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Thèse No 2901 (2003)
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et acceptée sur proposition du jury:

Prof. Hannes Bleuler, président

Prof. Michael Unser, directeur de thèse
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Prof. José Maŕıa Carazo, rapporteur

Prof. Lutz-Peter Nolte, rapporteur
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Abstract

This thesis focuses on the rigid-body registration of a three-dimensional model
of an object to a set of its two-dimensional projections. The main contribution
is the development of two registration algorithms that use a continuous model
of the volume based on splines, either in the space domain or in the frequency
domain. This allows for a well-defined gradient of the dissimilarity measure,
which is a necessary condition for efficient and accurate registration.

The first part of the thesis contains a review of the literature on volume-
to-image registration. Then, we discuss data interpolation in the space domain
and in the frequency domain.

The basic concepts of our registration strategy are given in the second part of
the thesis. We present a novel one-step approach for fast ray casting to simulate
space-based volume projections. We also discuss the use of the central-slice
theorem to simulate frequency-based volume projections. Then, we consider the
question of the registration robustness. To improve the robustness of the space-
based approach, we apply a multiresolution optimization strategy where spline-
based data pyramids are processed in coarse-to-fine fashion, which improves
speed as well. To improve the robustness of the frequency-based registration,
we apply a coarse-to-fine strategy that involves weights in the frequency domain.

In the third part, we apply our space-based algorithm to computer-assisted
orthopedic surgery while adapting it to the perspective projection model. We
show that the registration accuracy achieved using the orthopedic data is con-
sistent with the current standards. Then, we apply our frequency-based reg-
istration to three-dimensional electron-microscopy application. We show that
our algorithm can be used to obtain a refined solution with respect to currently
available algorithms. The novelty of our approach is in dealing with a contin-
uous space of geometric parameters, contrary to the standard methods which
deal with quantized parameters. We conclude that our continuous parameter
space leads to better registration accuracy.
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Last, we compare the performance of the frequency-based algorithm with
that of the space-based algorithm in the context of electron microscopy. With
these data, we observe that frequency-based registration algorithm outperforms
the space-based one, which we attribute to the suitability of interpolation in the
frequency domain when dealing with strictly space-limited data.



Résumé

Nous nous intéressons à la mise en correspondance rigide d’un modèle
troidimensionnel avec l’ensemble de ses projections bidimensionnelles. La
contribution principale est le développement de deux algorithmes de mise en
correspondance qui utilisent un modèle continu du volume basé sur des splines,
que ce soit dans le domaine spatial ou fréquentiel. Ceci permet de mieux calculer
le gradient de la mesure de dissimilarité, condition nécessaire pour une mise en
correspondance précise et efficace.

La première partie de cette thèse fait le point sur la littérature de la
mise en correspondance de volumes avec des images. Nous parlons ensuite de
l’interpolation de données dans le domaine spatial et fréquentiel.

Les concepts de base de notre stratégie de mise en correspondance sont
donnés dans la deuxième partie de la thèse. Nous proposons une nouvelle
approche rapide en une étape afin de simuler spatialement les projections de
rayons à travers le volume. Nous traitons aussi de l’utilisation du théorème de
la coupe centrale afin de simuler les projections des volumes dans le domain des
fréquences. Ensuite, nous examinons la robustesse de la mise en correspondance.
Afin d’améliorer la robustesse de l’approche spatiale, nous appliquons une
stratégie d’optimisation en multirésolution où les pyramides de données, basées
sur les splines, sont traitées “de l’échelle la plus grossière à la plus fine”, ce
qui accélère aussi le processus. Pour améliorer la robustesse de l’approche
fréquentielle, nous appliquons une stratégie qui implique la mise en place de
poids dans le domaine fréquentiel.

Dans la troisième partie, nous appliquons notre algorithme spatial à la
chirurgie orthopédique assistée par ordinateur, tout en l’adaptant à la projection
perspective. Nous démontrons que la précision de la mise en correspondance
obtenue avec les données orthopédiques est conforme aux résultats standards.
Ensuite, nous appliquons notre mise en correspondance fréquentielle aux
applications en microscopie électronique troidimensionnelle. Nous montrons que
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notre algorithme peut être utilisé pour obtenir une meilleure solution que les
algorithmes disponibles actuellement. La nouveauté de notre approche est de
manipuler les paramètres géomètriques dans un espace continu, contrairement
aux méthodes classiques qui manipulent des paramètres quantifiés. Nous
concluons que notre espace continu de paramètres apporte une meilleure
précision de mise en correspondance.

Enfin, nous comparons la performance de l’algorithme fréquentiel à celle
de l’algorithme spatial dans le contexte de la microscopie électronique. Nous
y observons que l’algorithme fréquentiel de mise en correspondance surpasse
l’algorithme spatial. On peut expliquer ce fait par l’adéquation de l’interpolation
dans le domaine fréquentiel à des données qui sont strictement limitées en es-
pace.
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Philippe Thévenaz, for their support and encouragement throughout all these
four years. I also thank all the other members of the Biomedical Imaging Group
(BIG) who have contributed to the work on this thesis. Special thanks to Arrate
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Chapter 1

INTRODUCTION

This thesis is about the alignment of a 3D model of an object to a set of 2D
projections of the same object. The projections are acquired with a parallel- or
a cone-beam projection geometry (Figure 1.1). The alignment problem can be
formulated as follows: Compute the parameters of the volume pose at which the
reference projection is as similar as possible to the projection that is simulated
using the volume, for each of the given imaging views. In other words, the
goal is to recover the transformation from the coordinate system attached to
the 3D model of the object, that is, the volume coordinate system (V-COS),
to the reference coordinate system (R-COS) (Figure 1.2) in which the reference
projections have been acquired. This problem belongs to the group of 3D-to-2D
registration problems. We will refer to it as volume-to-image registration.

1.1 What is registration?

The registration of two sets of points assumes two steps: 1) the determina-
tion of a geometric transformation between the sets, and 2) the application
of the transformation to one of them, the test set, to align it with the other,
the reference set. The most general transformation between the sets is elastic,
which means that a straight line is mapped onto a curve. If the transformation
preserves the distance between any two points, it is called a rigid-body transfor-
mation. The need for registration exists in many fields like medicine, biology,
robotics, computer vision, pattern recognition, computer graphics, augmented-
reality systems, manufacture [3, 9, 63, 64, 82, 90, 118].

1



Object



Projection 1

Projection 2

(a) A parallel-beam projection is
collected if the rays are parallel.



Object

Projection 1

Projection 2

Source

Source

(b) A cone-beam projection is col-
lected if all the rays meet in one
location.

Figure 1.1: Projections are formed by measuring the total x-ray attenuations
along straight lines through the object. (a) Parallel-beam projection geometry.
(b) Cone-beam projection geometry.

T=?

V-COS

R-COS

Figure 1.2: The goal of volume-to-image registration is to recover the transfor-
mation from the volume coordinate system (V-COS) to the reference coordinate
system (R-COS) in which the reference projections have been collected such that
the simulated projections are as similar as possible to the reference ones.
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Figure 1.3: 3D-to-2D registration problem: Given the desk’s shadow on the
wall at your right, find the pose of the desk.

Image registration techniques align images of same or different dimensional-
ity, the most often two-dimensional (2D) and three-dimensional (3D) data (e.g.,
2D-to-2D, 3D-to-3D, 2D-to-3D, 3D-to-2D). These images may be acquired at
different times, from different sensors, from different viewpoints, or from differ-
ent objects [15, 39, 110]. This thesis is concerned with the techniques for the
3D-to-2D image registration.

1.2 Intuitive 3D-to-2D registration

It is a sunny day. We are in a room with a window and a desk is placed along
a wall as in Figure 1.3. The desk makes a shadow on the wall. Let us now
imagine that someone cleaning the room has moved the desk to some other
place but its shadow on the wall has been captured by some means. Imagine
that we have been assigned the following task: Return the desk to its original
position by matching its actual shadow to the captured one. Obviously, to
make it, we have to come the next day at the same time at which the shadow
has been captured the day before, that is, when there is the same sunlight in
the room. The positioning of the desk, by matching its reference and current
shadows, is an illustration of what we are doing when performing the 3D-to-
2D image registration. In this case, we would return the desk in a few simple
movements, that is, we would only have to shift it and/or to turn it. In a more
complicated case, for instance, of having to position a cat (instead of a desk)
by shadow matching (Figure 1.4), we would have to account for more complex,
free movements of the cat. In the case of the desk, we would therefore perform
a rigid-body registration of the desk to its reference shadow while, in the case

3



(a) Cat at pose 1. (b) Cat at pose 2.

Figure 1.4: 3D-to-2D registration problem: Given a set of cat’s shadows on the
floor, find its pose for each shadow.

of the cat, we would have to perform an elastic registration of the cat to her
reference shadow.

Less hypothetical is the following example of the 3D-to-2D registration prob-
lem: Given a set of pictures of a static toy, find the pose of the camera for each
picture (Figure 1.5). To solve this problem, we can reformulate it as: Given
a set of pictures of a static camera, find the pose of the toy for each picture
(Figure 1.6). These two problems have the same solution. The principle of the
solution is shown in Figure 1.7 and consists of matching the 2D reference and
simulated silhouettes of the toy.

In this thesis, we will consider that we have access to more than just silhou-
ettes. By replacing sunshine by x-rays, we will have access to the interior of the
objects; this will make for richer, but more challenging data.

1.3 Applications of volume-to-image registration

The need for volume-to-image registration arises in many areas. Let us mention
three of them: Computer-Assisted Orthopedic Surgery (CAOS), radiotherapy
treatment, and 3D Electron Microscopy (3D EM).

CAOS [2, 24] assumes the integration of preoperative 3D Computed To-
mography (CT) data [41, 67, 68] into the intraoperative procedure based on
their registration [19, 20, 25, 34, 36, 51, 53, 74, 81, 95, 100, 117] to a set of
intraoperatively acquired images of the patient (Figure 1.8).
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Figure 1.5: 3D-to-2D registration problem: Given a set of pictures of a static
toy, find the pose of the camera for each picture.
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Figure 1.6: 3D-to-2D registration problem equivalent to the one shown in Fig-
ure 1.5: Given a set of pictures of a static camera, find the pose of the toy for
each picture.

Figure 1.7: Solution of the registration problems from Figures 1.5 and 1.6
found by matching the toy’s 2D reference and simulated silhouettes. Left: the
reference silhouette. Middle: the simulated silhouette. Right: the difference
between the reference and simulated silhouette.
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Patient

Fluoroscopy
image 1

SourceSource



Fluoroscopy
image 2

(a) Physical space.

(b) 3D CT representation of the patient.

Figure 1.8: Application of the volume-to-image registration in image-guided
orthopedic surgery. A 3D CT of the patient is aligned to its fluoroscopy (x-ray)
images to display the surgical tools in the 3D CT during the intervention.
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Radiotherapy treatment requires 3D pretreatment planning CT data to be
registered to the prescribed position of the x-ray beam relative to the patient
(Figure 1.9). This is usually done by registering 2D portal radiograph images
acquired during the treatment to the 3D CT data [4, 16, 31, 54, 86, 91].

3D EM [26] yields a 3D reconstruction of a particle from the particle im-
ages (Figure 1.10) whose orientations are unknown and have to be estimated
[21, 30, 32, 37, 52, 71, 73, 79, 93, 111] before applying an algorithm for 3D
reconstruction. Given an earlier 3D reconstruction, the volume-to-image regis-
tration can be used to refine these estimates. A new 3D reconstruction based
on a better estimate of the pose of the particle images should improve on the
previous one.

The first two applications involve a cone-beam projection geometry while
the third one is based on a parallel-beam projection geometry. In this thesis,
we will show the potential of our registration algorithms to be used in two of
the three areas: in orthopedic surgery and in 3D EM.

1.4 Algorithms for volume-to-image registration

We can classify existing volume-to-image registration algorithms in two groups.
One group of algorithms is based on matching features that have first to

be extracted from both the volume and the image. They match either markers
(artificial features) implanted onto the object prior to data acquisition [2, 95],
or anatomical features [19, 20, 25, 34, 35, 36, 53, 100]. The registration based
on artificial markers is not enthusiastically accepted for medical applications
because of its invasiveness.

The registration based on anatomical features requires an accurate segmen-
tation which is difficult to achieve fully automatically. It takes advantage of
an extension of the standard fast Iterative Closest Point (ICP) algorithm for
registration of curves and surfaces. However, the time required for accurate
segmentation makes it unattractive for surgical interventions. An additional
disadvantage is a low robustness against a partial data problem (presence of a
feature in one imaging modality and absence in the other).

Neither of the two approaches can be applied for electron-microscopy data
registration since the true 3D structure is not known in that application. Feature
extraction makes therefore no sense there.

Projection-based registration methods form the other group [16, 21, 37, 51,
54, 74, 75, 81, 83, 86, 93, 116, 117]. In principle, all methods of this group
achieve the registration by matching (Figure 1.11) a set of reference images to

8



 Patient

Radiograph 1

SourceSource

Radiograph 2

(a) Physical space.

(b) 3D CT representation of the patient.

Figure 1.9: Application of the volume-to-image registration in radiotherapy. A
3D CT of the patient is registered to its radiograph (x-ray) images to compute
the pose of the patient during the treatment.
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Cryo-EM
image 1

Cryo-EM
image 2

Cryo-EM
image 3

Particle

(a) Physical space.

(b) 3D tomographic representation of the particle.

Figure 1.10: Application of the volume-to-image registration in 3D EM. A 3D
model of the particle is registered to its Electron Cryo-Microscopy (Cryo-EM)
images to refine their poses such that a more accurate particle model can be
reconstructed.
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their simulations. The simulations are traditionally computed by integrating
the volume intensities along simulated rays through the volume (Figure 1.12).
In general, these methods require little or no segmentation. The matching is
done by optimizing a measure of similarity between the reference images and
their simulations. If they are based on an iterative optimization procedure that
uses an initial estimate for the unknown parameters, their robustness depends
on the quality of the estimate. When significantly close to the solution initially,
they promise a high accuracy because they are using a large amount of data.
Their speed decreases with an increase in data size. Among all volume-to-
image registration methods, the projection-based approach is most attractive
for surgical interventions because of its non-invasiveness and accuracy. Since it
does not require feature extraction, it can be used for electron-microscopy data
registration as well.

This thesis proposes two novel projection-based methods for their applica-
tions in orthopedic surgery and electron microscopy.

Minimize dissimilarity

 Images

Simulated
images

Volume projections

Volume



Volume pose

Figure 1.11: Diagram of the projection-based method for volume-to-image reg-
istration.

11



3D particle
model

Simulated Experimental

Particle projection



Ray casting through the volume

Figure 1.12: Ray casting. Left: Illustration of the method of simulating 2D
projections of an object by casting the simulated (in this example, parallel-
beam) rays through a 3D model of the object. Right: simulated and measured
(experimental) projections of a protein.

1.5 Projection-based registration: State of the art

1.5.1 Geometric transformation

Projection-based registration in all three data cases, orthopedic, radiotherapy,
and electron-microscopy, means the determination of the rigid-body transfor-
mation from the V-COS to the R-COS such that the simulated projections are
as similar as possible to the reference ones [16, 21, 37, 51, 54, 74, 75, 81, 83, 86,
93, 116, 117].

1.5.2 Similarity measure

Penney et al. [75] have compared the accuracy of the registration of a 3D CT to a
fluoroscopy image of a spine phantom when using one of six selected similarity
measures. The ground-truth registration was determined by fiducial markers
implanted on the specimen before the data acquisition. They reported pattern
intensity [117] and gradient difference as being able to register accurately and
robustly, even when soft tissues and interventional instruments were present in
the fluoroscopy image. They found mutual information to be the least accurate
of the six similarity measures.

Lemieux et al. [54] propose to register a 3D CT to two radiographic images
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by optimizing a cross-correlation-based cost function at the beginning, and a
gradient-based cost function at the final stage of the registration. With the
same goal, Brown and Boult [16] maximize gradient correlation between the
original and the simulated radiographs.

Similarly, the cross-correlation [73, 93] and the mean-squares dissimilarity
measure [37] have been used to compute the similarity between the reference
image and the volume projections for 3D EM.

The reference image and the projection of the volume may have different
intensity ranges. Brown and Boult [16] explore the physical relationship between
CT and radiograph measurements. They apply this relationship and correct the
radiographs to improve the accuracy of their registration to the CT volume.

Penney et al. [75] propose to use a suitable intensity scaling factor as part of
the similarity measure to adapt the intensity range of a CT-volume projection
to that of a fluoroscopy image.

In this thesis, for simplicity purposes, we shall select the similarity measure
to be the least-squares difference between the reference projections and their
simulations after normalizing their respective intensity ranges.

