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Abstract—We propose a general approach for the design of 2D feature detectors from a class of steerable functions based on the

optimization of a Canny-like criterion. In contrast with previous computational designs, our approach is truly 2D and provides filters that

have closed-form expressions. It also yields operators that have a better orientation selectivity than the classical gradient or Hessian-

based detectors. We illustrate the method with the design of operators for edge and ridge detection. We present some experimental

results that demonstrate the performance improvement of these new feature detectors. We propose computationally efficient local

optimization algorithms for the estimation of feature orientation. We also introduce the notion of shape-adaptable feature detection and

use it for the detection of image corners.

Index Terms—Steerable, feature, edge, detection, ridge, contours, boundary, lines.
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1 INTRODUCTION

IN his seminal paper on computational edge detection,
Canny identified the desirable qualities of a feature

detector and proposed an appropriate optimality criterion.
Based on this criterion, he developed a general approach to
derive the optimal detector for specific image features such
as edges [1]. This work had a great impact on the field and
stimulated further developments in this area, particularly
on alternate optimality criteria and design strategies [2], [3].

All of the above authors considered the derivation of
optimal1Doperators.For2Dimages, theyappliedtheoptimal
1D operator orthogonal to the feature boundary while
smoothing in the perpendicular direction (along the bound-
ary). This extension is equivalent to computing inner-
products between the image and a series of rotated versions
of a 2D reference template (tensor product of the optimal
1D profile and the smoothing kernel). With this detector, the
rotation angle of the template that yields themaximum inner
product, gives the feature orientation. Since the optimal
1D template did not have explicit formulae, they were
typically approximated by simple first or second order
differentials of a Gaussian. In practice, they were extended
using Gaussian kernels of the same variance since the
resulting 2D template could be applied in a directional
manner inexpensively via the computation of smoothed
image gradients or Hessians.

An alternative to these differential approaches to rotation
independent feature detection is provided by the elegant
work of Freeman and Adelson on steerable filters [4]. The
underlying principle is to generate the rotated version of a
filter from a suitable linear combination of basis filters; this
sets some angular bandlimiting constraints on the class of
admissible filters. Perona et. al., Manduchi et al., Simoncelli

and Farid, and Teo and Hel-Or used this framework to
approximate and design orientation-selective feature detec-
tors [5], [6], [7], [8]. The concept of steerablity was also
applied successfully in other areas of image processing such
as texture analysis [9], [10] and image denoising [11].

In this paper, we propose to reconcile the two methodo-
logies—computational approach and steerable filterbanks—-
bypresenting a general strategy for the design of 2D steerable
feature detectors. We derive the filter directly in 2D as
opposed to the 1D schemes (1D optimization followed by an
extension to 2D) of Canny and others. Moreover, in contrast
with the work of Perona [5], we do not approximate a given
template within a steerable solution space, but search for the
filter that gives the best response according to an optimality
criterion. Our filter is specified so as to provide the best
compromise in terms of signal-to-noise ratio, false detections,
and localization. We illustrate the method with the design of
optimal edge and ridge templates. The detectors that we
obtain analytically have better performance and improved
orientation selectivity, yet they are still computationally
quite attractive.

The paper is organized as follows: In Section 2, we
introduce the concept of steerable matched filtering and
reinterpret some of the classical detectors within this
framework. In Section 3, we propose an optimality criterion
and show how to determine the best filter from a class of
steerable functions. In Section 4, we concentrate on specific
2D feature detectors and demonstrate their use in different
applications. Though our algorithm is general, in this paper,
we focus only on the detection of edge and ridge features. In
Section 5, we introduce the concept of shape adaptive
feature extraction and illustrate it with an example.

2 ORIENTATION INDEPENDENT MATCHED FILTERING

2.1 Detection by Rotating Matched Filtering

Suppose our task is to detect some feature in an image fðx; yÞ
at some unknown position and orientation. The detection
procedure can be formulated as a rotatedmatched filtering. It
involves the computation of inner-products with the shifted
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and rotated versions of a 2D feature template f0ðx; yÞ ¼
hð�x;�yÞ at every point in the image. A high magnitude of
the inner-product indicates the presence of the feature and
the angle of the corresponding template gives the orientation.
Some simple examples of templates are shown in Fig. 1.
Mathematically, the estimation algorithm is

��ðxÞ ¼ argmax
�

ðfðxÞ � hðR� xÞÞ ð1Þ

r�ðxÞ ¼ fðxÞ � hðR�� xÞ; ð2Þ

where r� is themagnitude of the feature and �� its orientation
at the position x ¼ ðx; yÞ; R� is the rotation matrix

R� ¼
cosð�Þ sinð�Þ
� sinð�Þ cosð�Þ

� �
ð3Þ

and u � v stands for the convolution between u and v.
Equations (1) and (2) correspond to the matched filter
detection. They give the maximum-likelihood estimation of
the angle � and weight r for the signal model

fðxÞ ¼ r � f0ðR�ðx� x0Þ þ x0Þ þ nðx0Þ;

where nðxÞ denotes Gaussian white noise. However, this
scheme of detection is not very practical, for it requires the
implementation of a large number of filters (as many as the
quantization levels of the angle).

2.2 Steerable Filters

Tocutdownon thecomputational load,weselectourdetector
within theclassof steerable filters introducedbyFreemanand
Adelson [4]. These filters can be rotated very efficiently by
taking a suitable linear combination of a small number of
filters. Specifically, we consider templates of the form

hðx; yÞ ¼
XM
k¼1

Xk
i¼0

�k;i
@k�i

@xk�i

@i

@yi
gðx; yÞ; ð4Þ

where gðx; yÞ is an arbitrary isotropic window function. We
call such a hðx; yÞ an Mth order detector.

