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ABSTRACT

Discharges of combined sewer overflows (CSOs) and stormwater are recognized as an important

source of environmental contamination. However, the harsh sewer environment and particular

hydraulic conditions during rain events reduce the reliability of traditional flow measurement probes.

An in situ system for sewer water flow monitoring based on video images was evaluated. Algorithms

to determine water velocities were developed based on image-processing techniques. The image-

based water velocity algorithm identifies surface features and measures their positions with respect

to real world coordinates. A web-based user interface and a three-tier system architecture enable

remote configuration of the cameras and the image-processing algorithms in order to calculate

automatically flow velocity on-line. Results of investigations conducted in a CSO are presented. The

system was found to measure reliably water velocities, thereby providing the means to understand

particular hydraulic behaviors.
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INTRODUCTION

Long-term measurement of sewer flows is a difficult task.
The sewer environment is harsh, with humidity of 100%
and possibly corrosive gases. Flow measurement devices in
contact with wastewater are at risk of being destroyed,
especially by the rapid increases in water elevation and
flow rate due to storms. Access entails risk for individuals
charged with replacing or maintaining equipment.

The most common means to measure flow is the Dop-
pler meter based on two data, the height of the water
(measured by pressure difference) and the flow velocity
measured by the Doppler shift principle (Jensen ).
Such meters must be placed inside dirty water and hence
are not reliable for long-term measurements. An alternative
solution avoiding water contact involves measurement of
the water height (e.g. using an ultrasonic probe), from
which the flow velocity is determined using a rating curve.
However, the rating curve, being a global hydraulic model-
based curve, is incapable of capturing local hydraulic effects
and hence in general cannot provide accurate results.

Here, we propose an alternative to measure the surface
water velocity using video analysis. The video clips are

acquired by a cameramounted in awaterproof case; illumina-
tion is provided by an infrared illumination device positioned
above the sewer channel. None of the hardware comes in
contact with the water. Image-processing algorithms are pre-
sented for calculating the water flow rate. This is the first
video-based implementation of an automatic flow measure-
ment system. LSPIV techniques (Large Scale Particle Image
Velocimetry) have been applied to open channels and
rivers (Jodeau et al. ), but the conditions are rather differ-
ent. The addition of tracer particles is not necessary in sewers
due to floating waste. Moreover, measurements in rivers with
cameras were performed for a very limited duration only and
were not designed for extended periods. In the open, the illu-
mination change between day and night is difficult to control.
In a closed environment, such as a sewer, the light conditions
are constant.

These developments are part of a complete sewer moni-
toring system called HydroPix Monitoring (Nguyen et al.
). The HydroPix Monitoring system is a robust vision-
based package that integrates several modules and features:
visual analysis of hydraulic behavior, on-line water level
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measurements, wastewater velocity measurements, auto-
matic alarm system for particular events (overflows, flood
risks, etc.), database management (images, events, measure-
ments, etc.), remote configuration and data visualization.
The system was developed considering the accessibility
and difficult conditions within sewers, and is able to
take measurements autonomously for long periods with
minimum maintenance. Previously, Nguyen et al. ()
focused onwater level measurement. Here, velocitymeasure-
ments are considered in detail.

METHODOLOGY

The flow rate D is given by:

D ¼ PðhÞ $ V ½m3=S& ð1Þ

where V (m/s) is the water velocity and P(h) (m2) describes
the water channel geometry as it varies with the water level
h (m). P(h) can be deduced from the construction plans so
computation of D is based on h and V, which are obtained
from image analysis.

Images are captured with infrared cameras. In the fol-
lowing sections the analyses based on the captured images
are outlined.

Water level measurement

The water–air interface is detected using an infrared camera
image. The advantages of this vision-based system have
been demonstrated (Khorchani & Blanpain ; Nguyen
et al. ).

Flow velocity measurement

There are two approaches for measuring flow velocity: low-
level motion estimation or feature-point tracking. The
former operates at the pixel level in the spatio-temporal
domain, with several image analysis methods including
optical flow (Horn & Schunck ), block-matching, corre-
lation and the spatio-temporal orientation method (Jähne
). Such approaches are not suitable for sewer images
since the wastewater primarily exhibits homogeneous inten-
sity in grayscale images (infrared images are grayscale).
Moreover, low-level methods require a high similarity from
one frame to the next frame to establish pixel correspon-
dences. In sewers, cameras cannot run at sufficiently high

frame rates due to low light conditions, making low-level
methods inapplicable in practice.

