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Sparse and Low-Rank Decomposition of a Hankel
Structured Matrix for Impulse Noise Removal

Kyong Hwan Jin and Jong Chul Ye , Senior Member, IEEE

Abstract— Recently, the annihilating filter-based low-rank
Hankel matrix (ALOHA) approach was proposed as a pow-
erful image inpainting method. Based on the observation that
smoothness or textures within an image patch correspond to
sparse spectral components in the frequency domain, ALOHA
exploits the existence of annihilating filters and the associated
rank-deficient Hankel matrices in an image domain to estimate
any missing pixels. By extending this idea, we propose a novel
impulse-noise removal algorithm that uses the sparse and low-
rank decomposition of a Hankel structured matrix. This method,
referred to as the robust ALOHA, is based on the observation
that an image corrupted with the impulse noise has intact
pixels; consequently, the impulse noise can be modeled as sparse
components, whereas the underlying image can still be modeled
using a low-rank Hankel structured matrix. To solve the sparse
and low-rank matrix decomposition problem, we propose an
alternating direction method of multiplier approach, with initial
factorized matrices coming from a low-rank matrix-fitting algo-
rithm. To adapt local image statistics that have distinct spectral
distributions, the robust ALOHA is applied in a patch-by-patch
manner. Experimental results from impulse noise for both single-
channel and multichannel color images demonstrate that the
robust ALOHA is superior to existing approaches, especially
during the reconstruction of complex texture patterns.

Index Terms— Annihilating filter, sparse and low rank decom-
position, impuse noise, Hankel matrix, ADMM, salt/pepper noise,
robust principal component analysis (RPCA).

I. INTRODUCTION

IMPULSE noise occurs as a result of a malfunction of
detector pixels in a camera or from missing memory

elements in imaging hardware [1]. There are two types of
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impulse noise. The first includes salt/pepper noise that match
the extreme dynamic range of a pixel value. In this case, noisy
pixels can be relatively easily detected by an adaptive median
filter (AMF) [2]. The second example involves random-valued
impulse noise (RVIN), which occur accidentally within the
dynamic range of an image pixel. Unlike the salt/pepper
noise, RVIN cannot be effectively detected by an adaptive
median filter. Instead, an adaptive center-weighted median
filter (ACWMF) [3] has been widely used to identify noisy
pixels. Even with AMF and ACWMF, when the density of the
noise increases, the denoising performance of these single-step
algorithms becomes severely degraded. To address this weak-
ness, two-phase denoising algorithms with a “decision-based
filter” or a “switching filter” have been proposed [1], [4]–[7].
More specifically, these algorithms consist of two parts: the
detection of noise pixels by AMF, ACWMF, boundary discrim-
inative noise detection (BDND) [7], or by other outlier finding
algorithms, followed by the replacement of those pixels with
estimated values using the total variation method [4] or edge
preserving regularization steps [1], [8], while leaving other
noiseless pixels unchanged.

On the other hand, impulse-noise denoising algorithms
using proximal optimizations with non-smooth penalties have
been proposed recently [9]–[11]. In particular, in the TVL1
(total variation l1) approach [9], [10], the data fidelity term
was measured using the l1 norm dealing with impulse outliers,
and total variation regularization was used as the image
smoothness penalty. The algorithm can effectively remove
impulse noise at sufficiently rapid speed. However, the algo-
rithm often causes edge distortions or texture pattern blur-
ring due to the TV term. With the advance of compressed
sensing (CS) theory, impulse-noise denoising methods based
on compressed sensing have also been proposed [12], [13].
In one study [13], the authors encouraged the use of spatio-
spectral domain redundancy using a blind compressed sensing
framework. This approach demonstrated outstanding recovery
performance; however, the algorithm could not be used with-
out a highly correlated spectral dataset. In another study [12],
the sparsity level of a single image was used as a minimization
criterion, just as in the conventional CS approach. However,
the performance was inferior to those by the two-phase
methods [1]. Although a low-rank matrix completion approach
for impulse noise denoising for video sequences was pro-
posed [14], the algorithm only worked for video sequence
denoising. Meanwhile, the matrix decomposition methods with
outliers were proposed [15], [16].
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There are several types of noise in images such as Gaussian,
Poisson, or impulse noise. Gaussian noise is independently
generated for most pixels from thermal noise during electron-
ics measurements. Poisson noise arises from many applica-
tions, where data are collected by counting a series of discrete
events, such as photons. The noise variance of Poisson noise
is equal to the mean intensity value such that most of the
pixels are essentially contaminated with noise. On the other
hand, one of the unique characteristics of impulse noise is that
an image corrupted with impulse noise still has intact pixels.
Accordingly, the impulse noise can be modeled as sparse
components, whereas the underlying intact image retains the
original image characteristics. In fact, this was the main idea
utilized in the TVL1 approach [10], which is also employed
in this paper. However, instead of using TV image modeling,
we employ a state-of-the-art image-modeling technique using
a Hankel structured low-rank matrix. Specifically, inspired by
our novel image-inpainting method using a structured low-rank
matrix [17]–[21], one of the most important contributions of
this paper is to demonstrate that the impulse noise removal
problem can be formulated as a sparse and low-rank decom-
position problem of a structured Hankel matrix.

More specifically, in our previous study [17], we demon-
strated that a smooth, edged or textured image-patch leads to
a sparse spectrum in the frequency domain. Thus, the sampling
theory of signals with a finite rate of innovations (FRI) [22]
tells us that there exists annihilating filters that eliminate the
pixel values within the corresponding image patch. Moreover,
the existence of the annihilating filter enables us to construct
a rank-deficient Hankel structured matrix whose rank is deter-
mined by the sparsity level in the spectral domain [17], [18].
Given this observation, an image patch can be modeled using
an annihilating filter-based low-rank Hankel matrix (ALOHA),
with the image-inpainting problem solved using a low-rank
matrix completion algorithm. This idea was extended by
our group to examine compressed sensing MRI [19]–[21],
image deconvolution [23], and the interpolation of scan-
ning microscopy [24]. Ongie and Jacob [25] independently
developed similar approaches for super-resolution MRI. Sim-
ilar extensions were also addressed in Qu et al. [26] and
Cai et al. [27].

