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ABSTRACT

We propose an algorithm for aligning a preoperative computed tomography (CT) volume and intraoperative C-arm
images, with applications in computer-assisted spinal surgery. Our three-dimensional (3D)/two-dimensional (2D)
registration algorithm is based on splines and is tuned to a multiresolution strategy. Its goal is to establish the mutual
relations of locations in the real-world scene to locations in the 3D CT and in the 2D C-arm images. The principle
of the solution is to simulate a series of C-arm images, using CT data only. Each numerical simulation of a C-arm
image is defined by its pose. Our registration algorithm then adjusts this pose until the given C-arm projections and
the simulated projections exhibit the greatest degree of similarity. We show the performance of the algorithm for
the experiments in a controlled environment which allows for an objective validation of the quality of our algorithm.
For each of 100 randomly generated disturbances around the optimum solution, the 3D /2D registration algorithm
was successful and resulted in image registration with subpixel error.

Keywords: Computer-assisted surgery, spinal surgery, image-guided surgery, 3D /2D image registration, voxel-based
registration, splines, multiresolution

1. INTRODUCTION

This paper proposes an algorithm for the accurate registration of three-dimensional (3D) to two-dimensional (2D)
data, with applications in computer-assisted spinal surgery. We focus on the registration of a preoperative CT
volume with intraoperative C-arm images of the spine, which is particularly relevant for guiding the procedure of
spinal fixation by transpedicular screws.!»?

The accuracy of registration is a crucial aspect of our work. Surgeons and physicians plan the intervention on
the basis of the preoperative CT data, and rely on the intraoperative C-arm images to navigate their tools around
and inside the patient. Thus, while registering preoperative to intraoperative data, one has to bear in mind the dire
consequences of inaccurate registration. Meanwhile, a successful registration will allow for the most efficient use of
the preoperative planning. In combination with an optical tracking device, it will also allow for the integration and
the interactive display of tools over the CT and C-arm images, in real-time.

We reach accuracy through a careful design of all registration components. Perhaps the most important of them
is the interpolation model which specifies how one should resample the available discrete data so as to modify their
position or orientation in space. In the present case, we have selected a continuous image model that is based on cubic
splines®® and that is tuned to a multiresolution strategy.®” By opposition to several other algorithms available
in the literature which are based on nearest-neighbor or linear interpolation, we choose cubic spline interpolation
because of its better order of approximation. This model provides a good compromise between the aliasing which
dominates for low degrees and the ringing present for higher degrees.

The benefits of using a high-quality interpolation model are threefold. First, our 2D computed projections
are accurate thanks to its high order of approximation. Second, it allows for the exact computation of gradients,
as opposed to their estimation: often, we observe that other researchers perform optimization with approximate
gradients instead. The fact that our gradient computations are exact promotes accuracy. Third, the rescaled
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versions of our interpolation model yield a spline-based image pyramid for a multiresolution approach. This results
in more robust registration.

Feature-based 3D/2D registration is based on the identification of characteristic features present in each of the
two images, which requires segmentation.® 1 Once the features are available, the registration is usually fast; a
major drawback is the high dependence of the registration accuracy on the accuracy of the segmentation itself, which
is notorious for being difficult to achieve. By contrast, voxel-based methods require neither data interpretation nor
segmentation.!171°

They compare the voxel values of a 3D image with the pixel values of a 2D image directly, using a measure based
on image statistics. Generally, these methods are slower but more accurate and more robust. Since a major goal of
this paper is to obtain high registration accuracy, we will focus on a voxel-based method.

All voxel-based 3D /2D registration algorithms must address the three following questions: 1) Which measure of
similarity to adopt between the 3D data and the 2D projections? 2) How to obtain simulated projections out of the
volumetric data in order to compare them with the given C-arm projections? and 3) How to optimize the measure
of similarity?

To answer the first question, we remark that both the C-arm devices and the CT scanner are built upon the
same physical principle: both rely on x-rays to probe the patient. Thus, a natural idea is to simulate C-arm images
from the CT data, and to adjust the pose of the simulated C-arm devices until they produce images that are similar
to the given ones—for which the true pose is known thanks to a tracking device. To obtain a simulated C-arm
projection, we simply integrate the CT volume along the direction of the simulated x-ray*. We then select our
measure of similarity as the mean-square difference between a simulated projection and a given one.

