes up. A few examples of higher order templates are given in Table 3.1 with
the filter impulse responses shown in Fig. 3.3. By comparing Fig. 3.3-b and Fig.
3.3-c we observe that, as µ increases, the filter becomes smoother at the cost
of directionality. The higher order templates are more elongated thus having
higher SNR and localization (c.f. Table 3.1); they should therefore result in
better detections, at-least for idealized edges. The dependence of SNR on σ2

implies that this figure can also be improved by increasing the variance of the
Gaussian. However, the ability to resolve two adjacent parallel edges decreases
as σ increases.

Implementation

Here, we develop the implementation procedure mentioned in Section 3.3.3 for
the special case of 3rd order edge detection. A general 3rd order edge template
(for different values of µ) is given by

h (x) = α1,0 gx + α3,0 gxxx + α3,2 gxyy (3.37)

The rotated version8 of this template hθ is given by

hθ = α1,0 (gx cos (θ) + gy sin (θ)) +

α3,0

(
gxxx cos3 (θ) + 3 gxxy cos2 (θ) sin (θ) +

3 gxyy cos (θ) sin2 (θ) + gyyy sin3 (θ)
)

+

α3,2

(
gxyy cos3 (θ) + (−2gxxy + gyyy) cos2 (θ) sin (θ) +

(−2gxyy + gxxx) cos (θ) sin2 (θ) + gxxy sin3 (θ)
)

Convolving the rotated template by f and simplifying, we get

(f ∗ hθ) (r) = q1 (r) cos (θ)3 + q2 (r) cos (θ)2 sin (θ) +

q3 (r) cos (θ) sin (θ)2 + q4 (r) sin (θ)3 , (3.38)
8The expression for a general rotated template is given by (3.5) and (3.7). However, for

simple templates, it may be easier to derive it directly in the Fourier domain as shown in the
Appendix, (3.60).
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S2/Noise Loc # Basis filters Expression Implementation

M = 1 2 σ2 1.63 2 separable −
q

2
π gy Analytic

M = 3 4 non-separable

µ = 0.09 2.93 σ2 1.98 6 separable −0.966 gy − 0.256 σ2 gxxy Analytic

M = 3 4 non-separable −1.0655 gy − 0.20 σ2 gxxy

µ = 0.2 3.01 σ2 1.83 6 separable −0.042 σ2 gyyy Analytic

−1.1215 gy

−0.5576 σ2 gxxy

M = 5 3.69 σ2 2.15 6 non-separable −0.018 σ2 gyyy Sampling/

µ = 0.15 12 separable −0.0415 σ4 gxxxxy Iterative

−0.0038 σ4 gxxyyy

Table 3.1: Edge detectors for different parameters.

where

q1 (r) = α3,0 f3,0 (r) + α3,2 f3,2 (r) + α1,0 f1,0 (r) (3.39)
q2 (r) = (3α3,0 − 2α3,2) f3,1 (r) + α3,2 f3,3 (r) + α1,0 f1,1 (r) (3.40)
q3 (r) = (3α3,0 − 2α3,2) f3,2 (r) + α3,2 f3,0 (r) + α1,0 f1,0 (r) (3.41)
q4 (r) = α3,0 f3,3 (r) + α3,2 f3,1 (r) + α1,0 f1,1 (r) (3.42)

We multiplied the single degree terms in cos (θ) and sin (θ) with(
cos2 (θ) + sin2 (θ)

)
so that we get a polynomial with only third degree terms.

Note that the six functions fk,i; k = {1, 3}, i = 0 . . . k, obtained by separable
filtering, are combined to derive qi; i = 1 . . . 4. They can also be obtained by
non-separable filtering:

q1 (r) = f∗
(
α3,0 g3,0 + α3,2 g3,2 + α1,0 g1,0

)
(r) (3.43)

q2 (r) = f∗
(
(3α3,0 − 2α3,2) g3,1 + α3,2 g3,3 + α1,0 g1,1

)
(r) (3.44)

q3 (r) = f∗
(
(3α3,0 − 2α3,2) g3,2 + α3,2 g3,0 + α1,0 g1,0

)
(r) (3.45)

q4 (r) = f∗
(
α3,0 g3,3 + α3,2 g3,1 + α1,0 g1,1

)
(r) (3.46)

We use the separable approach due to its computational efficiency. The non-
separable approach may be profitable for large values of M .

For a particular value of r, (f ∗ hθ (r)) is a function of only one variable—θ.
At the local maxima and the minima of (f ∗ hθ (r)), we have ∂

∂θ (f ∗ hθ (r)) = 0.
Substituting for f ∗ hθ from (3.38), we get

q2 cos (θ)3 + (2q3 − 3q1) cos2 (θ) sin (θ) +
(3q4 − 2q2) cos (θ) sin2 (θ)− q3 sin3 (θ) = 0,
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(a) Noisy Image (b) Canny (Time taken 141 ms)

(c) M = 3; µ = 0.09 (Time taken
414 ms)

(d) M = 5; µ = 0.15 (Time taken
1995 ms )

Figure 3.4: Edge detection on a 256 x 256 noisy image (Gaussian white noise of
variance 85). The thresholding is performed such that there are 2000 detected
pixels in each image. The variance of the Gaussian window is chosen as 1.7.
Note that the higher order detectors give less wiggly contours with fewer breaks.
The algorithm was implemented in Java as a plugin for ImageJ. The experiments
were performed on a Intel Pentium processor at 2.66 GHz.
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We divide both sides of this equation by cos (θ)3 to get a cubic polynomial in
one variable—tan θ:

q2 + (2q3 − 3q1) tan (θ) + (3q4 − 2q2) tan2 (θ)− q3 tan (θ)3 = 0, (3.47)

The roots of this equation can be obtained analytically [53]. Since tan (θ) =
tan ((θ + π) mod 2π), there are six possible values of θ in the range [0, 2π] that
satisfy (3.47). One of these values of θ correspond to the global maximum; it
can be found out by substituting all them into (3.38) and picking the one which
gives the maximum value. We briefly describe the steps of the local optimization
algorithm in Appendix 3-B.

For M > 3, the θ∗ estimated for M = 3 can act as an approximate solution.
This initial guess is further refined by performing a golden search [53] around
the approximate solution.

Results

Because the scheme is optimized for noisy data, we perform edge detection on
the cameraman image corrupted with additive white noise (c.f. Fig. 3.4-a). The
size of the Gaussian window is the same in all the experiments. The detected
edges after non-maximum suppression and thresholding are presented in Fig.
3.4. It is seen that Canny’s edge detector has a lot of false detections. Moreover,
the detected edges are wiggly due to poor localization. The new detectors have
significantly lower false detections and better localization, thus confirming the
theoretical improvement.

Note the time taken for the various edge detection schemes from Fig. 3.4
b-d. The 3rd order scheme only takes around 2.5 times the time as the Canny’s
detector. We believe that, for the performance improvement achieved, it is
a quite reasonable price to pay. Since we resorted to a naive optimization
algorithm using dichotomy, the 5th order method took more time. We believe
that a better optimization scheme could drastically improve the computational
efficiency.

3.4.2 Ridge detection

For simplicity, we choose the idealized line model as:

f0 (x, y) = δ (y) , (3.48)

where δ denotes the Dirac delta function. A more realistic model can be as-
sumed without any change in the computational strategy. Here Q, P and R
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S2/Noise Loc # Basis filters Expression Implementation

M = 2

µ = 2 2.67 4.38/σ 3 separable −
q

2
3π σ gyy Analytic

M = 2

µ = 0 3 4.64/σ 3 separable −
q

3
4π σ (gyy − gxx/3) Analytic

−0.204σ gyy + 0.059σ gxx

M = 4 4.302 6.41/σ 5 non-separable +0.063σ3 gyyyy − 0.194σ3 gxxyy Analytic

µ = 0.1 8 separable +0.024σ3 gxxxx

−0.392σ gyy + 0.113σ gxx

M = 4 4.47 6.14/σ 5 non-separable +0.034σ3 gyyyy − 0.184σ3 gxxyy Analytic

µ = 1/4 8 separable +0.025σ3 gxxxx

Table 3.2: Ridge detectors for different parameters

are inversely proportional to σ4, σ2 and σ6, respectively. Hence, we scale Q by
σ2 and R by σ4.

Optimized detectors

Some examples of optimal templates are shown in Table 3.2 and Fig. 3.5.
Interestingly, we see from the table that the optimal detector for M = 2 and µ =
0 is better than the classical detector, both in terms of SNR and localization, at
no additional cost. Also note that the template in Fig. 3.5-b is more directional
than the classical one in Fig. 3.5-a. The high value of µ = 2 (adjusted to get the
equivalence) overconstrains the optimization, resulting in a lower performance.

Two cases for M = 4 are also shown. It is seen that for small µ, the
template oscillates along y producing undesirable sidelobes. However, it has a
better localization at the expense of a lower SNR and R.

In general, we found that it is better to have a low value of µ for lower order
templates; the model have few degrees of freedom and hence a high value of µ
will overconstrain the system. On the other hand, for higher order templates,
we need a higher value of µ to make them less oscillatory.

Implementation

Any second order detector can be implemented as an eigen-decomposition, sim-
ilar to the classical Hessian (described in Section 3.2.3). For example, the de-
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(a) M = 2; µ = 2 (classi-
cal detector)

(b) M = 2; µ = 0

(c) M = 4; µ = 0.1 (d) M = 4; µ = 0.25

Figure 3.5: Ridge Detectors corresponding to different orders and parameters.

tector with µ = 0 can be implemented as

θ∗ = arg max
θ

f ∗
(

guθ,uθ
−

guθ+ π
2

,uθ+ π
2

3

)
= arg max

θ

(
uT

θ Hmod uθ

)
,

where Hmod = Hf∗g − 1
3

(
PT Hf∗g P

)
; here P is the rotation matrix

P =
[

0 1
−1 0

]
, (3.49)
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such that Puθ = u(θ+ π
2 ). Thus the optimal direction and ridge magnitude

can be computed with the eigen-decomposition of Hmod; the computational
complexity is the same as with the classical scheme.

For the 4th order detector, we proceed exactly as in the case of the third
order edge template. The computation of the optimal angle involves the solution
of a quartic polynomial, which is also performed analytically [53].

Results

An interesting application, which motivated this whole development, is the de-
tection of DNA filaments (cf Fig. 3.6-a) from their stereo cryo-electron micro-
graphs [51]. The difficulty with these data is that the micrographs are extremely
noisy because they are exposed to a low electron dose to avoid the degradation
of the specimen. The results (Fig. 3.6-b - 3.6-d) correspond to the output of
ridge detection algorithm followed by non-maximum suppression and thresh-
olding. Overall, the M = 4 detector gives the best qualitative results: there
are few breaks in the filament and the detection is less wiggly. Note that the
performance improvement costed only 2 times the time taken for the classical
approach. The optimal second order detector gave better results for the same
computational complexity as the classical approach.

3.5 Shape adaptable feature detection

Steerability in rotation involves the representation of a template as a weighted
linear combination of a few filters; the weights are nonlinear functions of a single
parameter—the angle. This leaves us with extra degrees of freedom which can
be utilized effectively. Perona used it to make the template steerable in scale
[43]. We propose to utilize this freedom for the design of a shape-adaptable
filter, thus making the system respond to different shapes depending on the
parameters.

In Section 3.4.1, we designed templates for the detection of ideal step edges.
However, as mentioned in [54], the edges are sometimes wedge shaped (close to
image corners). Since this contradicts our assumption, we have low SNR at the
corners. A bias in the position of the corner is also reported in the context of
conventional corner detectors [55].

Corners are image regions with high surface curvature. They convey a lot
of information about the image shape [56, 57, 58, 59]. Hence, we propose a new
shape-adaptable, steerable corner detector that addresses these issues.
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(a) DNA micrograph (b) Classical detector
(Time: 260 ms)

(c) M = 2; µ = 0
(Time: 260 ms)

(d) M = 4; µ = 0.25
(Time: 590 ms)

Figure 3.6: Detection of DNA filament from its noisy cryo-electron micrograph.
The features were ridges that were roughly 2-3 pixels wide. We chose the stan-
dard deviation of the Gaussian window to be 3. The images were thresholded
such that there are 1000 detected pixels.
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x

y

f

Figure 3.7: Model of an ideal wedge.

3.5.1 Derivation of the wedge detector

We model a corner as a wedge shown in Fig. 3.7, where the wedge angle φ is a
variable. Analytically, we have

f0 (x, y) =

{
1 if − x sin

(
φ
2

)
≤ y cos

(
φ
2

)
≤ x sin

(
φ
2

)
0 otherwise

(3.50)

We focus on the derivation of a third order corner detector. Since the 3rd order
detectors cannot oscillate much, we set µ = 0. We also get rid of the localization
term—to obtain a simple expression, we optimize the detector only with respect
to the SNR.

Setting the gradient of S+λ Noise to zero (to maximize S subject to Noise =
1), we get

2λ Pa = −s, (3.51)

from which we obtain the optimal solution as

a = − P−1s√
sTP−1s

. (3.52)

For a 3rd order detector (g = [gx, gy, gxx, gyy, gxy]) and the idealized wedge
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model, P and s defined by (3.27) and (3.25) are given by

P =
∫
R2

gT (x, y)g (x, y) dxdy (3.53)

=


π
2 0 0 0 0
0 π

2 0 0 0
0 0 3π

2σ2
π

2σ2 0
0 0 π

2σ2
3π
2σ2 0

0 0 0 0 π
2σ2

 (3.54)

s =
∫
R2

f0 (x, y)g (x, y) dxdy (3.55)

=
[
−σ

√
π sin

(
φ
2

)
0 sin (φ) − sin (φ) 0

]T
. (3.56)

Substituting the above in (3.52), we obtain the SNR-optimized 3rd order tem-
plate as

h (x) = −
√

2
2 + π + 2 cos φ

(
gx +

σ cos φ
2√

π
(gxx − gyy)

)
(3.57)

It is interesting to note that the optimal corner detector is Canny’s edge detector
when φ = π. Some examples of detectors for different values of φ are shown in
Fig.3.8.

(a)
φ = 0.6π (108◦)

(b)
φ = 0.8π (144◦)

(c)
φ = 1.2π (216◦)

(d)
φ = 1.4π (252◦)

Figure 3.8: Wedge Detectors for different wedge angles.
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3.5.2 Implementation

We have a template hθ,φ which is now parametrized by two variables: θ—the
orientation—and φ—the wedge angle. Hence the detection procedure involves
a two variable optimization. For our experiments, we resort to a slightly subop-
timal solution where θ is estimated from the φ = π solution and the optimal φ
is estimated by sampling. This approach is justifiable as the optimal angle does
not change much with respect to φ.

3.5.3 Results
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Figure 3.9: (a) S2/Noise vs wedge angle; (b) measure of y
σ (ratio of the bias

and the standard deviation of the Gaussian window)

We now study the theoretical performance improvement of the wedge detec-
tor over Canny’s edge detection scheme. We consider the responses of Canny’s
edge detector and the optimal wedge detector (designed for a specific φ) to the
wedge. In Fig. 3.9 we show the variation of the SNR with respect to the wedge
angle. Note that for Canny’s edge detector, the SNR falls off much more rapidly
as compared to the wedge detector. The SNR of the wedge detector has a flat
zone around φ = π for roughly a span of 140 degrees.

To analyze the bias in the position, we consider the response r (x, y) of the
wedge f0 (x, y) (shown in Fig.3.7) to a template h (x, y). The position of the
maximum will be displaced from the origin, along the y axis. A first order
approximation of the displacement can be obtained by using the Taylor series
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expansion of the response r (x, y) = f0 (x, y) ∗ h (x, y) along the y axis.

r(0, y) = r(0, 0) + ry (0, 0) y +
ryy (0, 0)

2
y2 +O (y)3 (3.58)

We look for the point y such that ry (0, y) = 0. From the above expression,
we obtain the first order expression of y as ry (x0, y0) /ryy (x0, y0). Substituting
r = f ∗h and by using the commutativity of convolution and differentiation, we
get

y = − f ∗ hy |0,0

f ∗ hyy |0,0

The plot of the bias ( y ) for different wedge angles is shown in Fig. 3.9-b. It
is seen that, for Canny’s edge detector, the wedge is displaced from the actual
location much more than for the wedge detector tuned to the corresponding
angle.

In short, the wedge detector performs better than the edge detector for non-
ideal step edges (wedges) for a range of angles; this range can be increased by
considering higher order detectors.

To demonstrate the practical utility of the algorithm, we consider the syn-
thetic pattern shown in Fig. 3.10-a and the real image shown in Fig. 3.10-c.
We estimate the optimal parameters (θ and φ) and the response. We perform
non-maximum suppression of the response and keep only the values above a
certain threshold. The estimated value of φ where the response is greater than
the threshold are shown in Fig. 3.10-b and Fig. 3.10-d. Note that the detector
can distinguish between convex and concave wedges based on the difference in
the estimated angles. The estimated position of the wedge is also a reasonable
fit to their true positions. Since Canny’s detector is also in the family of wedge
detectors, this scheme works well for straight edges as well.

3.6 Summary

We have proposed a general approach to derive optimal 2-D operators for the
detection of image features. We chose the optimal template from a family of
steerable functions using an analytical optimization scheme based on a slight
modification of Canny’s criterion. In contrast to classical approaches, where
the optimization is performed in 1-D, we specified the filter directly in 2-D. We
derived optimal operators for a variety of image features and demonstrated their
utility in various applications. We also introduced the notion of shape-adaptable
feature detection and used it for the detection of image corners.
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We now discuss a few issues that were not dealt with in this chapter and are
still open for further investigation.

1. Class of steerable functions: Although we have concentrated on the space
of Gaussian derivatives as the steerable family, the design methodology is
applicable to other classes as well. Interesting variations may be obtained
by changing the window function or using by other known families of
steerable functions [60, 45].

2. Discretization: We have derived the optimal operators in continuous space,
neglecting discretization issues. It could be interesting to address the
discretization effects as in [61] to be closer to practical situations.

Even though further research is required to address these issues, the results
presented here are promising enough to justify the use of the proposed detectors
in a variety of practical applications. The methodology is also general enough
to allow for the design of application-specific templates.

The implementation of the algorithm is available as a Java plugin for ImageJ
[62] at http://bigwww.epfl.ch/demo/steerable/.

Appendix 3-A

Proof: Using the linearity of the Fourier transform and the property that
differentiation corresponds to a multiplication with jω in the Fourier domain, it
is easy to derive the transfer function of the filter h:

ĥ (ωx, ωy) =
M∑

k=1

k∑
i=0

αk,i (jωx)k−i (jωy)i
ĝ (ωx, ωy) , (3.59)
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where j =
√
−1. Since the rotation of a filter in space corresponds to a rotation

of its Fourier transform, we get

= (h (Rθ x)) =
M∑

k=1

k∑
i=0

αk,i (jωx cos (θ) + jωy sin (θ))k−i

(−jωx sin (θ) + jωy cos (θ))i
ĝ (ωx, ωy)

=
M∑

k=1

k∑
i=0

αk,i

k−i∑
l=0

i∑
m=0

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m)

sin (θ)(k−l)−(i−m) (jωx)l+m (jωy)k−(l+m)
ĝ (ωx, ωy)

(3.60)

Note that the window function is left unchanged because we are assuming that
it is isotropic. Now multiplying both sides by f̂ and computing the inverse
Fourier transform, we get

f (x) ∗ h (Rθx) =
M∑

k=1

k∑
i=0

αk,i

k−i∑
l=0

i∑
m=0

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m)

sin (θ)(k−i)−(l−m)
fk,k−(l+m) (x) ,

(3.61)

where

fk,i (x) = f (x) ∗
(

∂k−i

∂xk−i

∂i

∂yi
g (x)

)
Note that the component indices of f are dependent only on k and l + m. We
collect the terms with the same values of k− (l + m) and we define S (k, i, j) as

S (k, i, j) = {l, m | 0 < l < k − i; 0 < m < i; k − (l + m) = j} (3.62)

Using this definition, we rewrite the right hand side of (3.61) as

M∑
k=1

k∑
i=0

αk,i

 k∑
j=0

∑
l,m∈S(k,i,j)

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m) sin (θ)(k−i)−(l−m)

fk,j (x)


M∑

k=1

k∑
j=0

fk,j (x)

 k∑
i=0

αk,i

∑
l,m∈S(k,i,j)

(
k − i

l

)(
i

m

)
(−1)m cos (θ)i+(l−m) sin (θ)(k−i)−(l−m)


︸ ︷︷ ︸

bk,j(θ)
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Appendix 3-B

In this section, we briefly outline the steps involved in the 3rd order edge de-
tection algorithm. We denote the 1-D Gaussian of a specified variance, its first,
second and third derivatives sampled on a certain grid by g, g′, g′′ and g′′′

respectively.
Algorithm

f10= filterSeparable(image,g′,g);
f11 = filterSeparable(image,g,g′);
f30 = filterSeparable(image,g′′′,g);
f31 = filterSeparable(image,g′′,g′);
f32 = filterSeparable(image,g′,g′′);
f33 = filterSeparable(image,g,g′′′);
for i=0 to Nrows-1 do

for j=0 to Ncols-1 do
q1 = α3,0 f3,0 (i, j) + α3,2 f3,2 (i, j) + α1,0 f1,0(i, j);
q2 = (3α3,0 − 2α3,2) f3,1 (i, j) + α3,2 f3,3 (i, j) + α1,0 f1,1 (i, j);
q3 = (3α3,0 − 2α3,2) f3,2 (i, j) + α3,2 f3,0 (i, j) + α1,0 f1,0 (i, j);
q4 = α3,2 f3,1 (i, j) + α3,0 f3,3 (i, j) + α1,0 f1,1 (i, j);
solset = solveCubic(q2, 2q3 − 3q1, 3q4 − 2q2, −q3);
thetaset = {atan(solset),atan(solset)+π };
[optmag(i, j), optangle(i, j)] = giveMaximumRoot(thetaset, q1,

q2, q3, q4);
end for

end for
The routine giveMaximumRoot substitutes the θ values into (3.38); it returns

the maximum value and the corresponding angle.
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(a) Noisy Image (b) Angle output of Wedge detector

(c) House image (d) Angle output of Wedge detector

Figure 3.10: Detected wedge angle. Here red stands for φ = 3π
2 , yellow for

φ = π and cyan for φ = π
2 . Here the corners are the points which are either

in red or in cyan. Note that at the straight edges, the optimal wedge angle
is π; the optimal detector is equivalent to the Canny’s edge detector. In this
experiment, we have chosen σ = 3.

54



Chapter 4

Efficient energies and
algorithms for parametric
snakes

In this chapter1 we address the first application of the shape estimation algo-
rithm discussed in the introductory chapter (cf. Fig 1.4).

4.1 Introduction

Snakes or active contour models have proven to be very effective tools for image
segmentation. An active contour model is essentially a curve that evolves from
an initial position towards the boundary of an object in such a way as to min-
imize some energy functional. The popularity of this semi-automatic approach
may be attributed to its ability to aid the segmentation process with a-priori
knowledge and user interaction.