Proposition 1. The filter hðx; yÞ is steerable. In other words, the
convolution of a signal fðx; yÞ with any rotated version of
hðx; yÞ can be expressed as

fðxÞ � hðR�xÞ ¼
XM
k¼1

Xk
i¼0

bk;ið�Þfk;iðxÞ; ð5Þ

where the functions fk;iðx; yÞ are filtered versions of the
signal fðx; yÞ

fk;iðx; yÞ ¼ fðx; yÞ � @k�i

@xk�i

@i

@yi
gðx; yÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gk;iðx;yÞ

: ð6Þ

The orientation-dependent weights bk;ið�Þ are given by

bk;ið�Þ ¼
 Xk

j¼0

�k;j

X
l;m2Sðk;j;iÞ

k� j

l

� �
j

m

� �

ð�1Þm cosð�Þjþðl�mÞ sinð�Þðk�jÞ�ðl�mÞ
!
;

ð7Þ

where Sðk; i; jÞ is the set Sðk; i; jÞ ¼ fl;m j 0 <¼ l <¼ k� i;
0 <¼ m <¼ i; k� ðlþmÞ ¼ jg.

The proof is given in the Appendix A. A graphical
representation of the implementation is given in Fig. 2. Once
the fk;iðx; yÞ are available, fðxÞ � hðR�xÞ can be evaluated
very efficiently via a weighted sum with its coefficients that
are trigonometric polynomials of �. Since the number of
partial differentials in (5) for a generalMth order template is
MðM þ 3Þ=2, hðxÞ is steerable in terms of asmany individual
separable functions. Using some simplification, we can show
that such a general hðxÞ can also be rotated using
2M þ 1 nonseparable filters1 (an example of such a simpli-
fication is given by (39)-(42)).

A case of special interest corresponds to gðxÞ being the
Gaussian; indeed, the Gaussian is optimally localized in the
sense of the uncertainty principle and the corresponding
filters in (6) are all separable. Interestingly, the Gaussian
family is equivalent to the class of moment filters (poly-
nomials multiplied by Gaussian window) discussed in [4],
but the filters are not identical. We will now show that the
family described by (4) includes some popular feature
detectors as particular cases.
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Fig. 1. Examples of feature templates. Feature detection is performed by
convolution of the rotated versions of the template with the image.
(a) Idealized edge template. (b) Idealized ridge template. (c) Popular
edge template. (d) Popular ridge template.

1. This is the minimum number of filters required to steer a general
Mth order tempate.

Fig. 2. Implementation of steerable filtering (cf. (5)).



2.3 Conventional Detectors Revisited

2.3.1 Canny’s Edge Detector

As already observed by Freeman and Adelson, the widely-

used Canny edge detection algorithm can be reinterpreted

in terms of steerable filters [4]. This algorithm involves the

computation of the gradient-magnitude of the Gaussian-

smoothed image. The direction of the gradient gives the

orientation of the edge. Mathematically,

�� ¼ arctan
ðf � gÞy
ðf � gÞx

� �
ð8Þ

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf � gÞx
� �2þ ðf � gÞy

	 
2
;

r
ð9Þ

where gx ¼ @g=@x and gy ¼ @g=@y; g is a 2D Gaussian of a
specified variance. The above set of equations can be shown
to be the solution of (1) and (2), with h ¼ gx. Substituting
M ¼ 1; �1;0 ¼ 1; �1;1 ¼ 0 in (7), we get b1;0ð�Þ ¼ cosð�Þ;
b1;1ð�Þ ¼ sinð�Þ. Thus,

��ðxÞ ¼ argmax
�

ðfðxÞ � gxðR�xÞÞ ð10Þ

¼ argmax
�

ðf � ðgx cosð�Þ þ gy sinð�ÞÞÞ: ð11Þ

Here, we used the steerability of gx from (5). To compute the

maximum of the above expression, we set the differential of

(11) with respect to � to zero:

ðf � gxÞ sinð�Þ � ðf � gyÞ cosð�Þ ¼ 0; ð12Þ

which results in (8) and (9). The corresponding feature
template is shown in Fig. 1c.

2.3.2 Ridge Detector

Less well-known is the fact that a popular ridge estimator
based on the eigen-decomposition of the Hessianmatrix [12],
[13], [14] can also be interpreted in terms of steerable filters.
Assuming the template to be gxx (the second derivative of a
Gaussian), ridge detection can be formulated exactly as (1)
and (2). Thecorrespondingdetector is shown inFig. 1d. In this
case, the steerability relation (5) can be expressed in a matrix
form as

gxxðR�xÞ ¼ uT
�

gxxðxÞ gxyðxÞ
gxyðxÞ gyyðxÞ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hg

u�; ð13Þ

where Hg is the Hessian matrix and u� ¼ ðcosð�Þ; sinð�ÞÞ.
Using the linearity of convolution, fðxÞ � gxxðR�xÞ ¼
uT
� Hf�g u�. We would like to obtain the maximum of

uT
� Hf�g u�, subject to the constraint uT

� u� ¼ 1. We solve this
constrained optimization problem using Lagrange’s multi-
plier method by setting the gradient of uT

� Hf�gu� þ � uT
� u� to

zero:

Hf�gu� ¼ �� u�: ð14Þ

This implies that �� is an eigenvalue of Hf�g; the
corresponding normalized eigenvectors are the possible
solutions to the problem. Since we are looking for the
maximum of uT

� Hf�g u�, the optimal response and the
angle are given by

r� ¼ �max ð15Þ
u�� ¼ vmax: ð16Þ

Here, �max and vmax are the maximum eigenvalue and the

corresponding eigenvector, respectively.
It can be seen from Figs. 1c and 1d that these classical

detectors do not have a good orientation selectivity. In the
next section, we propose a new approach for the design of
detectors that attempts to correct for this deficiency.