While the image-inpainting problem is closely related to the
impulse noise removal problem, there exists a fundamental
difference between image inpainting and impulse denoising
problems. Specifically, in the impulse-noise removal problem,
we do not know the locations of noise a priori such that
they must be estimated as well. On the other hand, in the
image-inpainting problem [17], the missing pixel locations are
known a priori and we only need to estimate the missing pixel
values. Therefore, impulse-noise removal problems are much
more difficult than image-inpainting problems and are often
described as “blind inpainting” [4], [28], [29].

In fact, one of the most important observations is that the
construction of a Hankel structured matrix is a linear lifting
scheme such that the sparse components in an image are also
sparse in the lifted Hankel matrix. Therefore, we can use a
sparse and low-rank decomposition of the Hankel structured
matrix to decouple the sparse impulse noise components from

the underlying image. The new algorithm, what we call robust
ALOHA, is applied in a patch-by-patch manner to adapt to
local image statistics that have a distinct spectral distribution.
To solve the associated sparse and low-rank decomposition
problem of a Hankel structure matrix, an alternating direc-
tion method of multiplier (ADMM) [30] is utilized with the
initial factorized matrices from the low-rank matrix-fitting
algorithm (LMaFit) [31]. Furthermore, the denoising algorithm
is also extended to exploit the joint sparsity constraint in
color images by stacking a Hankel structured matrix from
each channel side by side and applying sparse and low-
rank decomposition to the concatenated Hankel matrix. Using
extensive numerical experiments, we demonstrate that the
robust ALOHA significantly improves the image quality.

We are aware that there has been significant progress on the
decomposition of superposed matrices consisting of low-rank
and sparse components [32], [33], often called robust principal
component analysis (RPCA) [32]. However, the matrix in
RPCA is usually unstructured, whereas robust ALOHA uses a
Hankel structured matrix. As will be shown later, the lifting to
a Hankel structured matrix significantly improves the denois-
ing performance by exploiting the spectral domain sparsity,
even when compared to the locally adapted RPCA framework
using local patches [28].

II. THEORY

A. Review of the TVL1 Approach

Because impulse noise occurs due to the malfunctioning of
detector or memory elements [1], only a subset of image pixels
are corrupted by noise. Therefore, if M denotes an image
measurement corrupted by impulse noise, it can be modeled
as

M = X + E

where X is the underlying “clean” image and E denotes a
sparse matrix composed of impulse noise. This model is quite
often used in the existing impulse-noise removal algorithms.
For example, in TVL1 [9], [10], E is considered as a sparse
outlier, whereas the underlying image is designed to have a
minimum total variations. This leads to the following cost
function:

�M − X�1 + λT V (X) (1)

where the � · �1 norm is the l1 norm corresponding to the
summation of the absolute values of each matrix element for
outlier removal, and the T V (X) denotes the 2-D TV penalty
in the modelling of the underlying image. In the following
paragraphs, we explain how the image model in Eq. (1) can
be modified in the proposed method to give superior denoising
performance.

B. Image Modelling Using a Low-Rank Hankel
Structured Matrix

In our recent work [17], we demonstrate that diffusion [34]
and/or Gaussian Markov random field (GMRF) approaches for
image modelling [35] are closely related to an annihilating
filter relationship from the sampling theory of signals with
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Fig. 1. Spectral components of patches from (a) smooth background,
(b) texture, and (c) edge.

a finite rate of innovations (FRI) [22]. More specifically, as
shown in Fig. 1(a), a smoothly varying patch usually has
spectrum content in the low-frequency regions, while the other
frequency regions have very few spectral components. Similar
spectral domain sparsity can be observed in the texture patch
shown in Fig. 1(b), where the spectral components are mainly
concentrated on the fundamental frequencies of the patterns.
For the case of an abrupt transition along the edge as shown
in Fig. 1(c), the spectral components are mostly localized
along the ωx axis.

Specifically, when an image patch x[n] in discrete
domain has sparse spectral components in continuous Fourier
domain (i.e. in R

2), we can show that there exists a cor-
responding annihilating filter in the image domain. More
specifically, let the sparse spectral components be modeled
as peoriodic stream of 2-D Diracs:

x̂(ω) := x̂(ωx , ωy)

= (2π)2
�

m,n∈Z

k−1�

j=0

c jδ(ωx −ωx, j −mπ,ωy −ωy, j −nπ),

(2)

where {(ωxi , ωyi )}k
i=1 denote the location of non-zero spectral

components and k denotes the number of non-zero spectral
components. Then, the corresponding image domain signal is
discrete and given by

x[n] := x[m, n] =
k−1�

j=0

c j e
i(ωx j m+ωy j n)

. (3)

We now construct a p1 × q1- filter h[m, n] whose z-tranform
is given by

h(z1, z2) =
k−1�

j=0

�
1 − ei(ωx j m+ωy j n)

(z1z2)
−1
�

, (4)

such that the corresponding filter h[m, n] annihilates the patch
image x[m, n]:

(h ∗ x)[m, n] =
k−1�

j=0

c j

⎛

⎝
p1−1�

p=0

q1−1�

q=0

h[p, q]u−p
j v

−q
j

⎞

⎠


 �� 

h(u j ,v j )

um
j vn

j = 0

(5)

where u j = eiωx j and v j = eiωy j . Then, the following theorem
says that a 2-D Hankel structured matrix of the image patch
is low-ranked.

Theorem 1: Let a p1 × q1-size filter h[m, n] denote a
minimum size annihilating filter that annihilates x[m, n]. Then,
for an M × N patch area X = {x[m, n]}M,N

m,n=1, H (X) denotes
a 2-D Hankel structured matrix given by
⎡

⎢⎢⎢⎣

H1d(x1) H1d(x2) · · · H1d(xq)
H1d(x2) H1d(x3) · · · H1d (xq+1)

...
...