Feature-point tracking is used when the image sequence
consists mainly of moving objects over a static or quasi-
homogenous background. In sewers, a few moving objects
are often present on the water surface. These small objects
appear as brighter or darker spots in the images. We
designed an image-analysis system to track them over an
image sequence. The algorithm first detects bright areas
(called features) on individual images, which are assumed
to have the same velocity as the flow, although correction
factors can be used (Larrarte ).

In sewers the camera position is imposed by local access
considerations, generating issues of perspective and geo-
metric distortions in the images. Thus, for accurate results
the image analysis must suitably correct the images. More-
over, the velocity is determined on the surface water,
whose height changes temporally. The variable-height
homography transformation dynamically accounts for
water level changes, as described below.

Data acquisition

The HydroPix system acquires images using three cameras:
one for the measurement of water level, one for the compu-
tation of water velocity and one to have an overview of the
combined sewer overflow (CSO). AXIS 221 Network cam-
eras were selected as they adapt the color depth of the
images and the acquisition frame rate to the lighting con-
ditions. They typically produce color sequences at 40 fps for
optimal illumination, but switch to variable frame rate black
andwhite images (in the infrared spectrum)with poor lighten-
ing. They are PoE (Power-over-Ethernet) IP cameras, which
enable both power and data to go through the same cable.
The use of standard Ethernet connectors makes the system
independent of a specific camera manufacturer. The light
sources used are low-power, water-resistant infra-red LEDs.
An important benefit for sewers is that, in contrast to visible
light, infrared has the benefit of not attracting insects. With
suitably placed LEDs, a 25 fps frame rate was achieved. The
cameras are installed in IP67 waterproof cases. Cameras
and LEDs are connected to a connectivity box containing a
power supply and server PC for image processing.

Algorithms were implemented as a National Instrument
LabVIEW Service. Images are saved on the PC and auto-
matically processed by the different algorithms. Results are
saved in a PostgreSQL database and are automatically
periodically uploaded to remote sites using an internet con-
nection. HydroPix also manages an alarm system, which
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automatically uploads and saves images under specified
conditions. Usually, network connectivity is unavailable in
sewers, so monitors (defined as in situ monitoring system
in our context) rely on the UMTS network, using an external
antenna to transmit data from the PC server. Finally, the PC
server provides a web-based user interface for managing and
configuring the monitors. The total cost of the HydroPix
Monitoring prototype including software licenses and hard-
ware equipment is approximately US$12K.

Water velocity method

Thewater velocitymeasurement techniques developed in our
application are based on PIV (Particle Image Velocimetry)
(Chetverikov ) approaches or feature-based tracking.
The algorithm to obtain the surface flow velocity is summar-
ized in Figure 1, and consists of two steps. First, the feature
detection and tracking step allows for particle velocity esti-
mation in pixels per frame. Second, the variable-height
homography technique transforms this velocity into real-
world (m/s) units.

Feature detection and tracking

Due to noise (light reflections, particles, data compression,
etc.), Gaussian smoothing is applied on all images at the

beginning of the process. This smoothing is tuned in order
to attenuate the noise without removing small particles of
interest. A background image is then estimated by a pixel-
wise temporal median filter applied to a small sequence
(typically 100 images). This estimated background image is
subtracted from each image to accentuate moving particles.
Then, an adaptive threshold is applied to get binary images
containing moving objects. Finally, the binary images are
eroded to suppress the particles composed of only a few
pixels (Figure 2).

Particles Pk within the images are detected, labeled and
described (Feature description). Here, the shape features per-
tinent to identify a particle are the area A(Pk) and circularity
C(Pk).

A matching coefficient between each particle in an
image Ft with each particle in the next image Ftþ1 is com-
puted (Feature tracking). This matching coefficient (cost
function, ζ) is a weighted sum of three normalized terms:

ζ(Pi;t;Pj;tþ1) ¼ λa∥ AðPi;tÞ (AðPj;tþ1Þ
max (AðPi;tÞ;AðPj;tþ1Þ)∥

þ λc∥CðPi;tÞ ( CðPj;tþ1Þ∥

þ λd(1( 〈P1;tPj;tþ1
!!!!!!!

$ Vf
!!

〉) ð2Þ

The first two terms account for A(Pk) and C(Pk), while
the third term is the variation of the displacement vector
(normalized) relative to the normalized flow direction
vector Vf corresponding to the channel orientation (Jean-
bourquin ). The λ’s are tuning parameters, with λa and
λc providing weights relevant to particle shapes and λd the
weight for constraining particle motion.