3 DESIGN OF STEERABLE FILTERS FOR FEATURE
DETECTION

The widely-used contour extraction algorithm [1] has three
steps: 1) feature detection, 2) nonmaximum suppression,
and 3) thresholding. In this section, we present a general
strategy for the design of steerable filters for feature
detection, while keeping in mind the subsequent steps.
We propose a criterion similar to that of Canny and we
analytically derive the optimal filter—or, equivalently, the
optimal weights—within our particular class of steerable
functions specified by (4).

3.1 Optimality Criterion

We now review Canny’s criterion and modify it slightly to
enable analytical optimization. To derive the optimal
2D operator, we assume that the feature (edge/ridge) is
oriented in some direction2 (say, along the x axis) and derive
an optimal operator for its detection. As the operator is
rotation-steerable by construction, its optimality properties
will be independent of the feature orientation.

The three different terms in Canny’s criterion are as
follows.

3.1.1 Signal-to-Noise Ratio

The key term in the criterion is the signal-to-noise ratio. The
response of a filter hðxÞ to a particular signal f0ðxÞ (e.g., an
idealized edge) centered at the origin is given by

S ¼
Z
R2

f0ðx; yÞhð�x;�yÞdx dy ð17Þ

S is given by the height of the response at its maximum. If

the input is corrupted by additive white noise of unit

variance, then the variance of the noise at the output is

given by the energy of the filter:

Noise ¼
Z
R2

jhðx; yÞj2dx dy: ð18Þ

We desire to have a high value of S for a given value of

Noise; S2

Noise is the amplification of the desired feature

provided by the detector.

3.1.2 Localization

The detection stage is preceded by nonmaximum suppres-
sion. The estimated feature position corresponds to the
location of the localmaximumof the response in the direction
orthogonal to the feature boundary (y axis in our case). The
presence of noise can cause an undesirable shift in the
estimated feature location. The direct extension of Canny’s
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2. In 2D, the features of interest have boundaries of dimension 1.



expression for the shift-variance (due to white noise of unit
variance) to 2D gives

E ð�yÞ2
h i

¼
R
R2 jhyðx; yÞj2dx dy

j
R
R2 f0ðx; yÞhyyð�x;�yÞdx dyj2

: ð19Þ

Canny has proposed to maximize the reciprocal of this
term. The numerator of (19) is a normalization term which
will be small automatically if the impulse response of the
filter is smooth along the y axis (low norm for the
derivative). Since we are imposing this type of smoothness
constraint elsewhere via an additional regularization term
(see next section), it is not necessary to optimize this term
here, which also keeps the effects well separated. Therefore,
we propose to maximize the second derivative of the
response, orthogonal to the boundary, at the origin

Loc ¼ � d2

dy2
ðf0 � hÞ

¼ �
Z
R2

f0ðx; yÞhyyð�x;�yÞdx dy
ð20Þ

which is the square-root of thedenominator in (20). The above
expression is ensured to be positive because the second
derivative of the response is negative at the maximum
(assuming S > 0). Note that the new localization term is a
measure of the width of the peak. The drift in position of the
maximumdue to noisewill decrease as the response becomes
sharper. In this work, we are neglecting the effect of
neighboring features in deriving the localization term.

3.1.3 Elimination of False Oscillations

Canny observed that when the criterion is optimized only
with the SNR and the localization constraint, the optimal
operator has a high bandwidth; the response will be
oscillatory and, hence, have many false maximas. In 2D,
we desire that the response be relatively free of oscillations
orthogonal to the feature boundary. This can be achieved by
penalizing the term:

Ro ¼
Z
R2

jhyyðx; yÞj2dx dy: ð21Þ

Note that this term is the numerator of the expression for
the mean distance between zero crossings proposed by
Canny. It is a thin-plate spline-like regularization which is a
standard technique to constrain a solution to be smooth
(low bandwidth).

The thresholding step is easier if the response is flat
along the boundary. The oscillation of the response along
the boundary (x axis) can be minimized by penalizing

Rp ¼
Z
R2

jhxxðx; yÞj2dx dy ð22Þ

These terms will force the filter to be smooth making the
response is less oscillatory, thus resulting in fewer false
detections.

3.2 Derivation of the Optimal Detector

We combine the individual terms to obtain a single criterion

C ¼ S � Loc� � ðRo þRpÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
R

: ð23Þ

The filter in the family described by (4) that maximizes this

criterion, subject to the constraint3 Noise ¼ 1, is our optimal

detector. The free parameter � > 0 controls the smoothness

of the filter; a high value makes the response less prone to

false maxima and reduces oscillation along the ridge.

However, these properties impose a trade off on the

localization of the response.
In this work, we are also interested in performing a scale-

independent design. In other words, if we dilate the

window by a factor �, using g�ðxÞ ¼ ��
1
2gðx�Þ, we want our

solution to retain the shape independently of �. This

requires that we weight each of the terms in (23) using an

appropriate power of the dilation factor. This issue is

discussed later for each feature model separately.

For the ease of notation, we collect the component

functions of (4) into a function vector g of length ðMðMþ3Þ
2 Þ,

whose components are

½g�iðx; yÞ ¼
@k�n

@xk�n

@n

@yn
gðx; yÞ with i ¼ ðk� 1Þðkþ 2Þ

2
þ n

k ¼ 0 . . .M; n ¼ 0::k:

Hence, an arbitrary function in the family is represented in

a compact form as

hðxÞ ¼ aTgðxÞ; ð24Þ

where a is the vector containing the �i;ks in (4); it has the

same length as the function vector. Now, we express the

terms of the criterion in a matrix form as S ¼ aTs,

Loc ¼ aTq, Noise ¼ aTPa, and R ¼ aTRa, where

s½ �i ¼ hf0ðxÞ; gð�xÞ½ �ii ð25Þ

q½ �i ¼
D
f0ðxÞ; ð gð�xÞ½ �iÞyy

E
ð26Þ

P½ �i;j ¼ h g½ �i; g½ �ji ð27Þ

R½ �i;j ¼
D
ð g½ �iÞyy; ð g½ �jÞyy

�
þ
D
ð g½ �iÞxx; ð g½ �jÞxx

E
: ð28Þ

gyyðx; yÞ and gxxðx; yÞ denote @2gðx; yÞ=@y2 and @2gðx; yÞ=@x2,

respectively. P and R are matrices of size MðMþ3Þ
2 � MðMþ3Þ

2 ,

while the vectors q and s are of length MðMþ3Þ
2 . Here, P is

ensured to be nonsingular. In the above expressions, the

inner product of two functions is defined as

hf1; f2i ¼
Z
R2

f1ðx; yÞf2ðx; yÞdx dy:

Thus, the criterion (23) can be expressed in thematrix form as

C ¼ aT Q� �R½ �a; ð29Þ

where

Q ¼ s qT: ð30Þ

Since all the terms in the criterion are quadratic, the solution

for the optimal parameters can be found analytically by

using Lagrange’s multiplier method. To maximize the
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criterion subject to the constraint, we set the gradient of

C þ � Noise to zero:

2 Q� �Rþ � P½ �a ¼ 0: ð31Þ

Rearranging the terms, we get

P�1 Q� �R½ � a ¼ �� a ð32Þ

which implies that � is an eigenvalue of the matrix

ð�P�1½Q� �R�Þ. The total number of eigenvalues is given

by the dimension of a. The corresponding eigenvectors a�i
need to be scaled so that the constraint aT�i

Pa�i
¼ 1 is

satisfied. The optimal solution is therefore given by

a ¼ max aT�i
Q� �R½ �a�i

; i ¼ 0 . . .MðM þ 3Þ=2
n o

: ð33Þ

Thus, the design of the optimal feature detector boils down

to an eigen-decomposition followed by an appropriate

weighting of the eigenvectors so as to satisfy the constraint.

3.3 Feature Detection by Local Optimization

Due to (5), the optimal angle �� in (1) is obtained as the

solution of

@

@�
ðfðxÞ � hðR��xÞÞ ¼

XM
k¼1

Xk
i¼0

fk;iðx; yÞ
@

@�
ðbk;ið�ÞÞ j�¼��|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

ck;ið��Þ

¼ 0:

ð34Þ

It is easy to see from (7) that each of the terms in bk;ið�Þ are
of degree k in cosð�Þ and sinð�Þ; ck;ið�Þ is of degree k as well.

Hence, (34) is a polynomial of order M (in cosð�Þ and sinð�Þ)
and, thus, the estimation of the optimal angle involves the

solution of an Mth order polynomial in two variables.
If hðx; yÞ has only odd/even order partial derivatives (this

is the case for many detectors), then bk;ið�Þ will be a

polynomial with only odd/even degree terms (of cosð�Þ and
sinð�Þ) present. Consequently, (34) can be reduced4 to a form

where only terms of degree M are present. In this case, (34)

can be further simplified (by dividing both the sides by

ðcosð�ÞÞM ) to a polynomial in only one variable—tanð�Þ. We

then have an analytic solution if M <¼ 3 [15]. This case is

illustrated in Section 4.1.3.WhenM ¼ 2, the solution can also

be computed as an eigen-decomposition of the Hessian

matrix, which is better known (but, also, boils down to the

above mentioned solution). This case is described in Section

4.2.2.When the solution of (34) is not trackable analytically, it

can be solved numerically using an an iterative root finder

such as the Newton-Raphson method.

4 TWO-DIMENSIONAL FEATURE DETECTORS

We now design operators optimized for the detection of

different 2D features. We chose the window function to be a

Gaussian5gðx;�Þ, where � is the standard deviation. When it

is clear from the context, we will suppress the dependence

on � to simplify the notation.

4.1 Edge Detection

As model for the edge, we choose the ideal step function

f0ðx; yÞ ¼
1 if y � 0
0 else:

�
ð35Þ

Since it is an odd function of y, the even order derivatives

do not contribute to the signal energy; we therefore ignore6

them in (4).

4.1.1 Case 1: M ¼ 1

To illustrate the derivation of the optimal filter, we explain all

the steps indetail in this simple case. Substituting the function

vector g ¼ gx; gy

 �

in the corresponding expressions, we get

s ¼ ��
ffiffiffi
�

p
0; 1½ �

q ¼ � 2
ffiffiffi
�

p

�
0; 1½ �

P ¼ �

2

1 0

0 1

� �

R ¼ 9�

�4

1 0

0 1

� �
:

Thus,

Q ¼ qTs ¼ 2�
0 0
0 1

� �
:

The matrices Q and P are independent of �, while R is

inversely proportional to �4. So, we weigh R by �4 to have a

scale-invariant solution. Hence,

P�1 Q� ��4R

 �

¼ �18� 0
0 4� 18�

� �
: ð36Þ

The eigenvalues of P�1 Q� ��4R

 �

are �1 ¼ �18� and

�2 ¼ 4� 18�, respectively. The corresponding scaled eigen-

vectors (so, as to satisfy the constraint) are

0;�
ffiffiffi
2

�

r" #

and

�
ffiffiffi
2

�

r
; 0

" #
;

respectively.When substituted in the criterion, they yield 4�
18� and �18�, respectively. Thus, the optimal solution is

a ¼ 0;�
ffiffiffi
2

�

r" #

(as � > 0), which corresponds to Canny’s edge detector

(cf. Fig. 1c).
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4. If there is a term of degree M � 2n, we can multiply it by
ðcosð�Þ2 þ sinð�Þ2Þn to make it of degree M.

5. It is the only function that is isotropic and separable.
6. If we were to include them in the solution, their optimal coefficients

would turn out to be zero anyway.