Extensive research in this area have resulted in many snake variants [63, 64];
these are distinguished mainly by the type of curve representation used and the
choice of the image energy term. The popular curve representation schemes in
the snake literature are

1Based on the article *M.Jacob, T.Blu, M.Unser, submitted to IEEE Transactions on
Image Processing.”
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• Point-based snakes, where the curve is an ordered collection of discrete
points (also termed as snaxels) [8, 65, 66].

• parametric snakes, where the curve is described continuously in a para-
metric form using basis functions such as B-splines [9, 67, 68, 17], Fourier
exponentials [69, 10] etc.

• Geometric snakes, where the planar curve is represented as a level set of
an appropriate 2-D surface [20, 70, 18, 71, 72].

The point-based approach can be viewed as a special case of parametric curve
representation where the basis functions are uniform translates of a B-spline of
degree zero2; likewise, parametric approaches using smooth basis functions will
tend to the point-based scheme as the number of basis functions increases. In
general, however, representations using smooth basis functions require fewer
parameters than point-based approaches and thus result in faster optimization
algorithms [9, 69, 73]. Moreover, such curve models have inherent regularity
and hence do not require extra constraints to ensure smoothness [17, 73].

Since both the above mentioned schemes represent the curve explicitly, it is
easy to introduce a-priori shape constraints into the snake framework [69, 74,
75, 76]. It is also straightforward to accommodate user-interaction; this is often
done by allowing the user to specify points through which the curve should
go through [8]. However, these models offer less flexibility in accounting for
topological changes during the curve evolution. One will have to perform some
extra bookkeeping to accommodate changes in topology.

Geometric approaches offer great flexibility as far as the curve topology is
considered; they presently constitute a very promising research area [18, 71, 72].
However, they tend to be computationally more complex since they evolve a
surface rather than a curve. Also, since the curve representation is implicit, it
is much more challenging to introduce shape priors into this framework [77].

In this chapter, we focus on general parametric snakes due to its computa-
tional advantages and simplicity. We will start by taking a critical look at them,
identifying some of their limitations, and propose some improvements to make
them more attractive.

There are many different image energy terms that are used in practice. Most
of the commonly used approaches fall into two broadly defined categories: (i)
edge-based schemes which use local image information (typically gradient in-
formation) [9, 69, 73, 78, 17], and, (ii) region-based methods which uses global

2A B-spline of degree zero is defined as β0 (x) =


1 if |x| < 0.5
0 else
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image features (eg. statistical formulation ) [10, 75, 79, 80, 81]. Since the best
choice of the energy depends on the specific application at hand, we try to unify
these approaches into a single framework; we obtain a general algorithm which
can be tuned easily to the problem.

We propose a new edge energy term which is independent of the parametriza-
tion, unlike most of the commonly-used energies. The use of this energy will
preserve the parametrization and consequently the curve stiffness. This energy
is also more robust than the traditional gradient magnitude-based energy be-
cause it accounts for the direction of the gradient as well. We re-express this
energy term as a region integral, thus unifying it with the region-based energies
in a natural way. Thanks to the new approach, the choice of image energy is
reduced to appropriately choosing the preprocessing.

We also clarify some earlier statements about splines by showing that para-
metric snakes can implicitly ensure smooth curves, but only if they are de-
scribed in the curvilinear abscissa. Since general curve evolution approaches
do not guarantee this configuration, we introduce a new internal energy term
which forces the snake to the constant arc-length parametrization. We also
propose efficient computational schemes for evaluating the partial differentials
of the energy terms; thanks to the parametric curve representation in terms of
finitely supported scaling functions, we can compute the differentials exactly
and efficiently.

The chapter is organized as follows. In the next section, we provide some
mathematical preliminaries and formulate the parametric active contour prob-
lem. We deal with the image energy, internal energy and the external constraint
energy in Sections 4.3, 4.4 and 4.5 respectively. In Section 4.6, we derive effi-
cient expressions for the partial derivatives of the energy terms. In Section 4.7,
we propose a practical solution for the detection and suppression of loops.

4.2 Mathematical Preliminaries

4.2.1 Parametric representation of closed curves

We represent the boundary contour in the x — y plane as a closed parametric
curve in a scaling function basis as shown in Section 2.4.
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4.2.2 Active contour models: formulation

An active contour, as introduced by Kass et. al. [8], is a curve described as
an ordered collection of points which evolves from its initial position to some
boundary within the image. The curve evolution is formulated as an energy
minimization; the snake energy is typically a linear combination of three terms:

1. the image energy, which is responsible for guiding the snake towards the
boundary of interest.

2. the internal energy, which ensures that the segmented region has smooth
boundaries.

3. the constraint energy, which provides a means for the user to interact with
the snake.

The total energy of the snake is written as

Esnake (Θ) = Eimage (Θ) + Eint (Θ) + Ec (Θ) , (4.1)

where Θ is the collection of curve coefficients Θ = (c0, c1, . . . , cM−1). The
optimal curve parameters are obtained as

Θ = arg min
Θ

Esnake (Θ) (4.2)

It is obvious that the quality of segmentation is dependent on the choice of
the energy terms. We deal with them in detail in the following sections and
are listed in Table. 4.1 for easy reference. The energy minimization process
is essentially an optimization procedure, where we iteratively update the snake
coefficients so as to reach the minimum of the cost/energy function.

4.3 Image energy

The image energy is the most important of the three energy terms. In this
section, we identify some limitations of the widely-used gradient magnitude
energy and propose a new cost function that overcomes these problems. We
also present a unified framework which includes the edge-based and region-based
approaches as particular cases.
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4.3.1 Edge-based image energy

Traditional snakes rely on edge maps derived from the image to be guided to
the actual contour. The most popular approach is based on the magnitude of
the gradient.

Gradient magnitude energy

Many of the parametric snakes described in the literature use the integral of the
square of the gradient magnitude along the curve as the image energy [17, 9,
69, 73]. Mathematically, we have

Emag = −
∫ M

0

|∇f (t)|2 dt, (4.3)

where ∇f (t) denotes the gradient of f at the point r (t). As pointed out in
[78], one disadvantage of this measure is that it does not use the direction of the
gradient. At the boundary, the image gradient is perpendicular to the contour.
This extra information can be incorporated into the external energy to make it
more robust.

We have seen in the previous chapter that computing the magnitude of the
gradient is equivalent to solving for the optimal orientation and then computing
the optimal response. Hence using the gradient magnitude in the image energy
is equivalent to performing the edge detection independently at each pixel and
using the detected edges to drive the snake. This two-step approach may be
less consistent; for instance, the direction of the gradient at a particular pixel
on the contour need not be the same as tangent to the curve at that point.

Another problem is the dependence of Emag on the parametrization; we ob-
tain a different value of Emag if the curve is represented in terms of a parameter
t′ = w (t), where w is a monotonically increasing one to one warping function.
The use of such an energy may therefore result in the curve re-adjusting its
parametrization in trying to maximize Emag (e.g. with B-spline curves, the
knots will move to regions of the contour where the gradient magnitude is rela-
tively high). This problem is demonstrated in Fig. 4.2-b.

New gradient-based image energy

The gradient magnitude energy is the integral of a scalar field derived from
the gradient vector field. We propose a new energy that uses the vector field
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directly:

Egrad = −
∮
C
k · (∇f (r)× dr) (4.4)

= −
∮
C
∇f (r) · (dr× k)︸ ︷︷ ︸

||dr|| n̂(r)

, (4.5)

where k is the unit vector orthogonal to the image plane. Here n̂ (r) denotes
the unit normal to the curve at r. Since we are evaluating the likeliness of
an edge oriented along the tangents at the curve points as compared to the
two step strategy used in conventional schemes, we expect our algorithm to
be more robust and consistent to the image data. Note that this approach of
accounting for the gradient direction is similar in philosophy to [78], eventhough
the expression used by these authors is different and parameter dependent.

This integration process is illustrated in Fig. 4.1; with our convention, the
vector n̂ (r) is the inward unit normal to the curve3 meaning that we are in-
tegrating the component of the gradient orthogonal to the curve. Note that
(4.4) is independent of the parameter t, and hence does not depend on the
parametrization. The improvement obtained by using the new energy instead
of the parameter dependent magnitude-based energy is shown in Fig. 4.2-c.

n

dr

f

C

Figure 4.1: Gradient and normal to the curve

General edge-based image energy

We consider a generalized form of (4.4) by substituting ∇f with other feature-
enhancing vector fields. A promising approach is the use of optimal steerable

3k is chosen, depending on the direction in which the curve is described, so that n̂ (r) =
dr×k
||dr|| is the inward unit normal.
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filters to derive an appropriate edge enhancing vector field[82]. This method uses
filters that are more directional than the x and y components of the conventional
the gradient operator to derive a noise-resilent field.

The general form of edge-based image energy can be expressed mathemati-
cally as

Eedge = −
∮
C
k · (ef (r)× dr) , (4.6)

where ef is an appropriate vector field derived from f . The magnitude of ef (r)
gives a measure of the edge strength at r, while its direction specifies the edge
orientation. We now show that the computation of this edge-based energy is
equivalent to evaluating a region integral.

[h!tb]

(a) Initialization (b) Magnitude-based
energy

(c) New edge-based
energy

Figure 4.2: Segmentation of a mouse organ using edge-based energy (a) The
knots (denoted by the white dots) are initialized so that the curve is approxi-
mately in the curvilinear abscissa. (b) Curve evolution based on the gradient
magnitude-based energy. Note that the knots accumulate at some points along
the curve in the final curve, thus restricting the flexibility of the curve. (c)
Curve evolution based on our new edge-based energy; by better preserving the
parametrization, it often result in a better segmentation.

Proposition 2 The general edge-based image energy (4.6) can also be ex-
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pressed as

Eedge =
∫
S
∇ · ef (s)︸ ︷︷ ︸

Te(f)

ds, (4.7)

where ∇ · ef denotes the divergence of the vector field ef .

Proof: Green’s theorem relates the volume integral of the divergence of
a 3-D vector field F over a closed volume V bounded by the surface S to its
integral over S: ∫

V
(∇ · F) dv =

∫
S
F · ds. (4.8)

The restriction of Green’s theorem to two dimensional space yields∫
S

(
∂Fx

∂x
+

∂Fy

∂y

)
dxdy =

∮
C

(Fydx− Fxdy) (4.9)

The integral on the left is computed over the area S bounded by the curve C
while the one on the right is over C. Using the vector notation, we rewrite (4.9)
as ∫

S
(∇ · F) ds = −

∮
C
k · (F× dr) , (4.10)

where k is the unit normal to the two dimensional space. Using this identity,
we simplify (4.6) to the form (4.7).

Note that in the special case when ef = ∇f , we get Te (f) = ∇2f . This
means that our new gradient-based energy (4.4) is equivalent to integrating the
Laplacian of the image in the region bounded by the curve.

4.3.2 Region-based image energy

Recent research in active contours is increasingly focusing on the use of statisti-
cal region-based image energy [10, 75, 79, 80]. This type of energy can provide
the snake with vital boundary information, especially while it is far away from
the real contour, thus resulting in a larger basin of attraction.

The use of this energy assumes two main regions in image4, with different
probability distributions. A simple example is the case where we have to segment
a white object from a dark background; the regions will have different means

4This can be generalized to n > 2 regions
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[h!tb]

(a) initialization (b) edge only (α = 1)

(c) region only (α = 0) (d) unified (α = 0.5)

Figure 4.3: Illustration of the use of the unified image energy in the segmenta-
tion of a corpus-callossum image (b) The use of the gradient based energy fails
to converge in regions where the gradient information is absent (c) The region-
based energy is misled by the lack of image contrast (d) The unified energy leads
to a good segmentation.

and possibly different variances. We use the statistical formulation of Staib et.
al. [69] to specify the region likelihood function:

Eregion = −
∫
S

log (P (f (s) |s ∈ R)) ds

−
∫
S′

log (P (f (s) |s ∈ R′)) ds, (4.11)

where R and R′ denote the different image regions. We denote the regions in
the curve and outside by S and S ′ respectively. It is easy to see that (4.11)
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attains a maximum when R = S and R′ = S ′. We rewrite the above integral as

Eregion = −
∫
S

log (P (f (s) |s ∈ R)) ds

−C +
∫
S

log (P (f (s) |s ∈ R′)) ds, (4.12)

where C =
∫
S′

S
S log (P (f (s) |s ∈ R′)) ds. Since C does not depend on the

position of the curve and hence we remove it from the cost function. Thus, the
region-based cost function is simplified to

Eregion =
∫
S
− log

(
P (f (s) |s ∈ R)
P (f (s) |s ∈ R′)

)
︸ ︷︷ ︸

Tr(f)

ds (4.13)

We now give a few examples to illustrate (4.13).

1. The regions R and R′ have Gaussian distributions with the same variance.
In this case, we obtain

Tr (f) = −2 (µR − µR′)
σ2

f − µR + µR′

2︸ ︷︷ ︸
µR,R′

 , (4.14)

where µR > µR′ are the means of the regions R and R′ and and σ the
standard deviation. The regions of f with values above µR,R′ are mapped
to negative values while the ones below are assigned positive values. Hence,
evolving the contour using (4.13) will result in the curve adjusting itself
to have regions of f above µR,R′ inside while excluding the ones below
µR,R′ . The assumption of the variances of the regions being the same is
appropriate if we have piecewise constant images corrupted by additive
Gaussian noise.

2. The regions inside and outside the contour have Gaussian distributions
with different variances. In this case, we obtain

Tr (f) = a f2 + b f + c, (4.15)

where a =
(

1
σ2
R′
− 1

σ2
R

)
, b = −2

(
µR′
σ2
R′
− µR

σ2
R

)
and c =

(
µ2
R′

σ2
R′
− µ2

R
σ2
R

)
+

log
(

σR′
σR

)
. Here, σR and σR′ are the standard deviations of the regions
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inside and outside the curve respectively. Since the snake uses the infor-
mation from the variances as well, it can resolve the boundaries even when
both regions have identical means but different variances [68].

In the absence of prior knowledge of the probability distributions
P (f (s) |s ∈ R) and
P (f (s) |s ∈ R′), the statistical parameters are estimated from the image f
themselves as the snake evolves; we assume the current position of the contour
to define the regions (i.e. S = R and S ′ = R′) and estimate the parameters as
discussed in Section 4.6.3.

The extension of this method for the segmentation of multi-component im-
ages (e.g color images) is straightforward. For a n-D vector image f : R2 → Rn,
we have

Eregion =
∫
S
− log

(
P (f (s) |s ∈ R)
P (f (s) |s ∈ R′)

)
︸ ︷︷ ︸

Tr(f)

ds (4.16)

Note that the region information from the vector data is efficiently concatenated
into the scalar image Tr (f). This framework is used for the segmentation of
textures in [83]. They obtain an appropriate vector image from the gray level
image using a Gabor filterbank.

4.3.3 Unified image energy

Both of the above mentioned energies (edge-based and region-based) have their
own advantages and disadvantages. The edge-based energy can give a good
localization of the contour near the boundaries. Unfortunately, it has a small
basin of attraction, thus requiring a good initialization or a baloon force [84].
On the other hand, the region-based energy have a large basin of attraction and
can converge even if explicit edges are not present [80]. However, it does not
give as good a localization as the edge-based energy at the image boundaries.
Motivated by the complementary features of these schemes and the similarity of
the expressions (4.7) and (4.11), we propose a unified form of image energy. We
choose a convex combination of the two energies to obtain an extended class,
which inherits the advantages of both. The new image energy is given by

Eimage =
∫
S

Tu (f)︸ ︷︷ ︸
fu

(s) ds, (4.17)
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where fu = Tu (f) = αTe (f) + (1− α) Tr (f). This unification is similar is
philosophy to the approaches in [10, 71]. However, our scheme is more natural
and yields a simpler expression since it combines the two energies into a single
region integral. The simplicity of the expression will lead to computational
advantages as will be discussed later on. We demonstrate the use of the unified
energy in Fig. 4.3.

4.4 Internal Energy

The internal energy is responsible for ensuring the smoothness of the contour.
Kass proposed an internal energy the linear combination of the length of the
contour and the integral of the square of the curvature along the contour. This
smoothness term is the most widely used one in applications [8, 63, 66]. Its
direct extension to parametric curves gives

Eint = λ1

∫ M

0

(
x′ (t)2 + y′ (t)2

) 1
2

dt︸ ︷︷ ︸
Length

+

λ2

∫ M

0

x′′ (t) y′ (t)− y′′ (t) x′ (t)(
x′ (t)2 + y′ (t)2

) 3
2


2

︸ ︷︷ ︸
|κ(r)|2

dt,

(4.18)

where κ (r) is the curvature of the curve at the point r (t). The first integral in
(4.18) can be computed, while the second one is more complicated. We show in
the Appendix 4-A that the second term reduces to∫ M

0

|κ (r)|2 dt =
1
c2

∫ M

0

(
|x′′ (t)|2 + |y′′ (t)|2

)
︸ ︷︷ ︸

|r′′(t)|2

dt (4.19)

provided that

|x′ (t)|2 + |y′ (t)|2 = c; ∀t. (4.20)
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that is, when the curve is parametrized by its curvilinear abscissa. Here

c =
1
M


∫ M

0

(
x′ (t)2 + y′ (t)2

) 1
2

dt︸ ︷︷ ︸
Length


2

(4.21)

is the total length/unit value of the parameter. It is justified to use
∮
C |r

′′|2
as the curvature term in point-based snakes since the snake points (snaxels)
are almost equally spaced. For parametric snakes described in the curvilinear
abscissa, the curvature term is inversely proportional to the fourth power of the
distance between the knots along the curve (c.f. (4.19) and (4.20)). We will
have a smooth curve if its knots are well separated.

Most parametric schemes rely on the smoothness of the representation, thus
eliminating the need for an explicit internal energy term [10, 69, 9, 17, 73].
However, these approaches can only ensure a low value of

∮
C |r

′′|2; they can
guarantee low curvature curves only when (4.20) hold. For example, a spline
curve may be rough even with a small value of

∮
C |r

′′|2 if some of the spline knots
accumulate at one section of the curve. Similar problems exist with Fourier and
other parametric representations. To counter this problem, we propose to add
a new term to the criterion that will force the snake to satisfy (4.20).

4.4.1 Curvilinear reparametrization energy

Our new energy term that penalizes the curve for not being in the curvilinear
abscissa is given by

Ecurv =
∫ M

0

∣∣∣|r′ (t)|2 − c
∣∣∣2 dt, (4.22)

where c is given by (4.21). Evolving the curve with such a term will cause the
curve knots to move tangential to the curve, thus bringing it to the curvilinear
abscissa. An example of the type of improvement that can be obtained in this
way is shown in Fig. 4.4.

Precioso et. al [85] proposed to reparametrize the curve to the constant arc-
length representation after each step of the optimization algorithm to avoid the
curves from looping. This scheme would yield the same results as our approach,
but is computationally much more expensive.
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4.4.2 Choice of the scaling basis function

As mentioned before, the parametric representations can guarantee a small value
of
∮
C |r

′′|2. Using the well-known variational properties of splines [28], we can
show that the minimization of

∮
C |r

′′|2 subject to interpolation constraints yields
a cubic spline curve with knots at the integers. Thus, the cubic B-spline model
appears to be the most natural choice for representing parametric curves; it will
yield a minimum curvature curve provided the parametrization is the curvilinear
abscissa (i.e. the knots are uniformly spaced on the curve). The use of spline
curves also brings in additional gains due to the existence of efficient algorithms
[27], the local control of the contour due to the finite support of the B-spline
basis function and their good approximation properties [26].

Due to these nice properties, we choose cubic spline curves in our imple-
mentation. However, the theory we present in this chapter is general enough
to accommodate for any other representation in terms of scaling function or
wavelets.

4.4.3 New internal energy term

If we choose c = γ Length
M in (4.22) instead of (4.21), we get

Ecurv (γ) = Ecurv +

(
1− γ2

)
Length2

M
(4.23)

This equation implies that we can also account for the Length term in (4.18) by
choosing γ < 1. We thus simplify the internal energy to

Eint = Ecurv (γ) (4.24)

In practice, we found it better not to minimize the length of the curve under
normal circumstances; in other words, we usually set γ = 1. However, when the
curve is detected to be looping, we decrease the length of the curve by choosing
γ = 0. We discuss this issue in Section 4.7.2.

4.5 External constraint energy

As mentioned before, external constraint energy provides a means for the user
to interact with the snake; he can guide the snake to the boundary when image
information is too weak or ambiguous.
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We introduce a point constraint mode, where the user has the option to
specify a few points that should lie on the contour to be detected. We constrain
the snake by adding an energy term which is the distance between these points
and the corresponding closest points on the curve. The constraint energy is
given by

Ec =
Nc−1∑
i=0

min
t∈[0,M ]

|r (t)− rc,i|2 , (4.25)

where rc,i; i = 0..Nc − 1 are the constraints. This approach can be thought of
as introducing virtual springs that pulls the curve towards the desired points:
One end of the spring is fixed to the constraint point while the other end slides
on the curve.

4.6 Evaluation of the partial derivatives

In this section, we express the partial derivatives of the component energies of
the snake. These are used by the optimization algorithm to converge to the
minimum of the energy function.

The theory mentioned so far is valid for general scaling function representa-
tions ranging from band-limited curves (Fourier series representation) to poly-
gons. In order to derive efficient numerical schemes, we now make the additional
assumption that the basis function is finitely supported in the interval [0, N ].
Note that this class is still very rich as it includes most of the known scaling
function families. The interesting cases for our purpose are the cubic B-spline
function, which is finitely supported in the interval [0, 4], and the linear B-spline
function with the support [0, 2].

Partial derivatives of the magnitude-based image energy

Following the work of Flickner et. al. [73], we locally optimize the snake during
the initialization process (when the user is in the process of entering the initial
curve), thus providing the user with a visual feedback. For this optimization we
use the simple gradient magnitude-based energy mainly because it is applicable
even when the curve is not yet closed and also because it is simple and compu-
tationally efficient. However, we only perform few iterations with this energy as
it tends to bring the curve knots closer as mentioned before (c.f. Fig. 4.2).

We consider the integral in (4.3) and differentiate it with respect to the
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coefficients using the chain rule (using (2.31)):[
∂Emag/∂cx,k

∂Emag/∂cy,k

]
=
∫ M

0

∇g (t) ϕp (t− k) dt (4.26)

where g = |∇f |2. We approximate the inner-product as a discrete sum:

[
∂Emag/∂cx,k

∂Emag/∂cy,k

]
≈ 1

R

NR∑
i=0

∇g

(
[k R + i]MR

R

)
ϕ

(
i

R

)
, (4.27)

where R is the sampling rate and [k]M stands for k mod M . In the above expres-
sion, we used the finite support of the scaling function to limit the range of the
summation. Also note that we have transferred the periodicity from the kernel
to ∇g; this means that the summation is evaluated assuming periodic boundary
conditions on ∇g. Thus, if ∇g and ϕ

(
i
s − k

)
are precomputed, the evalua-

tion of the partial derivatives just involves a weighted sum. The computational
complexity is therefore proportional to sMN .