The goal of feature matching is to find the minimal cost
functions between particles in two consecutive images.
Figure 3 shows particles in two sequential frames that are con-
sidered as a bipartite graph. The process to find acceptable
matching between particles is performed in two steps. First,
for every particle Pi,t in frame Ft, the cost function is calcu-
lated for all particles Pj,tþ1 in Ftþ1 to deduce the best match.Figure 1 | Overview of the algorithms to estimate surface flow velocity.

Figure 2 | Image analysis for particle detection. (a) Original infrared image; (b) background estimation; (c) binary image with possible particles for velocity measurement.
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Next, the same computation is reversed, giving a second best
match for Ftþ1 to Ft. If the two best matches are the same they
are used in the next step to determine thewater displacement.
Thus, the algorithm then tracks particles in subsequent
images (typically 5 frames at 25 fps). Outliers are avoided by
tracking particles over more than two images.

The center of mass of each tracked particle in each
image and the frame rate are used to determine the particle
velocity. This process is usually conducted on video
sequences of eight seconds at a rate of 25 fps. The median
value of individual particles is used to estimate the surface
flow velocity.

Variable-height homography

Camera calibration is needed to find the real-world velocity
from the image-based pixels/second velocity. This procedure
involves determining the parameters governing the projec-
tion of real-world points to image pixels. These parameters
are separated into two categories: intrinsic parameters that
depend on the camera (objective type, focal length, CCD
captor size) and extrinsic parameters that are related to the
camera position. The intrinsic parameters can be described
by the pinhole camera model (Zhang ), which considers
the relation between the 3D coordinates of a point and its
projection onto the image plane of an ideal camera.However,
camera lenses cause a nonlinear distortion effect in images,
which is removed using a distortion model (Bouguet ).
The OpenCV library (Open Source Computer Vision,
OpenCV ) was used to account for intrinsic camera
calibration and image distortion.

The extrinsic parameters relate a chosen system of real-
world coordinates to the camera coordinates. This transform-
ation, called homography, is composed of a rotation R and
a translation T representing a linear transformation between
two projective planes (Estrada et al. ). It is used to project
a plane in the real world to the image plane. Pixel coordinates
of a point in an image can be located in the real world

coordinate system. This transformation has been successfully
used to estimate the water levels based on image analysis
(Nguyen et al. ). Here, however, the water surface is
not static, causing the homography to change with the flow
height. A variable-height homography was therefore devel-
oped and implemented (Jeanbourquin ). Starting from
a ‘classical’ homography (Equation (3)):
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where Su, Sv and S are the image coordinates (pixels), u0 and
v0 are the coordinates (pixels) of the projection of the optical
center of the image, rij and tx,y,z represent the rotation R and
translation T parameters respectively, Xw, Yw are the coordi-
nates attached to the camera and H represents the 3 × 3
homography matrix. The determination of the parameters
of H is made numerically; with at least four correspondence
points in the image plane and in the real-world coordinate
system. This matrix is computed by an optimization algor-
ithm (Kovesi ).

If Zw varies over time (Zw ≠ 0), Equation (3) becomes:
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And by developing the right term of Equation (4), the
result is given by Equation (5):
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Figure 3 | Bipartite graph concept. Left: P1,t matched with P1,tþ1 and vice versa, so acceptable. Right: P1,t matched with P1,tþ1 but P1,tþ1 matched with P2,t, so unacceptable.
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Hence, the new homography H0, in function of the
height (component Zw¼ h) is (Jeanbourquin ):

H0 ¼
αu 0 u0
0 αv v0
0 0 1
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Finally, the real-world coordinates of points in the image
given in pixels are given by Equation (7):
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The intrinsic and extrinsic parameters were calibrated
by measuring the size and deformation of a chessboard tex-
ture plane at different positions and angles. This chessboard
is first used in the laboratory for intrinsic camera calibration.
It is then used once the cameras are fixed in the sewer to
determine the extrinsic parameters. The calibration process
is conducted using a dedicated function in the web-based
user interface.

Finally, note that the precision of the velocity estimate
depends on that of the water level height. This height can
be measured using an ultrasonic probe or, preferably,
within HydroPix using the existing water level algorithm
of Nguyen et al. ().

RESULTS AND DISCUSSION

Velocity measurement validation in pixels/frame

Preliminary tests were performed with image sequences,
without camera calibration, with velocities computed in
pixels/frame. Two different cameras were used, a PROSI-
LICA GC 640C and an AXIS 221. The measurement

reference was obtained manually by identifying particles
over an image sequence, with the velocity determined by
counting the displacement in pixels between images.
Figure 4 presents a sequence, captured by the PROSILICA
camera, in which particles were detected and tracked.