1.5.3 Domain of the volume interpolation

Volume projections can be computed in two ways. One, which we mentioned
already, is based on casting rays through the volume and requires interpolation
of the volume in real space. The other is suited to the parallel-beam geometry
and is based on the Central Slice Theorem (CST). It therefore requires inter-
polation in the transform domain. The CST results in the 2D transform of a
projection of the volume being obtained by extracting the corresponding slice
through the origin of the 3D transform of the volume. The orientation of the
slice is such that it is perpendicular to the projection direction. The CST for
the Fourier Transform (FT) is illustrated in Figure 1.13.

Real space

The projection of a volume by ray casting creates artificial edges and gradients
due to the finite size of the volume, that is, due to the inequal lengths of the
rays through such a volume. This problem does not occur in the real, collected
images since the object that is imaged is treated as having an infinite extent.
Lemieux et al. [54] and Penney et al. [75] propose to reduce the effect of the
artificial edges by discarding some rays that produce them.
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Figure 1.13: Central slice theorem for the Fourier transform.
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Some methods have been proposed for the fast computation of the projec-
tions in real space [51, 83, 116]. They are based on ideas from computer graphics.
The method called shear-warp factorization [116] consists of two steps. In a first
step, an intermediate image is computed. The volume, resampled to a higher
resolution, is projected using nearest-neighbor interpolation in-slice only. The
second step relies on the linear interpolation of the intermediate image to obtain
the final projection. Light fields, a technique to parameterize the set of all rays
that emanate from a static scene, allow most of the computation to be per-
formed in a preprocessing step [51, 83]. Using a light field generated for a set of
volume projections, one can compute the other projections by interpolating the
four-dimensional space of the prestored rays. These projections appear visually
identical to those computed by the traditional ray casting [83].

In this thesis, we shall use ray casting to compute the volume projections
for the space-based volume-to-image registration. We shall simulate ray-length
equalization by projecting the volume from which the mean value has been
subtracted. We shall use a novel one-step approach for fast ray casting called
shearing that consists of replacing 3D interpolation of the volume by 2D inter-
polation.

Transform space

The CST has been used for high-speed volume rendering [18, 23, 96]. Dunne et
al. [23] apply the CST for the FT (FT-CST) while Theussl et al. [96] imple-
ment the CST for the Hartley Transform (HT-CST). A family of algorithms for
generating realistically shaded renderings of a volume using the FT-CST has
been proposed in [55].

The FT-CST has been widely employed for reconstructing an object from its
projection images [45, 48]. A reconstruction algorithm based on the HT-CST
has been proposed in [66]. Imiya [44] uses the CST adapted to the exponential
x-ray transform for the direct reconstruction of 3D images from line integrals
of the emission type. Norton [70] benefits from the FT-CST for tomographic
reconstruction of 2D vector fields with applications to flow imaging. Munson et
al. [65] rely on the FT-CST to reconstruct images from the spotlight-mode
synthetic-aperture radar that synthesizes high-resolution terrain maps using
data gathered from multiple observation angles. The FT-CST is applied to
reconstruct crosswell seismic direct-arrival traveltime tomograms in [80].

The CST has also been used for some other purposes. The FT-CST has
been applied to synthesize a new x-ray image from a set of images exposed from
a circular orbit above the patient that is identical in projection to a previous
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x-ray image [17]. In 3D EM, some methods employ the FT-CST to determine
the 3D pose of the particle images for a first 3D reconstruction of the particle.
These methods [32, 52, 77, 111, 114] require no data interpolation.

In this thesis, we shall apply the FT-CST to compute the FTs of the volume
projections for the frequency-based volume-to-image registration.

1.5.4 Interpolation kernel

Given some equidistant samples of a function, the ideal reconstruction kernel is
the sinc function. However, this function is not acceptable in practice due to
its slow decay. Thus, it is traditionally replaced by some approximation with
faster decay. We show in Figure 1.14 some of these approximations. To compute
the projections of a volume by ray casting, one usually interpolates the volume
using linear interpolation [16, 54, 89]. To compute the projections by applying
the FT-CST or the HT-CST, beside the linear interpolation [23], the Hamming
windowed sinc function [96] and the technique of the Projection on Convex Sets
(POCS) [33, 58] have been proposed.

POCS allows to create reconstruction functions that are truly limited in the
frequency domain and that have a small amplitude outside some region in the
space domain. It is based on an iterative procedure that chops off the tails
of the transformation of the reconstruction function in the frequency domain
and in the space domain, alternatively. This procedure starts with a Hamming-
windowed sinc function in the frequency domain, iterates until the change from
one iteration to the next is below some threshold, stopping with the truncation
in the frequency domain.

Scaling functions of biorthogonal wavelets have been examined as recon-
struction filters for frequency-domain volume rendering. It has been shown that
their use reduces aliasing artifacts while maintaining efficiency [33].

In this thesis, we shall use splines for the volume interpolation in real space as
well as in the domain of the FT, since these functions can lead to an analytically
differentiable similarity measure. We shall select the spline degree such that
we achieve a good tradeoff between the computational speed and interpolation
quality.

1.5.5 Optimization algorithm

Different methods have been used to optimize the similarity measure such as
the exhaustive-search technique [73, 93], Powell’s multidimensional direction-set
method [16, 54], and gradient-descent-type search techniques [74, 75].
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Figure 1.14: The sinc function and some of its finite-extent approximations (op-
timal Keys’ cubic interpolant, the triangle function for the linear interpolation,
and the rectangular pulse for the nearest-neighbor interpolation).

In this thesis, we shall employ a Levenberg-Marquardt (LM) optimizer since
we have chosen to use an analytically differentiable least-squares similarity mea-
sure.

1.5.6 Size of the search space

A search within a continuous space of parameter values is commonly done in
medical applications of volume-to-image registration [16, 54, 74, 75, 116, 117].
However, in 3D EM, a great number of images is usually processed. To reduce
the time required for processing all particle images, one commonly does the
search within a space containing discretized parameter values [73, 79, 93]. These
methods are in general based on building a discrete set (library) of volume
projections that are evenly distributed in space, and on matching the reference
images to the library. An example of using a library of projections in medical
applications is the method that has been proposed in [86] for registering a 3D
CT to portal images. Another example is the iterative algorithm proposed in
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Figure 1.15: Multiresolution volume/image pyramids.

[37] which computes the projections of a volume at nine poses in the vicinity of
the pose estimate from the previous iteration, and which determines the most
similar projection to the reference image.

In this thesis, we shall deal with a continuous space of parameters in all cases
since this yields a more accurate registration.

1.5.7 Multiresolution strategy

To improve the robustness against local optima of the similarity measure, the
registration of a volume to a set of images is very often performed iteratively at
multiple resolutions. Data of a lower resolution are usually obtained by blurring,
using an averaging filter, and by their subsequent subsampling [54, 74, 75, 117].

In [54], a multiresolution pyramid of the volume was not computed explicitly
but the projections of a lower resolution were computed by simply reducing the
sampling rate along each ray through the volume, which introduces aliasing. A
multiresolution pyramid of a region of interest extracted from the images and
from the volume has been used in [75] and [117].

The method proposed in [93] computes the similarity between the reference
images and the the library of volume projections based on their wavelet trans-
form.

In this thesis, we shall use multiresolution volume/image pyramids (Fig-
ure 1.15) for the space-domain registration to make it more robust as well as to
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speed it up. To improve the robustness of the frequency-domain algorithm, we
shall benefit from a multiresolution, frequency-domain weighting of the similar-
ity measure.

1.6 Contributions of the thesis: Summary

We develop here two novel algorithms for projection-based registration: space-
based and frequency-based. Both algorithms are based on the LM iterative
minimization of a least-squares dissimilarity between reference and simulated
projections. The main novelty of our algorithms comes from the use of splines
for volume interpolation in both the space domain and the frequency domain.
We often use cubic splines. One advantage of using a cubic-spline data model is
the possibility of having the gradient of the dissimilarity measure well-defined
everywhere, which is a necessary condition for accurate registration.

We apply ray casting to compute the volume projections for the space-based
registration. To speed up the computation, we introduce a novel one-step ap-
proach for fast ray casting that consists of replacing a 3D interpolation of the
volume by a 2D interpolation. We reduce the effect of the unequal ray lengths
by mean removal and variance normalization of the volume.

The frequency-based algorithm relies on the CST to compute the simulated
projections in the FT domain for their comparison with the FTs of the reference
projections.

To improve the robustness and the speed of the space-based algorithm, we
take advantage of a coarse-to-fine processing of spline data pyramids. To im-
prove the robustness of the frequency-based algorithm, we employ a frequency-
domain weighting of the dissimilarity measure.

To achieve a more accurate registration, we deal with a continuous space of
parameters in both the space-based approach and the frequency-based approach.
This is a novelty in 3D electron-microscopy applications since the standard
methods are based on a discretized space of parameters.

We have tested our algorithms for their applications in CAOS and in 3D EM.
We have observed that the registration precision achieved using the orthopedic
data was within the current standards. We have shown that our algorithm could
be used in electron microscopy to refine the solution obtained by the standard
algorithms.
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1.7 Organization of the thesis

The data model is described in Chapter 2. The basic concepts of our spline
projection-based registration in real space and in the frequency domain are pre-
sented in Chapter 3. The details of the space-based algorithm suited to the
problem of registration of CT/C-arm orthopedic data are shown in Chapter 4,
along with a validation study involving simulated data as well as real ortho-
pedic data. The details of the frequency-based algorithm suited to the prob-
lem of registration of electron-microscopy data are given in Chapter 5, along
with a validation study involving simulated data as well as real Electron Cryo-
Microscopy (Cryo-EM) data. In Chapter 6, we compare the performance of the
frequency-based algorithm to that of the space-based algorithm in the context of
electron-microscopy registration problem. Chapter 7 contains conclusions and
possible extensions.
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Chapter 2

DATA MODELS

In this thesis, we have to interpolate volumetric data in the space domain as
well as in the frequency domain. The theory of interpolation in real space and
in the frequency domain is given in Section 2.1. First, we give a description of
the traditional interpolation, although, we only use the generalized interpola-
tion which is described in the second part of Section 2.1. More specifically, we
use splines for interpolation; the corresponding data model is described in Sec-
tion 2.2. For simplicity reasons, we consider only one-dimensional (1D) signals
here. A generalization to more dimensions is straightforward and is presented
in Section 2.2.6.

2.1 Interpolation and aliasing

2.1.1 Traditional interpolation

Real space

A continuously-defined function g can be reconstructed from the discrete sam-
ples fk = f(kT ) of a function f (where T is the sampling step) as follows:

g(t) =
∑

k∈Z

fk ϕint(
t

T
− k), ∀t ∈ R, (2.1)

where ϕint is an interpolating reconstruction kernel which vanishes for all integer
arguments except at the origin, where it has the value one [42, 97]. In this case,
we have the desirable property that gk = fk.
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Figure 2.1: Sinc interpolation in the space domain that corresponds to the
extraction of a single copy of the spectrum by looking through a rectangular
window in the frequency domain.

Let us apply the FT to both sides of (2.1). We obtain

ĝ(ω) = |T |ϕ̂int(ωT )
∑

k∈Z

f̂(ω − 2πk

T
), ∀ω ∈ R, (2.2)

where f̂ , ĝ are the FT of f , g, and where ϕ̂int is the FT of ϕint. We accept
without further discussion that these FTs exist and are well-defined.

On the right side of (2.2), the term multiplying ϕ̂int(ωT ) is a 2π
T -periodic

function in ω. To avoid aliasing, we have to choose ϕint so that ϕ̂int(ωT ) picks

up only one copy of f̂ from the replicas on the right. This is possible if two
conditions are satisfied: 1) replicas do not overlap, and 2) ϕ̂int(ωT ) has a support
shorter than 2π

T . To prevent the overlapping of the replicas, it is sufficient to
limit the frequency content of the signal f to the range (−ωmax, ωmax), where
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ωmax ≤ π
T .

A classical example of the function ϕint is the sinc function, in which case we
extract a single copy of the spectrum corresponding to k = 0 by looking through
a rectangular window of length 2π

T (Figure 2.1). In this case, we achieve that
f = g, a.e. (almost everywhere)

Frequency space

Let us now suppose that we have been given the samples x̂n = x̂(nΩ) of the FT
of a signal x(t) where Ω is the sampling step in the frequency domain. We can
reconstruct some continuously-defined FT of a signal y(t) as follows:

ŷ(ω) =
∑

n∈Z

x̂n ϕint(
ω

Ω
− n), ∀ω ∈ R. (2.3)

Let us apply the inverse FT to both sides of (2.3). We obtain

F−1{ŷ}(t) = |Ω|F−1{ϕint}(tΩ)
∑

n∈Z

F−1{x̂}(t− 2πn

Ω
), ∀t ∈ R, (2.4)

where F−1 stands for the inverse Fourier transform.
We find, once more, that the reconstruction equation contains a term that is

periodic with the period 2π
Ω . Therefore, the perfect reconstruction characterized

by y = x, a.e., can be obtained when the two following conditions are satisfied:
1) F−1{x̂} is limited in space to the range (−tmax, tmax), where tmax ≤ π

Ω , and
2) ϕint is selected such that F−1{ϕint}(tΩ) has a support shorter than 2π

Ω .
As in the space domain, a classical example of the function ϕint is the sinc

function, in which case, we extract a single copy of F−1{x̂} corresponding to
n = 0 by looking through a rectangular window of length 2π

Ω (Figure 2.2). In
this case, we achieve that ŷ = x̂, a.e.

2.1.2 Generalized interpolation

Real space

The generalized interpolation of the signal samples fk is performed as follows:

g(t) =
∑

k∈Z

ck ϕ(
t

T
− k), ∀t ∈ R, (2.5)
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Figure 2.2: Sinc interpolation in the frequency domain that corresponds to the
extraction of a single copy of the signal by looking through a rectangular window
in the space domain.

where ck are coefficients computed from the samples fk [97] which we describe
next. In general, ck 6= fk. The drawback of using the generalized formulation
over the traditional formulation is adding one more step (the computation of
ck). This drawback is compensated by the gain in quality since this formulation
offers an extended choice of basis functions ϕ that need not be interpolating
anymore. Some of them have better properties than ϕint [97].

Coefficients via digital filtering. Given the signal samples fk, we determine
the coefficients ck of the model (2.5) such that we have exact interpolation for
t = k0T [97], that is, we impose

gk0
= fk0

=
∑

k∈Z

ck ϕ(k0 − k), ∀k0 ∈ Z. (2.6)
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Figure 2.3: Cascade of first-order causal (with poles zi) and anticausal (with
poles z−1

i ) recursive IIR filters for the computation of the coefficients ck used
for the generalized interpolation of the signal samples fk.

Let us introduce p as the discrete version of ϕ, that is, pk = ϕ(k), k ∈ Z. Then,
we can rewrite (2.6) in the form of a discrete convolution

fk0
= (c ∗ p)k0

. (2.7)

The solution for c can be obtained as follows:

ck0
= ((p)−1 ∗ f)k0

, (2.8)

where (p)−1 is the inverse convolution operator that generally does exist for the
cases of interest. The convolution in (2.8) can be implemented by means of a
digital filter. If we assume that ϕ is a symmetric function with finite support,
which is generally the case in image processing, then we write the z-transform
of (p)−1 as

P−1(z) =
1

∑

k∈Z
pk z−k

∝ zn
n∏

i=1

(z − zi)
−1 (z − z−1

i )−1, (2.9)

where (2n + 1) is the number of integer indexes within the support of ϕ, and
where {zi} are n out of 2n poles of (p)−1 that are real and come in reciprocal
pairs. From (2.9), it follows that the filter (p)−1 can be implemented efficiently
using a cascade of first-order causal (with the poles zi) and anticausal (with
the poles z−1

i ) recursive Infinite Impulse Response (IIR) filters [104, 105] (Fig-
ure 2.3).
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Relationship between the traditional interpolation and the generalized inter-
polation. Let us combine (2.5) and (2.8) as

g(t) =
∑

k1∈Z

((p)−1 ∗ f)k1
ϕ(

t

T
− k1) (2.10)

=
∑

k1∈Z

∑

k2∈Z

(p)−1
k2
fk1−k2

ϕ(
t

T
− k1) (2.11)

=
∑

k3∈Z

fk3

∑

k2∈Z

(p)−1
k2
ϕ((

t

T
− k2) − k3). (2.12)

Comparing (2.1) and (2.12), we identify the interpolating basis function ϕint

hidden behind the noninterpolating ϕ as

ϕint(t) =
∑

k∈Z

(p)−1
k ϕ(

t

T
− k). (2.13)

We benefit from the generalized interpolation in the following sense. We use
finite-support functions ϕ to efficiently perform the interpolation that relies on
infinite-support functions ϕint.