(a) Initialization (b) No curvilinear en-
ergy

(c) With curvilinear
energy

Figure 4.4: Without the curvilinear energy, the parametric representation can-
not guarantee low curvature curves. Note that for the same initialization, the
curve with the curvilinear reparametrization energy leads to smoother curves.
Without the energy, the curve knots accumulate at some regions of the curve,
thus leading to sharp edges; low energy curves are ensured only if the arc length
is constant on the curve.
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Partial derivatives of the unified image energy

For closed curves, we preferentially use the unified energy to optimize the curve.
In line with the work of [69, 10, 21], we now use Green’s theorem (4.9) to convert
region integrals (over the region bounded by a closed curve) to integrals over the
curve; our main motivation is computational efficiency. (4.17) can be efficiently
computed as the curve integral∫

S
fu (x, y) dxdy =

∮
C

fy
u (x, y) dx (4.28)

= −
∮
C

fx
u (x, y) dy, (4.29)

where

fy
u (x, y) =

∫ y

−∞
fu (x, τ) dτ (4.30)

fx
u (x, y) =

∫ x

−∞
fu (τ, y) dτ (4.31)

Applying the chain rule of differentiation on (4.29), we obtain ∂Eimage/∂cx,k as

∂

∂cx,k
(Eimage) =

∂

∂x
(Eimage) ·

∂

∂cx,k
(x (t))

= −
∫ M

0

∂fx
u

∂x︸︷︷︸
fu

ϕp (t− k)
M∑
l=0

cy,l ϕp
′ (t− l)︸ ︷︷ ︸

y′(t)

= −
M∑
l=0

cy,l

∫ M

0

fu (t)ϕp (t− k)ϕp
′ (t− l) dt

= −
∞∑

l=−∞

cp
y,l

∫ ∞

−∞
fu (t) ϕ (t− k) ϕ′ (t− l) dt︸ ︷︷ ︸

Qfu (k,l)

(4.32)

In the last step we expanded ϕp (t− k) using (2.33) and made a change of
variable, thus extending the integral from −∞ to ∞. We also transferred the
periodicity of Qfu to the coefficient sequence. Since Qfu (k, l) is a finite sequence,
the evaluation of (4.32) amounts to an appropriate finite sum. In a similar
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manner, using (4.28) we obtain

∂Eimage

∂cy,k
=

∞∑
l=−∞

cp
x,l

∫ ∞

−∞
fu (t)ϕ (t− k) ϕ′ (t− l) dt︸ ︷︷ ︸

Qfu (k,l)

The main steps in the computation of the partial derivatives are:

1. The evaluation of the sequence Qfu (k, l) ; |k − l| < N . (With a change of
variables we obtain Qfu (k, l) =

∫∞
−∞ fu (t + k)ϕ (t) ϕ′ (t + k − l) dt. Since

ϕ (t) is finitely supported in the interval [0, N ], Qfu (k, l) is zero if |k − l| ≥
N). Approximating the integral as a discrete sum, we obtain

Qfu (k, l) =
1
R

NR∑
i=0

fu

(
[kR + i]M

R

)
ϕ

(
i

R

)
ϕ′
(

i

R
+ k − l

)
︸ ︷︷ ︸

bk−l(i)

(4.33)

Provided we precompute5 the sequence bm (i) ;m = {−N + 1 . . . N − 1},
the computation of Qfu (k, l) ; 0 < k, l < M involves an weighted sum of
length Ns.

2. The evaluation of the partial derivatives, which are obtained as[
∂Eu/∂cx,k

∂Eu/∂cy,k

]
=

M−1∑
l=0

[
−cp

y,l

cp
x,l

]
Qfu (k, l) (4.34)

Here, the computational complexity of the order of sM2N2. Note that there is a
factor of 2 advantage in implementing the partial derivatives of Egrad as in (4.34)
rather than its direct evaluation from (4.4). The performance improvement in
the implementation of the unified energy is even better as compared to the one
in [10], where the energy is the sum of two integrals.

4.6.1 Partial derivatives of the internal energy

Differentiating the expression of Eint = Ecurv and simplifying further, we obtain
the partial derivatives as simple multidimensional filtering of the scaling function

5The samples of ϕ can be computed by solving for its values at the integers as shown in
[22] and using the two-scale relation to refine it .
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coefficients. We show in the appendix that the partial derivatives of the the term
Eint can be computed as

∂

∂cx,k
(Eint) =

∑
|l|,|m|,|n|<N

cp
x,k−l cp

x,k−m cp
x,k−n h1 (l, m, n) +

∑
|l|,|m|,|n|<N

cp
x,k−l cp

y,k−m cp
y,k−n h1 (l,m, n) +

c
∑
|l|<N

cp
x,k−l h2 (l) (4.35)

∂

∂cy,k
(Eint) =

∑
|l|,|m|,|n|<N

cp
y,k−l cp

y,k−m cp
y,k−n h1 (l,m, n) +

∑
|l|,|m|,|n|<N

cp
y,k−l cp

x,k−m cp
x,k−n h1 (l,m, n) +

c
∑
|l|<N

cp
y,k−l h2 (l)

where

h1 (l,m, n) =
∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) ϕ′ (t + m) ϕ′ (t + n) dt (4.36)

h2 (l) =
∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) dt (4.37)

Note that the multidimensional filtering is performed assuming periodic bound-
ary conditions. The computational complexity is small, since the sum depends
only on the coefficient sequence whose number is typically much lesser than
the number of curve samples. The computational complexity in evaluating the
above sum is N3M . The filter coefficients (4.36) and (4.37) are precomputed as
shown in Appendix 4-C.

4.6.2 Partial derivatives of the constraint energy

Computing the partial derivatives of (4.25), in all its generality, would give
a very complicated expression. To make the problem more tractable and to
reduce its computational complexity, we make the assumption that the optimal
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parameters ti; i = 0 . . . Nc − 1 are known. In this case, (4.25) gets simplified to

Ec =
Nc−1∑
i=0

|r (ti)− rc,i|2 (4.38)

and its partial derivatives are given by:[
∂Ec/∂cx,k

∂Ec/∂cy,k

]
=

Nc−1∑
i=0

([
xc,i

yc,i

]
−
[

x (ti)
y (ti)

])
ϕ (ti − k) (4.39)

Using the finite support of the scaling functions, we limit the sum to the relevant
indices (we need to evaluate it only for {i| 0 < (ti − k) < Nc}). In practice, we
resort to a two-step optimization where the snake is first evolved using the above
formulas for the derivatives with the current set of ti’s. The optimal parameters
ti are then re-estimated within the loop as:

ti = arg min
t∈[0,M ]

|r (t)− rc,i| ; i = 0 . . . Nc − 1 (4.40)

4.6.3 Estimation of the probability distribution functions

The evaluation of (4.11) requires the specification of the probability distribution
functions P (f (s) |s ∈ R) and P (f (s) |s ∈ R). If we do not have any a-priori
knowledge of these distributions, these are estimated iteratively from the image
data itself assuming R = S and R′ = S ′. Note that these assumptions are valid
if the snake is close to the real boundary. We use densities such as the Gaussian
distribution which are represented by few parameters (mean and variance). The
estimation of these parameters require integrating the image and its square in
the region bounded by S. We compute the integrals efficiently using (4.28) with
the corresponding integrated functions (similar to (4.30)) precomputed.

The estimation of the distributions are followed a non-linear transformation
which maps f into fu. Since this transformation is time consuming, the estima-
tion of the distributions and the updating of fu is only performed periodically,
typically once every 10 iterations.

4.6.4 Computation of the length and area

The computation of the internal energy requires the estimation of the current
length of the curve. We compute the length as a discrete approximation of the
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integral ∫ M

0

(
x′ (t)2 + y′ (t)2

) 1
2

dt

as

Length =
1
R

MR−1∑
i=0

√
x′
(

i

R

)2

+ y′
(

i

R

)2

. (4.41)

The area of the curve is obtained by Green’s theorem as
∮
C ydx, which when

expanded gives

Area =
M−1∑
k=0

N−1∑
l=−N+1

cy,k cp
x,l q (k − l) , (4.42)

where q (m) =
∫∞
−∞ ϕ (t)ϕ′ (t−m) dt is obtained as in [86]. Note that the area

obtained by the above expression is signed; its sign is utilized to determine the
sense (clockwise or anti-clockwise) of the curve.

4.7 Evolving the curve

4.7.1 Optimization Algorithm

As mentioned before, the active contour algorithm extracts the final contour
by finding the minimum of the energy function. Having obtained the partial
derivatives, we can use an efficient optimization algorithm to evolve the contour.
Here, we implemented the conjugate gradient and steepest descend algorithms.
The conjugate gradient algorithm resulted in slightly faster convergence, but
was less flexible for loop recovery and knot addition/deletion discussed later.
Hence in our final implementation we reverted to the simpler steepest descend
algorithm, which was found to be entirely satisfactory for our purpose.

4.7.2 Loop detection and recovery

The optimization process can sometimes lead to looping curves. The probability
of loops is greatly reduced by the introduction of the curvilinear reparameteri-
zation energy; without this term, the knots tend to bunch together, eventually
resulting in loops (c.f. Fig. 4.4).

Despite the use of the new internal energy, looping may still arise occasionally
when the image energy forces some knots to move faster than the others. This
compromises our approach since we use Green’s theorem which assumes simply
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connected regions. In the case of polygonal representation (linear spline curve),
Chesnaud et. al. proposed to perform crossing tests to detect the presence
of loops [79]. Unfortunately, this method is time consuming and not directly
applicable to general scaling function curves. Hence, we devised a fast method
for loop detection. We compute the total tangential angle6:

θtotal =
∫ M

0

dθ (t) dt, (4.43)

where

dθ (t) =
x′ (t) y′′ (t)− y′ (t) x′′ (t)

x′ (t)2 + y′ (t)2
. (4.44)

We show in the Appendix 4-D that the value of the integral (4.43) is 2 (n−m)π,
where m and n are the number of loops in the clockwise and anti-clockwise sense,
respectively. Hence, for a simply connected curve, we expect ±2π (depending on
the sense in which the curve is described). We approximate (4.43) by a discrete
sum over the parameter t.

C

d s

d O

Figure 4.5: Computation of the elemental angle

Note that our criterion can give a value 2π even if the curve is looping (when
n + 1 = m), which implies that it is not completely foolproof. In principle, it
is possible to detect these cases by splitting the integral (4.43) over a series
of smaller intervals and checking if there is a loop in each of the subintervals.
However, such cases are unlikely to occur in practice and it was not necessary
to implement such a finer level of detection.

Once we detect a loop, we evolve the curve with only the Eint term with
γ = 0, thus decreasing its length. In practice, the curvature of the curve at the
loops are high. Since minimizing the length corresponds to evolving the curve
at every point depending on its curvature [18], the loops tend to disappear very
rapidly.

6for a plane curve, the tangential angle θ is defined by dθ = κ |dr| [87]
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4.7.3 Shrinking/growing snakes

If the snake is initialized away from the actual boundary, it has to shrink/grow
to reach the boundary. This changes the average spacing of the knots, which in
turn controls the average curvature of the curve (cf. (4.19)).

We monitor the length of the curve as it evolves in order to eventually
add/delete knots as required. As length can be computed very efficiently
by (4.41), this does not introduce a computational overhead. We may then
add/delete knot points as required to control or maintain the elasticity of the
curve during the evolution process. The addition/deletion of a knot temporar-
ily destroys the uniform spacing of knots. But, thanks to the reparametrization
energy term, it returns to the curvilinear abcsissa in a few iterations (without
the reparametrization energy, knot insertion is a tricky issue as close knots may
eventually lead to looping curves). The performance improvement in adopting
this strategy is illustrated in Fig. 4.6.

4.8 Discussion and Summary

We have successfully applied the snake algorithm to a variety of cases including
the segmentation of corpus-callossum from MR images and segmentation of the
inner heart wall from ultrasound data. Some examples of the segmented corpus-
callossum images are shown in Fig. 4.7. Thanks to the unified image energy,
the snake gives a good segmentation even if it is not initialized very close to the
actual boundary. This approach also makes the algorithm less sensitive to the
initial shape of the snake.

The curvilinear reparametrization energy ensures that the curves are smooth.
Without this term, the segmentation of the heart data (see from Fig 4.6) is im-
possible; the curves often resulted in loops. The knot insertion/deletion proce-
dure ensures that the evolving curve has the same stiffness as the initialization.

To conclude, we have presented several enhancements over classical para-
metric snakes. We have identified some limitations of the conventional gradient
magnitude image energy and proposed a new energy that eliminates these prob-
lems. We have shown that a general form of this energy can be expressed as
a region integral, thus unifying it naturally with the region-based approaches.
The unification yields a powerful class of image energies that combines the
advantages of edge and region-based approaches. We have shown that the
spline representation can guarantee smooth curves if these are described in the
curvilinear abscissa. Since the curve evolution process can negatively affect the
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(a) Initialization (b) without knot inser-
tion

(c) with knot insertion

Figure 4.6: Segmentation of the inner wall of the heart of a dog from its ul-
trasound image. Only the region-based energy is used in this case (α = 0).
Note that knot (knots are denoted by black dots) insertion and loopcheck is
indispensable in this case.

reparametrisation of the curve, we proposed a new internal energy which forces
the knot points to remain equally spaced. The various energy terms that we
have proposed are summarized in Table 4.1.

The evolution of the curve may lead to looping curves that violate our as-
sumption of the region to be simply connected. Hence, we introduced a simple
loop detection test. We also proposed an efficient curve evolution-based al-
gorithm for recovery from the loops. We introduced efficient computational
schemes for the evaluation of the partial differentials used in the optimization;
we converted all the quantities as curve integrals and simplified the expressions
making use of the properties of scaling function curve representation.
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(a) (b)

(c) (d)

Figure 4.7: Segmentation of corpus-callossum of 4 different subjects from their
MR images. The initialization was a small curve at the center similar to Fig.
4.3. We gave equal weight to the region and gradient terms (α = 0.5).

The implementation of this algorithm is available as a java plugin for ImageJ
[62] at http://bigwww.epfl.ch/jacob/SplineSnake.

Appendix 4-A: Simplification of the curvature term
in the internal energy

The square of the curvature of the curve at a point r (t) can be expressed in the
vector form as

|κ (r) |2 =
(r′ × r′′) · (r′ × r′′)

|r′|6
(4.45)

Assuming the parameter t to be in the curvilinear abscissa, we have |r′ (t)| =
c, ∀t. Making use of the vector identity a.(b × c) = c.(a × b), the numerator
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Energy Type General Expression Special Cases

Gradient-based energy: Eq. (4.4)

General edge-based energy: Eq. (4.6)

(α = 1)

Image Energy
R
S Tu (f) ds Region-based energy: Eq. (4.13)

(α = 0)

Unified energy: Eq. (4.17)

(0 ≤ α ≤ 1)

Curvilinear reparametrizaton energy: Eq. (4.22)

Internal Energy
R M
0

˛̨̨˛̨
r′ (t)

˛̨2 − γ Length
M

˛̨̨2
(γ = 1)

Length energy: Eq. (4.23)

(γ = 0)

Constraint Energy
PNc−1

i=0 mint∈[0,M] |r (t)− rc,i| Point constraint: Eq. (4.25)

Table 4.1: Different energy terms used in the snake optimization

of (4.45) can be rewritten as

(r′ × r′′) · (r′ × r′′) = r′′ · (r′ × r′′ × r′′)
= r′′ · (r′′(r′ · r′)− r′(r′ · r′′))
= |r′′|2|r′|2 − | r′′ · r′︸ ︷︷ ︸

d(r′2)=0

|2

In the second step, we make use of the identity a× b× c = (a · c)b− (b · c)a.
So the expression for the curvature can be written as

|κ(r)|2 =

∣∣r′′2∣∣
|r′|4

=

∣∣r′′2∣∣
c2

(4.46)
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Appendix 4-B: Partial derivatives of the curvilinear
reparametrization term

Expanding (4.22) we obtain

Ecurv =
∫ M

0

(
x′ (t)4 + y′ (t)4 + 2x′ (t)2 y′ (t)2

)
dt +

c2 − 4c

∫ M

0

(
x′ (t)2 + y′ (t)2

)
dt (4.47)

Differentiating Ecurv with respect to cx,k, we get

∂Ecurv

∂cx,k
=

∫ M

0

(
4x′ (t)3 + 4x′ (t) y′ (t)2

) ∂

∂cx,k
(x′ (t)) dt−

4c

∫ M

0

x′ (t)
∂

∂cx,k
(x′ (t)) dt (4.48)

Now substituting for x (t) and y (t) from (2.31), yields

∂Ecurv

∂cx,k
=

∑
l,m,n∈Z

cp
x,l cp

x,m cp
x,n h1 (k − l, k −m, k − n) +

∑
l,m,n∈Z

cp
x,l cp

y,m cp
y,n h1 (k − l, k −m, k − n) +

∑
l,m,n∈Z

cp
x,l h2 (k − l) (4.49)

The filters h1 and h2 are given by

h1 (l,m, n) =
∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) ϕ′ (t + m) ϕ′ (t + n) dt

(4.50)

h2 (l) =
∫ ∞

−∞
ϕ′ (t) ϕ′ (t + l) dt (4.51)

With a change of variables and using the finite support of h1 and h2, we can
simplify (4.49) to (4.35).
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Appendix 4-C: Precomputation of the kernel

We use the property that the derivative of a scaling function ϕ can be written
as ϕ′ (t) = ϕ{1} (t)−ϕ{1} (t− 1), where ϕ{1} is the scaling function whose mask
(scaling filter) is A{1} (z) =

(
2

1+z−1

)
A (z); A (z) ↔ ak is the mask of ϕ. Using

this relation, we rewrite the filter coefficients (4.36) and (4.37) as

h1 (l,m, n) = −4f 4b
1 4b

2 4b
3 g1 (l,m, n) (4.52)

h2 (l) = −4f 4b
1 g2 (l) , (4.53)

where

4b
i g (l1, .., li, .., ln) = g (l1, .., li, .., ln)− g (l1, .., li − 1, .., ln)
4f g (l1, l2.., ln) = g (l1 + 1, l2 + 1, .., ln + 1)− g (l1, l2, .., ln)

and

g1 (l,m, n) =
∫ ∞

−∞
ϕ{1} (t) ϕ{1} (t + l) ϕ{1} (t + m)ϕ{1} (t + n) dt

(4.54)

g2 (l) =
∫ ∞

−∞
ϕ{1} (t) ϕ{1} (t + l) dt (4.55)

The scaling function ϕ{1} satisfies the two-scale relation

ϕ{1} (t) =
N∑

k=0

a
{1}
k ϕ{1} (2t− k) , (4.56)

Consequently, the kernels g1 and g2 satisfy the two-scale relations

g1 (k) =
∑
l

h1 (l) g1 (2k− l) (4.57)

g2 (k) =
∑
l

h2 (l) g2 (2k − l) , (4.58)

where the two-scale masks H1 and H2 are given by

h1 (l, m, n) =
1
2

(∑
k

a{1} (k) a{1} (k − l) a{1} (k −m) a{1} (k − n)

)
(4.59)

h2 (l) =
1
2

(∑
k

a{1} (k) a{1} (k − l)

)
(4.60)
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Using the two-scale relation, the sequences g1 and g2 are exactly computed as
in [86].

Appendix 4-D: Integral of the tangential angle.

We start by observing that the integral (4.43) can be expressed as

θtotal = Im

(∫ M

0

d (x′ (t) + j y′ (t))
x′ (t) + jy′ (t)

dt

)
, (4.61)

where Im (z) gives the imaginary part of z and j =
√
−1. This can be rewritten

as the curve integral

θtotal = Im
(∮

C′

dz

z

)
, (4.62)

where C′ is the curve described (x′ (t) , y′ (t)) and z = x′ + iy′. Using Cauchy’s
integral formula, we obtain the value of this integral as 2π times the winding
number7 of the contour C′ about the origin. Since each loop in C corresponds
to one in C′ in the same sense, but around the origin, the winding number of C′
is (m− n), where m and n are the number of times C loops in the anticlockwise
and clockwise sense respectively.

7The winding number of a contour about a point z0 is the number of times the contour
passes around z0 in the counterclockwise sense [87].
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Chapter 5

3-D shape estimation of DNA
molecules

In this chapter1, we discuss the second application of the shape estimation
algorithm shown in Fig. 1.4.

5.1 Introduction

Cryo-electron microscopy is an approach used to image bio-molecules such as
DNA filaments [88, 89, 90]. The molecules are suspended in a thin layer of
liquid, which is then cooled to a very low temperature. Thanks to the rapid
cooling (of the order of 106 K/s), the resulting specimen can be considered to
be a snapshot of its thermal oscillations. As compared to other approaches
such as classical electron microscopy and atomic force microscopy, where the
molecules are adsorbed onto supporting films, this method does not cause shape
deformation. In this paper, we address the 3-D reconstruction of the shape of
a DNA molecule from its stereo-micrographs (a typical pair of such images is
shown in Fig. 5.1). This data is useful in probing the physical properties of the
filament (such as its shape, stiffness, modes of oscillations, shape variation due
to protein-bindings etc.), which play important roles in various bio-molecular
processes.

1Based on the article ”M.Jacob, T.Blu, C.Vaillant, J.Maddocks, M.Unser, submitted to
IEEE Transactions on Image Processing”.
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Figure 5.1: Stereo views separated by 30◦ of a super-coiled DNA filament (1800
base pairs) with a pair of corresponding points marked. Courtesy E. Larquet,
Pasteur Institute.

Since exposure to electron beams causes degradation of the specimen, one
usually restricts the number of views to two. Due to physical constraints, the
angular separation between the views is limited to a maximum of 30 degrees.
The micrographs also suffer from poor image contrast and low SNR due to the
low electron dose. All these aspects make the reconstruction problem difficult.

The early approaches to this problem included manual reconstruction [91]
and a semi-automatic search algorithm called the flying cylinder [92, 93]. In the
manual scheme, the user clicks on the images to introduce pairs of corresponding
points that define the curve; this is time consuming and not necessarily repro-
ducible. The flying cylinder algorithm detects the filaments by matching the
projections (onto the image planes) of a 3-D cylindrical template with the stereo
images. Since deriving the 2-D projections of a 3-D cylinder (with arbitrary ori-
entation) was difficult, the authors approximated them with oriented rectangles.
To reduce the number of matchings required, they discretized the orientation
space and used a sequential search algorithm. The detected fragments were
then sorted and interpolated to obtain a continuous curve. The performance of
this algorithm is limited by the approximations, angular discretization, and, the
multi-step strategy; in particular, the interpolation of the curve is only based
on the detected fragments and is not necessarily consistent with the image data,
nor the global optimum.