. . .
...

H1d(xN−q+1) H1d(xN−q+2) · · · H1d(xN )

⎤

⎥⎥⎥⎦, (6)

and a 1-D Hankel matrix H1d(xi ) for the i -th column vector xi

of the matrix X is given by
⎡
⎢⎢⎢⎣

x[1, i ] x[2, i ] · · · x[p, i ]
x[2, i ] x[3, i ] · · · x[p + 1, i ]

...
...

. . .
...

x[M − p + 1, i ] x[M − p + 2, i ] · · · x[M, i ]

⎤
⎥⎥⎥⎦ .

where min{M − p+1, p} > p1, min{N −q +1, q} > q1. Then
we have

RANKH (X) ≤ pq − (p − p1)(q − q1). (7)
Proof: See Appendix A in Supplementary Material. �

Due to the construction of a p1×q1- annihilating filter using
z-transform in (4), we can easily see that max{p1, q1} ≤ k,
where k denotes the numbers of non-zero spectral components.
Thus, Eq. (7) can be converted to

RANKH (X) ≤ pq − (p − p1)(q − q1) ≤ k(p + q − k).

Consequently, for a sufficiently small k, we can see that
RANKH (X) is much smaller than the number of column,
and H (X) is low-ranked. Based on the observation, in our
previous work [17], we demonstrated that the missing pixels
in an image can be inpainted by using a low-rank Hankel
structured matrix completion approach. Related mathematical
theory including near optimal performance guarantee for a
convex approach using nuclear norm minimization can be also
found in our recent theoretical work [18]. In this paper, this
approach will be recasted into sparse and low-rank decompo-
sition for impulse-noise removal.

C. Sparse + Low-Rank Decomposition Model for Hankel
Structured Matrix From Impulse Noise

Unlike the lifting scheme used for phase-retrieval prob-
lems [36], our lifting scheme involving a Hankel structured
matrix is linear such that additive sparse impulse-noise is also
lifted to sparse outliers in the lifted Hankel structured matrix
(see Figure 2). Accordingly, if an underlying image is cor-
rupted with sparse impulse noise, then we have

H (X) = L + S (8)

where L denotes the low-rank component and S represents the
sparse components originating from impulse noise, which are
both in the Hankel structures. This is the key property we want
to exploit in our impulse-noise removal algorithm. In fact,
to address this type of sparse + low-rank decomposition,
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Fig. 2. Sparse + low rank decomposition of Hankel structured matrix from
an image patch corrupted with impulse noise. Because a lifting to Hankel
structure is linear, the sparse impulse noise are also lifted to sparse outliers.

Fig. 3. Patch-by-patch processing framework using robust ALOHA for
impulse noise removal.

robust principal component analysis (RPCA) was actively
investigated [32], [33]. More specifically, for a given measure-
ment matrix M, the RPCA solves the following minimization
problem:

min �L�∗ + τ�S�1 (9)

subject to L + S = M, (10)

where � · �∗ denotes the nuclear norm. To minimize this,
alternating direction methods were employed.

Compared to the standard RPCA approach, our sparse +
low-rank decomposition problem using (8) requires an addi-
tional constraint due to the Hankel structure. Therefore,
the RPCA algorithm should be modified. The specific opti-
mization algorithm under this constraint will be explained
later. Additionally, because the image statistics change across
an image with spatially varying annihilating properties, a noisy
image should be partitioned into overlapped patches, which
are processed independently in a patch-by-patch fashion using
robust ALOHA with their average reconstruction pixel values
used as described in the algorithm flowchart shown in Fig. 3.

III. OPTIMIZATION METHODS

A. Sparse + Low-Rank Decomposition of a Hankel Matrix

Note that the Hankel structured matrix in (6) is determined
by the underlying image patch (X) size and the associated
annihilating filter (H) size. For given M × N image patch and
p × q annihilating filter, we now denote the associated spaces
for the Hankel matrix as H(M, N; p, q). Then, for a given
noisy image patch M ∈ R

M×N and p × q annihilating filter
size, our impulse-noise removal algorithm can be implemented
by solving the following sparse + low-rank decomposition

under the Hankel structure matrix constraint:

(P) min
L,S

�L�∗ + τ�S�1

subject to L + S = H (M),

L, S ∈ H(M, N; p, q) (11)

Given that the sparse components in image patch are also
sparse in a lifted Hankel structure, (P) can be further sim-
plified to

(P �) min
X,E

�H (X)�∗ + τ�E�1

subject to X + E = M.

where, with some slight abuse of notation, τ denotes an
appropriately scaled version from τ in (P). Note that E is
now in the image patch domain, unlike S in the lifted Hankel
matrix structured matrix domain in (P). The advantage of (P �)
over (P) is an associated simpler optimization method. More
specifically, if we apply a factorized form of nuclear norm
relaxation, then the final problem formulation of the optimiza-
tion problem can then be expressed as

min
E,X,{(U,V)|UVH=H (X)}

�U�2
F + �V�2

F + τ�E�1 (12)

subject to X + E = M. (13)

The constraints in (12) and (13) can be handled using the
alternating direction method of multiplier (ADMM) [30], [37].
The associated Lagrangian function ADMM is given by:

L(U, V, E, X,�,�) := 1

2

�
�U�2

F + �V�2
F

�
+ τ�E�1

+ β

2
�X + E − M + ��2

F

+ μ

2
�H (X) − UVH + ��2

F (14)

Then, each sub-problem is simply obtained from (14). More
specifically, we have

E(k+1) = arg min
E

τ�E�1 + β

2
�X(k) + E − M + �(k)�2

F (15)

X(k+1) = arg min
X

β

2
�X + E(k+1) − M + �(k)�2

F

+ μ

2
�H (X) − U(k)V(k)H + �(k)�2

F (16)

U(k+1) = arg min
U

1

2
�U�2

F

+ μ

2
�H (X(k+1)) − UV(k)H + �(k)�2

F (17)