Frequency space

The generalized interpolation of the FT samples x̂n is performed as follows:

ŷ(ω) =
∑

n∈Z

dn ϕ(
ω

Ω
− n), ∀ω ∈ R, (2.14)

where dn are coefficients obtained by digital filtering of the samples x̂n using
the same procedure as for the generalized interpolation in the space domain.

2.2 Spline data model

2.2.1 B-splines

The B-spline [88, 97, 102, 103, 104, 105] of degree n, βn, is a center-symmetric,
bell-shaped function (Figure 2.4) generated by the (n+ 1)-fold convolution of a
rectangular pulse β0

βn(x) = β0 ∗ β0 ∗ · · · ∗ β0

︸ ︷︷ ︸

(n+ 1) times

(x). (2.15)
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Figure 2.4: Centered B-splines of degree n = 0, 1, 2, and 3.

An explicit formula for βn(x) is given by

βn(x) =

n+1∑

k=0

(
n+ 1
k

)

(−1)kςn
(

x+
n+ 1

2
− k

)

, (2.16)

with ςn(x) = 1
2n! sign(x)xn. Equation (2.16) shows that βn is a piecewise

polynomial of degree n that is continuously differentiable up to order (n − 1).
Similarly, causal B-splines are given by

βn
+(x) =

n+1∑

k=0

(
n+ 1
k

)

(−1)kςn (x− k) . (2.17)

For illustration purposes, we show in Figure 2.5 the spline interpolating
kernels of degree n = 1 and 3 as well as the sinc function. In Figure 2.6, we
show the frequency response of the spline interpolators of degree n = 1 and 3
compared to the frequency response of the ideal low-pass filter. It has been
proved that the spline interpolators tend to the ideal low-pass filter as their
degree increases [1].
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Figure 2.5: The spline interpolators of degree n = 1 (linear) and n = 3 (cubic)
as well as the ideal sinc interpolator.
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Figure 2.6: Frequency response of the spline interpolators of degree n = 1
(linear) and n = 3 (cubic) compared to that of the ideal low-pass filter.
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2.2.2 Order of approximation

Let fT be the function that has been reconstructed from the samples of a func-
tion f , that is, fT (x) =

∑

k∈Z
ck ϕ( x

T − k). We can define the error of ap-
proximation of f by fT using the mean-square norm: ε2(T ) = ‖f − fT ‖2

L2
=

∫∞

−∞
(f(x) − fT (x))2 dx. A prediction of this approximation error can be ob-

tained using the formula: η2(T ) = 1
2π

∫∞

−∞
|f̂(ω)|2E(ωT ) dω [11, 12, 13]. The

interpolation error kernel E depends on the basis function only. For bandlimited
functions, we have that ε is equal to η, and the prediction is exact in this case.

The kernel E must vanish at the origin to ensure that the approximation
error vanishes for T = 0. The vanishing rate is controlled by two properties of
the basis function ϕ: the approximation order L and the approximation constant
C > 0. They determine η as follows:

η(T ) = C TL ‖f (L)‖L2
as T → 0, (2.18)

where f (L) is the L-th derivative of f . This means that the error predicted by
η decreases like TL as T → 0. The higher is L, the faster is the decay of the
approximation error for the same, sufficiently small T . Also, the smaller is C,
the smaller is the approximation error. However, the decay of the approximation
error is dominated by TL for T ≤ C which is very often the case. Therefore, C
is used for ranking the basis functions of identical approximation order L [97].
See [97] for a systematic overview of standard basis functions.

It turns out that the approximation order (and the support) of a B-spline of
degree n is equal to L = n + 1 [97]. The B-splines are shown to be maximally
continuous basis functions, with the minimal support for a given order of ap-
proximation, and with the maximal order of approximation for a given support
[10]. Cubic B-splines (n = 3) offer a good tradeoff between the computational
cost and the interpolation quality. They are the functions that we are most
often using.

2.2.3 m-scale relation

An interesting property of the causal B-splines of degree n is them-scale relation
[102]

βn
+(x/m) =

∑

k∈Z

hm(k) βn
+(x− k), (2.19)
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Figure 2.7: Two-scale relation for the centered B-spline of degree 1. From [102].

which says that a causal B-spline of degree n dilated by m is a linear combi-
nation of causal B-splines of same degree, with discrete weights hm(k) whose
z-transform is

Hm(z) =
1

mn

(
m−1∑

k=0

z−k

)n+1

. (2.20)

This relationship holds for any positive integer m. A similar m-scale relation
exists for centered B-splines if n and m are not both even [107]. If they are
both even, additional shifts of the B-spline must be considered [99]. The m-
scale relation of B-splines makes a basis for building spline multiresolution data
pyramids [14, 106] that are in a close connection with spline wavelets [107].
An illustration of the two-scale relation for centered linear B-splines is given in
Figure 2.7. We take advantage of the m-scale relation for multiresolution in the
space domain.

2.2.4 First derivative of the B-splines

The B-splines are easy to manipulate and one of their interesting properties is
that their derivatives can be computed recursively [102], starting with

d

dx
βn(x) = βn−1

(

x+
1

2

)

− βn−1

(

x− 1

2

)

. (2.21)

For n ≥ 2, we have the guarantee that d
dxβ

n(x) is continuous, which is not
the case if n = 0 or n = 1. The first derivatives of the centered B-splines of
degree n = 0, 1, 2, and 3 are shown in Figure 2.8. We make use of the first
derivative of the B-splines while optimizing the similarity measure. We use
cubic B-splines since they offer a good tradeoff between the continuity of their
first derivatives and the computation time.

30



-4 -3 -2 -1 0 1 2 3 4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
n=0
n=1
n=2
n=3

Figure 2.8: The first derivatives of the centered B-splines of degree n =
0, 1, 2, and 3.

2.2.5 Separability

A D-dimensional B-spline of degree n is defined as the separable function

βn(x) =

D∏

j=1

βn(xj), ∀x = (x1, x2, . . . , xD) ∈ R
D. (2.22)

This separability property makes possible some operations on D-dimensional
data to be performed by a successive processing of 1D data along each of the D
dimensions. In return, the data processing is simple and fast. We take advantage
of the B-spline separability for a faster interpolation of our 2D and 3D data.

2.2.6 Model

Assuming that T = 1, the space-domain model (2.5), extended to D-dimensions
and based on B-splines, is

g(x) =
∑

k∈ZD

ck β
n(x− k), ∀x ∈ R

D. (2.23)

31



Similarly, assuming that Ω = 1, the frequency-domain model (2.14), ex-
tended to D-dimensions and based on B-splines, is

ŷ(ω) =
∑

n∈ZD

dn β
n(ω − n), ∀ω = (ω1, ω2, . . . , ωD) ∈ R

D. (2.24)

We use the model (2.23) to interpolate data samples in the space domain,
while the model (2.24) is applied to interpolate data samples in the frequency
domain.

2.2.7 First derivative of the model

We write the gradient of the model in the space domain as

∇g(x) =
∑

k∈ZD

ck ∇βn(x − k), ∀x ∈ R
D. (2.25)

The gradient of the model in the frequency domain is

∇ŷ(ω) =
∑

n∈ZD

dn ∇βn(ω − n), ∀ω ∈ R
D. (2.26)

Our space-domain optimization of the similarity measure relies on the gradi-
ent (2.25), while our frequency-domain optimization makes use of the gradient
(2.26).

2.3 Spline data pyramids

In the multiresolution theory, one usually considers scaling factors that are
powers of two, that is, m = 2i.

Let us suppose that ϕ(x/2i − k) are the basis functions at the scale 2i (ϕ
enlarged by 2i and spaced accordingly), and that V2i = spank{ϕ(x/2i − k)}
is the corresponding subspace of the space L2. Let fi ∈ V2i be the minimum
least-squares error approximation of a signal f ∈ L2 at the scale 2i

fi(x) =
∑

k∈Z

c2i(k)ϕ(x/2i − k). (2.27)

The m-scale relation for m = 2 implies the nestedness of the subspaces:
V1 ⊃ V2 ⊃ · · · ⊃ V2i . . . . Thanks to this property, the coefficients c2i(k) can be
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Figure 2.9: A two-level cubic-spline L2 C-arm image pyramid. See the text for
details.

computed iteratively using a prefilter h̊(k) and a down-sampling by 2 [102]

c2i(k) = (̊h ∗ c2i−1)(2k). (2.28)

Using the two-scale relation, the filter h̊(k) can be expressed in the inner-product
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form

h̊(k) = 〈ϕ(· + k), ϕ̊(·/2)〉, (2.29)

where ϕ̊ is the dual of ϕ, which means that ϕ̊ satisfies the bi-orthogonality
condition 〈ϕ̊(· − k), ϕ(· − l)〉 = δk−l, where δ is the Kronecker delta. In case
of multidimensional data, the coefficients c2i(k) are obtained by successive 1D
filtering and decimation of the data along each of the dimensions.

A two-level L2 cubic-spline image pyramid is shown in Figure 2.9. For illus-
tration, the C-arm image was reduced twice and both coarse versions expanded
back to the original image resolution. At the end, these expanded images were
subtracted from the original image. The difference images are shown as well;
the fact that they are essentially featureless is a testimony to the quality of the
pyramid.

We use L2 spline volume and image pyramids for space-domain multireso-
lution. Again, we create the pyramids based on cubic splines since they offer a
good tradeoff between the computation time and approximation quality.
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Chapter 3

SPLINE
PROJECTION-BASED
REGISTRATION:
BASIC CONCEPTS

In this chapter, we describe at the same time our space-based and frequency-
based algorithms for volume-to-image registration.

We estimate the pose µ of the volume in the reference coordinate system (R-
COS) with respect to the reference projections by refining an initial volume pose.
Figure 3.1 shows a simplified block-diagram of both the space-based approach
and the frequency-based approach. The input data for the algorithms are: 1)
the volume, 2) the reference projections, 3) the projection-model geometrical
data, and 4) the initial volume pose. The algorithms achieve the registration
by iterative minimization of the dissimilarity between the reference projections
and the simulated projections or between their respective FTs.

Error-free (sinc-based) interpolation in the FT domain can be achieved if
the data are space-limited (Section 2.1.1), which is not always the case. To
interpolate the data in the FT domain accurately enough, we assume that they
are nearly space-limited. To enforce this assumption, we apodize the input vol-
ume and images by Gaussian windows with the appropriate standard deviations
which should be selected by the user. In principle, they should not be smaller

35



Minimize dissimilarity



Images

Simulated
images

Compute projections

Geometric
parameters



µ

Processing

Volume

Processing

Figure 3.1: Our algorithm for volume-to-image registration.

than half of the object size. Note that the “Processing” blocks in Figure 3.1
stand for the Gaussian-window data apodization followed by the computation
of the FTs in the case of the frequency-based registration. In the case of the
space-based registration, these blocks perform the normalization of data inten-
sities.

For simplicity, we describe the two registration algorithms using a parallel-
beam projection geometry. We extend these ideas to a cone-beam geometry in
Chapter 4.

We start this chapter with the definition of the volume pose, which can be
defined in many ways. Here, we use a parameterization that is standard in 3D
EM (Section 3.1). The optimization problem is described in Section 3.2. The
least-squares criterion to optimize is given in Section 3.3. The ray casting used
to compute the volume projections, as well as the CST-based method used to
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compute the FTs of these projections, are explained in Sections 3.4 and 3.5,
respectively. The multiresolution strategies for space-domain and frequency-
domain registrations are investigated in Section 3.6. The LM algorithm, a
gradient-based optimizer, is presented in Section 3.7.

3.1 Volume pose

We define the volume pose µ = (µ1, µ2, ..., µ6) in the R-COS by three rotations
and three translations of the volume. Let us denote the system of 3D voxel
indexes n = (n1, n2, n3) ∈ R

3 by the voxel coordinate system (V-COS) and the
system of 2D pixel indexes k = (k1, k2, 1) ∈ R

2 × {1} by the pixel coordinate
system (P-COS). We rotate the volume by applying a 3×3 rotation matrix R to
the V-COS coordinate of each voxel of the volume. This matrix is determined
by three Euler angles: ϕ, θ, and ψ, that is, R = Rz(ψ)Ry(θ)Rz(ϕ), where Rx(α)
indicates the matrix of rotation around the x-axis by the angle α. We translate
the volume by shifting the V-COS coordinate of each voxel of the volume by a
vector t = (∆x,∆y,∆z), where ∆x, ∆y, and ∆z are translations along the x-,
y-, and z-axes. We transform the V-COS coordinate of a point of the volume,
n, into its corresponding P-COS coordinate, k, as k = HΛ(Rn + t) + (0, 0, 1),
where Λ is a scaling 3×3 diagonal matrix that accounts for a possible difference
between the physical sizes of the pixels and the voxels, and H projects a 3D

vector onto the xy-plane, that is, H =





1 0 0
0 1 0
0 0 0



. Note that the transposed

matrix is H> = H. Similarly, we transform the P-COS coordinate of a point
inside the image, k, into a line of corresponding V-COS coordinates, n0 + ξn,
where ξ ∈ R is some free scalar parameter, with n0 = R−1(Λ−1k − t) and
n = R−1Λ−1(0, 0, 1).

3.2 Optimization problem

We compute the pose of a volume µ with respect to a set of its reference pro-
jections by minimizing a real-valued function S of N variables µi, i = 1, 2, ..., N
that we refer to as the cost function. Let us write the solution of this problem
as

µ
∗ = arg min

µ
S(µ). (3.1)
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We say that this problem is unconstrained since we impose no conditions on µ

and assume that S is defined for all µ. µ
∗ can be a local minimizer (S(µ∗) ≤

S(µ) for all µ near µ
∗), or a global minimizer (S(µ∗) ≤ S(µ) for all µ) [49].

Let us consider the case of a twice-continuously differentiable cost func-
tion. The necessary conditions for optimality imply that the gradient ∇S(µ) =
(

∂S
∂µ1

, ∂S
∂µ2

, . . . , ∂S
∂µN

)

vanishes and that the Hessian

∇
2S(µ) =









∂2S
∂µ1 ∂µ1

∂2S
∂µ1 ∂µ2

. . . ∂2S
∂µ1 ∂µN

∂2S
∂µ2 ∂µ1

∂2S
∂µ2 ∂µ2

. . . ∂2S
∂µ2 ∂µN

...
...

. . .
...

∂2S
∂µN ∂µ1

∂2S
∂µN ∂µ2

. . . ∂2S
∂µN ∂µN









(3.2)

is positive semidefinite at a local minimizer.

3.3 Cost function

The registration process will be driven by the gradient of the cost function.
Fortunately, the spline data model makes the exact computation of the gradient
possible. We select a least-squares cost function since it results in a simple
expression for the gradient. Besides, least-squares criterions are known to be
good for data fitting (parameter identification), which is our case since we choose
to match the reference projections (or their FTs) to their respective models. In
particular, least-squares are optimal if the data are corrupted by white Gaussian
noise.

Let the reference projection in either of the two domains, the space domain
or the FT domain, be given in a vector form. Let us denote this M -dimensional
vector by p, where M is the number of pixels in the reference projection. Let
us suppose that we have simulated the projection of the volume at pose µ,
which we denote by pµ ∈ R

M . Then, we can compute their dissimilarity as
r(µ) = pµ −p = (r1, r2, . . . , rM ). We propose to solve the registration problem
as a nonlinear least-squares problem, that is, to minimize the cost function

S(µ) =
1

2

Q
∑

q=1

(rq(µ))Hrq(µ), (3.3)

where rq is the dissimilarity for the q-th imaging view, Q is the number of given
imaging views, and where rH denotes the Hermitian transpose of r.
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In our case, we have that QM � N (the problem is overdetermined), which
hints at a robust solution to our registration problem.

3.4 Ray casting

In this section, we describe the method that computes a projection of the volume
by simulating x-rays through the volume.

R-COS

Image plane

k

k2

k1

x

y

z

Volume

Figure 3.2: Parallel x-ray beam geometry.

Given a volume f at pose µ in the R-COS, we cast the simulated rays parallel
to the z-axis through each pixel of the image plane (Figure 3.2). We project
the volume along the ray determined by the unit vector e3 = (0, 0, 1) and the
P-COS coordinate of a pixel k = (k1, k2, 1) as follows:

pµ(k) =

∫

R

f
(
R−1(Λ−1k− t) + ξ R−1Λ−1e3

)
dξ. (3.4)

We rewrite (3.4) as

pµ(k) =

∫

R

f (n0 + ξ n) dξ, (3.5)

where n0 = R−1(Λ−1k − t) and n = R−1Λ−1e3.
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3.4.1 Shears

A direct implementation of (3.5) would require a 3D interpolation of the volume
f at the V-COS coordinate n0 + ξ n. We perform a fast computation of the
projection by replacing the 3D interpolation by a 2D interpolation. We refer
to this method as shearing [46]. The shearing is based on one out of three
well-chosen changes of the integration variable ξ in (3.5). The new integration
variable is selected from one of the following three possibilities ξj , j ∈ {1, 2, 3}

ξj = [n0]j + ξ [n]j −→ dξj = [n]j dξ, (3.6)

where [x]j is the j-th component of the vector x.