We address these shortcomings and propose a new algorithm that solve
the 3-D reconstruction problem in a more exact and consistent manner, us-
ing projection-steerable templates and a 3-D active contour model. An outline
of the full procedure is given in Fig. 5.2. In the active contour framework, the
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shape estimation problem is formulated as an energy minimization. The snake
energy is a linear combination of the image energy, the internal energy and the
constraint energy terms (we discuss the details of the snake algorithm in Sec-
tion 5.4). At each iteration of the optimization algorithm, the curve model is
evaluated from its coefficients and the energy terms are computed based on the
model and image information. The curve coefficients are then updated so that
the system converges towards the energy minimum.

The image energy term, which the crucial part of the snake energy, is a
measure of the fit of the curve model with the image data. We consider a global
model for the DNA filament, whose skeleton is a 3-D parametric Bspline curve,
and has a certain radial profile. Ideally, we would project the global model onto
the projection planes and match the projections with the images (we compute
the sum of the inner-products between the projections and the images) to obtain
the fitness measure. Thanks to the linearity of the B-spline representation,
the skeletons of the 2-D projections will be 2-D B-spline curves. However, its
profile will be different at different curve points, depending of the orientation
of the filament at the corresponding 3-D point. Thus the evaluation of the
exact projections and performing the matching operation is computationally
very expensive. Note that since we use an iterative optimization algorithm, the
projections and matching procedure have to performed in a loop.

To reduce the computational complexity, we propose to approximate the
global 3-D model locally as an elongated blob-like template. We introduce the
concept of projection-steerablity, which is inspired by the work on 2-D orienta-
tion steerablity by Freeman et. al. [42, 45, 46]. We derive an elongated template
in 3-D that is projection-steerable, i.e., the 2-D projections of this elongated tem-
plate can be expressed as a linear combination of a few basis functions. With
this framework, the matching of the projection of such a 3-D template can be
performed inexpensively as a weighted sum of the inner-products between the
basis functions and the images. The weights are simple functions of the orien-
tation of the 3-D template and the inner-products are evaluated efficiently by
separable filtering. We discuss the projection-steerable ridge detection in detail
in Section 5.3.

We show that cubic B-spline representation is optimal for the description of
smooth 3-D curves, if described in the constant arc-length parametrization. We
also use the constant arc-length assumption to derive a simple expression for
the internal energy. For this assumption to hold, we reparametrize the initial
curve (derived from user inputs) such that the curve knots are uniformly spaced.
Since the length of the DNA molecules are known a-priori, we use an additional
constraint term that penalizes the curve for not having the specified length.

87



Micrographs

Snake Algorithm

   3-D Spline
Curve  Model

Optimization

 Internal
 Energy

 Constraint
    Energy

       Image Energy
(Confidence measure)

Global shape estimation

Steerable feature
          space

 Curve points
and  tangents

3-D shape

Local feature
   detection

(Ref. Section III)   

(Ref. Section IV)   

(Ref. Section II.A)   

(Ref. Section V)   

 Sec. IV.C  Sec. IV.D

Figure 5.2: Outline of the global 3-D shape estimation algorithm.

We use conjugate gradient algorithm for snake optimization. This scheme
requires the efficient evaluation of the partial derivatives of the energy terms.
Thanks to the projection-steerable templates and the curve representation using
finitely supported B-spline functions, they are computed exactly and efficiently
as shown in Section 5.5.

5.2 Mathematical Preliminaries

5.2.1 Parametric representation of 3-D curve

A 3-D curve, (denoted as C) can be described in terms of an arbitrary parameter
t as r(t) = (x(t), y(t), z(t)). When the curve is closed, the function vector, r(t),
is periodic.

r(t) can be represented efficiently as a linear combination of some basis
functions. Here, we focus on the B-spline curve representation [9, 17] due to
numerous advantages discussed in Section 5.4.3. Specifically, we represent the
component functions of a 3-D curve in a uniform B-spline basis as

r(t) =

 x (t)
y (t)
z (t)

 =
∞∑

k=−∞

c (k)βn(t− k), (5.1)
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Figure 5.3: 3-D curve and its 2-D projections.

where c (k) = [cx (k) , cy (k) , cz (k)] is a sequence of coefficient vectors; in com-
puter graphics, these are often called the control points [15]. The basis function
βn is the B-spline of degree n [27]. If the period, M , is an integer, we have
c (k) = c (k + M). This reduces the infinite summation to

r (t) =
M−1∑
k=0

c (k) βn
p (t− k), (5.2)

where βn
p is the M - periodization of βn:

βn
p (t) =

∞∑
k=−∞

βn(t− k M) (5.3)

Note that the special case of n = 1 (linear splines) yields a curve that is com-
posed of line segments connecting the control points.

We denote the orthonormal basis vectors of the volume as (ex, ey, ez). The
basis vectors of the ith projection plane is (exi

, ezi
), while the vector orthonormal

to the plane is denoted by eyi . An arbitrary vector r, can be denoted as

r = x ex + y ey + x ez (5.4)
= xi exi

+ yi eyi
+ zi ezi

(5.5)

The projection of the vector r to the plane is given by

ri = Pi r = xi exi + zi ezi , (5.6)
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where Pi are the orthogonal projection matrices. The reconstruction algorithm
requires projecting the curve model onto the image planes. Thanks to the
linearity of the representation, the 2-D curve projections are also B-spline curves.
Thus, the 2-D curve coefficients are:

ci (k) = Pi c (k) , (5.7)

Thus, the 2-D curve projections (we denote them by Ci) are given by

ri (t) =
[

xi (t)
zi (t)

]
=

M−1∑
k=0

ci (k) βn
p (t− k), (5.8)

where ri (t) = Pir (t). The projection matrix Pi can be thought off as the
composition of a rotation matrix and a simple projection operator P:

Pi =
[

1 0 0
0 0 1

]
︸ ︷︷ ︸

P

Ri (5.9)

Note that P is the same for all Pi, while the projection geometry is specified
by the unitary matrix Ri; The rotation matrix performs the coordinate trans-
formation from (x, y, z) to (xi, yi, zi).

For the projection geometry shown in Fig. 5.3 (α0 = −α, α1 = α), the
rotation matrices are

R1 =

 cos α − sinα 0
sinα cos α 0

0 0 1

 (5.10)

R2 =

 cos α sinα 0
− sinα cos α 0

0 0 1

 (5.11)

respectively.

5.2.2 Orthogonal volume projection

We now model the measurement process by a line integral and obtain the ex-
pressions for the projection images, given the 3-D volume data. We denote the
volume by f (r), where r = (x, y, z). The projected images fi = Pif are rep-
resented in the 2-D coordinate system where Pi denote the orthogonal volume
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projection operator. Thus,

fi (ri) =
∫ ∞

−∞
f
(
Pt

i ri + γ eyi

)
dγ. (5.12)

The above equation is easier to understand in the Fourier domain. The Fourier
transform of f is given by

f̂ (ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (r) ej〈ω,r〉dxdydz, (5.13)

where ω = (ωx, ωy, ωz). The Fourier transform of the function in the coor-
dinate system (xi, yi, zi) can be shown to be f̂ (Rt

i ω). The Fourier trans-
form of the projection can be obtained by setting ωyi

= 0 (or by substitut-
ing ω = Ptωi; ωi = (ωxi

, ωzi
)) in f̂ (Rt

i ω) . Thus, the two-variable Fourier
transform of the image is given by

f̂i (ωi) = f̂
(
Rt

iP
tωi

)
= f̂

(
Pt

iωi

)
(5.14)

This expression can also be obtained using the Fourier-slice theorem [94].

5.3 Local filament detection

We have seen that the direct use of a global DNA model in the optimization
algorithm can lead to a high computational complexity. Hence, we approximate
the global model locally as an elongated blob. In this section, we address the
detection of elongated blob-like structures in 3-D from their 2-D orthogonal
projections (see Fig. 5.1). We addressed a similar problem in [95], where we
derived the optimal rotation-steerable filters for 2-D feature detection. This
method gave promising results for the detection of 2-D line-like structures. In
this section, we generalize the concept of rotation steerablity to projection-
steerablity for 3-D filaments detection. This approach is well-suited for both
the local scheme (where the detection is performed independently at each point)
as well as the global approach (where the optimal orientation is specified by a
model whose parameters are estimated).

5.3.1 Projection based feature detection

Suppose our task is to check for the presence of an elongated 3-D blob—denoted
by fc (r) ; r ∈ R3—with an unknown orientation, at a particular position rc, in a
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3-D volume f . The volume is known only through its orthogonal 2-D projections
fi = Pif . We formulate the detection procedure as a matched filtering; we
consider a 3-D detector and match its orthogonal projections onto the image
planes with the micrographs.

We choose the 3-D template to be h (r) = fc (−r) and denote its rotated
versions by hv (r) = h (Rv r), where Rv is a 3-D rotation matrix. We use
the sum of the inner-products between the 2-D template projections and the
micrographs as the performance criterion:

Cv (rc) =
N−1∑
i=0

(
fi ∗ Pi (hv)

)
(rc,i) (5.15)

where Pi; i = 0 . . . N − 1 are the orthogonal projection operators2 and rc,i =
Pi rc. Note that this criterion is a function of the orientation vector v. If
we perform the filament detection independently at each point, the optimal
orientation vector and the likeliness measure are given by

v∗ (r) = arg max
|v|=1

(Cv (r)) (5.16)

r∗ (r) = Cv∗ (r) , (5.17)

For an arbitrary 3-D template, the computation of the projections Pi (hv)
are expensive. To obtain the optimal orientation by numerical optimization,
the template projections and their inner-products with the micrographs have
to computed for each iteration; a direct implementation of the algorithm is not
very practical, unless simplifying assumptions are made.

5.3.2 Projection-steerable ridge detection

To reduce the complexity in performing the projection matched filter detection,
we use an approach similar to rotation steerablity [42, 45, 46]. We would like
to have a good 3-D filament detector whose projections (for any spatial orien-
tation) are contained in a space spanned by a few basis functions. For such a
detector, the evaluation of the performance criterion for each curve point sim-
plifies to a weighted sum of the inner-products of the basis functions with the
micrographs. The inner-products themselves can be efficiently pre-computed
using 2-D filtering.

2In our case N = 2, but the scheme is applicable for the general case as well.
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We now consider the family

V3D = span {∂xx g3 (r;σ) , ∂yy g3 (r;σ) , ∂zz g3 (r;σ) , ∂xy g3 (r;σ) ,

∂xz g3 (r;σ) , ∂yz g3 (r;σ)} , (5.18)

where gD (r;σ) = 1

(2πσ)
D
2

exp
(
− |r|2

2σ2

)
is a D-dimensonal Gaussian and

∂xy f (r) = ∂2

∂x∂y (f (r)). We now show that any 3-D filter in this family is
ideally suited for projection matched filter detection.

Proposition 3 The space V3D is closed with respect to 3-D rotations.

Proof: The Fourier transforms of the basis functions are

∂xx g3 (r;σ) F↔ − (2π)
3
2 ω2

x g3

(
ω;σ−1

)
∂yy g3 (r;σ) F↔ − (2π)

3
2 ω2

y g3

(
ω;σ−1

)
∂zz g3 (r;σ) F↔ − (2π)

3
2 ω2

z g3

(
ω;σ−1

)
∂xy g3 (r;σ) F↔ − (2π)

3
2 ωxωy g3

(
ω;σ−1

)
∂xz g3 (r;σ) F↔ − (2π)

3
2 ωxωz g3

(
ω;σ−1

)
∂yz g3 (r;σ) F↔ − (2π)

3
2 ωyωz g3

(
ω;σ−1

)
where ω = [ωx, ωy, ωz]

t. Since the basis functions are the products of second
degree monomials with a Gaussian in the Fourier domain, an arbitrary function
in V3D is a second degree polynomial multiplied by a Gaussian. It can be written
in a compact form as

ĥ (ω) = (2π)
3
2
(
ωtAω

)
g3

(
ω;σ−1

)
(5.19)

Here, A is a symmetric 3x3 coefficient matrix that characterizes the shape of h.
The Fourier transform of a R-rotated version3 of h is given by

ĥ (Rω) = (2π)
3
2

ωt RtAR︸ ︷︷ ︸
AR

ω

 g3

(
ω;σ−1

)
, (5.20)

3we use the property that the rotation of the filter is equivalent to rotating its Fourier
transform
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where R is the 3x3 rotation matrix. Note that in the above step, we have used
the isotropy of the function ĝ. Since the new filter h (Rr) has the same form as
(5.19) for any rotation matrix R, it is still in V3D.

Proposition 4 The orthogonal projection Pi of the space V3D onto a plane is
the function space V2D,i:

V2D,i = span {∂xixi g2 (ri;σ) , ∂zizi g2 (ri;σ) , ∂xizi g2 (ri;σ)} . (5.21)

Proof: The Fourier transform of the projection of an arbitrary function in
V3D is obtained by substituting (5.19) in (5.14):

ĥi (ωi) =
√

2π

ωt
i PiAPt

i︸ ︷︷ ︸
Bi

ωi

 2π g3

(
Pt

iωi;σ−1
)︸ ︷︷ ︸

g2(ωi;σ−1)

, (5.22)

where g2 is a 2-D Gaussian. Since the 2x2 matrix Bi is symmetric, ĥi (ωi) is
second degree polynomial in ωi. This implies that hi is a linear combination
of the functions ∂xx g2 (ri, σ), ∂xy g2 (ri, σ) and ∂yy g2 (ri;σ). Thus Pi (V3D) ⊆
V2D,i.

We also have the relations Pi (∂xx g3) = ∂xixi
g2, Pi (∂zz g3) = ∂zizi

g2 and
Pi (∂xz g3) = ∂xizi

g2. They imply that V2D,i ⊆ Pi (V3D). Thus we have V2D,i =
Pi (V3D)

We have seen that V3D is closed under 3-D rotations. Hence, if we choose
a 3-D detector in this space, its rotated versions are guaranteed to be in the
same space. We have also seen that Pi (V3D) = V2D,i, which implies that the
projection of any rotated version of the detector is in V2D,i. Moreover, since the
functions in V2D,i are band-pass, the detection scheme will not be sensitive to
smooth intensity variations that are common with micrographs4.

In this paper, we have restricted ourselves to second order detectors for
simplicity. However the concept of projection-steerablity is more general; any
3-D function that can be represented as a linear combination of the differentials
(up to a certain order) of an isotropic function is projection-steerable.

5.3.3 3-D ridge detection

We have seen that V3D is ideally suited for projection-steerable matching. Hence,
we would like to choose the most elongated blob-like structure in this space as

4In traditional schemes, these variations are removed by a high-pass preprocessing filter[92].
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our local 3-D template. We derive the optimally elongated local template in
Appendix 5-A as

h (r) =

√
3
20

(
∂yy g3 (r, σ) + ∂zz g3 (r, σ)− 2

3
∂xx g3 (r, σ)

)
(5.23)

See 3-D plots of this detector in Fig. 5.4 and Fig. 5.5.
Neglecting the normalization constant, we rewrite the expression for the

optimal filter (5.23) oriented along the unit vector v as

hv (r) = (∂xx + ∂yy + ∂zz) g3 (r;σ)︸ ︷︷ ︸
Laplacian of g (r;σ)

−5
3

∂vv g3 (r;σ) , (5.24)

where ∂vvf (r) = ∂2

∂γ2 f (r + γ v). Note that the Fourier transform of the filter
is given by (5.19) with A = I3 − 5

3 vvt, where I3 is the 3x3 identity matrix.
By substituting (5.24) in (5.22) and by performing the manipulations shown in
Appendix 5-B, we get

Pi (hv (r)) = vt
[
Rt

i Gi (ri;σ)Ri

]
v, (5.25)

where

Gi (ri;σ) =

 ( ∂zizi
− 2

3 ∂xixi

)
0 −

(
5
3 ∂xizi

)
0 ( ∂xixi + ∂zizi) 0

−
(

5
3 ∂xizi

)
0

(
∂zizi

− 2
3 ∂xixi

)
 g2 (ri;σ)

(5.26)
and Ri is the rotation matrix given by (5.9) and (5.11).

Note that, when Riv = (1, 0, 0) (horizontal filament parallel to the image
plane), we get Pi (hv) = gzizi (ri;σ)− 2

3gxixi (ri;σ)—an elongated detector. On
the other hand, if Riv = (0, 1, 0) (i.e., the filament is orthogonal to the image
plane so that its projection is an isotropic blob rather than a filament), we get
Pi (hv) = gxixi

(ri;σ) + gzizi
(ri;σ)—the isotropic Laplacian detector. In other

words, we use different 2-D detectors on the image planes, depending on the
spatial orientation of the 3-D template. We give some examples with the 3-D
template and their projections in Fig. 5.4 and Fig. 5.5.

Using (5.25), we simplify (5.15) to

Cv (r) = vt

[
N−1∑
i=0

Rt
i Hfi

(ri)Ri

]
︸ ︷︷ ︸

H3D(r)

v (5.27)
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(a) front view (b) top view (c) left (d) right

Figure 5.4: (a) and (b) Isosurface plots of the front (viewed from the x-z plane)
and top (viewed from the x-y plane) views of a 3-D detector oriented at 30◦ to
the x- axis and 30◦ to the x-y plane (θ = 30◦, φ = 30◦). (c) and (d) Projections
of the 3-D filter onto the image planes oriented at −15◦ and −15◦ to the y axis

where
Hfi

(ri) = fi ∗Gi (ri;σ) (5.28)

Thus, the evaluation of likeliness of a filament at a specified 3-D oriented
along v is given by (5.27); the evaluation of Hfi

(ri) requires the evalua-
tion of the inner-products with the micrographs and the 5 non-zero entries
of (5.26). Since these entries are linear combinations of the three functions
∂xixi

g2 (ri;σ) , ∂zizi
g2 (ri;σ) and ∂xizi

g2 (ri;σ), we need to only evaluate the
inner-products with them; the terms of (5.28) can be derived as linear com-
binations of these inner-products. The inner-products themselves can be ob-
tained efficiently as by performing separable filtering of the micrographs with
∂xixi

g2 (ri;σ) , ∂zizi
g2 (ri;σ) and ∂xizi

g2 (ri;σ).

5.4 Constrained reconstruction using the 3-D snake
model

In the previous section, we have addressed the local detection of elongated 3-D
blobs. In this section, we combine the local likeliness measures into the global
model and estimate its parameters. Since the skeleton of the DNA molecule is
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(a) front view (b) top view (c) left (d) right

Figure 5.5: (a) and (b) Isosurface plots of the front (viewed from the x-z plane)
and top (viewed from the x-y plane) views of a 3-D detector oriented at −45◦

to the x- axis and −60◦ to the x-y plane (θ = −45◦, φ = −60◦). (c) and (d)
Projections of the 3-D filter onto the image planes oriented at −15◦ and −15◦

to the y axis

represented by a curve, the well established framework of active contour models
[8, 63] is very appropriate for this purpose.

5.4.1 Active contour algorithm: Formulation

Traditionally, snakes or active contour models were introduced for the segmen-
tation of closed objects in images. The popularity of these schemes may be
attributed to their ability to aid the segmentation process with a-priori knowl-
edge and user interaction. Snakes, as introduced in the seminal work of Kass
et. al., are smooth curve models that evolve from an initial guess towards some
boundary in the image such that some energy functional is minimized [8, 63].

These models were extended to 3-D for the estimation of coronary vessel
centerlines from X-ray angiographic projections [96, 97]. This approach consid-
ers the evolution of a 3-D curve so that its 2-D projections onto the respective
planes match the images. The matching is performed using distance maps or
gradient vector flow fields. We have also used a similar approach previously for
the estimation of DNA shape[51].

Here, we propose a refined approach, which mainly differs in the matching
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procedure and the curve representation used. Our criterion is obtained by pro-
jecting the optimal templates, oriented along the curve tangents, onto the image
planes and matching them with the micrographs. Note that the shapes of the
template projections depend on the 3-D curve tangent directions. This suggests
that this scheme should give better results than the previous approaches where
the 2-D curve projections are matched.

Before going into the details of the algorithm, we briefly review the fun-
damentals of the snake algorithm. Since the final shape is determined by the
minimum of the snake energy, its choice deserves proper attention. Similar to
conventional snakes, we choose the energy functional as a linear combination of
three separate terms.

1. The image energy, which is responsible for guiding the snake towards the
filament.

2. The internal energy, which ensures that the extracted shape of the filament
is smooth.

3. The constraint energy, which enables the user to enforce extra constraints
such as the curve length.

The total energy of the snake is written as

Esnake (Θ) = Eimage (Θ) + Eint (Θ) + Econst (Θ) , (5.29)

where Θ is the collection of curve coefficients Θ = {c (k) ; k = 0, . . . M − 1}.
The optimal curve parameters are obtained as

Θ = arg min
Θ

Esnake (Θ) (5.30)

We describe the different energy terms in detail in the following subsections.

5.4.2 Image Energy

The image energy term is a measure of the fit of the model to the image data.
Consider a point r (t) on the planar curve C; the tangent vector of the curve
at r (t), given by dr (t) = (dx (t) , dy (t) , dz (t)), defines the direction of the
elongated blob at that point. We define the likeliness of a blob at the curve
point r (t), oriented along dr (t), as

Egoodness (r) = dr (t)t H3D (r) dr (t) . (5.31)
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Energy Type Expression
Image Energy Eimage = −

∮
C drt H3D (r) dr

(ref Eq. (5.32))
Internal Energy Eint = 1

k2

∫M

0
|r′′ (t)|2 dt

(ref Eq. (5.34))

Length Constraint Econst

(∫M

0
|r′ (t)| dt− Length

)2

(ref Eq. (5.38))
Point Constraint Econst =

∑Nc−1
i=0 mint∈[0,M ] |r (t)− rc,i|2
(ref Eq. (5.39))

Table 5.1: Different energy terms used in the snake optimization

Recall from subsection 5.3.2 that this quantity is equivalent to projecting the
optimal 3-D detector, oriented along dr, onto the projection planes and then
computing the sum of the square errors between the template projections and
the micrographs. Note that if dr = v∗ as in (5.16), we get Egoodness (r) = r∗ (r)
which is the maximum possible value.

We obtain the likeliness of the entire curve by integrating the goodness
measures along the curve.

Eimage (Θ) = −
∫ M

0

(
dr (t)t H3D (r) dr (t)

)
dt, (5.32)

The negative sign is introduced since the curve evolution is posed as an energy
minimization problem. By using (5.30) to obtain the optimal coefficients, we are
jointly estimating the optimal orientations and magnitudes at the voxels through
which the curve passes. Note that the optimal orientation at each curve point
is dependent on the optimal coefficients indirectly through the curve model (i.e.
the tangent to the curve). Since the number of curve coefficients is typically
much less than the number of voxels through which the curve passes, this scheme
is more robust than a local approach. Note that (5.32) is independent of the
curve parameter t. Evolving the curve using such a measure will not cause the
parametrization to change during the optimization process, thus preserving the
curve stiffness5.