4.1.2 Higher Order Cases

For higher M, we obtain a family of solutions that are

increasingly smooth when � goes up. A few examples of

higher order templates are given in Table 1 with the filter

impulse responses shown in Fig. 3. By comparing Figs. 3b

and 3c, we observe that, as � increases, the filter becomes

smoother at the cost of directionality. The higher order

templates are more elongated thus having higher SNR and

localization (cf. Table 1); they should therefore result in

better detections, at-least for idealized edges. The depen-

dence of SNR on �2 implies that this figure can also be

improved by increasing the variance of the Gaussian.

However, the ability to resolve two adjacent parallel edges

decreases as � increases.

4.1.3 Implementation

Here, we develop the implementation procedure mentioned

in Section 3.3 for the special case of thirdorder edgedetection.

A general third order edge template (for different values of�)

is given by

hðxÞ ¼ �1;0 gx þ �3;0 gxxx þ �3;2 gxyy: ð37Þ

The rotated version7 of this template h� is given by

h� ¼ �1;0 ðgx cosð�Þ þ gy sinð�ÞÞþ

�3;0

�
gxxx cos

3ð�Þ þ 3 gxxy cos
2ð�Þ sinð�Þþ

3 gxyy cosð�Þ sin2ð�Þ þ gyyy sin
3ð�Þ

�
þ

�3;2

�
gxyy cos

3ð�Þ þ ð�2gxxy þ gyyyÞ cos2ð�Þ sinð�Þþ

ð�2gxyy þ gxxxÞ cosð�Þ sin2ð�Þ þ gxxy sin
3ð�Þ

�
:

Convolving the rotated template by f and simplifying,we get

ðf � h�ÞðrÞ ¼ q1ðrÞ cosð�Þ3 þ q2ðrÞ cosð�Þ2 sinð�Þþ
q3ðrÞ cosð�Þ sinð�Þ2 þ q4ðrÞ sinð�Þ3;

ð38Þ

where

q1ðrÞ ¼ �3;0 f3;0ðrÞ þ �3;2 f3;2ðrÞ þ �1;0 f1;0ðrÞ ð39Þ
q2ðrÞ ¼ ð3�3;0 � 2�3;2Þf3;1ðrÞ þ �3;2 f3;3ðrÞ þ �1;0 f1;1ðrÞ ð40Þ
q3ðrÞ ¼ ð3�3;0 � 2�3;2Þf3;2ðrÞ þ �3;2 f3;0ðrÞ þ �1;0 f1;0ðrÞ ð41Þ
q4ðrÞ ¼ �3;0 f3;3ðrÞ þ �3;2 f3;1ðrÞ þ �1;0 f1;1ðrÞ: ð42Þ

We multiplied the single degree terms in cosð�Þ and sinð�Þ
with ðcos2ð�Þ þ sin2ð�ÞÞ so that we get a polynomial with
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7. The expression for a general rotated template is given by (5) and (7).
However, for simple templates, it may be easier to derive it directly in the
Fourier domain as in (60).

TABLE 1
Edge Detectors for Different Parameters

Fig. 3. Edge Detectors for different parameters. The detectors become
more orientation selective as M increases. (a) Canny’s edge detector.
(b) M ¼ 3; � ¼ 0:09. (c) M ¼ 3; � ¼ 0:2. (d) M=5; � ¼ 0:15.



only third degree terms. Note that the six functions

fk;i; k ¼ f1; 3g; i ¼ 0 . . . k, obtained by separable filtering,

are combined to derive qi; i ¼ 1 . . . 4. They can also be

obtained by nonseparable filtering:

q1ðrÞ ¼ f �
�
�3;0 g3;0 þ �3;2 g3;2 þ �1;0 g1;0

�
ðrÞ ð43Þ

q2ðrÞ ¼ f �
�
ð3�3;0 � 2�3;2Þg3;1 þ �3;2 g3;3 þ �1;0 g1;1

�
ðrÞ ð44Þ

q3ðrÞ ¼ f �
�
ð3�3;0 � 2�3;2Þg3;2 þ �3;2 g3;0 þ �1;0 g1;0

�
ðrÞ ð45Þ

q4ðrÞ ¼ f�
�
�3;0 g3;3 þ �3;2 g3;1 þ �1;0 g1;1

�
ðrÞ: ð46Þ

We use the separable approach due to its computational

efficiency. The nonseparable approach may be profitable for

large values of M.
For a particular value of r, ðf � h�ðrÞÞ is a function of only

one variable—�. At the local maxima and the minima of

ðf � h�ðrÞÞ, we have @
@� ðf � h�ðrÞÞ ¼ 0. Substituting for f � h�

from (38), we get

q2 cosð�Þ3 þ ð2q3 � 3q1Þ cos2ð�Þ sinð�Þþ
ð3q4 � 2q2Þ cosð�Þ sin2ð�Þ � q3 sin3ð�Þ ¼ 0:

We divide both sides of this equation by cosð�Þ3 to get a

cubic polynomial in one variable—tan �:

q2 þ ð2q3 � 3q1Þ tanð�Þ þ ð3q4 � 2q2Þ tan2ð�Þ � q3 tanð�Þ3 ¼ 0:

ð47Þ

The roots of this equation can be obtained analytically [15].

Since tanð�Þ ¼ tanðð�þ �Þ mod 2�Þ, there are six possible

values of � in the range 0; 2�½ � that satisfy (47). One of these

values of � correspond to the global maximum; it can be

found out by substituting all them into (38) and picking the

one which gives the maximum value. We breifly describe

the steps of the local optimization algorithm in Appendix B.
For M > 3, the �� estimated for M ¼ 3 can act as an

approximate solution. This initial guess is further refined by
performing a golden search [15] around the approximate
solution.