After expressing ξ and dξ from (3.6) and their replacement into (3.5), this
equation becomes

pµ(k) =
1

|[n]j |

∫

R

f

(

n0 −
[n0]j
[n]j

n + ξj
1

[n]j
n

)

dξj , j ∈ {1, 2, 3}, (3.7)

which we can condense into

pµ(k) = λj

∫

R

f
(

nj
0 + ξj nj

)

dξj , j ∈ {1, 2, 3}, (3.8)

where λj = 1
|[n]j |

, nj
0 = n0 − [n0]j

[n]j
n, and nj = 1

[n]j
n.

The scaling factor λj determines which one of the three expressions for pµ

will be used to compute the projection. We chose that j for which λj is min-
imum. Since λj does not depend on k, the decision about j is taken once
for all pixels. An example of applying the shearing method for computing a
1D parallel-beam projection of an image is shown in Figure 3.3. The shearing
method adapted to the cone-beam projection geometry is described in Chap-
ter 4.

The phase adaptation proceeds by remarking that we can choose any finite
∆ξj and still write (3.8) as

pµ(k) = λj

∫

R

f
(

nj
0 + (ξj + ∆ξj) nj

)

dξj , j ∈ {1, 2, 3}. (3.9)

We choose ∆ξj such that
[

nj
0 + ∆ξj nj

]

j
= 0, which leads to a discrete version

of (3.8) in which we approximate the integral by a discrete sum and adapt the
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Figure 3.3: Shearing approach to the 1D parallel-beam projection of an image.
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size and the phase of the sampling step along ξj so that only samples of the
volume with one integer and two real coordinates take part in the sum, that is,

pµ(k) ≈ λj

∑

k∈Z

f
(

nj
0 + (k + ∆ξj) nj

)

, j ∈ {1, 2, 3}. (3.10)

Note that, by construction, the evaluation of f requires the interpolation of the
volume at a point with one integer and only two real coordinates. To interpolate
the data, we use the B-spline data model (2.23).

3.4.2 Approximation of the integral by a discrete sum

Let us write the Poisson’s summation formula for a function f

T
∑

k∈Z

f(kT ) =
∑

m∈Z

f̂

(
2π

T
m

)

, T > 0. (3.11)

Recalling that f̂(0) =
∫∞

−∞
f(x) dx, we can rewrite (3.11) as

T
∑

k∈Z

f(kT ) =

∫ ∞

−∞

f(x) dx+
∑

m∈Z\{0}

f̂

(
2π

T
m

)

. (3.12)

Let ε denote the error of the approximation of the integral by a discrete sum

ε =

∫ ∞

−∞

f(x) dx− T
∑

k∈Z

f(kT ) = −
∑

m∈Z\{0}

f̂

(
2π

T
m

)

. (3.13)

If the function f is bandlimited, we have that f̂(ω) = 0 for |ω| > π
T , which

implies that ε = 0. If f is not bandlimited, but can be approximated by a
bandlimited function, for instance one that is based on splines of degree n and
that satisfies |f̂(ω)| ≤ C

|ω|1+n , we have that

|ε| ≤
∑

m∈Z\{0}

C

|2π
T m|1+n

, (3.14)

that is,

|ε| ≤ AT 1+nζ(1 + n). (3.15)

The function ζ is the Riemann zeta function and A is a constant. In this case
the approximation error decays like O(T−1−n).

From Figure 2.6, we can ascertain that the cubic spline model that we chose
corresponds to an almost bandlimited function since it decays like O(|ω|4).
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3.4.3 Artificial edges

In practice, the rays through the volume have finite lengths because of the finite
size of the volume. This means that the limits of the integral in the projection
(3.4) are finite and determined by the intersections of the rays with the volume
facets.

The consequence of the finite, different ray lengths are artificial edges and
artificial gradients in the projection image. They can be avoided in two ways.
One is the normalization of the projection by the in-volume ray length, while
the other is the projections of the volume after having removed its mean value.
We follow the latter approach.

3.5 CST approach

We now describe the method that computes the FT of the projection by a
CST-based extraction of the corresponding central slice of the 3D FT of the
volume.

Let us write the 2D FT of the projection pµ from (3.4)

p̂µ(ω) =

∫

R2

(∫

R

f
(
R−1(Λ−1k − t) + ξ R−1Λ−1e3

)
dξ

)

e−j〈ω,k〉 d2k, (3.16)

where ω = (ω1, ω2, 0) ∈ R
2×{0} is a spatial-frequency vector and where 〈x,y〉 =

x>y stands for the inner product between the vectors x and y.
We rewrite (3.16) as

p̂µ(ω) =

∫

R3

f
(
R−1

(
Λ−1r− t

))
e−j〈ω,r〉 d3r, (3.17)

where r = k + ξ e3.
Let us change the integration vector r by s = (s1, s2, s3) as

s = R−1(Λ−1r − t), d3s = |detΛ−1|d3r. (3.18)

Plugging r and dr from (3.18) into (3.17) yields

p̂µ(ω) = |det Λ|
∫

R3

f (s) e−j〈ω,Λ(Rs+t)〉 d3s, (3.19)

which we rewrite as

p̂µ(ω) = |det Λ|
(∫

R3

f (s) e−j〈(ΛR)>ω,s〉 d3s

)

e−j〈ω,Λt〉, (3.20)
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where the term in parenthesis represents the 3D FT f̂ of the volume f evaluated
at the 3D frequency (ΛR)>ω. The 2D FT of the projection pµ is therefore given
by

p̂µ(ω) = |detΛ| f̂
(
(ΛR)>ω

)
e−j〈ω,Λt〉. (3.21)

Equation (3.21) is a matrix form of the CST suited to our parameterization.
It tells us how we can obtain the 2D FT of a projection at pose µ using the
3D FT of the volume. It comprises the extraction of the central slice at pose
determined by R and Λ from the 3D FT, the slice phase shift determined by
Λ and t, and the slice scaling by |det Λ|. Since we have discrete data at our
disposal, we replace the FT by the discrete FT (DFT). The slice extraction
involves the interpolation of the real and imaginary parts of the 3D DFT of the
volume. We model each part of the complex 3D DFT by a B-spline 3D data
model (2.24).

We make use of the CST approach although it requires data interpolation in
the FT domain. To achieve a more accurate interpolation in the FT domain, we
suppose that the data to deal with are nearly space-limited and we choose the
basis functions for the interpolation such that the aliasing in the space domain
is avoided, as explained in Section 2.1.1.

3.5.1 CST approach vs. ray casting: Speed

The space-based method of volume-to-image registration necessitates one pro-
jection of the volume per iteration. Equation (3.10) requires the volume inter-
polation all the way along the ray through the volume. The cost of computing a
projection of size N×N pixel of the volume of size N×N×N voxel is therefore
O(N3).

The frequency-based method demands the computation of the 3D DFT of the
volume and of the 2D DFTs of the reference projections. They are computed
only once as a part of data preprocessing. The computational cost of a 3D
Fast Fourier Transform (FFT) is O(N3 logN), while the cost of a 2D FFT
computation is O(N2 logN). This approach also demands the extraction of
one central slice of the 3D DFT per iteration. Equation (3.21) requires the

interpolation to be performed at only one point of the real part of f̂ and at only
one point of the imaginary part of f̂ , per image-plane pixel. The computational
cost of the slice extraction is therefore O(N2).

The CST-based simulated 2D data for the dissimilarity evaluation are there-
fore less costly than those obtained by ray casting.
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Figure 3.4: Space-domain multiresolution strategy.

3.6 Multiresolution strategy

The coarse-to-fine data-processing approach is a standard tool for improving
the robustness of optimization algorithms. The data at coarser resolutions are
smoothed versions of the data at full resolution. The registration using data
with no or just a few details augments the chances of reaching the global opti-
mum instead of getting trapped on the way into a local one. The strategies that
are based on reducing the data size speed up the optimization. Different mul-
tiresolution strategies can be developed for both the space- and frequency-based
registration. Here, we propose two that give a good tradeoff between accuracy
and time.

3.6.1 Space domain

Figure 3.4 shows a block-diagram of our space-domain multiresolution strat-
egy. Given a volume and a set of reference images, we propose to precompute
their spline L2 pyramids (Section 2.3). We register the volume to the images
starting from their coarsest resolution. We use the final estimate obtained at
some pyramid level to resume the registration at the next finer one. We repeat
the registration procedure at finer resolutions until we reach a resolution that
provides a good tradeoff between accuracy and time [47].

The cost of an iteration at some coarse data resolution is negligible since we
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have few data to process, and it increases as we go towards finer resolutions.
Consequently, we can afford performing many iterations at coarse resolutions
but only few of them at finer ones. This means that the total time required to
achieve the registration in a multiresolution fashion is much shorter than if we
performed the registration at full resolution.

3.6.2 Frequency domain

Thanks to Parseval’s theorem, the least-squares criterion can also be written in
the Fourier domain.

Let us rewrite the cost function from (3.3) as

S(µ) =
1

2

Q
∑

q=1

M∑

i=1

r̂∗q,i r̂q,i, (3.22)

where r̂q,i = [r̂q(µ)]i and where r̂∗ stands for the complex conjugate of r̂. To
perform the registration in the frequency domain using a multiresolution pro-
cessing, we propose to weight the cost function by the intensity assigned to each
pixel of a 2D weighting function w as follows:

S(µ) =
1

2

Q
∑

q=1

M∑

i=1

wi r̂
∗
q,i r̂q,i, (3.23)

where wi are the components of a vector-form w.
We employ a 2D Gaussian-shape weighting function centered at the origin,

with a tunable standard deviation. This weighting function acts as a low-pass
filter since it rewards lower data frequencies and penalizes higher ones. In
this case, a coarse-to-fine processing can be achieved by increasing the standard
deviation of the Gaussian, which means, by increasing the contribution of higher
frequencies to the cost function. The weighting function for three different values
of the standard deviation of the Gaussian is shown in Figure 3.5. In this work,
we have often used a Gaussian-shape weighting function of size P × P pixels
with the standard deviation P/2.

As we have seen, the registration speed is related to the size of the processed
data. Contrary to the space-domain multiresolution strategy, the frequency-
domain one does not increase the registration speed since it does not reduce the
data size. A reduction could be achieved only by computing a partial sum in
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(3.23), but this would result in a hard-edge filter which would introduce ringing-
associated artifacts, perhaps to the point of creating unwanted additional local
minima.

(a) The standard deviation equal to P/3. (b) The standard deviation equal to P/2.

(c) The standard deviation equal to P .

Figure 3.5: 2D Gaussian as the weighting function for the frequency-domain
multiresolution strategy. Three different values for the standard deviation of
the Gaussian of size P × P pixels (P = 64).
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3.7 Iterative optimization

We can classify existing iterative methods for solving an optimization problem
into two classes. One set of optimizers requires the gradient of the cost function
to be available, either analytically or via a finite difference. The cost function
has to be smooth, and the gradient-based optimizers can fail if the cost function
has discontinuities or irregularities. Another set of optimizers does not require
the gradient. They are used if the gradient is not available or if the cost function
is not smooth enough. The study of optimizers is research-in-progress. As soon
as the cost function is complicated enough, no optimizer is capable of finding
the global optimum, even if some succeed more often than others [49].

We propose to implement a gradient-based optimizer along with a continuous
B-spline volume model (Section 2.2), which makes the cost function (3.3) smooth
and makes the exact computation of the gradients possible.

3.7.1 Gradient-based algorithms

Newton method

This algorithm [8, 49] updates the estimation of the parameters µ for the next,
(k+1)-th iteration, by minimizing the local quadratic model of the cost function
S around the current estimation µ

(k)

J(µ) = S(µ(k)) + ∇S(µ(k))>(µ − µ
(k)) +

1

2
(µ − µ

(k))>∇
2S(µ(k))(µ − µ

(k)).

(3.24)

If ∇
2S(µ(k)) is positive definite, the minimizer exists and is the unique

solution of ∇J(µ) = 0

µ
(k+1) = µ

(k) − (∇2S(µ(k)))−1
∇S(µ(k)). (3.25)

However, if µ
(k) is far from the solution, ∇

2S(µ(k)) could have negative eigen-
values, in which case, the model given by (3.24) does not have local minimizers,
and the algorithm may converge to local maxima or saddle points of (3.24).
There are two potential reasons for this failure: either the Newton direction
fails to be a direction of decrease of S, or the step length is too large. In return,
the Newton method is extremely efficient when near to a minimizer; it converges
quadratically towards it.
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Method of steepest descent

This method [8, 49] updates the current-iteration estimate as follows:

µ
(k+1) = µ

(k) − Γ ∇S(µ(k)), (3.26)

where Γ is a scaling diagonal matrix. Unlike the Newton method, the method of
steepest descent is globally convergent. This means that it does not require the
initial estimate to be close to a local minimizer. However, it does not guarantee
the next estimate to be nearer to a solution than the current one, even if the
latter is very close to a solution. This method may be slow since it converges
linearly. Its success depends on the choice of Γ. One appropriate choice for the
diagonal elements of Γ, γi, i = 1, 2, . . . , N , is γi = ηm, where η ∈ (0, 1) and
m ≥ 0 is the smallest nonnegative integer such that there is a sufficient decrease
in S.

Newton-like method

In this section, we describe a method that achieves the best tradeoff between
the robust but generally inefficient method of steepest descent and the efficient
but not robust Newton method [8, 49].

Let H be a modified Hessian such that the diagonal elements of the true
Hessian are multiplied by a factor λ while its off-diagonal elements are not
changed

[H(µ)]i,j = [∇2S(µ)]i,j (1 + λ δi,j), (3.27)

where δi,j is the Kronecker symbol and i, j ∈ {1, 2, . . . , N}.
Then, the Newton-like optimization algorithm can be described by

µ
(k+1) = µ

(k) − (H(µ(k)))−1
∇S(µ(k)). (3.28)

Equation (3.28) approximates (3.26) for λ → +∞. Similarly, it approximates
(3.25) for λ→ 0. The parameter λ is tuned to provide a smooth transition from
the steepest-descent algorithm (used in the beginning) to the Newton algorithm
(used when approaching to the solution).

Levenberg-Marquardt method

The LM optimization algorithm is defined in [76] as the Newton-like method that
is used with a least-squares cost function; in this case, a specific approximation of
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the Hessian leads to even better convergence properties. For efficiency reasons,
we apply the LM algorithm to optimize the least-squares cost function given by
(3.3). We implement the following expressions for the gradient and the Hessian:

Gradient. The gradient of the least-squares cost function from (3.3) is

∇S(µ) =

Q
∑

q=1

(R
′

q(µ))>rq(µ), (3.29)

where R
′

q is the M ×N Jacobian matrix of rq

[R
′

q(µ)]i,j =
∂rq,i

∂µj
, 1 ≤ i ≤M, 1 ≤ j ≤ N. (3.30)

To determine R
′

q, we compute the first derivative of the spline data model given
by (2.25) for space-domain interpolation, and by (2.26) for frequency-domain
interpolation.

Hessian. The Hessian of the least-squares cost function from (3.3) is given by

∇
2S(µ) =

Q
∑

q=1

(R
′

q(µ))>R
′

q(µ) +

Q
∑

q=1

(R
′′

q (µ))>rq(µ). (3.31)

The second-order term in (3.31) is too costly to be computed in practice.
Besides, the rightmost sum is negligible for small residuals (because the value
of the cost function at a minimizer is small). Also, the influence of the second
derivative terms can be destabilizing in some cases. We thus employ the fol-
lowing approximation of the elements of the Hessian matrix which ignores them
[8, 49, 76]:

∇
2S(µ) ≈

Q
∑

q=1

(R
′

q(µ))>R
′

q(µ). (3.32)

This is known as the Gauss-Newton approximation [8, 49].
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Chapter 4

REGISTRATION OF A 3D
CT TO C-ARM IMAGES

In this chapter, we present an application of our space-based algorithm in CAOS.
This is the registration of a CT volume to a set of C-arm images of a patient
for improved 3D CT-based navigation.

A short overview of navigation methods for CAOS is given in Section 4.1. In
the same section, we discuss the thesis contribution to an improved navigation.

In Section 4.2, we adapt the space-based algorithm described in Chapter 3
to the cone-beam C-arm projection geometry. We also give the details left out
from Chapter 3.