5Many snake energies are parameter dependent, causing the curve knots to accumulate at
points of high edge strength.
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5.4.3 Internal Energy

The internal energy term is responsible for ensuring the smoothness of the re-
constructed shape. It is essentially a regularization term that penalizes non-
smooth shapes, thus making the reconstruction problem better conditioned.
The smoothness of the curve can be quantified by its total curvature magni-
tude; a stiff curve will have a low value of mean curvature magnitude. The
curvature of the curve at a point r (t) is defined as

|κ (r)|2 =

∣∣∣∣∣r′ (t)× r′′ (t)
|r′ (t)|3

∣∣∣∣∣
2

, (5.33)

where
r′ (t) = (x′ (t) , y′ (t) , z′ (t))

is the derivative vector and

r′′ (t) = (x′′ (t) , y′′ (t) , z′′ (t))

is the vector of second differentials. Using the expression of the average cur-
vature magnitude—

∫M

0
|κ (r)|2 dt—directly as the internal energy leads to com-

plicated expressions for the partial derivatives. Using standard results from
differential geometry [98], we show in Appendix 5-C that this term can be sim-
plified to ∫ M

0

|κ (r)|2 dt =
1
k2

∫ M

0

|r′′ (t)|2 dt (5.34)

provided
|r′ (t)|2 = k, ∀t; (5.35)

that is, when the curve is parametrized by its curvilinear abscissa. Here

k =
1
M


∫ M

0

|r′ (t)| dt︸ ︷︷ ︸
Length


2

(5.36)

is the total length per unit value of the parameter.
Since the uniform B-spline curve has its knots at the integer parameter

values, (5.35) requires that the knots be uniformly spaced on the curve. Thus
the smoothness term (5.34) is inversely proportional to the fourth power of
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the distance between the knots; the curve will be smooth if its knots are well
separated. We will see in Section 5.5.2 that the partial derivatives of the r.h.s of
(5.34) are much easier to compute than those of its l.h.s. To ensure that (5.35)
hold, we resample the initial curve (obtained by user initialization) such that
we have constant arc-length.

Choice of the basis function

Using the well-known variational properties of B-splines [28], we can show that
the minimization of

∮
C |r

′′|2 subject to interpolation constraints give a cubic
spline curve. Thus, the cubic B-spline representation appears to be the natural
choice for parametric curves, for it gives minimum curvature curves when the
knots are uniformly spaced. The use of spline curves also brings in additional
gains due to the existence of efficient algorithms [27], the local control of the
contour due to the finite support of the B-spline basis function, and their good
approximation properties [26].

Internal energy term

We reparametrize the initial curve (derived from the interpolation of the user
input points) so that the knot points are uniformly spaced. Thanks to the
parameter independent image energy term, we can safely assume that the curve
will remain approximately in the constant arc-length parametrization. Hence,
we choose the internal energy term as

Eint =
1
k2

∫ M

0

|r′′ (t)|2 dt. (5.37)

Recall from (5.34) that using this term as the internal energy is equivalent to
minimizing the average square magnitude of the curvature.

5.4.4 External constraint energy.

As mentioned before, the external constraint energy is a means for the user to
enforce extra constraints on the reconstruction. We use two constraint terms in
our implementation.

Length constraint

The length of the DNA filaments are known a-priori; this information can be
imposed on the reconstruction process to make it more robust. We introduce
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this constraint into the framework by penalizing the term

Econst =

(∫ M

0

|r′ (t)| dt− Length

)2

, (5.38)

where Length is the expected length of the molecule.

Point constraint

We use a point constraint to enable the user to aid the reconstruction process; he
can specify a few 3-D points that should lie on the final shape. This constraint
is basically the sum of the distances between these points and the closest points
on the curve. The constraint energy is given by

Econst =
Nc−1∑
i=0

min
t∈[0,M ]

|r (t)− rc,i|2 , (5.39)

where rc,i; i = 0, . . . , Nc − 1 are the constraints. This approach can be thought
off as introducing virtual springs that pull the curve towards the desired points.
One end of the spring is fixed to the constraint point, while the other end slides
on the curve.

5.5 Curve evolution: the optimization algorithm

As mentioned before, the snake algorithm evolves the curve from its initial
position to the final shape using energy minimization. Since the individual
energy terms are non-linear functions of the curve coefficients, we require a
numerical optimization algorithm. We use the conjugate gradient algorithm to
refine the initial guess derived from the user inputs. The user specifies pairs of
corresponding points on the stereo images that are then interpolated to derive
the initial 3-D curve. This curve is later resampled to a specified number of
knot points (since the approximation ability is decided by the number of knot
points) such that (5.35) is satisfied. A summary of the whole algorithm is given
in Fig 5.6.

The optimization scheme requires the evaluation of the partial derivatives of
the snake energy. Since these quantities have to be repeatedly evaluated in the
iteration loop, their computational complexity will determine the time taken
by the snake algorithm. In this section, we derive efficient expressions for the
derivatives of the individual energy terms.
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Figure 5.6: Block diagram of the snake optimization algorithm.

5.5.1 Partial derivatives of the image energy

Differentiating (5.32) with respect to the coefficient cx (k) and applying the
chain rule, we get

∂

∂ cx (k)
Eimage = − 2

∫ M

0

dr (t)t H3D (r (t))

 βn
p
′ (t− k)

0
0

 dt

︸ ︷︷ ︸
I1

− 2
∫ M

0

(
drt (t)H3D,x (r (t)) dr (t)βn

p (t− k)
)
dt︸ ︷︷ ︸

I2

,

(5.40)

where H3D,x is a 3x3 matrix whose entries are the partial derivatives of the
corresponding entries of H3D with respect to x. We now focus on obtaining the
expression of H3D,x
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Along x Along y Along z Total Error

Manual Tracing 1.923± 0.9747 1.9097± 0.3785 1.71± 0.7414 3.279± 1.076

Snake Output 1.4024± 0.6654 1.3998± 0.3429 1.2322± 0.5896 2.39± 0.795

Performance Improvement 37.08% 36.42% 38.7% 37.2%

Table 5.2: Comparison with the reference curve for real micrographs: average
value of the absolute error (in pixels)

H3D,x (r) =
N−1∑
i=0

Rt
i

(
∂

∂x
Hfi

(ri)
)

Ri

=
N−1∑
i=0

Rt
i

 ∂

∂xi
Hfi︸ ︷︷ ︸

Hfi,xi

(ri)
∂xi

∂x
+

∂

∂zi
Hfi︸ ︷︷ ︸

Hfi,zi

(ri)
∂zi

∂x

Ri (5.41)

=
N−1∑
i=0

(
Rt

iHfi,xi
(ri)Ri

) ∂xi

∂x︸︷︷︸
Pi(0,0)

+
(
Rt

iHfi,zi
(ri)Ri

) ∂zi

∂x︸︷︷︸
Pi(1,0)

(5.42)

Here, the matrices Hfi,xi and Hfi,zi are

Hfi,xi (ri) = f ∗
(

∂

∂ xi
Gi (ri;σ)

)
Hfi,zi

(ri) = f ∗
(

∂

∂ zi
Gi (ri;σ)

)
Plugging (5.42) into the integral I1 in (5.43) , we get

I2 =
N−1∑
i=0

[Pi (0, 0) ,Pi (1, 0)]

[ ∫M

0

(
drt (t)Rt

i Hfi,xi (ri (t))Ridr (t) βn
p (t− k)

)
dt∫M

0

(
drt (t)Rt

i Hfi,zi (ri (t))Ridr (t) βn
p (t− k)

)
dt

]
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Thus, we get


∂

∂ cx(k)
∂

∂ cy(k)
∂

∂ cz(k)

Eimage = −2
∫ M

0

(
dr (t)t H3D (r (t))βn

p
′ (t− k)

)
dt

−2
N−1∑
i=0

Pt
i

[ ∫M

0

(
drt (t)Rt

i Hfi,xi (ri (t))Ridr (t) βn
p (t− k)

)
dt∫M

0

(
drt (t)Rt

i Hfi,zi (r (t))Ridr (t)βn
p (t− k)

)
dt

]
(5.43)

The evaluation of the matrices Hfi,xi and Hfi,yi necessitates the computation
of the quantities (fi ∗ gxixixi

), (fi ∗ gxixiyi
), (fi ∗ gxiyiyi

) and (fi ∗ gyiyiyi
) for

each micrograph. For the first term in (5.43), we require the matrix Hfi
, which

in-turn needs the quantities (fi ∗ gxixi
), (fi ∗ gxiyi

) and (fi ∗ gyiyi
). Note that

all these quantities involve the convolution of f with the second and third order
partial derivatives of the 2-D Gaussian; they can be pre-computed efficiently
using separable linear filtering. We discretize the integrals for their evaluation.
Thanks to the steerable implementation, the criterion and its partial derivatives
can be computed exactly and efficiently.

Along x Along y Along z Total Error

Manual Tracing 2.336± 1.103 3.068± 0.81 2.116± 0.8799 4.481± 1.385

Snake Output 1.811± 0.943 2.480± 0.848 1.454± 0.830 3.48± 1.315

Performance Improvement 28.9% 23.7% 45.52% 28.7%

Table 5.3: Comparisons between trials: Repeatability (in pixels)

5.5.2 Partial derivatives of the internal energy

The internal energy term can be re-written as

∫ M

0

|r′′ (t)|2 dt =
∫ M

0

(
|x′′ (t)|2 + |y′′ (t)|2 + |z′′ (t)|2

)
dt (5.44)
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We now consider the term
∫M

0
|x′′ (t)|2 dt and simplify it as follows:∫ M

0

|x′′ (t)|2 dt =
M−1∑
k=0

M−1∑
l=0

cx (k) cx (l)
∫ M

0

βn
p
′′ (t− k) βn

p
′′ (t− l) dt

=
M−1∑
l=0

∞∑
k=−∞

cx (k) cx (l)
∫ ∞

−∞
βn

p
′′ (t− k) βn

p
′′ (t− l) dt︸ ︷︷ ︸

q(k−l)

(5.45)

In the last step, we have used the periodicity of βn
p
′′ (t− l) to extend the inte-

gral from −∞ to ∞ and have transferred the periodicity of βn
p
′′ (t− k) to the

coefficient sequence ck. Thanks to the curve representation using cubic B-spline
functions, the sequence q (k) is finitely supported and can be exactly computed.
Thus, we obtain the partial derivatives of the internal energy term as

∂
∂ cx(k)

∂
∂ cy(k)

∂
∂ cz(k)

Eint =
∞∑

k=−∞

 cx (k)
cy (k)
cz (k)

 q (k − l) .

The above equation amounts to a simple filtering of the coefficient sequence by
the filter q (n), assuming periodic boundary conditions.

5.5.3 Partial derivatives of the constraint energy

Length constraint

Differentiating (5.38) with respect to cx (k):

∂

∂cx (k)
Econst = 2

(∫ M

0

|r′ (t)| dt− Length

)
︸ ︷︷ ︸

Error

∫ M

0

x′ (t) βn
p (t− k)

|r′ (t)|
dt

= 2 Error
∫ ∞

−∞

x′ (t + k) βn (t)
|r′ (t + k)|

dt (5.46)

Here, Error is the difference between the current length of the curve and the ex-
pected one; the partial derivatives of the constraint energy is zero when the cur-
rent length is the same as the expected one. The partial derivatives ∂

∂cy(k)Econst

and ∂
∂cz(k)Econst is computed in a similar fashion.
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(a) −15◦ (b) 15◦ (c) 60◦ (d) 90◦

Figure 5.7: Reconstructed filaments for the micrograph pair in Fig. 5.1 at
different viewing angles around the vertical axis. (a) and (b) correspond to the
left and the right micrographs in Fig. 5.1

Evolving the curve with this term alone will cause its length to decrease
or increase, (depending on the sign of Error) until Error = 0. Note that the
integral (5.46) is limited over the support of the spline function. We discretize
the integral for its evaluation.

Point constraint

Computing the partial derivatives of (5.39) in all generality would give a very
complicated expression. To make the problem more tractable and to reduce its
computational complexity, we make the assumption that the optimal constraint
locations, (ti; i = 0 . . . Nc − 1), are known. In this case, (5.39) gets simplified
to

Ec =
Nc−1∑
i=0

|r (ti)− rc,i|2 , (5.47)

and its partial derivatives are given by[
∂Ec/∂cx,k

∂Ec/∂cy,k

]
=

Nc−1∑
i=0

([
xc,i

yc,i

]
−
[

x (ti)
y (ti)

])
βn (ti − k) (5.48)

Using the finite support of the scaling functions, we limit the sum to the relevant
indices (we need to evaluate it only for {i| 0 < (ti − k) < Nc}). We resort to
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a two-step strategy, where the snake is evolved using the above formulas for
the derivatives, for a given ti. The optimal parameters ti are then re-estimated
within the loop as:

ti = arg min
t∈[0,M ]

|r (t)− rc,i| ; i = 0 . . . Nc − 1 (5.49)

(a) −15◦ (b) 15◦

(c) −15◦ (d) 15◦ (e) 60◦ (f) 90◦

Figure 5.8: Reconstructed filaments at different viewing angles around the
vertical axis. (c) and (d) correspond to the left and the right micrographs
in (a) and (b).

5.6 Experiments

In this section, we tested the performance of the algorithm on real data. Since
the ground truth was not available, a reference curve was generated by magni-
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fying the images 4 times and having the user carefully specifying a 3-D curve
(by clicking on the stereo images).

To compare two 3-D curves Ca and Cb, we choose the error metric

D (Ca, Cb) =
1
2

(
1

Ma

∫ Ma

0

D (ra (t) , Cb) dt +
1

Mb

∫ Mb

0

D (rb (t) , Ca) dt

)
,

(5.50)
where Ca ≡ ra (t) ; t ∈ [0,Ma] and Cb ≡ rb (t) ; t ∈ [0,Mb]. The dis-
tance between a point ra (t) and a curve Cb (denoted in the above equation
as D (ra (t) , Cb)) is defined as the distance between ra (t) and the closest point
on Cb:

D (ra (t) , Cb) = min
t∈[0,M ]

‖ra (t)− rb (t) ‖ (5.51)

We evaluate the distance metric by discretizing both curves.
We compared the performance of the snake algorithm with the manual trac-

ing6. In our study, we used 5 stereo pairs and 2 independent users. For each
stereo-pair, we performed 5 manual tracings each. These tracings were used as
the initialization for the snake algorithm. These tracings and the snake output
were compared with the corresponding reference curves to obtain the absolute
errors. The average errors in the manual tracings and the snake-fitted curves
are given in Table 5.5.1.

To study the inter-user variability, we compared the manual tracing on a
pair-wise basis (there are 45 possible comparisons for each stereo pair). The
same comparison was performed for the snake outputs. The experiment is per-
formed only with real data since the ground truth is not required in this case.
The results are shown in Table. 5.5.1.

Some examples of the 3-D reconstructions using our algorithm are shown in
Fig. 5.7—Fig. 5.9. This illustrate the wide range of DNA configurations that
may occur in nature as well as the difficulty of the problem.

5.7 Synopsis

We have presented a carefully engineered solution for the 3-D shape estimation
of DNA molecules from stereo cryo-electron micrographs. We used a global
3-D model for the DNA filament and optimized its parameters such that its

6Unfortunately, the implementation of the flying cylinder algorithm was not available to
us for comparison.
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(a) −15◦ (b) 15◦

(c) −15◦ (d) 15◦ (e) 60◦ (f) 90◦

Figure 5.9: Reconstructed filaments at different viewing angles around the
vertical axis. (c) and (d) correspond to the left and the right micrographs
in (a) and (b).

2-D orthogonal projections matched with the micrographs. Since a direct im-
plementation of this algorithm is computationally intensive, we approximated
the model locally as an elongated blob. We derived an efficient algorithm to
perform the local detection of such blobs.

To solve the local detection problem, we introduced the concept of
projection-steerablity. Specifically, we derived a projection-steerable blob tem-
plate whose 2-D projections can be represented as a linear combination of few
basis functions. We derive an efficient algorithm for obtaining the likeliness of
such a blob with a specific orientation at a certain point in 3-D space.

We used a 3-D B-spline curve model for the representation of the skeleton of
the global DNA model. We show that the B-spline representation is optimal for
the representation of smooth 3-D curves, if described in the constant arc-length
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parameterization. We obtained simple expression for the an internal energy
term that penalizes the average curvature magnitude by assuming a constant
arc-length parametrization.

We used a conjugate gradients algorithm for the optimization of the curve
parameters. Thanks to the projection-steerable blob detection algorithm and
curve representation using compactly supported B-spline functions, all the di-
rectional derivatives of the snake energies are computed exactly and efficiently.

Appendix 5-A:Design of the 3-D projection-steerable
elongated blob

We now derive a 3-D detector in V3D that is good for the detection of a filament
with a specific orientation (say along the x axis). Since the template is rotation-
steerable by construction, we can steer it shape to any orientation exactly. An
arbitrary function in V3D is given by

h = a0 ∂xx g3 + a1 ∂yy g3 + a2 ∂zz g3 + a3 ∂xy g3 + a4 ∂xz g3 + a5 ∂yz g3 (5.52)

Since a 1-D ridge oriented along the x axis is an even function along the axes,
the terms ∂xy g3, ∂xz g3 and ∂yz g3 (they are odd functions) will not contribute
to the ridge signal. Hence, we set a3, a4 and a5 to zero.

We like to have a detector that is elongated along the x axis and narrow
along the y and the z axis. The elongation along the axes can be measured by
the magnitude of the second derivatives of h at the origin. For the detector to
be maximally elongated along the x axis, we set ∂xxh|0,0,0 to zero:

∂xxh (r) |r=(0,0,0) =
1
σ4

(3a0 + a1 + a2) = 0 (5.53)

For the filter to be narrow along y and the z axes, we have to maximize the
quantities

∂yyh (r) |r=(0,0,0) = (a0 + 3a1 + a2) (5.54)
∂zzh (r) |r=(0,0,0) = (a0 + a1 + 3a2) (5.55)

We maximize ∂yyh|0,0,0 + ∂zzh|0,0,0 subject to (5.53) and the unit energy con-
straint:

‖h (r) ‖2 = 3a2
0 + 3a2

1 + 3a2
2 + 2a0a1 + 2a0a2 + 2a1a2 = 1 (5.56)
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We have removed the constants in all the above equations so as to simplify the
formulas. The constants will not affect the shape of the detector. We solve this
constrained optimization problem using Lagrange’s multipliers by choosing the
criterion as

Λ = (2 a0 + 4 a1 + 4 a2) + λ1 (3a0 + a1 + a2) +
λ2

(
3a2

0 + 3a2
1 + 3a2

2 + 2a0a1 + 2a0a2 + 2a1a2 − 1
)

(5.57)

Setting the derivatives of Λ with respect to a0, a1 and a2 to zero, we get: 6 2 2
2 6 2
2 2 6

 a0

a1

a2

 =
1
λ2

 2 + 3λ1

4 + λ1

4 + λ1

 (5.58)

Solving this system of equations, we get a0

a1

a2

 =
1

2λ2

 λ1

1
1

 (5.59)

Setting the above solution into the constraint (5.53), we get λ1 = − 2
3 . Again

by (5.56), we get λ2 =
√

3
5 . Thus the expression for the detector is given by

h (r) =

√
3
20

(
∂yy g3 (r, σ) + ∂zz g3 (r, σ)− 2

3
∂xx g3 (r, σ)

)
(5.60)

Appendix 5-B:Projection of the optimal 3-D detector

The expression of the optimal filament detector, oriented along along v, is given
by

hv (r) = gxx (r;σ) + gyy (r;σ) + gzz (r) ;σ︸ ︷︷ ︸
Laplacian of g (r)

−5
3

gvv (r;σ) . (5.61)

Note that in this case A = I3 − 5
3 vvt, where I3 is the 3x3 identity matrix.

Now, using (5.22), we obtain the corresponding Bi matrix as

Bi = Pt
iPi︸ ︷︷ ︸
I2

−5
3

(Piv) (Piv)t︸ ︷︷ ︸
vi vt

i

, (5.62)
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which implies that the Fourier transform of the 2-D projection of the template
is given by

ĥi (ωi) = −
(
‖ωi‖2 −

5
3
〈ωi,vi〉2

)
g
(
ωi;σ−1

)
. (5.63)

The above expression can also be written as

ĥi (ωi) = −

‖ωi‖2 −
5
3

vt
i

[
ω2

xi
ωxi

ωzi

ωxi
ωzi

ω2
zi

]
︸ ︷︷ ︸

ωi ωt
i

vi

 g
(
ωi;σ−1

)
. (5.64)

Since ‖vi‖2 + v2
yi

= ‖v‖2 = 1, we rewrite this expression as

ĥi (ωi) = −
(
‖ωi‖2v2

yi
+ vt

i

[
ω2

xi
+ ω2

zi
0

0 ω2
xi

+ ω2
zi

]
vi

− 5
3
vt

i

[
ω2

xi
ωxi

ωzi

ωxi
ωzi

ω2
zi

]
vi

)
g
(
ωi;σ−1

)
= −

(
‖ωi‖2v2

yi
− vt

i

[
ω2

zi
− 2

3ω2
xi

− 5
3ωxiωzi

− 5
3ωxi

ωzi
ω2

xi
− 2

3ω2
zi

]
vi

)
g
(
ωi;σ−1

)
(5.65)

which is then modified to

ĥi (ωi) = −

vtRi

 ω2
zi
− 2

3ω2
xi

0 − 5
3ωxi

ωzi

0 ω2
xi

+ ω2
zi

0
− 4

3ωxi
ωzi

0 ω2
xi
− 2

3ω2
zi

Riv

 g
(
ωi;σ−1

)
,

(5.66)
where Ri is the rotation matrix given by (5.9) and (5.11). Finally, computing
the inverse Fourier transform, we get

Pi (hv (r)) = vt Ri G (ri;σ)Ri v, (5.67)

where

G (ri;σ) =

 (∂zizi − 2
3∂xixi

)
0 −

(
5
3∂xizi

)
0 (∂xixi + ∂zizi) 0

−
(

5
3∂xizi

)
0

(
∂zizi − 2

3∂xixi

)
 g3 (ri;σ)

(5.68)

113



Appendix 5-C: Simplification of the curvature term
in the internal energy

The square of the curvature of the curve at a point r (t) is expressed in the
vector form as

|κ (r) |2 =
(r′ × r′′) · (r′ × r′′)

|r′|6
(5.69)

Assuming the parameter t to be the curvilinear abscissa, we have |r′ (t)| = c, ∀t.
Making use of the vector identity a.(b× c) = c.(a×b), the numerator of (5.69)
is rewritten as

(r′ × r′′) · (r′ × r′′) = r′′ · (r′ × r′′ × r′′)
= r′′ · (r′′(r′ · r′)− r′(r′ · r′′))
= |r′′|2|r′|2 − | r′′ · r′︸ ︷︷ ︸

d(r′2)=0

|2,

where we have used the identity a×b×c = (a ·c)b− (b ·c)a. So the expression
for the curvature therefore simplifies to

|κ(r)|2 =

∣∣r′′2∣∣
|r′|4

=

∣∣r′′2∣∣
k2

(5.70)
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Chapter 6

Sampling of Periodic Signals:
A Quantitative Error Analysis

We introduced a new scheme for shape extraction and processing in Chapter 1.
Since a contour model is central to our algorithm (c.f. Fig. 1.4) the optimality
of this model is crucial to the whole algorithm.