V(k+1) = arg min
V

1

2
�V�2

F

+ μ

2
�H (X(k+1)) − U(k+1)VH + �(k)�2

F (18)

�(k+1) = X(k+1) + E(k+1) − M + �(k) (19)

�(k+1) = H (X(k+1)) − U(k+1)V(k+1)H + �(k) (20)

It is easy to show that the first step can be simply reduced to a
single instance of soft-thresholding in the image patch domain
rather than in a lifted Hankel matrix space

E(k+1) = Sτ/β

�
M − X(k) − �(k)

�
, (21)
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where Sτ denotes the pixel-by-pixel soft-thresholding
approach with a threshold value of τ . The soft-thresholding
operation is described as Sτ (x) = max{0, |xi | − τ }sgn(xi).
The simple thresholding step in (21) is the main motivation
behind why we prefer (P �) over (P). At this point, the second
step becomes

X(k+1) = 1

μ + β

�
μH †

�
U(k)V(k)H − �(k)

�

−β
�

E(k+1) − M + �(k)
��

, (22)

where H † corresponds to the Penrose-Moore pseudo-inverse
mapping from our block Hankel structure to a patch, which is
calculated as follows:

H † =
�
H HH

�−1
H H . (23)

Note that the adjoint operator H H (A) adds multiple ele-
ments of A and put it back to the patch coordinate, while�
H HH

�−1
denotes the division by the number of multiple

correspondences. Hence, the role of the pseudo-inverse is to
take the average value and put it back to the patch coordinate.
For more details on this step, see Appendix B in Supplemen-
tary Material.

Next, the sub-problems for U and V can be easily calculated
by taking the derivative with respect to each matrix. For
example, the derivative of cost function for U is given by

∂L

∂U
= ∂

∂U

�
1

2
�U�2

F + μ

2
�H (X) − UVH + ��2

F

�

= U − μ
�
H (X) − UVH + �

�
V

= U
�

I + μVH V
�

− μ (H (X) + �) V,

and the closed-form solution of the sub-problem for U is
obtained by setting ∂L/∂U = 0. In the similar way, the deriva-
tive with respect to V can be obtained. Accordingly, the closed-
form update equations for U and V are given by

U(k+1) = μ
�
H (X(k+1)) + �(k)

�
V(k)

×
�

I + μV(k)H V(k)
�−1

, (24)

V(k+1) = μ
�
H (X(k+1)) + �(k)

�H
U(k+1)

×
�

I + μU(k+1)H U(k+1)
�−1

. (25)

Although the original Hankel matrix H (X) has large dimen-
sions, it is important to note that our algorithm using
(24) and (25) only requires the matrix inversion of r × r
matrices, where r denotes the estimated rank of the Hankel
matrix from LMaFit [31]. This significantly reduces the overall
computational complexity.

Specifically, before we apply ADMM (in Eq. (15)-(22)),
the initial estimate U and V must be determined with an esti-
mated rank. To do this, we employed an SVD-free algorithm
known as the low-rank factorization model (LMaFit) [31].
More specifically, for a low-rank matrix Z, LMaFit solves the

following optimization problem (see [31, eq. (1.4)])

min
U,V,Z

1

2
�UVH − Z�2

F

subject to Zi, j = (H (M))i, j , (i, j) ∈ 	, (26)

where 	 denotes the sampled indices. Because the impulse-
noise locations are not known a priori, when applying LMaFit,
we set 	 to represent all pixel locations, as in this LMaFit
step we are only interested in finding the initial estimates
of U and V which actually give the estimated rank, r . The
unknown location of 	 is then implicitly identified as the
complement set of the support of estimated sparse outliers
in our ADMM step in (21).

There is one potential drawback of the low-rank factor-
ization model (26), as the non-convexity of the optimization
problem may prevent one from obtaining a global solution.
Moreover, the approach requires an initial rank estimate.
In LMaFit [31], the authors presented convincing evidence to
show that (a) on a wide range of problems tested, the low-
rank factorization model (26) is empirically reliable and
(b) the initial rank estimate does not need to be close to
the exact rank. Specifically, LMaFit solves a linear equation
with respect to U and V to find their updates and relaxes the
updates by taking the average between the previous iterations.
Moreover, the rank update step can be done automatically
by detecting abrupt changes of the diagonal elements of QR
factorization [31]. Although the problem (26) is a non-convex
case due to the multiplication of U and V, the convergence
of LMaFit to a stationary point was analyzed in detail [31].
Moreover, another important breakthrough in this field is the
recent work by Zhu et al [38], which rigorously show that
the all local minimizers of LMaFit type matrix factorization
approaches are saddle points such that any iterative method
converges to a global minimizer. Thus, our initialization with
LMaFit is assumed to be a good estimate of U and V.
However, LMaFit alone cannot recover the block Hankel
structure which explains the reason we use ADMM later to
impose the structure.

IV. EXTENSION TO MULTICHANNEL

IMPULSE-NOISE REMOVAL

In many applications, images are obtained through multiple
measurement channels. For example, in a colour image, mul-
tiple images are measured throughout R (red), G (green) and
B (blue) detectors. In multispectral imaging for remote sensing
applications, a scene is measured through many spectral bands.
In these applications, the underlying structure is identical such
that there are strong correlations between different channel
measurements. Regarding random impulse-noise contamina-
tion for multichannel measurements, we may encounter two
different scenarios. First, noisy pixel locations can be inde-
pendent between the channels. Second, noisy pixel locations
can be identical across the channels. The first scenario is
commonly observed when independent detectors are used for
each channel. On the other hand, when a spectrometer is used
to split an input into multiple channels, noisy pixel locations
may be common across the channel. Therefore, in this section,
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Fig. 4. (a) Spectral distribution across channels. (b) Multichannel measure-
ment model.

we are interested in extending single-channel robust ALOHA
to address these two cases.