4.1.4 Results

Because the scheme is optimized for noisy data, we perform

edge detection on the cameraman image corrupted with

additive white noise (cf. Fig. 4a). The size of the Gaussian

window is the same in all the experiments. The detected

edges after nonmaximum suppression and thresholding are

presented in Fig. 4. It is seen that Canny’s edge detector has

a lot of false detections. Moreover, the detected edges are

wiggly due to poor localization. The new detectors have

significantly lower false detections and better localization,

thus confirming the theoretical improvement.
Note the time taken for the various edge detection

schemes from Figs. 4b, 4c, and 4d. The third order scheme
only takes around 2.5 times the time as the Canny’s
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Fig. 4. Edge detection on a 256� 256 noisy image (Gaussian white noise of variance 85). The thresholding is performed such that there are 2,000
detected pixels in each image. The variance of the Gaussian window is chosen as 1.7. Note that the higher order detectors give less wiggly contours
with fewer breaks. The algorithm was implemented in Java as a plugin for ImageJ. The experiments were performed on an Intel Pentium processor at
2.66 GHz. (a) Noisy image. (b) Canny (time taken 141 ms). (c) M ¼ 3; � ¼ 0:09 (time taken 414 ms). (d) M ¼ 5; � ¼ 0:15 (time taken 1,995 ms).



detector. We believe that, for the performance improvement
achieved, it is a quite reasonable price to pay. Since we
resorted to a naive optimization algorithm using dichot-
omy, the fifth order method took more time. We believe that
a better optimization scheme could drastically improve the
computational efficiency.

4.2 Ridge Detection

For simplicity, we choose the idealized line model as:

f0ðx; yÞ ¼ �ðyÞ; ð48Þ

where � denotes the Dirac delta function. A more realistic

model can be assumed without any change in the

computational strategy. Here, Q, P, and R are inversely

proportional to �4, �2, and �6, respectively. Hence, we scale

Q by �2 and R by �4.

4.2.1 Optimized Detectors

Someexamplesof optimal templates are shown inTable 2and
Fig. 5. Interestingly, we see from the table that the optimal
detector for M ¼ 2 and � ¼ 0 is better than the classical
detector, both in terms of SNR and localization, at no
additional cost. Also, note that the template in Fig. 5b is more
directional than the classical one in Fig. 5a. The high value of
� ¼ 2 (adjusted to get the equivalence) overconstrains the
optimization, resulting in a lower performance.

Two cases for M ¼ 4 are also shown. It is seen that for

small �, the template oscillates along y producing undesir-

able sidelobes. However, it has a better localization at the

expense of a lower SNR and R.
In general, we found that it is better to have a low value

of � for lower order templates; the model has few degrees of

freedom and, hence, a high value of �will overconstrain the

system. On the other hand, for higher order templates, we

need a higher value of � to make them less oscillatory.

4.2.2 Implementation

Any second order detector can be implemented as an eigen-
decomposition, similar to the classical Hessian (described in

Section 2.3). For example, the detector with � ¼ 0 can be

implemented as

�� ¼ argmax
�

f � gu�;u�

gu�þ�
2
;u�þ�

2

3

� �
¼ argmax

�
ðuT

� Hmod u�Þ;

where Hmod ¼ Hf�g
1
3 ðP

T Hf�g PÞ; here, P is the rotation

matrix

P ¼ 0 1
�1 0

� �
; ð49Þ
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TABLE 2
Ridge Detectors for Different Parameters

Fig. 5. Ridge Detectors corresponding to different orders and
parameters. (a) M ¼ 2; � ¼ 2 (classical detector). (b) M ¼ 2; � ¼ 0.
(c) M ¼ 4; � ¼ 0:1. (d) M ¼ 4; � ¼ 0:25.



such that Pu� ¼ uð�þ�
2Þ. Thus, the optimal direction and

ridge magnitude can be computed with the eigen-decom-

position of Hmod; the computational complexity is the same

as with the classical scheme.
For the fourth order detector, we proceed exactly as in

the case of the third order edge template. The computation

of the optimal angle involves the solution of a quartic

polynomial, which is also performed analytically [15].

4.2.3 Results

An interesting application, which motivated this whole

development, is the detection of DNA filaments (cf. Fig. 6a)

from their stereo cryo-electron micrographs [13]. The diffi-

culty with these data is that the micrographs are extremely

noisybecause theyare exposed to a lowelectrondose to avoid

the degradation of the specimen. The results (Figs. 6b, 6c, and

6d) correspond to the output of ridge detection algorithm

followed by nonmaximum suppression and thresholding.

Overall, theM ¼ 4 detector gives the best qualitative results:

there are few breaks in the filament and the detection is less

wiggly. Note that the performance improvement cost only

two times the time taken for the classical approach. The

optimal secondorder detector gave better results for the same

computational complexity as the classical approach.

5 SHAPE ADAPTABLE FEATURE DETECTION

Steerability in rotation involves the representation of a

template as a weighted linear combination of a few filters;

the weights are nonlinear functions of a single parame-

ter—the angle. This leaves us with extra degrees of freedom

which can be utilized effectively. Perona used it to make the

template steerable in scale [5]. We propose to utilize this

freedom for the design of a shape-adaptable filter, thus

making the system respond to different shapes depending on

the parameters.
In Section 4.14, we designed templates for the detection of

ideal step edges.However, asmentioned in [16], the edges are

sometimes wedge shaped (close to image corners). Since this

contradicts our assumption, we have low SNR at the corners.

A bias in the position of the corner is also reported in the

context of conventional corner detectors [17].
Corners are image regions with high surface curvature.

They convey a lot of information about the image shape [18],

[19], [20], [21]. Hence, we propose a new shape-adaptable,

steerable corner detector that addresses these issues.

5.1 Derivation of the Wedge Detector

We model a corner as a wedge shown in Fig. 7, where the

wedge angle � is a variable. Analytically, we have

f0ðx; yÞ ¼ 1 if � x sin ð�2Þ � y cos ð�2Þ � x sin ð�2Þ
0 otherwise:

�
ð50Þ

We focus on the derivation of a third order corner detector.