In biomedical imaging, it is common to have segmentation problems where
we have a-priori knowledge of the shape. A typical scenario is where the average
shape is known. We can use this information to tune the contour model to the
shape. Specifically, we deal with the the choice of the number of knots and basis
functions. To this end, we perform a theoretical analysis of approximation error
in parametric curve representation and derive accurate performance bounds in
this chapter1.

6.1 Introduction

Classical sampling theory deals with the problem of reconstructing or approx-
imating a signal s(t) from a set of uniform samples or measurements. In its
generalized version, the reconstructed approximation [24] is

sh(t) =
∞∑

k=−∞

ckϕ

(
t

h
− k

)
, (6.1)

1Based on the article ”M.Jacob, T.Blu, M.Unser, IEEE Transactions on Signal Processing,
vol. 50, pp. 1153-1159, May 2002”.
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where the underlying basis functions are rescaled translates of the generating2

function ϕ; h is the sampling step. The generator can be selected so as to yield
bandlimited (e.g., ϕ = sinc), spline, or wavelet representations of signals. The
expansion coefficients ck are either determined from the uniform samples of the
input signal s(kh) (interpolation or quasi-interpolation) or from a sequence of
inner products with a suitable sequence of analysis functions [24]. This theory
is well developed for the case in which the input signal is in L2 (R), which also
implies that it is defined over the whole real line. The approximation quality
depends on the sampling step h, the type of algorithm used (e.g., interpolation
vs. projection), and most importantly, on the choice of the generating function
ϕ. This can be quantified rather precisely, thanks to the availability of sharp
mean square error estimates in the L2 (R) setting [26, 99]. Bounds are also
available for the L∞ approximation error (worst case scenario) [100].

In this chapter, we are interested in the case where the input signal s(t) is
periodic, which is an assumption that is commonly made in practice. One exam-
ple, where the periodic representation is especially relevant, is the parametric
representation of closed curves in terms of splines [17, 38, 15, 37] or Fourier
basis functions [101]. Assuming the period T to be an integer multiple of the
sampling step (T = Nh)3, it is straightforward to adapt most of the L2 tech-
niques to the periodic case by simply considering periodized basis functions and
by redefining the inner product accordingly [34] (see section 6.2). However, the
error analysis for signals in L2 (R) is not directly applicable because the square
modulus of the Fourier transform is not defined for periodic signals.

The quantitative error analysis of periodic signals is the main focus of this
chapter. In particular, we will derive a general predictive error formula that
depends on the Fourier coefficients of s(t). Interestingly, the formula bears a
strong resemblance to the error expression of signals in L2 (R). However, the
recipe is different although the ingredients are more or less the same as in [26];
the average least squares error is obtained as a discrete sum of the Fourier
series coefficients as opposed to a continuous integral in [26]. We also study the
behavior of the approximation as the sampling step goes to zero.

2When the function satisfies a two-scale relation [22], it is called a scaling function. (e.g.,
splines, Daubechies functions or sinc)

3If we choose T = Nh, the resulting representation is assured to be T -periodic. Otherwise,
this property is not satisfied in general.
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6.2 Preliminaries

6.2.1 Notations

We denote the Fourier transform of a continuous signal s(t) as

ŝ(ω) =
∫ ∞

−∞
s(t)e−jωtdt (6.2)

6.2.2 Sampling of Periodic Signals

The general formula for determining the expansion coefficients in (6.1) is

ck =
∫ ∞

−∞
s (ξ) ϕ̃

(
ξ

h
− k

)
d

ξ

h
, (6.3)

where ϕ̃ is an appropriate analysis function. The usual setting for this formula is
s ∈ L2 (R) (finite energy signals). In particular, one can show that ck ∈ `2 when
ˆ̃ϕ is bounded and when s has at least r > 1

2 derivatives in the L2 sense [26].
However (6.3) also works for more general cases. For instance, if s(t) is bounded,
then the ck’s will be bounded as well, provided that ϕ̃ is a distribution4 of order
0.

We assume that s(t) is T -periodic and that T = Nh, where N is a positive
integer. Under those conditions, the sequence ck defined by (6.3) is periodic as
well, with period N . Furthermore, we can rewrite the synthesis and analysis
equations (6.1) and (6.3) using N -periodized functions as

sN (t) =
N−1∑
k=0

ckϕp

(
t

h
− k

)
(6.4)

ck =
∫ T

0

s (ξ) ϕ̃p

(
ξ

h
− k

)
d

ξ

h
, (6.5)

where

ϕp(t) =
∞∑

l=−∞

ϕ (t− lN) (6.6)

4ϕ̃ is a distribution of order n iff |〈ϕ̃, s〉| ≤ C maxk≤n supx

˛̨
s(k)(x)

˛̨
, where C is a constant

[102, pp. 24–25], [103, def. 1.3.1]; e.g., the Dirac delta distribution δ(x) is of order 0. An
absolutely integrable function ϕ̃ can also be identified as a distribution of order 0.
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Equation (6.5) calls for the definition of an inner product in L2([0, T ]): we denote
the L2([0, T ]) inner product between two functions s1(t), s2(t) ∈ L2 ([0, T ]) as

〈s1(t), s2(t)〉L2([0,T ]) =
1
T

∫ ∞

−∞
s1(t)s2(t)dt. (6.7)

The corresponding norm is written as ||.||L2([0,T ]). We show in Appendix 6-
A that a sufficient condition for ϕp to be in L2 ([0, T ]) is that ϕ be absolutely
integrable (ϕ ∈ L1 (R)) and the discrete Fourier transform of the autocorrelation
sequence

âϕ(ω) =
∞∑

k=−∞

|ϕ(ω + 2kπ)|2 (6.8)

is bounded. Under those assumptions, sN (t) ∈ L2 ([0, T ]) provided of course
that the ck’s are bounded. While these relatively mild conditions are satisfied
by most generating functions used in practice, they are not applicable to the
classical case ϕ = sinc, which present some difficulties i.e., sinc /∈ L1 (R). This
case is dealt with in the next section.

Combining (6.4) and (6.5), we get

sN (t) = QNs(t)

=
N−1∑
k=0

[∫ T

0

s(ξ) ϕ̃p

(
ξ

h
− k

)
d

ξ

h

]
ϕp

(
t

h
− k

)
,

(6.9)

where QN is the approximation operator. This linear operator is a projector if
and only if the functions ϕ and ϕ̃ are bi-orthogonal; i.e., 〈ϕ(t−k), ϕ̃(t−l)〉 = δk−l

[25]. In this case sN (t) is a consistent reconstruction of the measurements ck.
As we frequently use Parseval’s relation, we now recall it. It relates the

L2 ([0, T ]) inner product between two functions s1(t), s2(t) ∈ L2 ([0, T ]) to their
Fourier series coefficients as

〈s1(t), s2(t)〉L2([0,T ]) =
1
T

∫ T

0

s1(t)s2(t)dt =
∞∑

k=−∞

S1(k)S2(k)∗ (6.10)

Using this expression, the L2 ([0, T ]) norm of s(t) ∈ L2 ([0, T ]) can be written
as

‖s‖2L2([0,T ]) =
1
T

∫ T

0

|s(t)|2 dt =
∞∑

k=−∞

|S(k)|2 (6.11)
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6.3 Fourier Series Representation

Bandlimited periodic signals can be represented as (6.4) by choosing ϕ = sinc.
However, due to the slow decay of sinc, ϕp does not converge when N is even.
However, when N is odd ϕp converges to a well defined function in L1 ([0, T ]).
In this case, the signal representation can be reformulated as a Fourier series.
Hence, we briefly review the Fourier series description of a periodic signal, when
the period is odd.

A T -periodic signal (s(t) ∈ L2 ([0, T ])) can be expanded as

s(t) =
∞∑

k=−∞

S(k)ej 2πkt
T , (6.12)

where the Fourier series coefficients S(k) are obtained as

S(k) =
1
T

∫ T

0

s(t)e−j 2πkt
T dt (6.13)

In most practical applications, the function s(t) is not directly available.
Usually, it is only known through its samples {s(lh)}l=0,...N−1. In such cases,
one often assumes that s(t) is bandlimited and hence approximates the co-
efficients S(k) with the N point DFT of {s(lh)} for k = −bN

2 c..b
N
2 c and 0

otherwise.
The corresponding continuous signal sN (t) is nothing but the periodized

sinc interpolation of the samples[32, 104]. The corresponding sinc interpolation
with a zooming factor M is implemented efficiently by computing the FFT of
the input sequence and performing a larger size IFFT with zero padding the
transform upto size NM . This representation turns out to be a special case of
(6.9) with ϕ = sinc and ϕ̃ = δ — the Dirac’s delta distribution.

6.4 Computation of the Square Error

The space spanned by the generating functions is not shift-invariant in general.
Hence, the approximation error at a scale h is dependent on a time shift of the
function s(t). The shifted function is denoted by sτ (t) = s(t− τ).

The mean square approximation error for a shifted function sτ is given by

γs (τ,N) =
1
T

∫ T

0

|sτ (t)−QNsτ (t)|2 dt

= ||sτ −QNsτ (t)||2L2([0,T ]) (6.14)
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As the period of the signal is an integer multiple of the sampling step, γs(τ,N)
is also h periodic in τ . In most applications, the exact phase of the signal is
not known. Hence, we are interested in obtaining a measure of the error that is
averaged over τ . This average error is given by

ηs(N) =

√
1
h

∫ h

0

γs(τ,N)dτ (6.15)

The following theorem, which is the main result of this chapter, gives an
explicit expression for the mean error ηs(N).

Theorem 1 Let s(t) be a T -periodic signal with the Fourier-series coefficients
S(k). The mean square approximation error incurred in approximating s(t) as
in (6.9) is given by

ηs (N) =

√√√√ ∞∑
k=−∞

|S(k)|2E
(

2πk

N

)
, (6.16)

where the approximation kernel E(ω) depends only on ϕ and ϕ̃ and assumes
the expression

E(ω) =
∣∣∣1− ˆ̃ϕ (ω)∗ ϕ̂ (ω)

∣∣∣2
+| ˆ̃ϕ(ω)|2

∑
n 6=0

|ϕ̂ (ω + 2nπ)|2 (6.17)

= 1− |ϕ̂(ω)|2

âϕ(ω)︸ ︷︷ ︸
Emin(ω)

+ âϕ(ω)
∣∣∣ ˆ̃ϕ(ω)− ϕ̂d(ω)

∣∣∣2︸ ︷︷ ︸
Eres(ω)

,

(6.18)

where ϕ̂d(ω) = ϕ̂(ω)
âϕ(ω) .

The proof is given in Appendix 6-B.
Note that this kernel is identical to the one obtained in the case of signals

in L2 (R) [26]. The main difference with the L2 (R) case is that the expression
of the error (6.16) is a discrete sum as opposed to a continuous integral [26]

ηs (T ) =

√
1
2π

∫ ∞

−∞
|ŝ (ω) |2E (ωT ) dω. (6.19)
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Here ŝ (ω) is the Fourier transform of the signal s(t) ∈ L2 (R) and T is the
sampling step.

Given a reconstruction space, the error kernel attains its minimum possible
value Emin(ω) for all ω when ϕ̃ is the dual of ϕ. It is obvious from (6.18) as
Eres(ω) ≥ 0 and Emin(ω) depends only on ϕ. This case corresponds to the min-
imum error approximation (orthogonal projection), as in the case of signals in
L2(R) [105]. The second part Eres accounts for the additional error encountered
for not choosing the optimal analysis function ϕ̃ = ϕd. When ϕ̃ is bi-orthogonal
to ϕ̃ but ϕ̃ 6= ϕd, then the corresponding operator QN is called an oblique
projection.
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1
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E
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>

Interpolation Kernels
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Figure 6.1: Error kernels for cubic B-Spline and Sinc representation.

6.5 Asymptotic Performance

The asymptotic performance of the representation is determined by the behavior
of the kernel close to the origin. Using the Taylor-series expression of the kernel,
we show that, for the minimum approximation error to decay as O

(
1

NL

)
as the

number of sampling points N →∞, we need ϕ̂(0) 6= 0 and ϕ̂(n)(2kπ) = 0, ∀k ∈
Z \ {0} for n = 0, 1 . . . L − 1. These are precisely the Strang-Fix conditions of
order L [22]; a ϕ that satisfy these conditions is called as an Lth order generating
function.

In the following theorem, we give the asymptotic bound for the projection
error. Note that the projection need not be orthogonal [25].

Theorem 2 Let ϕ and ϕ̃ be two mutually bi-orthogonal generating functions.
Then the oblique projection error in approximating an L-times differentiable
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Figure 6.2: Decay of the cubic spline interpolation error for the map of Switzer-
land as a function of the number of samples.

function s(t) as in (6.9) decays as O
(

1
NL

)
as N → ∞ iff ϕ is an Lth order

generating function. If ϕ satisfies the Lth order Strang-Fix conditions, the error
in approximation as N →∞ is asymptotically given as

ηs(N) = Cϕ,ϕ̃ || (2πk)L
S(k)||`2

(
1
N

)L

+O
(

1
NL+1

)
= Cϕ,ϕ̃TL||s(L)||L2[0,T )

(
1
N

)L

+O
(

1
NL+1

)
, (6.20)

where, s(L) is the Lth derivative of s and the constant is given by the expression

Cϕ,ϕ̃ =
1
L!

√∑
k 6=0

|ϕ̂(L)(2πk)|2 + |mL
ϕd
−mL

ϕ̃|2. (6.21)

Here, ϕ̂(L) denotes the Lth derivative of ϕ and mL
u =

∫
xLu(x)dx; u is either ϕ̃

or ϕd.
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The proof is given in Appendix 6-C.
Note that this result is almost the same as the bound derived in [106], except

that the present norm is defined for L2 ([0, T ]) as opposed to L2 (R) as in [106].

The minimum value attainable by this constant C−
ϕ = 1

L!

√∑
k 6=0 |ϕ̂(L)(2πk)|2

is independent of the analysis function. This value is achieved when we have
mL

ϕd
= mL

ϕ̃.

6.6 Experimental verification of the error formula

In this section, we validate the expression for the error given by Theorem 1
experimentally. We compare the measured errors to the ones predicted by the
theory for the approximation of a reference shape as a function of the sampling
step h, or equivalently, the number of the samples N .

Our reference shape (Switzerland) is polygonal with 807 edges and is rep-
resented using two periodic functions x(t) and y(t). For each experiment, the
initial model (x(t), y(t)) was resampled to a specified number of points.

We considered two types of approximations: (1) a cubic spline interpolation
with ϕ = β3 (cubic spline) and (2) a bandlimited one with ϕ = sinc. Note that
the second approach is equivalent to a truncated Fourier approximation. In fact,
we used an IFFT padded with zeros to generate the bandlimited interpolation
functions at the required scale.

The comparisons between the experimental errors and the ones predicted by
the theory are given in Fig. 6.2 and Fig. 6.3, respectively. It can be seen for both
the graphs (Fig. 6.2 and Fig. 6.3) that the experimental error (for τ = 0.5) is in
good agreement with the theoretical prediction. The experimentally obtained
curve of γs(τ,N) for τ = 0.5 oscillates around the theoretically predicted curve
of ηs(N). This is because the theoretical prediction is an average of γs(τ,N)
over all τ ’s.

From Fig. 6.4, it can be seen that the spline interpolation of curves perform
slightly better (around 1 dB) than the sinc interpolation. This behavior can
be explained with the aid of the error kernel we have just derived. We can see
from Fig. 6.1 that the spline kernel has lower values as compared to the sinc
interpolation kernel when ω > π. Hence, at low sampling rates (when the signal
has some non-negligible frequency components above π), spline interpolation
will usually outperform the sinc one. The differences tend to vanish as the
sampling step decreases.

The map of Switzerland interpolated from 45 samples using the spline and
sinc functions are shown in Fig. 6.5. It can be seen that at some places, the
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Figure 6.3: Decay of the sinc interpolation error for the map of Switzerland as
a function of the number of samples.

sinc representation results in looping curves. This effect is less likely with the
spline representation due to the more local behavior of spline interpolation.

6.7 Conclusion

We have derived an exact expression of the mean error in representing a peri-
odic signal in a generating function basis. This expression may be useful for
comparing different generating functions and for choosing the right one for an
application. We have experimentally verified the expression; the experimental
curves are in excellent agreement with the theoretical predictions. Using the
expression for the error, we also analyzed the behavior of the approximation
scheme as the sampling step approaches zero.
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Appendix 6-A: Sufficient condition for ϕp ∈ L2 ([0, T ])

ϕ ∈ L1 (R) implies that ϕp ∈ L1 ([0, T ]) and that

ϕp(x) =
∑
l∈Z

ϕ (x− lN) =
1
N

∑
k∈Z

ϕ̂

(
2kπ

N

)
ej 2πkt

N (6.22)
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Actual Map
Cubic Spline
Sinc

Figure 6.5: Actual Map of Switzerland represented using 807 edges is resampled
to 45 points (indicated by dots). These points are then interpolated using cubic
spline and sinc functions. The graphs below are the zoomed portions of the
corresponding positions of the main graph which illustrates the looping nature
of sinc interpolation.

in the sense of distributions [107]. Now the r.h.s of (6.22) is in L2 ([0, T ]) iff

∑
k∈Z

∣∣∣∣ϕ̂(2kπ

N

)∣∣∣∣2 < ∞, (6.23)
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which is ensured if the the Fourier transform of the autocorrelation

âϕ(ω) =
∑
k∈Z

|ϕ̂ (ω + 2kπ)|2 (6.24)

is bounded for all ω. Thus ϕp ∈ L2 ([0, T ]).

Appendix 6-B: Computation of the Square Error

Expanding (6.14), we get

γs(τ,N) =
1
T

∫ T

0

[sτ (t)]2 dt +
1
T

∫ T

0

[QNsτ (t)]2 dt

− 2
T

∫ T

0

sτ (t)QNsτ (t)dt (6.25)

1. Using Parseval’s theorem, the first term of (6.25) reduces to

1
T

∫ T

0

[sτ (t)]2 dt =
∞∑

k=−∞

|Sτ (k)|2 =
∞∑

k=−∞

|S(k)|2

2. To compute the second term of (6.25), we first compute the Fourier coef-
ficients of QNsτ (t). From (6.4), they are obtained as

RN (m) =
N−1∑
k=0

ck

[
1
T

∫ T

0

ϕp

(
t

h
− k

)
e−

2πmt
T dt

]
(6.26)

We make a change of variables as t = t
h − k and rearrange the terms to

get

RN (m) =
[∫ ∞

−∞
ϕ (t) e−

2πmt
N dt

]
︸ ︷︷ ︸

ϕ̂( 2πm
N )

1
N

N−1∑
k=0

cke
2πmk

N (6.27)

We now consider the expression of ck from (6.5); the L2([0, T ]) inner
product can be expressed in terms of the corresponding Fourier coefficients
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using Parseval’s theorem. Hence,

1
N

N−1∑
k=0

cke
2πmk

N =
1
N

N−1∑
k=0

∞∑
l=−∞

Sτ (l) ˆ̃ϕ
(

2πl

N

)∗
e−

j2πkl
N

︸ ︷︷ ︸
ck

e
2πmk

N

=
∞∑

l=−∞

Sτ (l) ˆ̃ϕ
(

2πl

N

)∗ 1
N

N−1∑
k=0

e
j2πk(l−m)

N

︸ ︷︷ ︸P∞
k=−∞ δ(l−m−kN)

=
∞∑

k=−∞

Sτ (m + kN) ˆ̃ϕ
(

2π (m + kN)
N

)∗
(6.28)

Combining (6.27) and (6.28), we get

RN (m) = ϕ̂

(
2πm

N

)[ ∞∑
k=−∞

Sτ (m + kN) ˆ̃ϕ
(

2π(m + kN)
N

)∗]

We now use Parseval’s theorem to get

1
T

∫ T

0

[QNsτ (t)]2 dt =
∞∑

m=−∞
|RN (m)|2 (6.29)

Making use of the relation between the Fourier coefficients of the shifted
function and the actual one

(
Sτ (k) = e−j 2πkτ

T S(k)
)
, we rewrite (6.29) as

1
T

∫ T

0

[QNsτ (t)]2 =
∞∑

m=−∞

∣∣∣e−j 2πmτ
T xm(τ)

∣∣∣2 ∣∣∣∣ϕ̂(2πm

N

)∣∣∣∣2
=

∞∑
m=−∞

|xm(τ)|2
∣∣∣∣ϕ̂(2πm

N

)∣∣∣∣2
Here, xm(τ) is the h = T

N periodic function with the expression

xm(τ) =
∞∑

k=−∞

S(m + kN) ˆ̃ϕ
(

2π(m + kN)
N

)∗
︸ ︷︷ ︸

Xm(k)

e−j 2πkτ
h
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Averaging this expression over τ , 1
h

∫ h

0
dτ
T

∫ T

0
|QNsτ (t)|2dt becomes

∞∑
m=−∞

∣∣∣∣ϕ̂(2πm

N

)∣∣∣∣2 .