The real CT/C-arm data used for validating of the algorithm are described
in Section 4.3. The validation which is performed in two ways is shown in Sec-
tion 4.4. In both cases, we use volume/image data whose true alignment is
known a priori. This ensures that our validation is objective. First, we test
the performance of the algorithm when registering the CT volume to synthetic,
simulated C-arm images, computed for a known CT pose. This fully controlled
environment allows for a truly objective validation of the quality of our algo-
rithm. Second, we test the performance of the algorithm when registering the
CT volume to a set of real C-arm images based on fiducial markers. As the lo-
cation of these markers is known only within some error margin, the validation
is less objective.
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Figure 4.1: GE LightSpeed Ultra CT scanner.

4.1 Computer-assisted orthopedic surgery

Currently available systems for computer-assisted surgery include robotic and
volume/image-guided procedures. These systems are used in various surgical
fields. Here, we focus on orthopedic surgery [2, 7, 24, 94]. Surgical navigation
means a visualization of the position of surgical tools and implants relative to
the patient (e.g., spine, pelvis) during the intervention. Standard orthopedic-
surgery systems are based on preoperative CT volume-based navigation; they
have been used successfully for spinal pedicle screw insertion, total hip arthro-
plasty, total knee arthroplasty, pelvic osteotomy, and reconstruction of knee
cruciate ligaments [7, 94]. Intraoperative C-arm image-based navigation is a
recently developed technique that has shown promising results in early clinical
trials to perform spinal pedicle screw insertion, distal locking of femoral nails,
and femoral fracture reduction [7, 69]. There have been many attempts to com-
bine good properties of the two methods to achieve an improved 3D CT-based
navigation [2, 34, 36, 51, 53, 74, 81, 100, 117]. One of the contributions of this
thesis is the development of a method for improved 3D CT-based navigation
thanks to a set of intraoperative C-arm images.

4.1.1 3D CT-based navigation

This method offers a display of surgical tools and implants in the 3D CT that is
acquired preoperatively, using a CT scanner (Figure 4.1), and used by the sur-
geon for planning the intervention. CT-based navigation requires a registration
of the CT volume to the patient. This registration is based either on match-
ing points (fiducials implanted onto the subject before acquiring the data, or
anatomical landmarks manually identified on the CT and on the subject), or on
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matching surfaces (matching of the surface extracted from the CT to the surface
data points collected intraoperatively using touch or ultrasonic probes). A very
good characteristic of this method is a possibility of tracking the tools in a 3D
space that provides information about the structure of the object (Figure 4.2).

(a) 3D CT-guided spinal surgery. (b) Typical display: the transversal

(upper left corner), sagittal (upper
right corner), and frontal (lower
left corner) slices of the spine CT
volume.

Figure 4.2: 3D CT-based navigation that provides information about the actual
position of the tools in the transversal, sagittal, and frontal planes, as well as
about any deviation from the original plan (from http://www.medivision.ch/).

Drawbacks of this navigation method are found in the registration part. For
example, anatomical-landmark-based registration is not reproducible, fiducial-
based registration is invasive, and the accuracy of surface-based registration
is affected by the accuracy of the surface extraction and by the quantity and
quality of the intraoperative data collection. We avoid these drawbacks and
proceed instead with the methods of Section 4.1.3.
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Figure 4.3: Siemens ISO-C C-arm.

4.1.2 C-arm image-based navigation

With the type of navigation described in the present section, tools are displayed
in intraoperative images of the patient obtained by a mobile C-arm device (Fig-
ure 4.3) at different viewing angles. These images are displayed on a computer
screen. Computed projections of the tools are displayed in each image (Fig-
ure 4.4). An update rate of 10 Hz enables real-time navigation in up to four
C-arm images simultaneously in [43]. These images are registered to the patient
by tracking the patient and the C-arm image intensifier simultaneously [43, 69]
with a position sensor (Figure 4.5).

A setup for C-arm-image-based navigation has been proposed in [43, 69];
it is the one used in this thesis, and is shown in the upper part of Figure 4.6.
The tool, the patient, and the C-arm image intensifier are equipped with light-
emitting diode (LED) markers that define the local COordinate Systems (COS).
The position of the LED markers is tracked by an optoelectronic camera that
defines the Reference COS (R-COS). The position of the the tip of the tool in the
2D, pixel-based C-arm Image COordinate System (I-COS) is computed through
a chain of coordinate transformations between the local COS. The coordinate
of the tip of the tool vT is first transformed from the Tool COS (T-COS) to the
Patient COS (P-COS). The resulting coordinate is then transformed from the
P-COS to the C-arm image intensifier COS (A-COS). This coordinate is finally
projected from the 3D A-COS to the 2D I-COS using a cone-beam projection
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model.
The advantage of this type of navigation is the availability of C-arm ma-

chines. Thanks to its mobility and easy manipulation, C-arm has become a
standard piece of equipment for orthopedic surgery. However, to compensate
the lack in three-dimensionality (missing C-arm image depth), images at many
different C-arm orientations should be displayed to the surgeon. This is a draw-
back of the method since it involves an augmented radiation dosage of the
surgical staff and of the patient. This thesis contributes to overcoming this
drawback, as described in the next section.

Figure 4.4: The C-arm image-based navigation provides information
about the actual position of the tools in any anatomical region (from
http://www.medivision.ch/). Left: Knee surgery. Right: Tool projection in
a C-arm image of the knee.

Figure 4.5: Northern Digital Optotrak 3020.
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Figure 4.6: Set-up for an improved 3D CT-based navigation.

4.1.3 Improved 3D CT-based navigation

The idea is to develop a strategy for CT volume-based navigation where the
preoperative 3D CT is registered to as few as possible intraoperative C-arm
images of the patient. This registration means a computation of the R-COS
pose of the CT volume with respect to the C-arm images. It makes possible the
display of tools in the CT volume (Figure 4.6).
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Novelties that our algorithm brings. Our algorithm for registering a CT to
C-arm images is projection-based, and therefore, is similar to [74, 75, 116, 117].
Contrary to these previously published methods, ours takes advantage of a con-
tinuous image/volume model based on cubic B-splines for computing the follow-
ing three elements: the projections of the volume, the gradient of the similarity
measure, and the multiresolution data pyramids. In addition, we compute fast
projections in a one-step procedure that does not complicate the optimization of
the similarity measure. In return, the optimization is performed simultaneously
in all unknown parameters.

Given at least two poses of the C-arm image plane in the R-COS, our algo-
rithm computes the pose of the CT volume in the R-COS at which the volume
is in registration with the two C-arm images. In contrast, the C-arm image pose
was unknown (no tracking system) and only one C-arm image was provided in
[74, 75, 116, 117]. The performance of our algorithm is therefore potentially
better than that of [74, 75, 116, 117].

4.2 Registration algorithm

We register a CT volume to a set of C-arm images of a patient using the space-
based algorithm shown in Figure 4.7. The input data for the algorithm are: 1)
the CT volume, 2) the C-arm images, 3) the geometrical data of the cone-beam
C-arm projection model, and 4) the initial volume pose.

4.2.1 Volume pose

In Chapter 3, we defined the volume pose in the customary way of 3D EM. In
this chapter, we define the volume pose as described in [98].

Let n = (n1, n2, n3, 1) be the homogenous 3D index of a point in the volume,
let v = (v1, v2, v3, 1) be the coordinate of this point in the R-COS, and let Bµ

be the transformation from n to v that is determined by the parameters µ of
the volume pose in the R-COS, that is, v = Bµn. We express the volume pose
by the three Euler rotation angles ϕ, θ, and ψ, that are to be performed in the
same way as in [98], and by the three translations ∆x, ∆y, and ∆z. We write
µ = (ϕ, θ, ψ,∆x,∆y,∆z). Given the parameters µ, the voxel size λx ×λy ×λz,
and the 3D index of the volume origin c, we propose to write the transformation
Bµ as follows:

Bµ = TΛC−1RxRyRzC. (4.1)
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µ

Figure 4.7: Space-based algorithm for registering a 3D CT to C-arm images.
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The matrix

C =







1 0 0 − [c]1
0 1 0 − [c]2
0 0 1 − [c]3
0 0 0 1







(4.2)

makes the origin of the volume be the center of rotation. The matrix

Rz =







cos(ψ) − sin(ψ) 0 0
sin(ψ) cos(ψ) 0 0

0 0 1 0
0 0 0 1







(4.3)

rotates the volume by the angle ψ around its z-axis. Similarly,

Ry =







cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1







(4.4)

rotates the volume by the angle θ around its new y-axis, while

Rx =







1 0 0 0
0 cos(ϕ) − sin(ϕ) 0
0 sin(ϕ) cos(ϕ) 0
0 0 0 1







(4.5)

rotates the volume by the angle ϕ around its new x-axis. C−1 shifts back the
index of the volume origin, and

Λ =







λx 0 0 0
0 λy 0 0
0 0 λz 0
0 0 0 1







(4.6)

scales the volume indexes by the voxel size. Finally,

T =







1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1







(4.7)
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Figure 4.8: Cone-beam projection geometry.

translates the volume by ∆x, ∆y, and ∆z along its new x-,y-, and z-axis,
respectively.

The sense of rotation for ϕ, θ, and ψ, has been chosen so as to correspond
to the conventions of a right-handed coordinate system.

4.2.2 Cone-beam projection geometry

We define the pose of the image plane (Figure 4.8) using the R-COS coordinates
of a point p and the two orthonormal unit vectors p1,p2 inside the plane (p1⊥p2,
and ‖p1‖ = ‖p2‖ = 1). Let s be the coordinate of the illumination source in
the R-COS and let px × py be the pixel size.

We propose to use a perspective projection model. Let the projection of a
point, with the coordinate v in the R-COS, onto the image plane, be determined
in the I-COS by a 2D index k = (k1, k2, 0, 1). Given v, we can find k by solving
the non-linear equation

Ak− s

‖Ak− s‖ =
v − s

‖v − s‖ , (4.8)
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where

A = A2A1, A1 =







px 0 0 0
0 py 0 0
0 0 1 0
0 0 0 1






, A2 =







[p1]1 [p2]1 0 [p]1
[p1]2 [p2]2 0 [p]2
[p1]3 [p2]3 1 [p]3

0 0 0 1






.

(4.9)

Note that the two sides of (4.8) are two different ways to express the unit vector
on the ray from the source towards a point in the image plane with the I-COS
index k. Let us denote this unit vector by uk.

4.2.3 Projection

Let us suppose that the volume is sitting between the source and the image
plane. The R-COS coordinate v of any point of the volume on the ray, which
is determined by the unit vector uk, can be expressed as

v = s + ξ uk, ξ ∈ [ak;µ, bk;µ] ⊂ [0, ‖Ak− s‖], (4.10)

where ak;µ and bk;µ stand for the value of ξ at the intersections of the ray with
the volume facets. This coordinate v corresponds to the 3D index in the volume
n = B−1

µ
v.

The cone-beam projection of the volume f (mean-value removed, as ex-
plained in Section 3.4.3) is given by

pµ(k) =

∫ bk;µ

ak;µ

f

(

B−1
µ

(

s + ξ
Ak− s

‖Ak− s‖

))

dξ. (4.11)

We write the projection (4.11) in the following simplified form

pµ(k) =

∫ b

a

f(n0 + ξ n) dξ. (4.12)

This form is identical to (3.5); the difference between the parallel-beam pro-
jection and the present cone-beam projection lies in the value of the variables
given below. In particular, note that n is nonlinear with respect to k.

n0 = B−1
µ

s, n = B−1
µ

Ak−s
‖Ak−s‖ , a = ak;µ, b = bk;µ. (4.13)
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4.2.4 Fast projection

We derive now a fast projection method for the cone-beam projection. This
derivation follows the same path as was indicated in Section 3.4.1 in the context
of a parallel-beam projection. First, we change the integration variable ξ in
(4.12) by the following three variables ξj , j ∈ {1, 2, 3}

ξj = [n0]j + ξ [n]j −→ dξj = [n]j dξ. (4.14)

After expressing ξ and dξ from (4.14), we replace them in (4.12). After some
algebraic manipulations on (4.12), we obtain three expressions for the projection

pµ(k) = λj

∫ bj

aj

f(nj
0 + ξj nj) dξj , j ∈ {1, 2, 3}, (4.15)

where λj = 1
[n]j

, and

nj
0 = n0 − [n0]j

[n]j
n, nj = 1

[n]j
n, aj = [n0]j + a [n]j , bj = [n0]j + b [n]j .

(4.16)

As mentioned in Section 3.4.1, we propose to chose that j for which |λj | is
minimum. Since λj depends on k, we have to chose j for each image pixel,
independently.

We adapt the phase as described in Section 3.4.1. We can choose any finite
∆ξj and still write (4.15) as

pµ(k) = λj

∫ bj−∆ξj

aj−∆ξj

f
(

nj
0 + (ξj + ∆ξj) nj

)

dξj , j ∈ {1, 2, 3}. (4.17)

This leads to the following discrete version:

pµ(k) ≈ λj

∑

m∈Dj

f(nj
0 + (m+ ∆ξj)n

j), j ∈ {1, 2, 3}, (4.18)

where Dj ⊂ Z, and where ∆ξj is chosen such that
[

nj
0 + ∆ξj nj

]

j
= 0. We

note again that the evaluation of f requires the interpolation of the volume at a
point with one integer and only two real coordinates. This means that we have
replaced the required 3D interpolation of the volume in (4.12) by its faster 2D
interpolation. An example of applying the shearing method for computing a 1D
cone-beam projection of an image is shown in Figure 4.9.
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Source

Grid

Image samples (discretization along the vertical axis)

Image samples (discretization along the horizontal axis)

Figure 4.9: Shearing approach to 1D cone-beam projection of an image.

We observe two image regions in this figure. In one, we sample the image
along the horizontal axis, while in the other, the sampling is performed along
the vertical axis. This means that in the 3D-to-2D case we can find image pixels
with the coordinate k for which j is same. This can speed up the implementation
of the projection equation.
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4.2.5 Cost function

We chose to minimize the following measure of dissimilarity between the C-arm
images and the projections of the volume:

S(µ) =
1

2

Q
∑

q=1

1

card(Dq)

∑

k∈Dq

(
pµ;q(k) − Pµ;q

σµ;q
− pq(k) − Pq

σq

)2

, (4.19)

where pq is the q-th C-arm image, pµ;q is the q-th projection of the volume at
pose µ, Dq is an arbitrary mask for the q-th image, and Q is the number of
C-arm viewing angles.

This measure is robust to differences in the intensity range of the C-arm
images and the corresponding projections. The robustness is achieved by nor-
malizing mean-subtracted images by their standard deviations. The mean and
the standard deviation on the domain Dq of the C-arm image are denoted by Pq

and σq, respectively, (Pq = 1
card(Dq)

∑

k∈Dq
pq(k), σ2

q = 1
card(Dq)

∑

k∈Dq
(pq(k)−

Pq)
2). Similarly, Pµ;q and σµ;q denote the mean and the standard deviation on

the domain Dq for the projection, respectively.

4.2.6 Multiresolution strategy

We apply the space-domain multiresolution strategy based on L2-cubic spline
volume/image pyramids to make the algorithm fast and robust, as explained in
Section 3.6.1 .

4.2.7 Fast first derivative of the projection

We write the first derivative of the projection given by (4.17) with respect to
the parameters µ as

∂pµ(k)
∂µ

= ∂λ
∂µ

∫ b

a
f(n0 + (ξ + ∆ξ)n) dξ+

λ
(

∂b
∂µ
f(n0 + (b+ ∆ξ)n) − ∂a

∂µ
f(n0 + (a+ ∆ξ)n)

)

+

λ
∫ b

a
(∇f(n0 + (ξ + ∆ξ)n))> (∂n0

∂µ
+ (ξ + ∆ξ) ∂n

∂µ
) dξ.

(4.20)

Note that we have omitted all j-s to simplify the expression; also, a = aj −∆ξj
and b = bj − ∆ξj .
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Next, we discretize (4.20)

∂pµ(k)
∂µ

≈ ∂λ
∂µ

∑

m∈D
f(n0 + (m+ ∆ξ)n) +

λ
(

∂b
∂µ
f(n0 + (b+ ∆ξ)n) − ∂a

∂µ
f(n0 + (a+ ∆ξ)n)

)

+

λ
∑

m∈D
(∇f(n0 + (m+ ∆ξ)n))> (∂n0

∂µ
+ (m+ ∆ξ) ∂n

∂µ
),

(4.21)

where D ⊂ Z. We introduce an approximation here. To reduce the computation
complexity, we assume that the change of the integral limits a and b due to the
change of µ is negligible between two iterations. We therefore ignore ∂b

∂µ
and

∂a
∂µ

and implement the following equation:

∂pµ(k)
∂µ

≈ ∂λ
∂µ

∑

m∈D
f(n0 + (m+ ∆ξ)n) +

λ
∑

m∈D
(∇f(n0 + (m+ ∆ξ)n))> (∂n0

∂µ
+ (m+ ∆ξ) ∂n

∂µ
).