A. Multichannel Image Modeling
Let f (r) denote an underlying image patch that is common

for all channel measurements, and f̂ (ω) be its spectrum.
Then, as shown in Fig. 4(a), the spectrum of the i -th channel
measurement can be modeled as follows:

x̂i (ω) = ŝi (ω) f̂ (ω), i = 1, · · · , C. (27)

Here, ŝi (ω) denotes a spectral modulation function of the
i -th channel, and C refers to the number of channels. The
model (27) assumes that each channel measurement retains
the textures of the underlying images by means of channel
specific modulation, the properties of which were extensively
exploited in multichannel deconvolution problems [39],
as illustrated in Fig. 4(b). Accordingly, it is easy to derive
the following inter-channel annihilating filter relation

s j (r) ∗ xi (r) − si (r) ∗ x j (r) = 0, ∀r, i �= j, (28)

which was also a key property in these multichannel
deconvolution algorithms [39].

To exploit the inter-channel annihilating property in our
robust ALOHA, we follow the standard trick of [39] to
construct the following matrix

Y = [H (X1)H (X2) · · · H (XC)] . (29)

In this matrix, H (Xi ) denotes the Hankel structured matrix
constructed from the i -th channel measurement xi (r). Then,
the authors in [39] showed that

YS1 = 0,

where S1 is defined recursively, as follows

SC−1 �
�

s̄C

−s̄C−1

�
(30)

St �

⎡

⎢⎢⎢⎢⎢⎣

s̄t+1 s̄t+2 · · · s̄C 0
−s̄t

−s̄t St+1
. . .

−s̄t

⎤

⎥⎥⎥⎥⎥⎦
, (31)

and s̄i := VEC(Si ) denotes the reverse-ordered, vectorized
spectral modulation filter for the i -th channel. The main idea

behind the recursive relationship is to consider all combina-
tions of i �= j of (28) from C-channels [39].

Because dim NUL(Y) = rank(S1) = �C2
� = C(C − 1)/2,

we have

rank Y ≤ rC − C(C − 1)

2
= C(2r − C + 1)

2
, (32)

when r denotes the maximum rank of H (Xi ), i = 1, · · · , C .
Hence, by setting the annihilating filter size such that it is
sufficiently large, we can sure that Y has a row rank, after
which the aforementioned sparse + low-rank decomposition
approach can be used for impulse-noise removal.

B. Optimization Methods
1) Channel-Independent Impulse-Noise: When the loca-

tions of the impulse noise are independent between channels,
then the associated optimization problem is very similar to that
of the single-channel problem. More specifically, with some
slight abuse of the notation, if we define

M = �M1 · · · MC
�
, X = �X1 · · · XC

�
,

E = �E1 · · · EC
�
, (33)

such that the each channel measurement is given by

Mi = Xi + Ei ,

the optimization problem then becomes

min
E,{(U,V)|UVH=H (X)}

�U�2
F + �V�2

F + τ�E�1 (34)

subject to H (X) = [H (X1) H (X2) · · · H (XC)]

X + E = M. (35)

In this case, the Lagrangian cost function and the associ-
ated subproblems are identical to Eqs. (14) and (16)-(22),
respectively.

2) Common Impulse-Noise Locations: When the noisy pixel
locations are common across channels, we need a non-trivial
algorithmic modification that comes by using a common
sparsity inducing matrix norm penalty. More specifically,
a common support condition of sparse components E should
be imposed across the channels. In this paper, this constraint
is formulated using the group-wise mixed l1,2 norm

E = �E1 · · · EC
� 	⇒ �E�1,2 :=

�

i, j

��� 
C�

k=1

Ek(i, j)2 (36)

Accordingly, Eq. (14) can be converted to

L(U, V, E, X,�,�)

:= 1

2

�
�U�2

F +�V�2
F

�
+τ�E�1,2+ β

2
�X + E − M + ��2

F

+μ

2
�H (X) − UVH + ��2

F . (37)

Then, instead of using (15), the corresponding sub-problem
for E has the following closed-form solution [40]:

E(k+1) = Sch
τ/β

�
M − X(k) − �(k)

�
(38)

where, for E in (36), Sch
λ (E) is defined as

Sch
λ (E) := �Svec

λ (E1) · · · Svec
λ (EC)

�
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TABLE I

HYPER-PARAMETERS USED IN THE PROPOSED ALGORITHM. μ AND β OF ADMM ARE 1. FOR LMAFIT, INITIAL RANK WITH
INCREASING STRATEGY IS ONE AND TOLERANCES FOR 25%(40%) IMPULSE NOISE IS 0.2(0.3)

and
�Svec

λ (Ek)
�

i j = Ek(i, j)!"C
k=1 |Ek(i, j)|2

× max

⎧
⎨

⎩

��� 
C�

k=1

|Ek(i, j)|2 − λ, 0

⎫
⎬

⎭. (39)

Other remaining sub-problems are mainly similar to those
expressed by (16)-(22).

V. EXPERIMENTAL RESULTS

A. Removal of Random-Valued Impulse Noise (RVIN)

We first performed denoising experiments using randomly
distributed random-valued impulse-noise (RVIN) that corrupts
25% and 40% of all image pixels. The RVIN is generated
as follows. Let xi j := X(i, j) and N(xi j ) be the original
pixel value at location (i, j) and the contaminated pixel
with impulse noise at location (i, j), respectively. When the
dynamic range of the pixel value is given as [dmin dmax ],
RVIN is described as

N(xi j ) =
)

di j with probability p

xi j with probability 1 − p
(40)

where di j is a random number within the range of [dmin dmax ]
established by the uniform random probability density func-
tion, and p is the proportion of noisy pixels with respect to
all pixels.