Since the third order detectors cannot oscillate much, we set

� ¼ 0. We also get rid of the localization term—to obtain a

simple expression,weoptimize thedetector onlywith respect

to the SNR.
Setting the gradient of S þ � Noise to zero (to maximize

S subject to Noise ¼ 1), we get

2� Pa ¼ �s; ð51Þ

from which we obtain the optimal solution as

a ¼ � P�1sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTP�1s

p : ð52Þ

For a third order detector ðg ¼ gx; gy; gxx; gyy; gxy

 �

Þ and the

idealized wedge model, P and s defined by (25) and (27) are

given by
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Fig. 6. Detection of DNA filament from its noisy cryo-electron
micrograph. The features were ridges that were roughly 2-3 pixels
wide. We chose the standard deviation of the Gaussian window to be 3.
The images were thresholded such that there are 1,000 detected pixels.
(a) DNA micrograph. (b) Classical detector (time: 260 ms). (c) M ¼
2;� ¼ 0 (time: 260 ms). (d) M ¼ 4;� ¼ 0:25 (time: 590 ms).

Fig. 7. Model of an ideal wedge.



P ¼
Z
R2

gT ðx; yÞg ðx; yÞdxdy ð53Þ

¼

�
2 0 0 0 0

0 �
2 0 0 0

0 0 3�
2�2

�
2�2 0

0 0 �
2�2

3�
2�2 0

0 0 0 0 �
2�2

2
6666664

3
7777775 ð54Þ

s ¼
Z
R2

f0ðx; yÞg ðx; yÞdxdy ð55Þ

¼ ��
ffiffiffi
�

p
sinð�2Þ 0 sinð�Þ � sinð�Þ 0

h iT
: ð56Þ

Substituting the above in (52), we obtain the SNR-optimized
third order template as

hðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2þ �þ 2 cos�

s
gx þ

� cos �2ffiffiffi
�

p ðgxx � gyyÞ
 !

: ð57Þ

It is interesting to note that the optimal corner detector is
Canny’s edge detector when � ¼ �. Some examples of
detectors for different values of � are shown in Fig. 8.

5.2 Implementation

We have a template h�;� which is now parametrized by
two variables: �—the orientation—and �—the wedge
angle. Hence, the detection procedure involves a two
variable optimization. For our experiments, we resort to a
slightly suboptimal solution where � is estimated from the
� ¼ � solution and the optimal � is estimated by
sampling. This approach is justifiable as the optimal angle
does not change much with respect to �.

5.3 Results

We now study the theoretical performance improvement of
the wedge detector over Canny’s edge detection scheme.
We consider the responses of Canny’s edge detector and the
optimal wedge detector (designed for a specific �) to the
wedge. In Fig. 9, we show the variation of the SNR with
respect to the wedge angle. Note that for Canny’s edge
detector, the SNR falls off much more rapidly as compared
to the wedge detector. The SNR of the wedge detector has a
flat zone around � ¼ � for roughly a span of 140 degrees.

To analyze the bias in the position, we consider the
response rðx; yÞ of the wedge f0ðx; yÞ (shown in Fig. 7) to a
template hðx; yÞ. The position of the maximum will be
displaced from the origin, along the y axis. A first order
approximation of the displacement can be obtained by
using the Taylor series expansion of the response rðx; yÞ ¼
f0ðx; yÞ � hðx; yÞ along the y axis.

rð0; yÞ ¼ rð0; 0Þ þ ryð0; 0Þyþ
ryyð0; 0Þ

2
y2 þOðyÞ3: ð58Þ

We look for the point y such that ryð0; yÞ ¼ 0. From the above
expression, we obtain the first order expression of y as
ryðx0; y0Þ=ryyðx0; y0Þ. Substituting r ¼ f � h and by using the
commutativity of convolution and differentiation, we get

y ¼ � f � hy j0;0
f � hyy j0;0

:

The plot of the bias ( y ) for differentwedge angles is shown in
Fig. 9b. It is seen that, for Canny’s edge detector, thewedge is
displaced from the actual location much more than for the
wedge detector tuned to the corresponding angle.
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Fig. 8. Wedge detectors for different wedge angles. (a) � ¼ 0:6� ð108�Þ. (b) � ¼ 0:8� ð144�Þ. (c) � ¼ 1:2� ð216�Þ. (d) � ¼ 1:4� ð252�Þ.

Fig. 9. (a) S2=Noise versus wedge angle. (b) Measure of y
� (ratio of the bias and the standard deviation of the Gaussian window).



In short, the wedge detector performs better than the edge
detector for nonideal step edges (wedges) for a range of
angles; this range can be increased by considering higher
order detectors.

To demonstrate the practical utility of the algorithm, we
consider the synthetic pattern shown in Fig. 10a and the real
image shown in Fig. 10c.We estimate the optimal parameters
(� and �) and the response. We perform nonmaximum
suppression of the response and keep only the values above a
certain threshold. The estimated value of � where the
response is greater than the threshold are shown in Figs. 10b
and 10d. Note that the detector can distinguish between
convex and concave wedges based on the difference in the
estimated angles. The estimated position of the wedge is also
a reasonable fit to their true positions. Since Canny’s detector
is also in the family of wedge detectors, this scheme works
well for straight edges as well.

6 CONCLUSIONS

We have proposed a general approach to derive optimal
2Doperators for thedetection of image features.We chose the
optimal template from a family of steerable functions using
an analytical optimization scheme based on a slight mod-
ification of Canny’s criterion. In contrast to classical
approaches, where the optimization is performed in 1D, we
specified the filter directly in 2D. We derived optimal
operators for a variety of image features and demonstrated
their utility in various applications. We also introduced the

notion of shape-adaptable feature detection and used it for
the detection of image corners.