The image sequences taken by the PROSILICA camera
(200 images, 40 fps, 648 × 488 pixel resolution) led to a refer-
ence velocity estimate of 3.28 pixels/frame. Five different
videos were taken sequentially in the Lausanne wastewater
treatment plant. No obvious signs of velocity variations were
observed during the filming, so the water flow rate is
assumed to be constant. Estimate velocities and relative
errors are shown in Table 1.

The results in Table 1 validate the algorithm operation.
The maximum error is less than 10%; its mean value is
about 5.8%. These inaccuracies come from several factors.
First, the water surface velocity near a channel edge is
reduced due to wall effects. Consequently, the velocity
measured depends on the position of the tracked particles.
Another possible error comes from the particle trajectories,
which are not aligned with the flow direction. Finally, the
reference computed for the velocity was determined by
hand and cannot be considered as the true value.

Another set of tests was performed with an AXIS 221
camera using data from a Lausanne sewer (21 images,
40 fps, 640 × 367 pixel resolution). Results were similar to

Figure 4 | Particle tracking on an image sequence, in which candidate particles are highlighted. The lines correspond to particle tracking over the image sequence. Dots represent
matching correspondences between sequential images.

Table 1 | Results of velocity measurements in pixels/frame with the PROSILICA camera

Video number Velocity (pixels/frame) Relative error (%)

1 3.6 9.8

2 3.53 7.6

3 3.22 1.8

4 3.41 3.9

5 3.09 5.8
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those in Table 1, although the average relative error was
reduced to 2.7%.

In situ validation

A HydroPix Monitor system was installed in Berna CSO
(Lausanne). This CSO is 20-m long and is expected to dis-
charge at a water level of 1.63 m, corresponding to a flow
rate of 4.19 m3/s. An AXIS 221 camera was installed
above the flow. Videos of about eight seconds at 25 fps
were filmed every 30 min for 6 weeks, followed by off-line
image processing. The computation time for an image
sequence is about eight seconds with an Intel Core 2
2.13 GHz Duo Processor. The water level was measured
both with an ultrasonic flow meter (Teledyne ISCO 4210)
and with the HydroPix method (Nguyen et al. ), with

good agreement between the two. The rating curve was
calculated (Figure 5) and compared with a theoretical
rating curve based on a Strickler law and hydraulic modeling
(BG ). Despite outliers, results are promising and rep-
resent well the hydraulic behavior. As the position of each
particle was also recorded, it is possible to illustrate the
velocity of particles at different channel widths (Figure 6).
The parabolic shape shown in Figure 6 agrees well with the
theoretical velocity profile for a channel (Graf & Altinakar
).

CONCLUSIONS

The feature tracking approach has been demonstrated to be
a practical technique for sewer flow velocity measurements.

Figure 5 | Rating curve established for the Berna CSO. The gray line is the theoretical rating curve (Manning–Strickler formula, with local characteristics) validated with hydraulic simulation
(BG 2007). The dots refer to HydroPix-estimated surface velocities. The black line (Flow rate¼ 1.79x – 0.66x2, where x is water level; R2¼ 0.81) is a second-order polynomial fit of
measurement points.

Figure 6 | Cross section of water velocities for water levels between 40 and 60 cm (dry-weather). The global shape of the curve (trend line in black) is typical of theoretical velocity profiles
in channels (Graf & Altinakar 1995).
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Separate steps in the HydroPix approach were validated
separately. For example, results obtained for velocities in
pixels/frame showed the feasibility of the algorithms used.
Results can be considered as reliable, with an error upper
bound of about 10%. Image data from long term CSO moni-
toring permitted estimation of the channel rating curve
based. Results were very encouraging, being in agreement
with theoretical and modeled hydraulic behavior. The
HydroPix system allows also estimation of the surface flow
velocity at different positions in a sewer cross section. One
limitation of the system is that velocities are measured at
the water surface, and is not equal to the average flow
rate. Depending on flow conditions, the average velocity
can be determined with increased accuracy by using the
Manning-Strickler equation or other hydraulic formulas.
Therefore, correction factors based on local hydraulic con-
ditions may be applied.

Tests are planned for other CSO configurations to evalu-
ate the approach under different flow conditions. Based on
current results, we conclude that image-based measuring
devices represent a feasible means to measure and better
understand sewer flows and hydraulics.
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