To answer the second question in the context of intraoperative applications, we remark that it is highly desirable
that the registration be performed in a few seconds. Since a large fraction of the processing effort is devoted to
the computation of 2D projections from 3D data, great efforts have been made to discover fast methods without
compromising the quality.!!™1® We propose here a new projection method that we call projective integration. By
carefully controlling the step of a Riemann sum, we need only 2D interpolation to project 3D data along any direction.
This approach is related to the shear-warp factorization of a transformation, but avoids to have to interpolate data
twice to obtain a projection.'®

The third question regards the selection of the optimizer. In this paper, we use the Marquardt-Levenberg non-
linear least-squares optimizer.'® This optimizer is particularly well adapted to a multiresolution context because at
any level it can refine in just a few steps the best solution found at a coarser level. It achieves efficiency by considering
all optimization parameters in parallel, as opposed to other optimizers that perform sequential optimization instead.'®
A further benefit of multiresolution is increased registration robustness. In this paper nevertheless, we will present
the registration algorithm out of the multiresolution context.

2. BUILDING BRICKS
2.1. Image Model

To interpolate accurately the CT volume data when simulating C-arm images, we use a continuous image model
based on splines.>> This model is given by

@)=Y aprx—1),

iezN

where 3"(x) is a separable convolution kernel which is, in the N-dimensional case, given by the product
N
8"(x) = [ 8"(=y),
j=1

and where the coefficients c; are precomputed from the given data samples f(i) by recursive digital filtering.*

*In this paper, we disregard x-ray attenuation and we consider the simplified case of a parallel instead of a conical beam.
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The model degree n determines the interpolation quality which affects the precision of the registration. The
spatial gradient of the image is given by

X) = Z a6 VO™ (x —1).

iczZN

For 2 < n, we have the guarantee that V3" (x) is continuous and that the derivatives are well defined everywhere,
which is clearly not the case with the piecewise-constant or the linear model used in most implementations. An
additional advantage of using a B-spline image model is in yielding a spline-based image pyramid for a multiresolution
approach which is recommended for a fast and robust registration.

2.2. Simulated C-Arm Image

To align a CT volume with a set of 2D C-arm images, we have to compare the given C-arm images with simulated
projections obtained by integrating the volumetric data. We describe the pose u = ((¢,0),%;8) of a simulated
C-arm image P by a unit vector c¢ in spherical coordinates (1, ¢, ) that is perpendicular to the projection plane. The
pose description is completed by a rotation angle ¢ around the axis defined by ¢, and by a translation § = (61, d2, d3)
in Cartesian coordinates. For any x € P, we write the projection psp(u, f) of a volume f and for the pose p as

p3p (X5 1, f / flx—d+tc)dt

To map the projection plane P into a set of scanning 2D coordinates (or indexes) of homogenous coordinates
k = (ky,k2,0,1), we express the matrix B (that solely depends on u) such that V(k;, k2) € R? : Bk € P. Finally,
the simulated C-arm image p(p, f) with the pose p, using the CT volume f, is given by

sspd) = [ T (Bt teydt. 1)

2.3. Projective Integration

A direct implementation of Equation (1) would require the interpolation of 3D data samples. Here instead, we
propose an alternative that reduces the computational demands by performing 2D interpolation. The principle is to
approximate the integral in Equation (1) by a Riemann sum and to adapt the sampling step such that only samples
with integer argument take part in the sum. We proceed by performing the following change of the variable t:

§ — [BK]; 1

, dt = ——d¢;. (2)

) l;

where &;, j € {1,2,3} are the new variables, and where [z]; indicates the j-th component of the vector x. After
introducing Equation (2) in (1), we get that

p(k; o, ) = / F(Bk+ (¢ — [B ])—])d@ 3)

Since [Bk + (§; — [Bk];) ¢/[c];]; = &;, it is obvious that the integration is performed along the j-th major axis
of f. Then, we use the Riemann-sum approximation of the integral where the continuous integration variable ¢;
in Equation (3) is replaced by a discrete index n;. From [Bk + (n; — [Bk];)c/[c];]; = n; follows that the j-th
component of the vector of coordinates of the volume f is always integer, which results in

p(ki 1, f) ~ Zka+ — [BK];) ).

n;EL ]‘7
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Figure 1. Diagram of the 3D/2D registration algorithm

3. REGISTRATION ALGORITHM
3.1. Principle

Figure 1 shows the block-diagram of our registration algorithm. The input data for the algorithm are: 1) a CT
volume, 2) a number of C-arm images that correspond to different projection orientations, and 3) the absolute pose
of the C-arm images given in tracking-device coordinates, out of which we deduce their relative pose.