The test sets consisted of the Baboon, Barbara, Boat,
Cameraman, House, Lena and Peppers images. All test images
were rescaled to have values between 0 and 1. For com-
parison, a median filter method (MATLAB built-in function
‘medfilt2’, indicated as MF in the figures) was used as
the simplest reference algorithm, and the existing algorithms
such as ACWMF [3], a locally low-rank analysis using
alternating least squares (k-ALS) [28], wavelet frame-based
blind inpainting (wavelet) [29], and TVL1 [41] were also
used. In particular, the k-ALS algorithm is a learning-based
algorithm that obtains its results from a non-convex robust
low-rank formulation of patches using an initialized learned
dictionary [44]; therefore, k-ALS is a good reference algo-
rithm to use when investigating the fundamental differences
between Hankel-based and image-based sparse and low-rank
approaches. On the other hand, wavelet frame-based blind

inpainting [29] exploits the sparsity in the wavelet domain with
the estimation of sparse outliers. In addition, a state-of-the-
art compressed sensing based sparse recovery approach [42]
(henceforth denoted as ‘Blind’) was compared, which is
distinct from the total variational inducing sparsity [41].
The non-local sparse PCA method (NLSPCA) [43] is another
a state-of-the-art learning-based approach for noise removal
which combines elements of dictionary learning and sparse
patch-based representations of images. While the original
NLSPCA was developed for Poisson noise removal, the noise
patterns often appear to be similar to impulse-noise, espe-
cially in environments with low photon counts. Therefore,
the proposed algorithm was also compared with NLSPCA.
The original codes from the original authors were used, and the
parameters for the these algorithms were optimized to result
in the best performance levels.

The parameters for the proposed method are given
in Table I. The maximum iteration number of ADMM in
Eq. (14) was set to 50, and the stopping criteria were defined
as in earlier work [31] with the tolerance set to 10−4. For
a quantitative evaluation, we used the PSNR (peak signal-
to-noise ratio). Specifically, when the reference signal (y) is
given, the PSNR of the reconstructed image (x) is calculated
as follows:

PSNR(x) = 20 log10

� �y�∞
1/

√
N × �y − x�2

�
.

For rapid implementation, we used a TITAN GTX graphics
card as a graphics processor unit (GPU) and an i7-4770k CPU.
The codes were written in MATLAB (Mathworks, Natick)
using the GPU library. To accelerate the algorithm, most parts
of the MATLAB codes were implemented using the Compute
Unified Device Architecture (CUDA) for GPUs. However,
the LMaFit routine, which is one of the computational bot-
tlenecks, was not parallelized because we used the original
implementation by the authors. The computation times for
various algorithms for the Baboon and Cameraman images at
25% and 40% RVIN are listed in Table II. Due to the low-rank
matrix completion, the proposed method is computationally
most expensive, which is the main limitation of the current
implementation.

However, the performance improvement is quite noticeable.
We summarized the PSNR results in Table III for all
reconstructed images. We observed that the proposed method
provides much better or well-matched results compared to
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TABLE II

RECONSTRUCTION TIME OF OTHER ALGORITHMS FROM 25% AND 40% RANDOM VALUED IMPULSE NOISE (RVIN)

TABLE III

RECONSTRUCTION IMAGE PSNR BY VARIOUS DENOISING ALGORITHMS FROM 25% AND 40% RANDOM VALUED IMPULSE

NOISE (RVIN). THE HIGHEST PSNR IN EACH IMAGE ARE HIGHLIGHTED WITH BOLDFACE

the existing state-of-the-art methods. In particular, our method
significantly outperformed for images having complex texture
patterns (such as the Barbara image with 4dB improvement)
in terms of the visual and quantitative quality levels. In some
cases, k-ALS showed better results than ours with 0.2dB
improvement; however, the differences are fairly negligible.
Fig. 5 shows the typical reconstruction result, presenting a
noticeable enhancement by robust ALOHA in terms of both
visual quality and quantitative measures. In order to show
that the proposed sparse + low-rank decomposition approach
properly decomposes the impulse noise from the images, the
decomposed sparse + low-rank components are illustrated
in Fig. 6. This figure indicates that the sparse component (|E|)
appears similar to the additive impulse noise, as indicated by
|ORIG−M|, where ORIG denotes an original image and | · | is
the element-by-element operator that takes the absolute value.

Among the various conventional methods, k-ALS was the
best, so we performed additional study with various noise per-
centage. Table IV shows that for the case of the highly textured
images such as Barbara, the proposed method outperformed
k-ALS for most of the noise contamination level. Even for
smooth images such as Lena, the proposed method was better
than k-ALS at moderate noise contamination. Again, the main
weakness of the proposed method is the computational time
as shown in Table V for two different size of images.

B. Comparison With Conventional RPCA

To verify that lifting to a Hankel matrix is beneficial for a
performance improvement, we also applied the standard RPCA

TABLE IV

RECONSTRUCTION IMAGE PSNR BY ROBUST ALOHA AND

K-ALS ALONG WITH VARIOUS DENSITY OF RANDOM
VALUED IMPULSE NOISE (RVIN)

TABLE V

RECONSTRUCTION TIME (S) OF K-ALS AND ROBUST ALOHA
ALONG WITH VARIOUS DENSITY OF RANDOM

VALUED IMPULSE NOISE (RVIN)

as an impulse-noise removal algorithm and compared the
results. The reason we used RPCA as baseline comparison is
that original RPCA [45] was proposed to reconstruct low-rank
matrix even with sparse outlier, and this purpose aligns with
our target problem in Eq. (9) and (P). Two types of RPCA
were implemented: one using whole images, and the other
using an image patch of the same size as our robust ALOHA.
Note that the standard RPCA uses an image or patches as they
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Fig. 5. Reconstructed Barbara images by various methods from 40% random
valued impulse noise.