[
1
h

∫ h

0

|xm(τ)|2 dτ

]

=
∞∑

m=−∞

∣∣∣∣ϕ̂(2πm

N

)∣∣∣∣2 ∞∑
k=−∞

|Xm(k)|2

Here, we again made use of Parseval’s theorem. Substituting for Xm(k)
and making a change of variable, the above summation can be rewritten
as

1
h

∫ h

0

1
T

dτ

∫ T

0

|QNsτ (t)|2dt =
∑

k

|S(k)|2 âϕ

(
2πk

N

) ∣∣∣∣ ˆ̃ϕ(2πk

N

)∣∣∣∣2
3. Making use of (6.29) and the Parseval’s relation we rewrite the third in-

tegral 1
T

∫ T

0
sτ (t)∗QNsτ (t)dt as

∑
m

Sτ (m)∗ ϕ̂

(
2πm

N

)∗
︸ ︷︷ ︸

[S∗(m) ϕ̂( 2πm
N )∗]ej 2πmτ

T

∑
k

Sτ (m + kN) ˆ̃ϕ
(

2π (m + kN)
N

)∗
︸ ︷︷ ︸

e−j 2πmτ
T xm(τ)

Rearranging the terms, we get

1
T

∫ T

0

sτ (t)∗QNsτ (t)dt =
∑
m

[
S(m)∗ ϕ̂

(
2πm

N

)∗]
xm(τ)

As before, xm(τ) are a sequence of h periodic functions. Now averaging
over τ as before, the term 1

h

∫ h

0
dτ
T

∫ T

0
sτ (t)∗QNsτ (t)dt becomes

∑
m

[
S(m)∗ϕ̂

(
2πm

N

)∗]
· 1

h

∫ h

0

xm(τ)dτ︸ ︷︷ ︸
Xm(0)=S(m) ˆ̃ϕ( 2πm

N )∗

Substituting for the expression of Xm(0) the expression above reduces to∑
m

|S(m)|2 ˆ̃ϕ
(

2πm

N

)∗
ϕ̂

(
2πm

N

)
,
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which is equivalent to

∑
m

|S(m)|2 <
(

ˆ̃ϕ
(

2πm

N

)∗
ϕ̂

(
2πm

N

))
(6.30)

Combining the three integrals, we get

ηs(N) =

√√√√ ∞∑
k=−∞

|S(k)|2E
(

2πk

N

)
, (6.31)

where

E(ω) = 1 + aϕ(ω)
∣∣∣ ˆ̃ϕ(ω)

∣∣∣2
−2 <

(
ˆ̃ϕ(ω)ϕ̂(ω)

)
= |1− ˆ̃ϕ(ω)ϕ̂(ω)|2

+ | ˆ̃ϕ(ω)|2
∑
k 6=0

|ϕ̂(ω + 2nπ)|2

Appendix 6-C: Asymptotic performance

In this proof, we assume that the kernel is L times continuously differentiable.
Initially, we derive the conditions for which limN→∞ (ηs(N))2 = 0. As E(ω)
is bounded and s(t) ∈ L2 ([0, T ]), we use Lebesgue’s dominated convergence
theorem to interchange the limit and the summation in (6.16) to obtain

lim
N→∞

(ηs(N))2 =
∑
k∈Z

|S(k)|2 lim
N→∞

E

(
2πk

N

)
=

∑
k∈Z

|S(k)|2E (0) = 0.

Here, we used the continuity of the kernel. The above expression is true for any
s(t) ∈ L2 ([0, T ]) if E(0) = 0. We have

E(0) =
1

aϕ(0)

∑
l 6=0

|ϕ̂(2lπ)|2 + aϕ(0)
∣∣∣ ˆ̃ϕ(0)− ϕ̂d(0)

∣∣∣2 = 0
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As the expression is a sum of positive quantities, it is equal to zero only if each
of them is zero independently. In particular, we need ϕ̂(2lπ) = 0, l ∈ Z \ {0}
and ˆ̃ϕ(0) = ϕ̂d(0). We also need aϕ(0) 6= 0 which is true iff ϕ̂(0) 6= 0. These are
precisely the Strang-Fix conditions of order 1.

Now, we look at the conditions for
limN→∞ (N ηs(N))2 = 0. This will imply that ηs(N) decays faster than O

(
1
N

)
as N →∞. To derive the conditions, we rewrite the expression for N ηs(N) as

(N ηs(N))2 =
∑
k∈Z

|S(k) (2kπ)|2 N2

(2kπ)2
E

(
2πk

N

)

Now computing the limits by interchanging the sum and limit as E(ω)
ω2 is

bounded, we get

lim
N→∞

(N ηs(N))2 = ||S(k) (2kπ) ||2`2︸ ︷︷ ︸
= T 2||s(1)||2

L2[0,T )

lim
ω→0

(
E(ω)
ω2

)

Here, we made use of the fact that E(ω) is an even function of ω (its Taylor
series has only even powers of ω).

lim
ω→0

(
E(ω)
ω2

)
=

1
aϕ(0)

∑
l 6=0

∣∣∣∣ limω→0

ϕ(ω + 2lπ)
ω

∣∣∣∣2 +

aϕ(0)

∣∣∣∣∣ limω→0

ˆ̃ϕ(ω)
ω

− lim
ω→0

ϕ̂d(ω)
ω

∣∣∣∣∣
2

=
∑
l 6=0

∣∣∣∣ϕ1(2lπ)
1!

∣∣∣∣2 +

∣∣∣∣∣ ˆ̃ϕ(1)(0)− ϕ̂
(1)
d (0)

1!

∣∣∣∣∣
2

(6.32)

With the same argument as before, in addition to Strang-Fix conditions of
order 1, we need ϕ(1)(2lπ) = 0, l ∈ Z \ {0} and ˆ̃ϕ(1)(0) = ϕ̂

(1)
d (0). Continuing

in the same fashion, we can see that ηs(N) will decay as O
(

1
NL

)
iff ϕ is an Lth

order generating function and ˆ̃ϕm)(0) = ϕ̂
(m)
d (0) for m = 0 . . . L− 1.

The function ϕ̂d(ω) = ϕ̂(ω)P
k |ϕ̂(ω+2kπ)|2 behaves as ϕ̂d(ω) = 1

ϕ̂∗(ω) +O(ω)L as

ω → 0. Since ˆ̃ϕ is bi-orthogonal to ϕ̂, it behaves as ˆ̃ϕ(ω) = 1
ϕ̂∗(ω) + O(ω)L as

ω → 0 (This follows from the bi-orthogonality relation
∑

k∈Z ϕ̂(ω + 2kπ) ˆ̃ϕ(ω +
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2kπ) = 1). Hence, ϕ̃ being bi-orthogonal to ϕ ensures that ˆ̃ϕm)(0) = ϕ̂
(m)
d (0)

for m = 0 . . . L− 1. Thus the bi-orthogonality and the Strang-Fix conditions of
order L are sufficient for the error ηs(N) to decay as O

(
1

NL

)
.

L is the first positive integer for which

lim
N→∞

(
NL ηs(N)

)2
= ||S(k) (2kπ) ||2`2︸ ︷︷ ︸

= T 2L||s(L)||2
L2[0,T )

lim
ω→0

(
E(ω)
ω2L

)
︸ ︷︷ ︸

= (Cϕ,ϕ̃)2

6= 0 (6.33)

Proceeding as in (6.32), the expression of Cϕ,ϕ̃ is

Cϕ,ϕ̃ =

√√√√√∑
k 6=0

∣∣∣∣ ϕ̂(L)(2kπ)
L!

∣∣∣∣2 +

∣∣∣∣∣m
L
ˆ̃ϕ
−mL

ϕ̂d

L!

∣∣∣∣∣
2

(6.34)

In the above equation, we substituted for ˆ̃ϕ(L)(0) and ϕ̂
(L)
d (0) with (−j)LmL

ϕ̃

and (−j)LmL
ϕd

respectively, where mL
u =

∫
xLu(x)dx.
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Chapter 7

An exact algorithm for
computing the area moments
of spline curves

The last step of the shape estimation algorithm described in Fig. 1.4 involves
the evaluation of shape parameters from the shape model. In this chapter1, we
introduce an efficient algorithm for the exact computation of area moments.

7.1 Introduction

Moments are standard descriptors of the shape of an object [108],[109],[110];
they easily yield features that are invariant to translation and rotation [12] or
more generally to affine transformations, which makes them useful tools for
pattern recognition. In the standard formulation, they are computed as surface
integrals which requires raster scanning through the image. However, there are
many instances where the boundaries of objects are described by parametric
curves. This is the case, for example, when the objects are detected using
parametric snakes which are represented using B-spline [17, 36, 73, 68] or wavelet
basis functions [34, 111]. Another simple case is when the region is described
as a polygon [112].

1Based on the article ”M.Jacob, T.Blu, M.Unser, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, no. 6, pp. 633-642, June 2001.
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In this chapter, we address the problem of computing the area moments of
objects described by such parametric curves when the basis functions are scaling
functions. The popular wavelet curve descriptors also fall into this class. The
originality of our approach is that the computation is exact, and also more direct
than the conventional pixel-based method which requires an explicit labelling of
the inner region of the curve prior to computation. Moreover, the pixel-based
schemes suffer a low accuracy due to the loss of subpixel details in the rasterizing
process. Also, the error in the area-based computation of moments is dependent
on the orientation of the shape.

Since a polygon can be represented in terms of linear splines, the compu-
tation of moments by approximating the shape as a polygon [112, 113, 114] is
a particular case of our approach. While the polygon method can be made as
accurate as desired by increasing the number of segments, the convergence is
slow because of the low approximation order of linear splines. Moreover, it is
not suitable for computing the curvature, which is an interesting shape feature
as it is invariant to rotation and translations and can be easily normalized to
scale changes. This motivates us to investigate higher order schemes where the
curve is represented by smoother basis functions such as B-splines and other
scaling functions that appear in wavelet theory [22, 23]. These type of basis
functions also occur naturally when one seeks multiresolution representation of
curves which are well suited for pattern recognition and shape simplification
[115, 111].

The chapter is organized as follows. In section 7.2, we show how Green’s
Theorem can be used for the computation of the area moments of a parametric
curve. In section 7.3, we consider the computation of the moments of such a
curve represented in spline or wavelet bases. Here, we also discuss the properties
of the multidimensional kernel used in the computation of moments. In section
7.4, we give the implementation details of the moment computation. In the
following section, we deal with the precomputation of the kernel. In section 7.6,
we present an alternate implementation that works for any order moments, but
it is rigorously exact only when the scaling function is sinc(x). This is especially
interesting because it makes our method applicable to the Fourier representation
of curves as well. In the last section, we compare the new method with the
existing schemes such as approximation using polygons and rasterizing.
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7.2 Preliminaries

7.2.1 Computation of Moments using Green’s Theorem

Green’s Theorem relates the volume integral of the divergence of a vector field
in a closed region to the integral of the field over the surface enclosing it. In
this section, we show how it can be used to compute the moments of an area
enclosed by a curve.

Consider a closed region V, bounded by a surface S. Green’s Theorem states
that, for any vector field F, ∫

V
(∇.F) dV =

∫
S

F.dS, (7.1)

where dS is the unit vector pointing out of the surface S. Assuming the volume
to have a constant cross-section bounded by the curve C, and that the variation
of the field along the z-direction is zero, we can restrict the theorem to two
dimensions as, ∫

S
(
∂Fx

∂x
+

∂Fy

∂y
)dxdy =

∮
C
(Fydx− Fxdy) (7.2)

The first integral is evaluated over the area S enclosed by the curve and the
second one along the curve C in the clockwise direction. The computation of the
moments involves the evaluation of the integral

∫
S xm.yn.dxdy on the surface

bounded by the curve. This, by (7.2), is equivalent to

Im,n =
∮
C

xmyn+1

n + 1
dx, (7.3)

with F = ey(xmyn+1

n+1 ); ey denotes the unit vector along the y direction. Note
that the choice of F is not unique. We choose the vector field F that makes the
computation simple. Another possible choice that has the same computational
complexity is F = −ex(xm+1yn

m+1 ).

7.2.2 Parametric Representation of a curve

We represent a closed curve in the x — y plane as discussed in Section 2.4. We
repeat it here since the notations used in this chapter are slightly different. A
curve in the x — y plane can be represented in terms of an arbitrary parameter
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t as r(t) = (x(t), y(t)). If the curve is closed, as discussed in the paper, the
functions x(t) and y(t) are periodic.

When the curve C is represented as above, r(t) can be approximated effi-
ciently as linear combinations of some basis functions, which makes the repre-
sentation compact and easy to handle. In this paper, we mainly focus on the
representation of the function vector r(t) in a scaling function basis as

r(t) =
∞∑

k=−∞

bk ϕ(t− k) (7.4)

Here bk denotes the sequence of vector coefficients given by bk = (ck, dk). If
the period, M , is an integer, we have bk = bk+M . This reduces the infinite
summations to

r(t) =
M−1∑
k=0

bk ϕp(t− k) (7.5)

where

ϕp(t) =
∞∑

k=−∞

ϕ(t− k M) (7.6)

In the context of wavelets, ϕ is called the scaling function; it satisfies the two-
scale difference equation

ϕ(t) =
∑

k

h(k)ϕ(2t− k), (7.7)

where h(k) is the mask of the corresponding refinement filter [22]. The scaling
function representation enables us to have local control of the contour, which
is desirable in many applications. It also permits a multiresolution represen-
tation of the curve [34, 35]. Moreover, the scaling function representation is
affine-invariant; an affine transformation of the curve is achieved simply by
transforming the coefficient vector bk, k = 0, 1, . . . ,M − 1. This is because of
the linearity of the representation and the partition of unity condition:

∞∑
k=−∞

ϕ(t− k) = 1, (7.8)

which is satisfied by all valid scaling functions in wavelet theory. Among the
scaling functions, a case of special interest is ϕ = βn, where βn is the causal
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B-spline of degree n [27] defined by its Fourier transform

β̂s(ω) =
(

1− e−jω

jω

)s+1

. (7.9)

This yields spline curves which are frequently used in computer graphics [15]
and computer vision [36, 37, 38].

The description of C in the scaling function basis is equivalent to a periodized
wavelet representation[34]. This implies that, if we have a wavelet description
of the curve, the scaling function coefficients at any scale can be obtained from
the wavelet coefficients using the fast reconstruction equation described in [116].
Hence, the theory is sufficiently general to include the wavelet curve descriptors
as well.

The representation of the curves in a sinc basis also falls in this class, as
the sinc function is a valid scaling function. The description of the curve in
the sinc basis as (7.5) is not efficient, as sinc has an infinite mask unlike most
of the widely used scaling functions. It is well known (c.f. [32]) that the sinc
interpolation of a periodic signal can be formulated into a numerically stable
and efficient expression as

r(t) =
L∑

k=−L

bk exp (
j2πkt

M
) (7.10)

where 2L+1 = M , assuming M to be odd. A similar expression is obtained for
even M as well. Here bk is the discrete Fourier transform of the vector sequence
r(k). Note that (7.10) provides the Fourier series description of the curve, which
is frequently used for the representation of closed curves [10, 69].

7.2.3 Differentiation of scaling functions

We will use the property that the kth derivative of a scaling function ϕ can be
expressed as [117]

ϕ(k)(x) = ∆k ϕ{k}(x), (7.11)

where ϕ{k}(x) denotes the scaling function whose mask is given by H{k}(z) =(
2

1+z−1

)k

H(z); H(z) is the mask of ϕ. ∆ denotes the backward difference
operator, defined as ∆ η(x) = η(x)− η(x− 1).
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The relation (7.11) follows from the fact that any mth order scaling function
can be written as

ϕ̂(ω) =
(

1− ejω

jω

)m

︸ ︷︷ ︸
β̂m−1(ω)

γ̂(ω),

where γ is a refinable distribution which does not satisfy the partition of unity.
The mask of ϕ is H(z) =

(
1+z−1

2

)m

Hγ(z). Note that
(

1+z−1

2

)m

is the mask

of βm−1, and Hγ the mask of γ. Differentiating ϕ with respect to x, k number
of times (k ≤ m) yields

ϕ(k)(x) F−→ (jω)k
ϕ̂(ω) =

(
1− ejω

)k (1− ejω

jω

)m−k

γ̂(ω)︸ ︷︷ ︸
ϕ̂{k}(ω)

F−1

−→ ∆kϕ{k}(x)

(7.12)

Thus the mask of ϕ{k}(x) is H{k}(z) =
(

1+z−1

2

)m−k

Hγ(z) =
(

2
1+z−1

)k

H(z).

7.3 Moment computation

To facilitate the understanding of our method, we first give a detailed derivation
of the formula for the area of the region bounded by the curve. We then extend
our formulation to the general case.

7.3.1 Computation of the Area

For the parametric representation of the curve, the area of the region is given
by

I0,0 =
∫ M

0

y(t)
dx(t)

dt
dt (7.13)

When the curve is described in a scaling function basis as in (7.5), we have

I0,0 =
M−1∑
i,j=0

dicj

∫ M

0

ϕp(t− i)ϕ′p(t− j)dt, (7.14)

where

ϕ′p(t) =
d ϕp(t)

dt
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Substituting for ϕ′p(t) from (7.44), we get

I0,0 =
M−1∑
i,j=0

dicj

∫ ∞

−∞
ϕp(t− i)ϕ′(t− j)dt, (7.15)

which is equivalent to

I0,0 =
M−1∑
i,j=0

dicj

∫ ∞

−∞
ϕp(t− i + j)ϕ′(t)dt︸ ︷︷ ︸

gp
0 (i−j)

. (7.16)

Again, substituting for ϕp from (7.44), we get the kernel gp
0(l) as the M peri-

odized version of

g0(l) =
∫ ∞

−∞
ϕ′(t)ϕ(t− l)dt (7.17)

as gp
0(l) =

∑∞
k=−∞ g0(l + k M). With the simplification (7.11), the above equa-

tion becomes
g0(l) = ∆f0(l), (7.18)

and

f0(x) =
∫ ∞

−∞
ϕ{1}(t)ϕ(t− x)dt. (7.19)

Note that, if ϕ(t) = ϕ(τ − t), then f0(x) can be written as the convolution(
ϕ{1} ∗ ϕ

)
(τ + x). We prefer to represent the kernel gp in terms of f due to its

nice properties, discussed later.
For the example given in Fig.2.5, we have

g0(l) = ∆
(
β0 ∗ β1

)
(l + 2) = ∆(β2)(l + 2)

g0 : (0.5, 0,−0.5); l ∈ {−1, 0, 1},

where βn is the causal B-spline function of degree n. Now for the polygon,
c(k) : (1, 1, 6, 8, 7, 4) and d(k) : (1, 6, 8, 5, 1, 0). Hence, by (7.16), we have

I0,0 =
1
2
〈(6, 8, 5, 1, 0, 1), (5, 7, 1,−4,−6,−3)〉

= 42 units

Here 〈x1, x2〉 stands for the `2 inner product given by
∑

k x1(k)x2(k).
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7.3.2 General Formula

Having shown how to compute the area, we proceed on to the general case. The
formula for the computation of the general moments are given by the following
theorem

Theorem 3 Let C be a closed curve in the x-y plane represented in the para-
metric form in a periodized scaling function basis as (7.5). Then the (m,n)th

order area moment of the region S, bounded by the curve C, given by

Im,n =
∫
S

xmyn dxdy for m,n ≥ 0 (7.20)

can be computed as

Im,n =
1

n + 1

∑
k∈R

∑
i∈Rm+1
j∈Rn

ck ci
[m]dj

[n+1] gp
m+n(i− k, j− k), (7.21)

where R is the integer range [0 . . .M − 1]. The kernel gp
m+n in (7.21) is

gp
m+n(k) =

∫ ∞

−∞
ϕ′(t) ϕp(t− k1) . . . ϕp(t− km+n+1) dt

Here c[m] stands for the m-times tensor product2 c⊗ c . . .⊗ c and i− k denotes
the sequence (i1 − k, i2 − k, . . . im+1 − k).

Proof: For a parametric curve, the evaluation of the (m,n)th order moment
given by (7.20) can be reduced to

Im,n =
1

n + 1

∫ M

0

xm(t) yn+1(t)
dx(t)

dt
dt (7.22)

by (7.3). When the curve is described in a scaling function basis, we have

Im,n =
1

n + 1

∑
k∈R

∑
i∈Rm+1
j∈Rn

ck ci
[m]dj

[n+1]

∫ M

0

ϕp(t− i1) . . . ϕp(t− im)ϕp(t− j1) . . .

ϕp(t− jn+1)ϕ′p(t− k)dt.

2c[0] is defined as the neutral element; c[0] ⊗ c[m] = c[m].
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Substituting for ϕ′p(t) from (7.44), we get

Im,n =
1

n + 1

∑
k∈R

∑
i∈Rm+1
j∈Rn

ck ci
[m]dj

[n+1]

∫ ∞

−∞
ϕp(t− i1) . . . ϕp(t− im)ϕp(t− j1) . . .

ϕp(t− jn+1)ϕ′(t− k)dt.

The integral in the above equation is equivalent to∫ ∞

−∞
ϕ′(t)ϕp(t + k − i1) . . . ϕp(t + k − im)ϕp(t + k − j1) . . . ϕp(t + k − jn+1)dt︸ ︷︷ ︸

gp
m+n(i−k,j−k)

.

Hence the (m,n)th order moment is

Im,n =
1

n + 1

∑
k∈R

∑
i∈Rm+1
j∈Rn

ck ci
[m]dj

[n+1] gp
m+n(i− k, j− k).

As in the case of the area, the kernel gp is obtained by the M -periodization
of

gm+n(k) =
∫ ∞

−∞
ϕ′(t)ϕ(t− k1)..ϕ(t− km+n+1).dt,

where k ∈ Zm+n+1. Expressing ϕ′ in terms of ϕ{1}, we get

gm+n(k) = fm+n(k)− fm+n(k− 1), (7.19)

where
fm+n(x) =

∫ ∞

−∞
ϕ{1}(t)ϕ(t− x1)..ϕ(t− xm+n+1)dt, (7.20)

where x = (x1, x2 . . . , xm+n+1) ∈ Rm+n+1. The kernel f has many interesting
properties, which are discussed next.

7.3.3 Properties of the kernel - f

1. Finite support: As the kernel is an integral of products of the translates
of finitely supported functions, it has a finite support as well. If the scaling
function is continuous and has a support [0, N ], then the kernel will be
supported on the integer points in the interval

I = [−N + 1, N − 2]× . . . [−N + 1, N − 2]× [−N + 1, N − 2] (7.21)
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2. Symmetry: The fact that the kernel is obtained from the integration
of similar translated scaling functions introduces a lot of symmetry. As
(7.20) is symmetric with respect to the parameters k1, k2, .., interchanging
them will not affect the value of the kernel. This implies

f(k) = f(σi(k)) (7.22)

where σi indicates all possible (m + n + 1)! permutation operators. In
addition, if the scaling functions are symmetric as in the case of splines,
we have

f(k) = f(−k) (7.23)

Both these properties together imply 2((m + n + 1)!) relations, which are
used to accelerate the computation of the kernel as well as the moments.

3. Two-scale relation: We now show that the kernel satisfies a two-scale
relation, which is the key to our computational approach. This property
follows from the fact that the scaling functions ϕ(t) and ϕ{1}(t), from
which the kernel is derived, satisfy two-scale relations. If we consider
(7.20) and rewrite the ϕ and ϕ{1} in terms of the corresponding two-scale
relations (cf. (7.7)), we get

fm+n(k) =
∑

l∈Zm+1

Hm+n(l).fm+n(2k− l) (7.24)

where k ∈ Zm+1.The mask H in the above equation is

Hm(l1, l2, .., lm) =
1
2

∑
k

h1(k).h(k − l1)..h(k − lm), (7.25)

The z-transform of the mask is given by

Hm(z1, z2, .., zm) =
1
2
H1(

mQ
k=1

zk)
m∏

k=1

H(z−1
k ) (7.26)

It is this property that enables us to compute the kernels exactly, by
solving a linear system of equations.This technique, which is discussed
later, is analogous to the computation of the integer (or dyadic rational)
samples of a scaling function from the transition operator [22].