(4.22)

4.2.8 Approximated gradient and Hessian

The full expressions for the gradient and the Hessian are too complicated to be
used in practice, unless we assume that the derivatives of Pµ;q and σµ;q with
respect to µ are equal to zero. Also, to improve the stability of the convergence
of the optimizer, we ignore the second-order term in the Hessian as explained
in Section 3.7.1.

We therefore compute the approximate gradient

[∇S(µ)]i ≈
1

σµ;q

Q
∑

q=1

1

card(Dq)

∑

k∈Dq

(
pµ;q(k) − Pµ;q

σµ;q
− pq(k) − Pq

σq

)
∂pµ;q(k)

∂µi
,

(4.23)

and the approximate Hessian

[∇2S(µ)]i,j ≈ 1

σ2
µ;q

Q
∑

q=1

1

card(Dq)

∑

k∈Dq

∂pµ;q(k)

∂µi

∂pµ;q(k)

∂µj
, (4.24)

where i, j = 1, 2, . . . , 6.
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4.3 CT/C-arm data

This section reflects the work of our collaborators from the M.E. Müller Institute
for Biomechanics, Bern, Switzerland. The CT/C-arm data described in this
section are used in Section 4.4.3 for validating the space-based algorithm.

4.3.1 Specimen preparation

A cadaver spine specimen was frozen so that it can be treated as a rigid body.
Five fiducial markers (custom-made, titanium) were implanted on it. One was
placed in the L5, two in the L4, and two in the L3 vertebra (Figure 4.10).

4.3.2 CT data acquisition

The specimen, placed on a plastic bag, was CT-scanned (using a GE LightSpeed
Ultra CT scanner shown in Figure 4.1) with 72 slices of size 512×512 pixel each
(Figure 4.11). The intra-slice pixel size was 0.36 × 0.36 mm, and the inter-slice
thickness was 2.5 mm. The tilt angle was zero.

4.3.3 Tracking device

The position of all devices and instruments, equipped with infrared LED mark-
ers, was tracked using an optoelectronic position sensor (Northern Digital Op-
totrak 3020 shown in Figure 4.5).

4.3.4 Tracking of the fiducial markers

The coordinates of the fiducial markers were digitized in the R-COS using an
optoelectronically tracked pointer.

4.3.5 C-arm geometric data acquisition

The images were acquired using a Siemens ISO-C C-arm (Figure 4.3) instru-
mented with LED markers. To get the geometric parameters of the C-arm
x-ray projection, an approximation to the full perspective projection model was
adopted by the authors of [43]. This approximation (an orthographic projec-
tion) was then used to determine an extrinsic, an intrinsic, and a mechanical
calibration procedure that was subsequently applied to all C-arm images.
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Figure 4.10: Position of the fiducial markers in CT data coordinate system.
Courtesy of the M.E. Müller Institute for Biomechanics, Bern, Switzerland.

67



Fiducial markers

Figure 4.11: Transversal (left), sagittal (center), and frontal (right) CT slices
with visible fiducial markers.

4.3.6 Navigation error

The optical tracking system provides data coordinates with a total RMS error
of about 0.2 mm per LED marker. Imperfect calibration has a direct influence
on the navigation error. The effect of all these errors on the overall accuracy
with which a surgical tool is visualized in C-arm images was analyzed in [43].

Regarding the extrinsic calibration, a systematic error is introduced by the
optoelectronic device. This produces a mean error of 0.4 mm for navigation
within the volume between proximal and distal positions of the calibration plate.
Residual errors of the mechanical calibration are estimated to have a maximum
variation of 0.8 mm. Residual errors of the intrinsic calibration have a mean
value of 1.2 pixel and a standard deviation of 1.0 pixel. The error associated
to the use of an orthographic projection instead of a true perspective one is
estimated to be at most 1.4 mm.

The overall accuracy study was performed using an optoelectronically
tracked phantom. A navigation error with a mean of 0.55 mm, a standard
deviation of 0.47 mm, and a maximum value of 2.34 mm was reported in [43].

4.3.7 Pixel size

The pixel size depends on the position of the image plane relative to the image
intensifier. This position was chosen to be the proximal position so that it was
possible to compute the A-COS coordinates of the image-plane corners based on
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a known transformation from the I-COS indexes to the corresponding A-COS
coordinates of the points belonging to the proximal plane. This transformation
is known from the extrinsic calibration. Given the coordinates of the three
image corners and the number of pixels along rows and columns of the image,
the pixel size was computed.

4.3.8 C-arm image acquisition

A Dynamic Reference Base (DRB) was attached to two different positions on
the specimen before shooting the C-arm images. The DRB defines the P-COS
coordinate system. One set of images was shot with the DRB attached to one
end of the spine specimen so that it is not visible in these C-arm images (for
examples, see Figure 4.12). Another set was shot with the DRB attached to
one of the vertebræ so that it is visible in these C-arm images (for examples,
see Figure 4.13). The C-arm images were captured with seven different poses
for each of the two sets. The image size was 768 × 576 pixel and the pixel size
was 0.36 × 0.36 mm. The images were un-distorted before their further use.

Fiducial markers
Limited field of view

Figure 4.12: Two C-arm images where the DRB lies outside of the field of view.

The presence of the DRB in the C-arm images is a challenge to registration
algorithms because it is not present in the CT data. This situation would be
typical in a clinical setting.
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Fiducial markers

DRB

Figure 4.13: Two C-arm images with a visible DRB.

4.4 Validation

In this section, we validate our space-based algorithm using data with an a
priori known ground-truth data alignment, which means that we can have an
objective evaluation of the registration accuracy. For this purpose, we have
designed a measure of misregistration that we introduce in Section 4.4.1.

In Section 4.4.2, we validate the algorithm in a fully controlled simulation
environment. This section is based on our article [46]. In Section 4.4.3, we
validate the algorithm using real CT/C-arm data based on fiducial markers.
In this case, the true data alignment is known, albeit within some non-zero
tolerance. This section is based on our article [47]. We discuss the validation
results in Section 4.4.4.

4.4.1 Measure of misregistration

We transform every 3D CT index n into an R-COS coordinate by using two
transformations: the ground-truth transformation B and the transformation
Bµ that we estimate by performing the volume-to-image registration. We define
the misregistration as the average of the norm of the difference between the two
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R-COS coordinates over all CT indexes, that is,

$ =
1

card(f)

∑

n∈f

‖(B −Bµ)n‖. (4.25)

In case of perfect registration, which is achieved when Bµ = B, we have that
$ = 0.

4.4.2 Case 1: Validation with synthetic data

Ground-truth registration

The most convenient way to have a complete and precise control over the geo-
metric aspects of the experiment is that the C-arm images be obtained in the
same fashion as we obtain the simulated ones. If we project the same volume
data to compute the C-arm images and their simulations, we are potentially
able to achieve perfect registration. To make the situation less ideal, we ap-
ply a known rigid-body geometric transformation BµR

to the given volume f ,
which results in f ′(n) = f(BµR

n). This operation introduces interpolation and
clipping, which ensures that it is not possible anymore to find registration pa-
rameters µ such that S(µ) = 0. Let us refer to the computed projections of the
volume f ′ that has an arbitrary pose µ

′ as the C-arm images, and to the com-
puted projections of the volume f at pose µ as to the simulated C-arm images.
Figure 4.14 depicts the general test procedure. The goal of the registration is
to find the parameters µ for which the simulations are the most similar to the
C-arm images, on average. The ground-truth alignment of the volume f to the
C-arm images is therefore given by B = B

µ
′BµR

.

Experiments

We performed experiments on a brain CT volume of size 32 × 32 × 32 voxel
(volume f). We synthesized two C-arm images of size 100 × 100 pixel whose
projection planes were perpendicular to each other. We run the registration
100 times at full data resolution. For each registration, we generated a random
initial value for the parameters µ. The misregistration was computed over 40
iterations in each case.

We have chosen µR such that it translates the volume f by 1.2, 1.3, and
1.4 voxel along the x-, y-, and z-axes, respectively, and rotates it for about 6.6
degree. We have also selected µ

′ such that it translates the volume f ′ by 10, 5,

71



Minimize dissimilarity

Rigid-body
transformation

Projections
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Geometric
parameters
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f
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Figure 4.14: Diagram of the test procedure. Because of interpolation and
clipping, there exists no pose µ such that a projection of f is exactly identical
to a projection of f ′. This makes the registration task more challenging.

and 7 voxel along the x-, y-, and z-axes, respectively, and rotates it for about
93 degree.

The initial parameters µ were chosen as consisting in part of a normally-
distributed translation with mean 10, 5, and 7 voxel along the x-, y-, and z-axes,
respectively, and standard deviation 1.8 voxel, and in part of a random rotation
with mean 93 degree and standard deviation 2 degree.

The algorithm was successful and resulted in a subvoxel misregistration in
each of the 100 cases. Starting from a large initial geometrical error ($ =
4.79 ± 0.71 voxel),the algorithm succeeds to register the two images with $ =
0.09 ± 0.02 voxel. Figure 4.15 shows $ in one of the 100 cases (solid line) on a
linear-log scale. Between the first and the third iteration, the gradient algorithm
dominates so that $ decreases slowly from iteration to iteration, by less than
25 percent. From the fourth iteration, the Newton algorithm dominates so that
the amelioration of the fit accelerates, $ decreases by more than 50 percent
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Figure 4.15: Performance of the registration algorithm for 100 randomly gen-
erated disturbances around the optimum solution. Solid line: Typical misreg-
istration vs. number of iterations. Dash-dotted line: Average misregistration.
Dashed lines: Average ±1

2 standard deviation of the misregistration.

per iteration. After the ninth iteration, we observe that the algorithm has
converged.

4.4.3 Case 2: Validation based on fiducials with real data

This validation is performed using the CT/C-arm data described in Section 4.3.
To illustrate our method for simulating C-arm images (Section 4.2.4), we show
two projections of the CT volume in Figure 4.16. These projections were com-
puted for the volume pose at which the volume is in “almost” perfect registration
with the two C-arm images shown in Figure 4.12.

Ground-truth registration

Having estimated the registration parameters µ, we evaluate (4.25) in three
ways. In each case, we replace Bµ by the transformation computed for the
estimated parameters µ.

To measure the registration accuracy, we replace B in (4.25) by the
transformation estimated using a given list of coordinates of the fiducial markers
in the R-COS (vi, i = 1, ..., 5) and in the CT volume (ni, i = 1, ..., 5). The
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Figure 4.16: Simulated C-arm images that correspond to the C-arm images
shown in Figure 4.12.

estimation is done by minimizing χ2 = 1
5

∑5
i=1 ‖vi −B ni‖2 in terms of B. We

denote by $a the corresponding value of $.
To measure the registration reproducibility, we replace B in (4.25) by

the transformation computed for the parameters µ averaged over a set of ex-
periments performed using the same data but different initial conditions. We
denote by $r the corresponding value of $.

To measure the registration consistency, we replace B in (4.25) by the
transformation computed for the parameters averaged over the experiments on
different data sets when using the same initial conditions. We denote by $c the
corresponding value of $.

Experiments

We performed experiments on the challenging data set, that is, using the C-
arm images with a visible DRB. We use four-level CT-volume and C-arm-image
pyramids (Table 4.1). These pyramids are dyadic in only two directions; we
do not change the number of CT slices while performing the data reduction
because the nominal inter-slice resolution is much coarser than the intra-slice
one. We perform the registration at the two coarsest pyramid levels only, since
this strategy gives a good tradeoff between accuracy and time. If we perform
additional processing at the two finest data resolutions, we do not gain more
than 0.2 mm accuracy. This does not justify the huge additional registration
time. We could have coarsened the data further, for example by computing
five-level pyramids, or by reducing the number of CT slices. However, such
pyramids do not improve the performance of our registration algorithm since
they result in either failures at the coarser data resolutions, or fail to perform
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better at finer data resolutions.

Table 4.1: Four-level CT-volume and C-arm-image pyramids.

Level CT Size C-Arm Image Size
[vxl] [pxl]

3 64 × 64 × 72 96 × 72
2 128 × 128 × 72 192 × 144
1 256 × 256 × 72 384 × 288
0 512 × 512 × 72 768 × 576

We run the algorithm with at least two C-arm images as input. One of the
elements that determines the working range of our algorithm is given in terms of
the angle between the two image planes. We have found that it operates safely
if this angle is larger than 10◦.

We performed three sets of experiments. The first set tests the performance
of the algorithm when registering the CT to a single pair of C-arm images with
the angle between their planes being about 90◦, and when using different initial
conditions. The second set registers the CT to several pairs of C-arm images
using the same initial conditions for each image pair. These experiments aim at
discovering how different values for the angle between two image planes influence
the registration performance. The third set aims at finding out whether the
algorithm performs better if it is provided with more than two input C-arm
images; in each experiment of this type, the algorithm uses the same initial
conditions.

Single image-pair experiments. We initialized the algorithm with 50 uni-
formly distributed random parameters µ such that the initial values for $a

and $r were $a = 9.28± 1.06 mm and $r = 9.48± 1.28 mm, respectively. The
accuracy of the achieved registration was $a = 1.47± 0.0002 mm, while its re-
producibility was $r = 0.003± 0.001 mm.

Several image-pairs experiments. Although we can make 21 image pairs out
of the seven images that are at our disposal ( 7!

2!5! = 21), we performed exper-
iments on only those pairs where the angle between the planes is larger than
10◦. The number of such image pairs was 19.

After having imposed a deliberate initial misregistration such that the val-
ues for $a and $c were $a = 9.02 mm and $c = 9.03 mm, respectively, our
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Accuracy $a Consistency $c

Mean Deviation Mean Deviation
[mm] [mm] [mm] [mm]

Initial 9.02 0.00 9.03 0.00
Level 3 2.10 0.69 1.83 0.90
Level 2 1.79 0.69 1.14 0.73
Level 1 unnecessary unnecessary unnecessary unnecessary
Level 0 unnecessary unnecessary unnecessary unnecessary

Table 4.2: Accuracy and consistency of the registration of the CT volume to
19 C-arm image pairs with the angle between any two image planes larger than
10◦.

algorithm performed the registration with an accuracy $a = 1.79± 0.69 mm
(Table 4.2). The consistency of the registration was $c = 1.14± 0.73 mm (Ta-
ble 4.2).

Several-views experiments. We compared the quality of the registration based
on two, three, four, and seven imaging views. We created three sets of C-arm
images: image pairs, image triples, and image quadruples. The members of each
set were chosen such that the angle between any two image planes in the set
was larger than 15◦. We thus performed the experiments on 18 image pairs out
of 21, on 22 image triples out of 35 ( 7!

3!4! = 35), and on 13 image quadruples out

of 35 ( 7!
4!3! = 35). To provide a fair comparison, we initialized the algorithm by

the mean of the estimated parameters from the 19 image-pairs experiments. We
were therefore initially close to the true solution. The initial data misregistration
was $a = 1.36 mm.

The algorithm achieved the data registration with the accuracy and the
consistency shown in Table 4.3 for the two-views experiments, in Table 4.4 for
the three-views experiments, and in Table 4.5 for the four-views experiments,
where it can be seen that an increase in the number of input images from two
to three yields a much more accurate and consistent registration (with 95%
confidence). On the contrary, the registration based on four input images is
more consistent but not significantly more accurate (with 95% confidence) than
the registration based on three images. The accuracy of the alignment by the
parameters obtained in a seven-views experiment was $a = 1.41 mm, which
belongs to the 95% confidence interval for the mean accuracy achieved in the
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Table 4.3: Accuracy and consistency of the registration of the CT volume to
18 pairs of C-arm images with the angle between any two image planes larger
than 15◦.

Accuracy $a Consistency $c

Mean Deviation Mean Deviation
[mm] [mm] [mm] [mm]

Initial 1.36 0.00 0.12 0.00
Level 3 1.78 0.51 1.43 0.71
Level 2 1.66 0.49 0.99 0.61
Level 1 unnecessary unnecessary unnecessary unnecessary
Level 0 unnecessary unnecessary unnecessary unnecessary

Table 4.4: Accuracy and consistency of the registration of the CT volume to
22 triples of C-arm images with the angle between any two image planes larger
than 15◦.

Accuracy $a Consistency $c

Mean Deviation Mean Deviation
[mm] [mm] [mm] [mm]

Initial 1.36 0.00 0.32 0.00
Level 3 1.39 0.29 0.84 0.46
Level 2 1.39 0.24 0.48 0.22
Level 1 unnecessary unnecessary unnecessary unnecessary
Level 0 unnecessary unnecessary unnecessary unnecessary

three- and four-views experiments.

We performed a principal component analysis to illustrate the registration
accuracy and consistency. We projected the estimated angles and translations
onto their respective first principal components in Figure 4.17 for the two-views
experiments, in Figure 4.18 for the three-views experiments, and in Figure 4.19
for the four-views experiments. We also give the projection of the solution
determined by the fiducial markers, the mean of the parameters estimated in
the corresponding experiment, and the parameters estimated in the seven-views
experiment.
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Table 4.5: Accuracy and consistency of the registration of the CT volume to
13 quadruples of C-arm images with the angle between any two image planes
larger than 15◦.