The registration algorithm proceeds in the space of CT coordinates. In this space, the pose of the CT volume
is fixed, while the pose p; of the j-th simulated C-arm image is unknown and must be recovered Vj € {1... N},
where N, gives the number of views. Because we ensure that the simulated C-arm devices maintain their relative
pose during the whole registration process, it is enough to recover one simulated pose to recover them all—note that
at least two imaging views are necessary. We tune the parameters p until the given and simulated C-arm images
reach the greatest degree of similarity for all imaging views.

3.2. Optimization
3.2.1. Criterion

Our measure of similarity between the given and the simulated projections is the mean-square criterion given by

= % Z j) Z (p(k;ﬂj,f) *Pj(k))2,

keD;
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where p(uj, f) is the j-th simulated C-arm image for the pose K, computed by projective integration of the volume
f, and where p; is the j-th given C-arm image. The domain ID; corresponds to an arbitrary mask. In practice, this
mask is determined by the overlap of the projections.

3.2.2. Gradient and Hessian
The gradient V.S is the six-component vector of the first derivatives of the criterion S(p) with respect to the
parameters p. It is given by
oS 08§ 0S
VS = (o).
Ouy’ Ope Oue

The Hessian A2S is the six-by-six matrix of the second derivatives of S(u) with respect to the parameters . It
is given by

%8 %8
Op1 Opr  Opi dus

AZS — a%s a%s
= Opz Op1  Opz Opa

The exact components of the Hessian matrix depend on the first derivatives of the simulated C-arm images p(p,j, f)
with respect to the parameters p as well as on their second derivatives. Because the influence of the second derivative
terms can be destabilizing, we use the following approximation of the elements of the Hessian matrix which ignores
them!7:

1 3 op(k; p;, ) op(k; pj, f)
card(ID;) Oom Opm

keD;

The use of such an approximation has two positive effects. It makes the optimization work better because 1) it
provides a Hessian matrix that is positive definite, and because 2) it reduces the destabilizing effects of the second
derivatives when the current guess is far from the solution.

3.2.3. Marquardt-Levenberg optimizer

Let H be a modified Hessian such that the diagonal elements of the true Hessian A?S are multiplied by a factor A
while its off-diagonal elements are not changed. It is thus given by

[H(w)]i; = [A2S ()i (L+ A6 ),

where §; ; is the Kronecker symbol and ¢,j € {1,2,...,6}. Then, the Marquardt-Levenberg optimization algorithm
can be described by!®
p = p® — (H(p®) "t vS(p®), (4)

where p(*) are the parameters g at the iteration k, and where p(**1) is their update for the iteration (k + 1).
When A — +00, Equation (4) approximates the gradient algorithm which is robust but generally inefficient. When
A — 0, Equation (4) approximates the Newton algorithm which is efficient but not robust. The parameter ) is a
factor which has to be tuned so that the best compromise between the Newton method and the gradient method is
achieved.

4. EXPERIMENTS
4.1. Methodology

We show the performance of our algorithm in a case where the true alignment is known a priori. This controlled
environment allows for an objective validation of the quality of our algorithm. We perform this validation study by
using the geometric error of Section 4.2 as figure of merit.

The most convenient way to have a complete and precise control over the geometric aspects of the experiment
is that the given C-arm images be obtained in the same fashion as we obtain the simulated ones. Therefore, we
use the results of Section 2.3 for both cases, up to the following detail: if we project the same volume data to
compute given and simulated C-arm images, then we are potentially able to achieve perfect registration. To make
the situation less ideal, we apply a known rigid-body geometric transformation g(p,) to the given volume f, which
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Figure 2. Diagram of the test procedure. Because of interpolation and clipping, there exists no set of parameters
p such that a projection of f is exactly identical to a projection of f’.

results in f'(k) = f(g(k;py)). This operation introduces interpolation and clipping, which ensures that it is not
possible anymore to find registration parameters g such that S(p) = 0. Figure 2 depicts the general procedure.

The goal of the registration is to find a set of poses p;, j € {1,...,Np}, for which the simulated C-arm images
are the most similar to the given ones, on average. Since we maintain at all times the relative orientation of the
C-arms, one element of the set is enough to describe the whole set. Thus, let us denote by g the pose estimate
found by the registration algorithm. It follows that the best alignment of the volume f and the given C-arm images
p(pj, f') is obtained when fi = p1, o ', where o denotes a composition operator, and where p' is the arbitrary pose
that we assigned when generating the given C-arm images.