Fig. 6. M: the measured noisy image. |ORIG − M|: the residual image
between noisy image (M) and original image (ORIG). X: the decomposed
low-rank part, and E: the decomposed sparse component. Here, | · | is the
element-by-element operator that takes the absolute value.

are, without lifting them into a Hankel structured matrix. For
RPCA, we used the software packages provided by the original
authors in earlier work [46]. We chose the parameters for the

Fig. 7. Comparison with conventional RPCA approach with the proposed
method under 40% random valued impulse noise. Boxed areas show the major
differences between k-ALS and robust ALOHA.

best PSNR results in each reconstruction. As shown in Fig. 7,
the two RPCA implementation methods could not decompose
impulse noise out of mixed measurements, and the detailed
image structures were distorted. Additionally, the local patch-
based sparse and low-rank models (k-ALS) [28] were also
compared, and the results appeared better than that by the
conventional RPCA framework. However, noise artifacts and
distortions in the regions denoted by yellows boxes were
still noticeable. In particular, the reconstructed baboon hairs
by k-ALS were highly distorted and the tissues around the
noise in the k-ALS reconstruction contained severe noise.
On the other hand, robust ALOHA provided nearly perfect
noise removal. Such a remarkable performance improvement
originated from image modeling which exploited the low-
rankness of the annihilating filter-based Hankel matrix, which
again confirms that the robust ALOHA is a superior image
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Fig. 8. Multichannel denoising results under 30% random valued impulse
noise at the independent pixel locations at each RGB channels.

model and denoising algorithm for images corrupted with
impulse noise.

C. Multichannel Denoising
To verify that the proposed method can easily be extended to

multichannel images, we conducted experiments with colour
RGB images. As discussed earlier, the noisy pixel location
can be either identical across channels or independent for
each channel. Therefore, we conducted experiments under
the two different scenarios. Fig. 8 shows the reconstruction
result when 30% of channel-independent impulse noise was
added, whereas Fig. 9 corresponds to the scenario when 30%
of impulse noise was added at the same locations across
RGB channels. The proposed method provided more detailed
structures (e.g. a bundle of peppers and the edges of the
peppers) than the TVL1 reconstructions, as shown in Figs. 8-9.
Moreover, the cartoon-like artifacts were significantly reduced
in the proposed method. In the inset images, the detailed
structures of the peppers are magnified to demonstrate the
superior performance of the proposed method over other
methods.

One of the interesting observations from these experiments
was that the proposed reconstruction provided a better PSNR
for the channel-independent impulse noise. This occurred
because the noiseless pixel values from other channels could
improve the image inpainting performance of noisy pixel
values by exploiting the correlation between the channels.

Fig. 9. Multichannel denoising results under 30% random valued impulse
noise at the common pixel locations across the RGB channels.

Fig. 10. NRMSE graph along with ADMM iterations in Barbara image.

D. Algorithm Convergence
Because reconstructions are based on patch-by-patch opti-

mization, to verify the convergence of the algorithm, all of
the patch data should be collected, and their convergence were
analyzed. The Barbara image was used, and the corresponding
convergence plot is illustrated in Fig. 10. Here, we calculated
the NRMSE value for each patch per iteration. The total
number of patches was 5184. In the box plot, the central
mark (red line) is the median, and the edges of the box
are the 25th and 75th percentiles, respectively. As observed
in Fig. 10, the proposed algorithm converged as iteration
process continues.

VI. DISCUSSION

A. Spectral Domain Sparsity

Recall that the proposed robust ALOHA method was
performed in a patch-by-patch manner without considering
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additional similar patches. This is an important difference
compared to other denoising algorithms which use low-
rank approaches [14], [47], [48]. While the authors in those
studies [14], [47], [48] used patch-based low-rankness, all
methods required additional redundancies from, for example,
multiple dynamic frames [14], [47] or groups of similar
spectral patches [48]. Although such additional redundant
information may introduce a low-rankness condition, those
approaches could not properly perform denoising without
utilizing such additional redundancies. On the other hand,
the robust ALOHA method exploits the low-rankness orig-
inating from the intrinsic spectral domain sparsity of an
image patch. Therefore, no additional redundancy needs to
be explored. Thus, we believe that robust ALOHA is more
flexible and powerful.

Because the proposed robust ALOHA is based on the
spectral domain sparsity, one may wonder that the formula-
tion might be equivalent to imposing the sparsity directly in
DFT domain for each patch. However, mathematically, this
equivalent only holds when the locations of Diracs in the
spectral domain is on a discrete grid and the Hankel matrix is
constructed as a circulant matrix (see [18] for more details).
However, in the proposed robust ALOHA, the spectral domain
sparsity is imposed on a continuum based on the off-the-grid
stream of Diracs model [18], which significantly improves
the performance compared to the DFT domain sparsity
implementation.

As briefly discussed in the introduction, a recent study [49]
successfully demonstrated the accurate predictions of target
locations under occlusion using the sparse + low-rank decom-
position of a Hankel structured matrix. However, unlike our
robust ALOHA, one-dimensional trajectories extracted from
video sequences are required as inputs to construct the Hankel
structured matrix, as the algorithm was derived based on the
assumption that those trajectories follow linear time invariant
state-space models, as has been suggested in [50]. On the other
hand, the Hankel structured matrix in robust ALOHA stems
from two-dimensional patches that exploit the spectral domain
sparsity; thus, the construction of the Hankel matrix is different
from that in earlier work [49]. Moreover, we exploit an
SVD-free minimization algorithm [37] instead of the aug-
mented Lagrangian method (ALM) in the aforementioned
studies [49], [50] to reduce the computational burdens. There-
fore, we believe that there are significant differences between
the two approaches.

B. Modification for High Noise Contamination
As shown in Fig. 11, the performance degradation with

the increasing impulse noise level was gradual. However,
we found that the denoising performance beyond the noise
density of 40 % did not provide significant gain over other
algorithms. This was mainly due to the outlier detection step
in (15), which results in a simple shrinkage operation for
sparse outlier detection. Thus, by replacing l1-based the outlier
detection step in (15) with more sophisticated decision-based
outlier detection algorithms [1], [4]–[7], we conjectured that
that robust ALOHA may have significant improvement in
performance especially at highly contaiminated impulse noise.

Fig. 11. Performance graph with respect to density of impulse noise.