Accuracy $a Consistency $c

Mean Deviation Mean Deviation
[mm] [mm] [mm] [mm]

Initial 1.36 0.00 0.33 0.00
Level 3 1.28 0.23 0.51 0.29
Level 2 1.36 0.15 0.27 0.14
Level 1 unnecessary unnecessary unnecessary unnecessary
Level 0 unnecessary unnecessary unnecessary unnecessary
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Figure 4.17: Projection onto the first principal component of the angles and of
the translations estimated by registering the CT volume to 18 pairs of C-arm
images with the angle between any two image planes larger than 15◦.

Speed. As far as speed is concerned, the experiments were performed on a
Power Mac G4, 733MHz, where the computation of volume and image pyramids
took approximately 20 sec and 6 sec, respectively. We achieved the registration
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Figure 4.18: Projection onto the first principal component of the angles and of
the translations estimated by registering the CT volume to 22 triples of C-arm
images with the angle between any two image planes larger than 15◦.

in 4 to 6 min (Table 4.6).

Table 4.6: Time required for the registration of the CT volume to pairs, triples,
and quadruples of C-arm images.

Level Two views Three views Four views
Mean Deviation Mean Deviation Mean Deviation
[sec] [sec] [sec] [sec] [sec] [sec]

3 50 11 70 12 82 21
2 128 66 179 86 173 71
1 ignored ignored ignored ignored ignored ignored
0 ignored ignored ignored ignored ignored ignored
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Figure 4.19: Projection onto the first principal component of the angles and
of the translations estimated by registering the CT volume to 13 quadruples of
C-arm images with the angle between any two image planes larger than 15◦.

4.4.4 Discussion

In the experiments carried out with synthetic C-arm images, our algorithm reg-
isters pairs of images to the CT volume with a subvoxel accuracy of about 0.1
voxel. Part of this residual misalignment can be attributed to the transforma-
tion BµR

which was introduced on purpose to make the registration task more
challenging.

In the experiments performed with real C-arm images, our algorithm regis-
ters pairs of images to the CT volume with an accuracy of about 1.7 ± 0.5 mm
and with a good reproducibility of less than 0.01 mm. The non-zero misregis-
tration can be explained by the fact that some errors were made when digitizing
the fiducial markers (the mean navigation error was 0.5 mm), and that some
more errors were made when determining the CT indexes of the markers. An
independent analysis has shown that the maximum error of determining the CT
indexes of the markers was about 0.6 mm (0.25 slice off). This means that, in
the experiments carried out, our algorithm is perhaps responsible for a lesser
misregistration than that reported. Note that the mean misregistration of 1.7
mm is already subvoxel with respect to the inter-slice CT thickness of 2.5 mm.

We improve the registration accuracy and consistency when we augment the
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number of input C-arm imaging views. These images should satisfy the working
condition of the algorithm whereby the angle between at least two image planes
must be larger than 10◦. The mean registration quality significantly improves
(with 95% confidence) if we perform the registration with three instead of two
C-arm imaging views. In the experiments performed here, this improvement
of the mean registration accuracy is about 0.3 mm (16%). The mean registra-
tion consistency improves by about 51%. The increase in the number of views
from two to three slows down the algorithm for at most 1.5 min. Although the
registration accuracy stays essentially the same, the registration consistency im-
proves significantly (with 95% confidence) if we provide the algorithm with more
than three C-arm imaging views. In the experiments performed, the mean reg-
istration consistency improves by about 44% when we switch from three to four
input C-arm imaging views. The effect of the increase in the number of input
C-arm images on the registration consistency can be seen as tightening the cloud
of estimates around the seven-views estimate (Figures 4.17, 4.18, and 4.19).

The registration accuracy achieved using our method is consistent with the
accuracy of similar approaches in the field. For instance, using a CT volume
with the inter-slice thickness of 1.5 mm, Weese et al. [116] achieve an accuracy
of about 0.5◦ for the rotations, 0.5 mm for the shifts parallel to the projection
plane, and 5-6 mm for the height above the projection plane. Tomaževič et
al. [100] report a RMS geometrical error of about 0.5 mm and a maximum
geometrical error of about 1.2 mm when using a CT volume with the inter-slice
thickness of 1 mm. We conclude that our algorithm could perhaps achieve even
more accurate registration if our CT would have a smaller inter-slice thickness.
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Chapter 5

REGISTRATION OF A 3D
MODEL OF A PARTICLE
TO ITS CRYO-EM IMAGES

In this chapter, we show the application of our frequency-based algorithm in 3D
cryo-EM. First, a short introduction to cryo-EM is given in Section 5.1. In the
same section, we review the methods for the assignment of the particle poses
and give an overview of the contribution of our approach.

We use the the frequency-based algorithm from Chapter 3 since the parallel-
beam projection geometry fits perfectly the electron-microscopy registration
problem. Some algorithmic details that were left out in Chapter 3 are presented
in Section 5.2.

In Section 5.3, we validate the algorithm using a 3D protein model from
the Protein Data Bank (PDB) (http://www.rcsb.org/pdb/) and synthesized
electron-microscopy images of this protein. These images have a known ground-
truth alignment with respect to the 3D model of the protein.

We also have at our disposal a set of experimental electron-microscopy im-
ages and a 3D model of a protein for which we do not know the ground-truth
alignment between the volume and the images. The performance of the algo-
rithm using such data is investigated in Section 5.4.

To initialize our algorithm, we apply one of the standard methods for re-
finement of a particle pose assignment. For this purpose, we compare three
methods commonly used in 3D EM.
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Figure 5.1: The range of biological structures covered by 3D electron mi-
croscopy. From Frank [26] (Fig. 1.1, p. 2).

5.1 3D electron cryo-microscopy

Cryo-EM [26, 50, 101] comprises methods that facilitate the visualization and
the study of the structure of biological structures of size from 100 Å to 1 µ (Fig-
ure 5.1). These methods assume that an electron-microscopy image (electron
micrograph) of a specimen is a 2D parallel-beam x-ray projection of the spec-
imen. Its 3D structure (often called 3D map or 3D model) is computed from
these projections at different viewing angles using image-reconstruction tech-
niques suited to the nature of the specimen. This 3D model reveals not only
the shape but also the interior density variations of the specimen at resolutions
from molecular to near-atomic.

5.1.1 Nature of the sample

Different samples can be analyzed using cryo-EM. These are 2D crystals, helical-
symmetry crystals, filamentous samples, single particles, macromolecular com-
plexes, viruses, cell organelles, and bacterial cells.

A typical EM sample used for single-particle reconstruction contains many
copies of the same object. These copies are assumed to have the same structure
but completely unknown orientations.
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Figure 5.2: Vitrification set-up. From Frank [27].
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Single-axis tilt Conical tilt

Figure 5.3: Single-axis and conical tilt collection geometry. From Frank [26].

5.1.2 Vitrification

The specimen is applied to an electron microscope grid within a thin water layer.
The sample is rapidly frozen (vitrified) by plunging it into liquid ethane at liquid-
nitogen temperature (Figure 5.2). Due to the rapid decrease in temperature,
the water turns into vitreous ice that has properties akin to those of liquid water
[27]. The most important property is that the water does not crystallize and
that the molecules are not damaged.

5.1.3 Data collection

Electron diffraction data are recorded from large 2D crystals only. Images are
recorded from non-tilted (all specimen types) and tilted samples (2D crystals,
cell organelles, bacterial cells, certain single particles) [26, 101].

Four kinds of tilt-based data collection schemes are used: single-axis tilt,
conical tilt, random-conical tilt, and general random tilt [26, 78]. Single-axis
and conical tilt are shown in Figure 5.3. For a single-axis tilt series, the specimen
is tilted in the microscope in a range of typically −60◦ to 60◦ in small increments
(e.g., 1◦ to 5◦), and an image is recorded for each position. For a conical tilt
series, the specimen is tilted by one fixed angle in a range of 45◦ to 60◦. Then,
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it is rotated within this plane by small angular increments (azimuthal angle),
and an image is recorded for each position. These two schemes are mainly used
for preparations that are radiation-resistant or that contain particles that have
different shapes, that is, averaging over different particles is either not required
or not possible. Random or random-conical tilt techniques intrinsically average
over a large number of identical particles, and the electron exposure of each
single particle can be kept very low. The random-conical scheme is based on
the principle that many particles tend to exhibit a preferred orientation with
respect to the specimen support plane, leaving only one rotational degree of
freedom, which is a rotation around an axis perpendicular to the plane. The
set of images from many such particles in a micrograph of a tilted (between
45◦ and 65◦) specimen form a conical tilt series with random azimuthal angles.
If a preferred orientation is not present, then any micrograph of the specimen
showing particles in random orientation provides a random-tilt series.

There are two important properties of the acquired images. First, they are
not equal to the theoretical projections of the specimen. This is mainly caused
by the Contrast Transfer Function (CTF) of the electron microscope that we
consider in Section 5.1.4. Second, they have a low signal-to-noise ratio (SNR)
due to a limited radiation dose that may be delivered to the sample to avoid its
destruction.

5.1.4 Contrast transfer function

In this section, we discuss the following: the origin of the CTF, the image
formation model, the CTF model, the CTF estimation, and the CTF correction.

Image formation in the electron microscope is a complex process that re-
lies on a multitude of interactions between the specimen and the electrons. It
is therefore not surprising that the experimental projection is not equal to a
theoretical, parallel-beam x-ray projection of the specimen. The differences be-
tween the two projections are caused by the electron source, magnetic lenses,
defocus, and imaged matter. These differences are commonly modeled by the
CTF which is a linear transfer function. The CTF theory is an approximation
to a comprehensive theory of image formation that ignores many effects whose
relative magnitudes vary from one specimen to the other [26].

Assuming that the projected 3D Coulomb potential distribution within the
object φ is a real function, and that the noise is equal to zero, we write the FT
of the image as

f̂(ω) = ĥ(ω)φ̂(ω), (5.1)
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where ω is a spatial frequency, φ̂ is the FT of the projected electron density
potential, and ĥ is the CTF. In the space domain, the CTF is represented by
the Point Spread Function (PSF) h that convolves φ to produce the image f ,
that is, f(x) = (h ∗ φ)(x), where x is the coordinate of a point in real space.

The PSF describes the way in which a single point of the object would be
imaged by the electron microscope. The closer the PSF is to a delta function, the
more faithful the image is to the theoretical projection of the object. However,
the typical PSF is an oscillating function, with a central maximum that is
often only slightly different from the surrounding maxima [26]. The CTF acts
as a band-pass filter. Its typical consequence is that, in the case of a noisy
micrograph, the particle is barely distinguishable from the background.

We use the model of image formation that has been proposed in [113]. It
considers two types of noise: 1) noise before the image formation (nb), that
is, the background noise present in the image before it will be affected by the
CTF, and 2) noise after the image formation (na), that is, the additive noise
component due to the process of image recording and of image digitization. It
is given by

f̂(ω) = ĥ(ω)(φ̂(ω) + n̂b(ω)) + n̂a(ω). (5.2)

Theoretical model of the CTF

A general model [26, 113] for ĥ is given by

ĥ(ω) = K â(ω)(sin(χ̂(ω)) − q̂(ω) cos(χ̂(ω))), (5.3)

where χ̂ represents the shift of the phase of the scattered part of the electron
wave behind the object, caused by the lens aberrations and the defocus. The
term q̂ is the ratio between the imaginary part and the real part of φ̂. As such,
q̂ is a function characteristic for each species, but within the frequency range of
practical interest, it is safe to assume that it is constant, that is q̂(ω) = c0 [26].
The factor â is an attenuating envelope function that models the effects that
result in a decrease of the CTF amplitude due to energy spread and partially
coherent illumination, among others. The term K is a scaling factor.

The parameters of the CTF model proposed in [113] are: the voltage of
the microscope, the chromatic aberration coefficient, spherical aberration coef-
ficient, the maximum and the minimum defocus, the angle between the mini-
mum defocus and the x-axis in the frequency domain, the energy spread of the
electrons in the beam as a percentage of the voltage, the instability of the lens
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Figure 5.4: Example of the estimated CTF. Courtesy of the Centro Nacional
de Biotecnoloǵıa, Madrid, Spain.

current as a percentage of the current, the semi-angle of the beam aperture,
a drift of the sample that may produce mechanical displacements, a possible
mechanical displacement, K, and c0.

Estimation of the CTF

Many manual and automated techniques for determining the CTF have been
proposed [26]. The automatic methods include techniques for fitting the theoret-
ical parametric model of the CTF to the average power spectrum (periodogram)
computed from the experimental images [26]. A more accurate CTF estimation
[113] has been obtained by matching the theoretical model of the CTF to its
Auto-Regressive Moving Average (ARMA) model computed from the experi-
mental images.

Here, we often use the CTF estimated by the ARMA method [113]. This
CTF is shown in Figure 5.4.

Correction of the CTF

Many attempts have been made to correct the CTF. They can be classified into
three groups.

The first group consists of methods for instrumental correction of the CTF.
Their goal is to improve the electron microscope so that the PSF behaves more
like a delta function [26].

The second group contains the techniques for computational correction of
the CTF that require an estimate of the CTF. The simplest correction of the
CTF is the phase correction of f̂ . This is achieved by reversing the sign of the
phase of the image at the frequencies where the CTF is negative [26]. A method
for the CTF correction that corrects the amplitude and the phase of the image
at the same time is Wiener filtering [26].
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In the third group, we can put the techniques that do not correct the CTF
explicitly but rather that tend to improve the techniques of specimen prepara-
tion and the imaging conditions. For instance, S. De Carlo et al. [22], showed
that the technique of cryo-negative staining increases the image contrast when
compared to the unstained technique. Also, one can use a much higher defocus
to make the particle more visible in the image [26].

We use the technique of phase correction for the experiments with syn-
thetic data. In contrast, we perform the real-data experiments with the CTF-
uncorrected data obtained using the cryo-negative staining technique of S. De
Carlo et al. [22].

5.1.5 Particle reconstruction

Every technique for particle reconstruction consists of two steps. First, the
poses of the particle images are determined [21, 30, 32, 37, 52, 73, 79, 93, 111].
A review of the literature on the particle pose determination can be found in
Section 5.1.6. Second, a reconstruction algorithm is applied to compute a 3D
model of the particle using the particle images and their poses. A review of the
3D reconstruction methods can be found in Section 5.1.7. Sometimes, the two
steps are performed simultaneously [77, 114].

Electron diffraction data are processed using a technique called electron crys-
tallography. They provide the highest resolution 3D models (3-10 Å).

Electron tomography is a technique used for particle reconstruction from
images of tilted samples. It yields 3D models of a lower, usually nanometer
resolution. There are two reasons for that. One is a “missing cone” problem
due to a limited maximum tilt angle in the electron microscope. The other is
related to differences in the defocus within the tilted image.

Single-particle techniques are suitable in case of large macromolecular com-
plexes that often resist crystallization or allow to be only partially crystallized,
after removing their flexible parts [27]. Using zero-tilt single-particle techniques,
3D reconstruction at resolutions of 5-15 Å has been achieved for a number
of different specimens (icosahedral-symmetry viruses, D6 pointgroup-symmetry
hemoglobin, asymmetric E. coli ribosome) [111].

Here, we restrict ourself to single-particle reconstruction.

5.1.6 Step 1: Determination of the particle poses

There are two groups of techniques for determining the pose of the single par-
ticles. The first family does not require a reference 3D model at the input. The
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method of moments and the common-line technique (known also as angular
reconstitution, or geometrical method) belong to this group. The other group
relies on the reference model and is supposed to refine the angular assignment in
order to get a finer model. There are two types of reference-model-based tech-
niques. One performs the assignment in a continuous-parameter space while the
other does it in a discrete-parameter space. The algorithms developed in this
thesis assign the pose in a continuous-parameter space.

In this section, we review the methods based on moments, common lines,
and a reference model (with discrete and continuous parameters). We also point
to the novelties of our approach.

Method of moments

This method uses a known relationship between the area moments of the 3D
object and the moments of its 2D projections [5, 6, 30, 32, 85, 115]. The method
based on low-order moments is fast but not precise. The use of high-order
moments is not recommended since they are sensitive to noise and may therefore
yield unstable results.

Common-line method

This method involves a classification of the single-particle images and a class
averaging to reduce noise [111]. The geometrical relationships between the class
averages, in terms of the two out-of-plane rotations, are computed from the
angles between 1D line projections that 2D projections of a 3D object have
in common [32, 73, 111]. The common-line projection for the two 2D projec-
tions is found by comparing their sinograms line-by-line, and by identifying the
maximum of the sinogram correlation. At least three different projections are
required to orient the images of an entirely asymmetric particle.