Note that a scaling relation similar to (7.24) was also considered by math-
ematicians in the context of the wavelet-Galerkin method for the com-
putation of integrals involving products of scaling functions and their
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derivatives [118, 119]. The work of Dahmen and Miccheli is essentially
theoritical; Restrepo and Leaf concentrated on numerical issues and pro-
posed a solution which is equivalent to the computation of our kernel gm

instead of fm. This slightly complicates the approach and also increases
the dimensionality of the problem; this issue is discussed further in Section
7.5.1.

The above mentioned properties imply that the kernel can be computed
exactly for any finitely supported scaling function, as discussed in section 5. In
the next subsection, we will give some examples for the kernels when the scaling
functions are B-splines.

7.3.4 Examples with Splines

Splines possess nice approximation properties. The B-splines have the maxi-
mum approximation order among the class of functions that satisfy a two-scale
relation with a given support. Hence they give better local control of the con-
tour. Moreover, they are symmetric, which facilitates the computation of the
kernel and moments as discussed before. So it is worthwhile to analyze the
properties of the kernels for a spline representation of the curve. For the results
used in this section, refer to [27].

We consider causal B-splines, as they satisfy a two-scale relation for all
orders. The refinement filter for a B-spline of degree n is the binomial filter

h(k) =
1
2n

(
n + 1

k

)
(7.27)

If we choose βs, a B-spline of degree s, as ϕ, then ϕ{1} = βs−1; that is a spline
of degree s − 1. Hence the kernel f as given by (7.20) is a box spline [120]
sampled at the integers. In particular,

f0(k) = β2s(k + s + 1). (7.28)

The spline functions have a closed-form representation in the Fourier domain,
which the kernels also inherit. By taking the continuous Fourier transform of
(7.20), when the scaling function is a B-spline, we get

f̂s
n(ω); ω ∈ Zn = β̂s−1(|ω|)

n∏
i=1

β̂s(ωi), (7.29)
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where |ω| stands for
∑n

j=1 ωj . By using Poisson’s formula∑
k

f̂s
n(ω + 2kπ) =

1
2π

∑
k

fs
n(k)e−2jπωk, (7.30)

we get the discrete Fourier transform of the kernel as the 2π-periodized
version of (7.29).

We give some examples of kernels for the computation of the first three mo-
ments when we have a linear spline representation. For linear splines, the kernel
fm−1(k1, k2, . . . , km) is supported in the interval [−1, 0]× [−1, 0] . . . [−1, 0]. The
kernels are

f0(k1); k1 ∈ {−1, 0} :
1
2
· [ 1 1 ] (7.31)

f1(k1, k2); k1, k2 ∈ {−1, 0} :
1
6
·
[

1 2
2 1

]
(7.32)


f2(−1, k2, k3); k2, k3 ∈ {−1, 0} : 1

12 ·
[

1 1
3 1

]
f2(0, k2, k3); k2, k3 ∈ {−1, 0} : 1

12 ·
[

1 3
1 1

] (7.33)

It is interesting to see that the computation of the moments using the linear
spline kernel is the same as when the polygon is triangulated in a specified way
and the moments of individual triangles added up as in [112].

We also give the kernel f0 for the cubic spline representation.

f0(k1); k1 = −3, . . . 2 :
1

720
.[ 1, 57, 302, 302, 57, 1 ] (7.34)

The higher order kernels are omitted due to space constraints. They can be
downloaded from http://bigwww.epfl.ch/jacob.

7.4 Implementation.

In this section, we analyze equation (7.21) and simplify it for faster computation.
We start with the simplest case: the area of the region.

The area bounded by the curve (cf. (7.15)) is computed as

I0,0 =
M−1∑
k=0

cp
k

N−2∑
l=−N+1

dp
k+lg0(l), (7.35)

144



where g0 is given by (7.17). The sequences cp
k and dp

k are M -periodized versions
of the coefficients ck and dk with respect to the period M . This is simply because
convolving a non-periodized sequence with a periodized kernel is equivalent to
convolving a periodized sequence with a non-periodized kernel. We have also
reduced the range of summation of the inner sum to −N + 1 to N − 2, which is
typically much less than the range 0 to M − 1. Similarly, for the higher order
moments all the summations, except the outer one, are in the range −N + 1 to
N − 2.

From (7.35), we see that the computation of the area involves just a filtering
operation by g(−l) = gT (l), followed by an inner product. This can be written
as,

I0,0 = 〈cp, gT
0 ∗ dp〉, (7.36)

where 〈., .〉 stands for the inner product 〈c, d〉 =
∑M−1

k=0 c(k)d(k). With a similar
notation, the computation of the other moments are given as

Im,n =
〈cp, gT

m+n ∗ (cp[m] ⊗ dp[n+1])〉
n + 1

(7.37)

= −
〈dp, gT

m+n ∗ (cp[m+1] ⊗ dp[n])〉
m + 1

(7.38)

As the (m + n + 1) – D sequence is separable, the filtering operation is much
simpler than the usual (m + n + 1) – dimensional filtering.

The complexity in the computation of the moment Im,n is M.(2N −
2)(m+n+2), without taking the symmetries into account. Thus, for basis func-
tions with small support and reasonable m and n, the complexity is quite man-
agable.

7.5 Computation of the Kernel

In this section, we propose two schemes for computing the kernel. An exact
space domain scheme and an approximate one in the Fourier domain.

7.5.1 Exact Method

In this scheme, we compute the kernels in space domain making use of the
properties of kernels discussed before. We start with the computation of f0, and
later extend it to the general case. Making use of the finite support property,
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the two-scale relation (7.24) can be rewritten in the matrix form as,

A0.f0 = f0, (7.39)

where A0 is the square matrix with coefficients [A0]k,l = H0(2k − l) and f0 is
the vector whose elements are f0(n). As the support of f0 is [−N + 1, N − 2],
the indices of A0 run from −N + 1 to N − 2.

It can be seen from the equation (7.39) that f0 is an eigen-vector of the matrix
A0, with eigen-value 1. Solving for f0 is equivalent to solving for a vector which
falls in the nullspace of (A0 − I), where I is the identity matrix. Since f0 6= 0,
A0 must have the eigen-value 1, which is in general single. This provides f0 up
to a constant which is further set by the normalization identity∑

k

f0(k) = 1, (7.40)

which can be seen from (7.19). This is because the function ϕ(x) has at least
an approximation order of one [22], which implies

∑
k ϕ(x + k) = 1 . One of

the equations in (A0 − I).f0 = 0 can be substituted for by the equation (7.40)
to yield the system of equations given by

B.f0 = y; (7.41)

B is the matrix obtained by substituting one of the rows of (A0 − I) with the
row vector [1, 1, . . . , 1] and y is given by [0, 0, 0 . . . , 0, 0, 1]T c.f [99]. Now B
is a full rank matrix, and hence the eigen-vector f0 can be solved by matrix
inversion.

To represent the two-scale relations of the higher order kernels in the matrix
form, we introduce a one-to-one function ρ : [−N + 1, N − 2]m 7→ [0, (2N −
2)m − 1]. Using this function, (7.24) can be rewritten as

fm(ρ−1(k)) =
(2N−2)m+1−1∑

l=0

Hm

(
2ρ−1(k)− ρ−1(l)

)
fm

(
ρ−1(l)

)
which is a linear system of equations. This can be written in the matrix form
as

Amfm = fm, (7.42)

where [Am]i,j = Hm

(
2ρ−1(i)− ρ−1(j)

)
and fm(i) = f

(
ρ−1(i)

)
. This equation

is of the same form as (7.39) and can be solved in the same way, with the
normalization constraint

∑
i fm(i) = 1.
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Let us now compare our computational solution with the method developed
for computing gm in the context of wavelet-Galerkin approach [118]. For a
scaling function of support N , the kernel gm is zero outside the interval

I ′ = [−N + 1, N − 1]× . . . [−N + 1, N − 1]× [−N + 1, N − 1]. (7.43)

as compared to fm whose support is given by (7.21). Thus the direct compu-
tation of gm involves a linear system with (2N − 1)m variables as compared to
(2N −2)m for fm in our case. For 3 dimensional kernels involving cubic splines,
we achieve a 40% reduction in the number of equations. As the computational
complexity in inverting a linear system is proportional to the third power of
the number of equations, this implies a performance improvement of around 5
times. The approach becomes even more rewarding for higher order kernels.
Moreover, the normalization constraint (7.40) that we use to make the system
full rank is much more straight forward than the corresponding relation for the
derivative functions.

Note that this simplification is covered by Dahmen and Michelli’s general
theory for integrals of multidimensional scaling functions [119]. This is because
the mask of any mth order 1 − D scaling function can be always factored as
proposed in [119, Corollary 3.3]. In the case of wavelet-Galerikin integrals, the
performance improvement can even more substantial depending on the number
of derivatives.

7.5.2 Approximate Method for Splines

Because the spline kernel has a closed-form expression in the frequency domain,
the kernel can be obtained by taking the inverse DFT of the above mentioned
Fourier transform (7.30) sampled at an appropriate rate; we make use of the
finite support property of the kernel. As sinc is a decaying function, the peri-
odization of the Fourier transform may be approximated with an appropriately
truncated sum to achieve any desired accuracy. This is because we can have an
upper bound for the error that is a decreasing function of the summation range.
Moreover, the symmetries of the kernel discussed before may be used for the
efficient computation of the box spline kernels as in [121].

However, this technique, besides being approximate, can be used only for
scaling functions that have a closed form expression in the frequency domain, i.e
splines in practice. This scheme may be useful to precompute the spline kernels
for very high order moments, where the exact scheme can be computationally
expensive.
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7.6 Computation of the Area Moments using Rie-
mann sums

An alternate approach to compute the moments is to approximate the integral
(7.3) by a Riemann sum:

Im,n =
1

(n + 1)P
.
MP−1∑

l=0

[xint(l/P )]m.[yint(l/P )]n+1.[x′int(l/P )], (7.44)

where P is an appropriate oversampling factor. We show in this section that
this quadrature formula is exact when the curves are described in a sinc basis.
For other representations, it can be used for the approximate computation of
higher order moments.
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Figure 7.1: Comparison of moment estimators

7.6.1 Sinc Representation of the curve

A curve represented in a sinc basis also falls into the framework of Theorem 3
because sinc(x) is a valid scaling function. However, computing the moments
as described in Section 7.4 is expensive as the mask of the sinc function is not
finitely supported. We remind the reader that the representation of a periodic
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signal in the sinc basis is equivalent to the Fourier representation as seen in
(7.10).

In this particular case, the moments can be computed exactly and more
efficiently using (7.44), where the oversampling factor, P , is any integer greater
than m+n+2

2 .

Proposition 5 The quadrature formula (7.44) is exact for the sinc representa-
tion provided that P ≥ dm+n+2

2 e

The continuously defined functions xint(t) and yint(t) are obtained by inter-
polating the sample values of the curve at the integers, using the periodized
sinc function. The computation is exact because we implicitly assume that the
functions x(t) and y(t) are bandlimited functions, with bandwidth B = 2π.

Proof: The integral (7.3) can be considered as an L2 (0,M) inner prod-
uct of two functions, which are dm+n+2

2 e and bm+n+2
2 c fold3 products of

the corresponding band-limited functions. Hence they are bandlimited by
B′ = Bdm+n+2

2 e and B′′ = Bbm+n+2
2 c respectively. So these functions are

exactly represented in the basis {sinc(Px− k), ∀k ∈ Z}, where 2πP ≥ B′. Be-
cause the sinc basis is orthogonal, the L2 (0,M) inner product is equivalent to
the `2 (0,MP−1) inner product. Hence it is sufficient to compute the discrete
summation instead of the integral. Finally, the sinc function is interpolating, so
that the coefficients of the basis functions are the resampled curve values, and
hence the result (7.44).

Using the equivalence of the sinc and the Fourier representations, we can
compute the interpolated samples efficiently with a MP point inverse FFT of
the Fourier coefficients ck and dk.

We will compare the sinc moment estimator with the scaling-function- based
moment estimator in the next section. One disadvantage of the Fourier(sinc)
representation of curves is the loss of local control property that we were having
with the finitely supported scaling functions.

The complexity in the computation of the moments in this scheme is
MP (3 log(MP ) + (m + n + 2)). Here 3MP log(MP ) is the cost of the inverse
FFT of the sequences ck, dk and k.ck, and (m + n + 2)MP corresponds to the
multiplications.

3bxc and dxe denote the floor and the ceiling operators, operating on a fraction x to yield
the lower and upper integers that bound x.
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7.6.2 Spline Representation of the curve

The quadrature formula (7.44) is also applicable to the spline representation,
provided that the functions xint(t) and yint(t) are obtained by interpolating the
integer sample values, using the corresponding B-spline functions. This scheme
is no longer exact, but it may be a viable alternative for computing the higher
order moments. The necessary condition for the computation to be reliable is
that the Fourier transform of the B-spline function is essentially bandlimited to
2πP , where P is the oversampling factor. The error in the moments computed
with the approximate method is thus proportional to the residual energy of the
B-spline function in the corresponding outband. As the Fourier transform of
the B-spline is a decaying function of the frequency, the error will be a decaying
function of P as well. Thus, any desirable accuracy may be achieved by choosing
P sufficiently large.

The complexity of the spline quadrature formula is

O (M(m + n + 2)(m + n + 2 + 3N)P ) ,

where M(m + n + 2)P is the total number of resampled points. The evaluation
of the spline representation requires N multiplications to obtain one resampled
point from the corresponding B-spline representation. Then the computation of
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the discrete sum costs m + n + 2 multiplications per resampled point. Interest-
ingly, the approximate scheme will give better results for higher order splines
as these functions will become bandlimited as the order tends to infinity [33].

Figure 7.3: Estimated ellipse for a real image

7.7 Experiments and results.

In this section we compare the new technique with the existing ones: approx-
imation using polygons and rasterizing. We first consider the exact scheme
proposed in section 7.4. We try to estimate the parameters of a known ellipse
and choose the relative error in the parameters as the criterion of comparison.

Our preferred choice is to represent the curve in a cubic B-spline basis due
to its nice approximation properties and minimum curvature properties. To
compare it with the approximation of the region as a polygon, the ellipse is
sampled uniformly and the samples are interpolated using the two techniques
(linear and cubic splines). The average relative error in the three centered 2nd
order moments vs the number or samples are plotted in Fig 7.1. It can be seen
that the relative error is much smaller for the cubic spline interpolation even
at low sampling rates and that it exhibits a faster decay. In the traditional
scanning approach, the ellipse is scanned along the x and y axes with a step size
∆ and the monomials are computed at the grid points assigned to the interior of
the curve. Fig 7.2 shows the decay of the average relative error for an ellipse vs
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Figure 7.4: Shape of corpus callosum represented using a cubic B-spline curve
with 20 knot points.

√
Area
∆ for three different orientations. The plot clearly shows the dependence

of the accuracy on the orientation of the ellipse.
It can be seen that to achieve a relative error of 0.1% the interior of the

ellipse has to be sampled at about 3600 points, whereas to achieve the same
error using the cubic spline interpolation we need only around 9 points on the
curve. In comparison, the polygon method (linear spline) requires more than 40
samples to have a similar error. More interesting is the case when the interior
of the ellipse has to be sampled at about 2.5 × 105 points to achieve an error
of 0.002% while the cubic splines require only 25 samples to achieve the same
accuracy.

In Fig 7.3, we show the ellipse corresponding to the 2nd order moments of
the central structure in the image. The contour of the object was estimated
using a snake where the curve was represented parametrically in terms of cubic
B-splines; the moments are computed using our algorithm. Note that the fit is
astonishingly good.

Having observed that the cubic spline estimator performs better than the
polygon method, we now compare it with the Fourier(sinc) technique proposed
in section 7.6. It is not fair to use the ellipse as we did before, because it can be
represented exactly in a Fourier series representation with L = 2. So we choose
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the real shape of corpus callosum shown in Fig 7.4, represented in a linear
spline basis with 39 knot points as the reference shape. This shape was resam-
pled at different rates and these points were interpolated using cubic B-spline
and Fourier representations respectively. The moments of the corresponding
curves were calculated using the respective algorithms discussed before. Fig
(7.5) shows the decay of the relative error with the resampling rate for both
representations. We observe that the spline estimator is better than the Fourier
estimator for small sampling rates, while the Fourier estimator performs better
at very high sampling rates(typically more than 8 times the number of points
used for the description of C). In the example considered, the Fourier method
performs better when the shape of corpus callosum is represented with around
312 samples.

To evaluate the performance of the approximate scheme introduced in 7.6.2,
we now consider the case where the corpus callosum is represented by a cubic
B-spline curve with 20 knot points. The relative error in the computation of
the 2nd order moments by the quadrature formula as a function of its relative
computational complexity(proportional to P ) is shown in Fig. 7.6; here, the
reference method is the kernel based computation, which is exact. Our results
indicate that, for the 2nd order moments, the error of the quadrature formula
is quite substantial (eg. 9.4%). Thus, it is not advantageous for computing the

153



lower order moments. However, the quadrature formula will eventually start to
pay off for higher order moments, because its cost increases only quadratically
with the degree as compared to exponentially for the kernel based method.
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Figure 7.6: Relative Error vs Relative Computational complexity.

7.8 Synopsis

In this chapter we have presented a new approach for the computation of the
moments of a curve described in a wavelet or scaling function basis. It is espe-
cially useful for objects detected using parametric snakes. The main advantages
of the proposed scheme over the conventional methods are:

• the exactness of the computation;

• its independence of the orientation of the shape;

• the consistency with the snake model and the fact that it is the most direct
method available.

In addition, the method is reasonably fast and easy to implement.
We recommend using our exact kernel-based approach for computing the

lower order moments (typically m + n ≤ 2 ) for which the kernels are avail-
able. For higher order moments, we have proposed a quadrature formula that
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approximates the continuous integrals with Riemann sums. The latter method
is exact for the sinc basis functions; otherwise it can be made as accurate as
desirable by resampling the model at a finer rate (P sufficiently large).
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Chapter 8

Conclusion

We have presented a coherent and consistent approach (cf. Fig. 1.4 ) for the
estimation of shape and shape attributes from images. In contrast with the
traditional sequential approaches, our scheme is centered on a shape model that
drives the feature extraction, shape optimization and the attribute evaluation
modules. Since it is more constrained that the traditional method, it is more
robust to noise.

We have addressed several problems associated with the separate modules
of this framework, keeping in mind the overall structure. Specifically, we have
addressed the extraction of features, the representation of the shape and the
evaluation of attributes from shapes. We applied the framework to solve two
practical shape estimation problems. The main contributions of this thesis are
listed below.

8.1 Main Contributions

• A general approach for the design of 2-D features from a class of steerable
functions based on a Canny-like criterion: As compared to previous com-
putational designs, our approach is truly 2-D. It provides filters with closed
form expressions and better orientation selectivity than the conventional
detectors.

• Several improvements for parametric snakes: Since the widely-used gradi-
ent magnitude-based energy is parameter dependent, we proposed a pa-
rameter independent term based on a steerable feature space. This term
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accounts for the direction of the gradient and hence is more robust. Using
Green’s theorem, we re-expressed it as a surface integral, thus unifying it
naturally with the region-based schemes.
We clarify some earlier statements about splines by showing that para-
metric snakes can guarantee low curvature curves, but only if they are
described in the curvilinear abscissa. Since normal curve evolution do not
ensure constant arc-length, we proposed a new internal energy term that
will force this configuration.
We introduced an efficient scheme to check for the presence of loops in
the curve. We also presented several practical enhancements to make
the parametric framework even more attractive for the segmentation of
biomedical images.

• A carefully engineered algorithm for the shape estimation of 3-D DNA
molecules from its stereo cryo-micrographs: We used a global 3-D model
and optimized its coefficients such that its projections matched with the
micrographs. We approximated the global model locally by a projection-
steerable elongated blob-like template; its projections onto the plane are
contained in a finite dimensional space. We also derived an efficient algo-
rithm to compute the likeliness of a 3-D filament with a specific orientation
in 3-D space; the image energy of the 3-D snake is obtained by integrating
the likeliness measures along the 3-D curve. Since we knew the final length
of the DNA molecule, we used it to constrain the reconstruction.

• Quantitative analysis of error of the parametric representation of closed
curves: We derived an exact expression for the L2 error in approximating
a periodic signal in a basis of shifted versions of a generating function.
The formula takes the simple form of a Parseval’s like relation where the
Fourier coefficients of the signal are weighted against a frequency kernel
that characterizes the approximation operator. This expression can be
used to calculate the optimal number of coefficients and basis functions
for a specific family of shapes.

• Exact computation of area moments: Using Green’s Theorem, we showed
that the computation of the area moments of a scaling function curve is
equivalent to applying a suitable multidimensional filter on the coefficients
of the curve and thereafter computing a scalar product. The multidimen-
sional filter coefficients are pre-computed exactly as the solution of a two-
scale relation. This algorithm can be used to evaluate the moments to
constraint the reconstruction as shown in Fig. 1.4.
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8.2 Future work

We now discuss a few directions along which we plan to continue our work.

• 3-D steerable feature detectors: The framework introduced in Chapter 3
can be extended to design feature detectors in 3-D. We plan to generate a
steerable feature space from the volume data and use it to detect specific
features like lines, surfaces, edges, blobs etc.

• Multi-scale detection of image features and denoising: One can decompose
a given image using a multi-scale steerable pyramid to detect a a variety of
multi-scale features (edges, ridges, corners etc.). By selectively preserving
specific image features and reconstructing the image, we can obtain a
denoised version of the image.

• Model-based reconstruction in limited angle tomography: The concept of
projection steerablity can be used to reconstruct specific 3-D features from
their 2-D projections. A higher order projection-steerable detector may
be useful in tomography problems where the projections are noisy or when
more views are difficult or impossible to generate.

• Account for the exact derivatives of the unified image energy: At the mo-
ment, the parameters of the probability distribution functions are assumed
to be constant. However, in practice these parameters are estimated from
the images depending of the current position of the contour. Thus these
parameters are dependent on the curve coefficients. We would like to
compute the exact directional derivatives in the optimization scheme and
study the improvement.

• Application of the snake to practical problems: We would like to customize
the snake models to practical biomedical problems. This will require sev-
eral enhancements ranging from the choice of the image energy and type
of shape constraint.

• 3-D active contour model: We plan to to extend the model-based consis-
tent segmentation using a steerable feature space to 3-D. The parametric
representation of general 3-D surfaces is difficult, unless the shapes as-
sume simple forms like a tube; in this case the surface can be represented
as using a spline model. Another promising approach may be to represent
the shape using spherical harmonics as in [122, 123].
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• Performance bounds on DNA shape estimation: The estimate of the po-
sition and orientation of the filament at a specified 3-D point will depend
on the orientation of the filament and the projection geometry. We plan
to compute the theoretical (Cramer Rao) bounds on the estimation error.
These bounds will enable us to understand the problem better.
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