To verify the conjecture, we performed simulations with
salt-and-pepper noise at extremely high noise contamination.
Recall that the salt-and-pepper noise is a special case of RVIN,
as it has impulse noise with the intensity of the minimum
and maximum values of the pixel dynamic range. Specifically,
salt-and-pepper noise are given by

N(xi j ) =

⎧
⎪⎨

⎪⎩

dmin with probability p/2

dmax with probability p/2

xi j with probability 1 − p,

(41)

where the variables p, dmax, dmin are defined in Eq. (40).
This model was described as Noise Model 1 in [7] which
demonstrated the significant performance gain of BDND based
switching filter. Specifically, salt-and-pepper type impulse
noise can be well detected by a decision-based outlier detec-
tion step such as adaptive median filter (AMF) or BNDN algo-
rithm. Because the positions of the salt and noise locations are
well detected by AMF, our robust ALOHA can accordingly be
modified. More specifically, the sparse outliers estimation step
is replaced by AMF, whereas the remaining steps in (16)-(20)
are replaced by similar steps as in [17] to obtain the low-
rank components and the Lagrangian update. The pseudo-code
implementation is given in Algorithm 2 in Appendix C in
Supplementary Material.

Note that this modification is a heuristic modification of
the algorithm assuming that the sparse outliers estimation
step by AMF is sufficiently accurate. To demonstrate that our
algorithm continues to outperform the existing algorithms, we
compared our method with adaptive median filtering (AMF),
and BDND based switching filter using 70% salt-and-pepper
noise. The results in Fig. 12 clearly demonstrate that the
proposed robust ALOHA outperforms all other algorithms.

Second, the switching based median filter [7] is well-known
for its outstanding performance for extremely high impulse
noise ratio. The switching median filter incorporated with a
powerful impulse noise detection method, called the boundary
discriminative noise detection (BDND). Once the corrupted
pixel locations are identified by the BDND algorithm, a post-
detection filtering was used to restore the original pixel values
from the noisy pixels. Therefore, similar to the previous
experiment, we replaced our l1-based outlier detection steps
with the BDND step, after which the novel low-rank Hankel
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Fig. 12. Noise removal results using various methods under 70% salt-
and-pepper noise. In Robust ALOHA, the sparse outlier detection step was
replaced by an adaptive median filtering step, after which low-rank Hankel
structured matrix completion was used to estimate the missing pixels in the
sparse outlier locations.

matrix completion is performed to estimate the uncorrupted
pixels. The results in Fig. 13 clearly showed that at 80% of
RVIN contamination under the same Noise Model 1 in [7],
the proposed robust ALOHA significantly outperformed the
switching based median filter.

C. Potential Extensions

Although robust ALOHA as reported here was derived
based on the assumption that the spectrum of a noiseless image
patch is sparse, the proposed algorithm can be extended for
image patches which are sparse in other transform domains.
To show this clearly, we assume that the underlying patch
image is one-dimensional for simplicity, i.e., x ∈ R

N . In such
a case, let the singular value decomposition of H (x) be
given by H (x) ="r

i=1 σi ui vH
i , where ui and vi denote the

i -th left and right singular vectors, respectively, with σi as the
associated singular values. Then, we have

x = H †

+
r�

i=1

σi ui vH
i

,
=

r�

i=1

σiH
†
�

ui vH
i

�

=
r�

i=1

λi (ui ∗ v̄H
i ), (42)

where λi is equal to σi divided by the number of multiple
correspondences in the Hankel matrix, v̄H

i denotes the reverse-
ordered vector vH

i , and the last equality follows from the

Fig. 13. Comparison of BDND switching median filter [7] and robust
ALOHA at 80% RVIN.

definition of the adjoint Hankel operation. A similar obser-
vation was recently made by Yin et al. [51]. In particular,
they claimed that {ui } corresponds to the local basis, whereas
{vi} denotes the non-local basis. Accordingly, they called the
decomposition (42) the convolution framelet [51]. In ALOHA,
the local basis ui corresponds to the Fourier basis because we
assume that the patch image is sparse in the Fourier domain,
whereas the nonlocal basis, vi , are data-driven dictionaries.
Thus, if an image patch is sparse in another transform domain,
we can set ui accordingly to make the decomposition (42) as
concise as possible. The precise description of the algorithm
and its theoretical justification may have significant potential,
but providing this is beyond the scope of the present work.

D. Patch Size

In principle, the patch size should be chosen so that the
spectrum of a patch is sparse enough and it can be annihilated
by a smaller size annihilating filter. In natural images, the spec-
tral contents of patches vary depending on the presence of
complex textures, smooth backgrounds, etc. Moreover, the
spectral components vary depending on locations within an
image. Therefore, the optimal patch size should be chosen by
trial and error. Empirically, we found that patch size between
25 × 25 and 45 × 45 worked well for most of test dataset.
For best performance, our experience informs that for images
with complicated textures such as Barboon, bigger patch size
is usually better due to the high frequency spectral contents
that needs to be annihilated with a large size annihilating filter.
However, an automatic selection of optimal patch size is an
important problem that needs to be further investigated in the
future.

VII. CONCLUSION

In this paper, we proposed the sparse + low-rank decompo-
sition of annihilating filter-based Hankel matrices for impulse-
noise removal. The new algorithm, called robust ALOHA,
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extends the conventional RPCA approaches by exploiting the
spectral domain sparsity and the associated rank-deficient
Hankel matrix. The robust ALOHA method was implemented
using ADMM iteration with initialization using LMaFit algo-
rithms. In our ADMM formulation, factorization-based nuclear
norm minimization was used instead of SVD such that a
computational gain was achieved. We demonstrated that robust
ALOHA is either comparable to or capable of significantly
outperforming state-of-the-art impulse-noise removal algo-
rithms. Furthermore, we showed that robust ALOHA can be
used for extremely high noisy image by replacing the l1-based
sparse outlier detection step with a decision-based outlier
detection algorithm. In addition, the extension to impulse-
noise removal from color channels was very straightforward
by concatenating the Hankel structure matrix in a side-by- side
fashion and imposing low-rankness.

The superior performance of robust ALOHA clearly shows
that an image modeling process using an annihilating-filter-
based Hankel matrix is a very powerful tool with many image
processing applications.
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