4.2. Warping Index

To measure the precision of the estimation as a geometric error, we proceed as follows: using the known poses g, oug-,
j €[1...Ny], we first project some arbitrary point of coordinate x onto the simulated C-arm images where it yields
a set K = {k;} of N, coordinates k;. Then, using the (perhaps non-ideal) estimated parameters £, we retroproject
the set K. Each element k; corresponds to a retroprojected line in space; by ensuring that the relative orientation
of the simulated C-arms does not change during optimization, we also ensure that the intersection y(x;po o p', i)
of the 3D lines does exist and is uniquely defined. Then, by scanning all coordinates x within the CT volume, we
compute the average geometric error as

1 ;-
W= X — y(x; o o g, )|
card(7) 2o I Y000 bR

4.3. Results

We performed our experiments on a brain CT volume of size 32 x 32 x 32 voxels at the full resolution (volume f). We
used IV, = 2 projections of size 100 x 100 pixels, and we set the corresponding projection planes to be perpendicular
to each other. We run the registration 100 times. For each registration, we generated a random initial value for the
parameters fi as a disturbance around the parameters (pg o p').

The rigid-body geometric transformation go applied to f to get f’ corresponds to 1.2, 1.3, and 1.4 pixels of
translation along the z-, y-, and z-axes, respectively. In addition, we performed a rotation of about 6.6 degrees
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Figure 3. Performance of the registration algorithm for 100 randomly generated disturbances around the optimum
solution. Solid line: Typical warping index vs number of iterations. Dash-dotted line: Average warping index.
Dashed lines: Average :l:% standard deviation of the warping index.

around a line through the volume center. The given C-arm images were obtained by projective integration of the
volume f’. The pose of a given C-arm image p', that defines the pose of another given projection, was determined
by a translation § = (10,5, 7) pixels, and a rotation of about 93 degrees.

The simulated C-arm images were computed during the registration using the projective integration of the
volume f. The initial parameters & were chosen as consisting in part of a normally-distributed translation with
mean § = (10,5,7) pixels and standard deviation o = 1.8 pixels, and in part of a random rotation with mean 93
degrees and standard deviation 2 degrees. The warping index was computed over 40 iterations in each case.

Figure 3 shows a typical behavior of the warping index (solid line) on a linear-log scale. Starting from a large
initial geometrical error (the initial warping index was approximately equal to 4.8 pixels), the algorithm succeeds to
register the two images with a final geometrical error of approximately 0.08 pixels. Between the first and the third
iteration, the gradient algorithm dominates so that the warping index decreases slowly from iteration to iteration,
by less than 25 percents. From the fourth iteration, the Newton algorithm dominates so that the amelioration of
the fit accelerates, the warping index decreases by more than 50 percents per iteration. After the ninth iteration,
we observe that the algorithm has converged.

The algorithm was successful and resulted in a registration with a subpixel geometrical error in every case.
Starting from a large initial geometrical error, the algorithm registered the two images in at most 14 iterations. At
convergence, the mean and standard deviation of the warping index was 0.09 and 0.04 pixels, respectively. This
residual misalignment is a consequence of the transformation gy which was introduced to make the registration task
more challenging.

5. DISCUSSION

We have proposed an algorithm for the accurate voxel-based 3D /2D registration of a preoperative CT volume with
respect to intraoperative C-arm images. It takes advantage of a continuous image model made of cubic B-splines to
accurately compute a series of simulated C-arm images for their comparison with the given C-arm images, along with
the gradients needed for the optimization. The registration is accelerated by a method called projective integration
that benefits from performing interpolation in 2D instead of 3D.
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We have validated our algorithm in a controlled simulation environment where the true alignment is known a
priori. This makes possible an objective evaluation of the quality of the registration. The algorithm was successful
for each one of the 100 tests we performed and resulted in a subpixel performance of about a tenth of a pixel.

In the future, we plan to extend these results by evaluating our algorithm with true C-arm images. Moreover, we
will integrate the present algorithm into a multiresolution approach, which should enhance speed and robustness.

Different multiresolution schemes have been applied for 3D/2D registration purposes. For example, Penney et
al.1* were using fluoroscopy images of a spine phantom reduced by blurring in order to register them with the CT
image of the phantom; at each resolution level, the reduced fluoroscopy images were compared with the reduced 2D
projections of the CT volume.

Two multiresolution strategies can be considered. The first one is based on computing a 3D pyramid for the CT
volume on one hand, and a series of 2D pyramids for each of the given C-arm images on the other hand. During
optimization, the simulated C-arm images would be projected from the relevant level of the CT pyramid. The other
approach is to keep the full CT and to compute pyramids only for the given C-arm images. During optimization,
every simulated projection would be first computed at full scale before to be reduced to the relevant resolution level.
We expect the first approach to be faster but less accurate than the second one. Both approaches will be explored
in our future work.
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