We now discuss a few issues that were not dealt with in
this paper and are still open for further investigation.

1. Class of steerable functions: Although we have
concentrated on the space of Gaussian derivatives
as the steerable family, the design methodology is
applicable to other classes as well. Interesting
variations may be obtained by changing the window
function or using by other known families of
steerable functions [7], [22].

2. Discretization: We have derived the optimal opera-
tors in continuous space, neglecting discretization
issues. It could be interesting to address the
discretization effects as in [23] to be closer to
practical situations.

Even though further research is required to address these
issues, the results presented here are promising enough to
justifytheuseof theproposeddetectors inavarietyofpractical
applications. The methodology is also general enough to
allow for the design of application-specific templates.

The implementation of the algorithm is available as a

Java plugin for ImageJ [24] at http://bigwww.epfl.ch/

demo/steerable/.

APPENDIX A

Proof. Using the linearity of the Fourier transform and

the property that differentiation corresponds to a
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Fig. 10. Detected wedge angle. Here, red stands for � ¼ 3�
2 , yellow for � ¼ �, and cyan for � ¼ �

2 . Here, the corners are the points which are either in
red or in cyan. Note that at the straight edges, the optimal wedge angle is �; the optimal detector is equivalent to the Canny’s edge detector. In this
experiment, we have chosen � ¼ 3. (a) Noisy image. (b) Angle output of wedge detector. (c) House image. (d) Angle output of wedge detector.



multiplication with j! in the Fourier domain, it is easy

to derive the transfer function of the filter h:

ĥhð!x; !yÞ ¼
XM
k¼1

Xk
i¼0

�k;iðj!xÞk�iðj!yÞi ĝgð!x; !yÞ; ð59Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
. Since the rotation of a filter in space

corresponds to a rotation of its Fourier transform, we get

=ðhðR� xÞÞ ¼
XM
k¼1

Xk
i¼0

�k;iðj!x cosð�Þ þ j!y sinð�ÞÞk�i

	
�j!x sinð�Þ þ j!y cosð�Þ


i
ĝgð!x; !yÞ

¼
XM
k¼1

Xk
i¼0

�k;i

Xk�i

l¼0

Xi
m¼0

k� i

l

� �
i

m

� �
ð�1Þm

cosð�Þiþðl�mÞ sinð�Þðk�lÞ�ði�mÞðj!xÞlþm

ðj!yÞk�ðlþmÞĝgð!x; !yÞ:

ð60Þ

Note that the window function is left unchanged because

weare assuming that it is isotropic.Now,multiplying both

sides by f̂f and computing the inverse Fourier transform,

we get

fðxÞ � hðR�xÞ ¼
XM
k¼1

Xk
i¼0

�k;i

Xk�i

l¼0

Xi
m¼0

k� i

l

� �
i

m

� �
ð�1Þm

cosð�Þiþðl�mÞ sinð�Þðk�iÞ�ðl�mÞfk;k�ðlþmÞðxÞ;
ð61Þ

where

fk;iðxÞ ¼ fðxÞ � @k�i

@xk�i

@i

@yi
gðxÞ

� �
:

Note that the component indices of f are dependent only

on k and lþm. We collect the terms with the same

values of k� ðlþmÞ and we define Sðk; i; jÞ as

Sðk; i; jÞ ¼ fl;m j 0 <¼ l <¼ k� i;

0 < ¼ m <¼ i; k� ðlþmÞ ¼ jg:
ð62Þ

Using this definition, we rewrite the right-hand side of

(61) as

PM
k¼ 1

Pk
i¼ 0

�k;i

	Pk
j¼ 0

P
l;m2Sðk;i;jÞ

k� i
lð Þ i

mð Þð�1Þm cosð�Þiþðl�mÞ sinð�Þðk� iÞ� ðl�mÞfk;jðxÞ



PM
k¼ 1

Pk
j¼ 0

fk;jðxÞ
	Pk

i¼ 0

�k;i

P
l;m2Sðk;i;jÞ

k� i
lð Þ i

mð Þð�1Þm cosð�Þiþðl�mÞ sinð�Þðk� iÞ� ðl�mÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bk;jð�Þ



:

ut

APPENDIX B
In this section, we briefly outline the steps involved in the

thrid order edge detection algorithm. We denote the

1D Gaussian of a specified variance, its first, second, and

thirdderivatives sampled on a certain grid by g, g0, g00, and g000,

respectively.

Algorithm

f10 = filterSeparable(image,g0, g);

f11 = filterSeparable(image,g, g0);

f30 = filterSeparable(image, g000, g);

f31 = filterSeparable(image, g00, g0Þ;
f32 = filterSeparable(image, g0, g00);

f33 = filterSeparable(image, g, g000);

for i=0 to Nrows-1 do

for j=0 to Ncols-1 do

q1 ¼ �3;0 f3;0ði; jÞ þ �3;2 f3;2ði; jÞ þ �1;0 f1;0ði; jÞ;
q2 ¼ ð3�3;0 � 2�3;2Þf3;1ði; jÞ þ �3;2 f3;3ði; jÞ þ

�1;0 f1;1ði; jÞ;
q3 ¼ ð3�3;0 � 2�3;2Þf3;2ði; jÞ þ �3;2 f3;0ði; jÞ þ

�1;0 f1;0ði; jÞ;
q4 ¼ �3;2 f3;1ði; jÞ þ �3;0 f3;3ði; jÞ þ �1;0 f1;1ði; jÞ;
solset = solveCubic

(q2, 2q3 � 3q1, 3q4 � 2q2, �q3);
thetaset = {atan(solset),atan

(solset)+� };

optmagði; jÞ; optangleði; jÞ½ � = giveMaximum

Root(thetaset, q1, q2, q3, q4);

end for

end for

The routine giveMaximumRoot substitutes the � values

into (38); it returns the maximum value and the correspond-

ing angle.
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