The 1D FT of the line projection that two different 2D projections of a
3D object have in common corresponds to a central line that the 2D FTs of
the 2D projections have in common. A FT-domain equivalent of the real-space
common-line projection method can be found in [32]. A technique that extends
upon the FT-domain common lines and focuses on dealing with translational
displacements and with noise has been proposed in [52].

Discrete-parameter method

There are two types of methods that determine the particle pose by a set of
discrete parameters. One is based on a library of projections of the reference
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volume covering the space evenly [73, 93]. The other relies on the 3D Radon
Transform (RT) of the volume (sinogram) [79].

In [73, 93], volume projections are computed by covering the entire range
of the two out-of-plane rotation angles. Penczek et al. [73] sample the volume
projections in polar coordinates and compute the FTs of all the rings. They
sample the centered particle images in polar coordinates and compute the FTs
of all the rings. They compute 1D cross-correlation functions in polar coordi-
nates between the particle images and all the projections in the library. The
two out-of-plane rotation angles are determined by the largest cross-correlation
coefficient. The in-plane rotation angle is determined by the position of the max-
imum in the corresponding cross-correlation function. This method is available
in the SPIDER package [28]. We will refer to it as space-projection matching.

For each reasonable translation and rotation of the particle image, Sorzano
et al. [93] search for the projection in the library that best matches it. They
select the best-matching projection with the highest correlation coefficient. The
pose of the particle image is determined by the out-of-plane rotation parame-
ters of this projection and the best-matching in-plane rotation and translation
parameters of the particle image. The correlation is computed in coarse-to-fine
fashion using a discrete wavelet transform. This reduces the computation com-
plexity and increases robustness with respect to noise. This method is available
in the Xmipp package [60]. We will refer to it as wavelet-projection matching.

Radermacher [79] computes the 2D RT of each image and the 3D RT of the
volume. He then computes a cross-correlation that depends on five parameters:
three angles and two translations. The parameters for which this function as-
sumes its maximum define the pose of the particle image. The advantage of
that method is that the 3D RT contains the same information as a discrete set
of all possible volume projections but it is represented using a smaller data set.
This method is available in the SPIDER package. We will refer to it as Radon
angular assignment.

The discrete-parameter methods use exhaustive-search techniques to deter-
mine the optimal parameters. A general disadvantage of these methods is that
their accuracy is affected by the step with which the parameters are discretized.
The smaller is the step, the more accurate, but slower is the parameter assign-
ment.

Continuous-parameter method

A method that relies on the CST-based least-squares fit of the 2D FT of each
particle image into the 3D FT of the particle model has been proposed in
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[77, 114]. It combines the information from a tilt series of a disordered col-
lection of many identical particles to obtain a 3D reconstruction. It models the
3D FT of the object’s electron density by a truncated expansion in a complete
orthonormal set of basis functions in spherical polar coordinates. The data are
compressed, and the expansion coefficients together with the parameters of par-
ticle orientations are estimated for all particles simultaneously. The estimation
is performed by using a modified Gauss-Newton minimization of a weighted
variance of the fit of the model to the compressed data.

Novelties that our algorithm brings. Our algorithm belongs to the continuous-
parameter methods. It relies on an iterative minimization of a least-squares
measure of dissimilarity between the 2D FT of the image and extracted cen-
tral slices of the 3D FT of the volume. To extract the slices, we interpolate
the 3D DFT of the volume using a cubic B-spline data model. To make the
algorithm robust to noise and less sensitive to the quality of the initial estimate
for the unknown parameters, we apply our multiresolution strategy based on
the frequency-domain weighting of the cost function. We propose a fast initial-
ization of our algorithm by a method that relies on a coarse library of volume
projections (Figure 5.5). Our algorithm can be used in alternation with 3D
reconstruction for further iterative refinements (Figure 5.6).

Our algorithm differs from the one described in [77, 114] in several ways.
This previously published method optimizes a much larger number of param-
eters than ours, which means a higher risk for the algorithm to get trapped
into local optima of the cost function, and an augmented dependence on the
quality of the starting estimates for the parameters. In contrast, our algorithm
uses a model that is created from electron micrographs of the object. In return,
it requires interpolation of the 3D FT of the volume. Since it estimates 5 pa-
rameters per particle only, for each particle independently, it allows an easier
parameter control. Our algorithm is versatile since it can be applied in com-
bination with any available reconstruction algorithms within a procedure for
iterative refinement of the estimated particle poses.

5.1.7 Step 2: 3D reconstruction

The reconstruction can be accomplished in real space or in the frequency do-
main. The methods that are based on the FT-CST and that perform the inter-
polation in the frequency domain are called Fourier reconstruction algorithms.
The methods that are rely on the FT-CST and that use the interpolation in real
space are called back-projection methods. The methods that refine the solution
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Figure 5.5: Our strategy for refining a 3D model of a particle.

in real space iteratively but that are not based on the CST are called Algebraic
Reconstruction Techniques (ART).

Fourier reconstruction algorithms [26, 67, 68] assemble the 2D FTs of the
object’s projections at different angles into an estimate of the 3D FT of the
object and then invert the 3D FT to obtain the estimate of the object. The
position of the samples of the 3D FT of the object generally do not coincide
with the regular 3D Fourier grid. The computation of the value of the 3D FT on
grid points, given these samples at arbitrary positions, is a difficult interpolation
problem.

Back-projection methods [48, 67, 68, 78] bring into play the FT-CST by
rewriting the inverse FT in polar coordinates and rearranging the limits of the
integration. The Weighted Back-Projection (WBP) method [78] consists of two
steps: weighting of each image in the frequency domain by a weighting function
(the filtering part) and summing the inverse FT of the weighted images (the
backprojection part). These methods are usually more accurate than Fourier
reconstruction methods since they perform interpolation in real space. Simple
linear interpolation is usually satisfying in the case of a backprojection algo-
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Figure 5.6: Further refinement of a 3D model of a particle using true volume-
to-image registration.

rithm while more complicated interpolation schemes are required for the Fourier
methods.

Since WBP methods can deal with arbitrary tilt geometry, they are cur-
rently the most widely used methods for reconstructing single particles from
their transmission electron-microscopy images [26, 78]. They have been specif-
ically developed for conical-tilt geometry. For single-axis tilt geometry, the
WBP algorithm is equivalent to the standard Filtered Back-Projection (FBP)
method. The FBP method uses a weighting function that is proportional to
the frequency magnitude [48]. The WBP methods assume more complicated
weighting functions for arbitrary tilt geometry [78].

To produce a reconstruction that is accurate and without artifacts, back-
projection methods require a large number of images that are uniformly dis-
tributed in the 3D space. The requirement for providing an entire angular
coverage becomes clear from the formulation of the reconstruction problem as
data collection in the Fourier space. For example, the typical maximum tilt
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angle of 60◦ for single-axis tilt geometry means that the data set will miss an
entire range of central-plane orientations. This will produce a missing cone in
the 3D Fourier space. The reconstruction coming from these data will show
artifacts such as elongation of features in the direction of the missing angular
range.

ART [48, 59, 67, 68] have been shown to be useful in overcoming the prob-
lem of missing angular range. ART is an iterative space-domain method that
produces better-quality reconstructions at the expense of convergence.

In this work, we use zero-tilt single-particle images that are known to suffer
from non-uniform angular sampling. To obtain good-quality reconstructions
with such data, we take advantage of ART with smooth spherically symmetric
volume elements [59]. This method is described next.

Algebraic Reconstruction Techniques

This is a series-expansion method. It assumes that the volume f to be re-
constructed can be approximated by a linear combination of J basis functions
bj , j = 1, . . . , J . Each of these functions is a known function b shifted to one of
J grid points gj . That is,

f(r) ≈
J∑

j=1

cj bj(r) =
J∑

j=1

cj b(r− gj). (5.4)

Let us refer to a pixel value in the set of N experimental projections (each
containing M pixels) as a measurement of the volume to be reconstructed. Let
yi be the i-th measurement, i = 1, . . . ,M × N . Let si,j be the corresponding
line integral of bj . Using the model (5.4), we have the following approximation

yi ≈
J∑

j=1

cj si,j . (5.5)

The goal of the algorithm is to estimate the unknown reconstruction coefficients
cj from this system of approximate equations.

The simplest basis functions are cube-shaped elements that have the value 1
inside a single voxel and the value 0 everywhere else. In that case, the approxi-
mation (5.4) will have the value cj inside the j-th voxel. More accurate models
can be obtained using trilinear elements with a support extending over a cube
of eight voxels. We use an ART algorithm with generalized Kaiser-Bessel win-
dow functions (blobs) [56, 57, 59]. These functions are spherically symmetric,
spatially limited, and have a tunable smoothness.

96



(a) 1D blob profile.

(b) Fourier transform of the profile from Fig-

ure 5.7(a).

Figure 5.7: 1D blob profile and its Fourier transform for a = 2,m = 2, and two
values of α together with a cube-shaped blob. From Sorzano [92].

A blob is determined by three parameters: the radius of the sphere within
which the blob has a non-zero value (a), the number of times the blob is con-
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tinuously differentiable (m), and the control of the density drop-off of the blob
that can be used to insure that the blob’s FT becomes approximately zero at a
user-specified frequency (α). The blob’s smoothness controls the smoothness of
the reconstruction. Its spherical symmetry allows easy calculation of si,j . Blobs
have been shown to perform better than voxels in reducing incorrect features
and noise [56]. This is explained by their “almost” band-limitedness and by a
smooth transition to zero at their spatial limit. For illustration purposes, we
show in Figure 5.7 1D blob profiles and theirs FTs for a = 2,m = 2, and two
values of α. A cube-shaped blob is also shown in these figures.

The arrangement of the centers of shifted versions of the basis functions is
referred to as a grid. The quality of the reconstruction is affected by the choice
of the grid as much as it is affected by the choice of the three blob parameters.

For the particle reconstruction, we use the ART algorithm based on the
body-centered cubic grid (Figure 5.8) that has been found useful in electron-
microscopy applications [59, 61, 62]. More precisely, we use the standard blobs
(a = 2,m = 2, α = 10.4) with the grid-point distance g =

√
2 [62].

Figure 5.8: Body-centered cubic grid.

The particular variant of ART that we apply estimates the vector c (the
J-dimensional vector of coefficients cj) by refining an initial estimate [59]. We
choose the initial estimate to be a zero vector. We use the data from only
one projection per iteration. We cycle through all the projections, that is, the
update of the estimate for the iteration k + 1, (k = 0, . . . , N − 1) is

c(k+1) = c(k) + λ

(k+1) M
∑

i=k M+1

yi − 〈si, c
(k)〉

‖si‖2
si, (5.6)
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where λ is a real number called the relaxation parameter that controls the
magnitude of the update, si is the J-dimensional vector whose j-th component
is si,j . The relaxation parameter controls the speed of the convergence and
reduces the influence of the noise.

5.2 Registration algorithm

In this chapter, we assign the pose of a cryo-EM image with respect to a 3D
particle model following the algorithm shown in Figure 5.9. The input data for
the algorithm are: 1) the 3D model of the particle, 2) the cryo-EM images, 3)
the pixel and voxel sizes, and 4) the initial volume pose.

The apodization of the input volume and images by Gaussian windows is
represented by the “Windowing” blocks in Figure 5.9. The purpose of apodiza-
tion is to enforce nearly space-limited data, which allows us to interpolate them
in the frequency domain (Section 2.1.1).

In Chapter 3, we already defined the volume pose for the electron-microscopy
application of our algorithm. Here, we apply the CST approach to the com-
putation of the FTs of the volume projections as well as the multiresolution
weighting of the cost function. In this section, we give the expressions for the
multiresolution cost function, the gradient, and the Hessian.

Note that, in this application, we do not optimize the cost function in all six
parameters of the volume pose but in only five of them. The unknown parame-
ters are µ = (ϕ, θ, ψ,∆x,∆y). We cannot recover ∆z because the parallel-beam
projection geometry is invariant with respect to the shift along the projection
direction (the z-axis here).

5.2.1 Multiresolution cost function

We minimize the following measure of dissimilarity between the FT of a cryo-EM
image and the FTs of the volume projections:

S(µ) =
1

2

∑

n∈Z2
∗

w(n)

[(
Rµ(n)

σµ

− R(n)

σ

)2

+

(
Iµ(n)

σµ

− I(n)

σ

)2
]

, (5.7)

where Z
2
∗ = Z

2\{0}, Rµ and Iµ are the real part and the imaginary part of the
2D DFT of the projection of the volume at pose µ, respectively, and R and I
are the real part and the imaginary part of the 2D DFT of the cryo-EM image,
respectively. We do not compute the 2D DFTs of the projections explicitely.
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Figure 5.9: Frequency-based algorithm for assigning the pose of a cryo-EM
image with respect to a 3D particle model.
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We rather extract the corresponding central slice of the 3D DFT of the volume
according to the CST approach described in Section 3.5.

Cryo-EM images and projections have different ranges of intensities. To take
this into account, we normalize them by their standard deviations, σ and σµ,
respectively, where σ2 =

∑

n∈Z2
∗

(R2(n) + I2(n)), and σ2
µ

=
∑

n∈Z2
∗

(R2
µ
(n) +

I2
µ
(n)). We implement the coarse-to-fine processing in the frequency domain by

weighting the cost function by a 2D Gaussian-shape function w, as explained in
Section 3.6.2.

5.2.2 Approximated gradient and Hessian

For simplicity (as in Chapter 4), we assume that the first derivative of σµ with
respect to µ is equal to zero. The algorithm thus computes the approximate
gradient

[∇S(µ)]i ≈ 1
σµ

∑

n∈Z2
∗

w(n)
(

Rµ(n)
σµ

− R(n)
σ

)
∂Rµ(n)

∂µi
+

w(n)
(

Iµ(n)
σµ

− I(n)
σ

)
∂Iµ(n)

∂µi
,

(5.8)

where i = 1, 2, . . . , 5.
For reasons given in Section 3.7.1, we ignore the second-order term in the

true Hessian (3.31). The algorithm thus uses the approximate Hessian

[∇2S(µ)]i,j ≈ 1
σ2

µ

∑

n∈Z2
∗

w(n)
∂Rµ(n)

∂µi

∂Rµ(n)
∂µj

+

w(n)
∂Iµ(n)

∂µi

∂Iµ(n)
∂µj

,
(5.9)

where i, j = 1, 2, . . . , 5.

5.3 Validation using data with a known ground-

truth alignment

In this section, we validate our frequency-based algorithm in a fully controlled
simulation environment using data with an a priori known ground-truth align-
ment. A known ground-truth alignment means that we can evaluate the reg-
istration accuracy objectively. For this purpose, we have designed a measure
of misregistration that is presented in Section 5.3.1. As volumetric data, we
used a 3D model of a protein from the PDB. As reference images, we used a
set of simulated cryo-EM images obtained by projecting the 3D protein model
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at known poses and applying noise and the CTF, subsequently. The volume
data, the synthesized cryo-EM images, and the synthesizing procedure are de-
scribed in Section 5.3.2. In Section 5.3.3, we show the ability of the frequency-
based method to refine an initial pose assignment obtained applying one of the
standard algorithms for the particle pose assignment. We also compare three
standard algorithms in order to decide which one to use for the initialization.

The results are given in terms of misregistration. The histograms of the
misregistration were computed with a bin width of 0.35 voxel.

5.3.1 Measure of misregistration

We transform the 3D index of each voxel of a virtual volume, given in ho-
mogeneous coordinates n = (n1, n2, n3, 1) by using two transformations: the
ground-truth transformation B and the estimated transformation Bα

µ
. Both

transformation matrices, B and Bα
µ
, are of size 4 × 4 (homogeneous coordi-

nates) and comprise the rotation, translation, and scale parameters. The trans-
formation Bα

µ
takes into account the symmetries of the particular protein. It

involves a rotation by an angle α around the symmetry axis before applying
the transformation parameters µ estimated by performing the volume-to-image
registration. In our work, we have mostly used proteins with a threefold ro-
tational symmetry. In this case, α takes the following values: 60◦, 120◦, and
240◦. We compute the average of the norm of the difference between the two
transformed coordinates over all n for each α. We define the misregistration as
the minimum averaged norm, that is,

$ = min
α

1

card(f)

∑

n∈f

‖(B − Bα
µ
)n‖. (5.10)

A smaller $ indicates a more accurate pose assignment. The perfect assign-
ment should result in $ = 0.

5.3.2 Data

Volume

We used the Adenovirus Type 5 Hexon volume from the PDB (accession code:
1RUX [84]). The size of the volume was 64 × 64 × 64 voxel and its sampling
rate 3.27 Å.

The human adenoviruses are known to cause respiratory illness, conjunc-
tivitis, and gastroenteritis. They are a potential cause of sexually transmitted
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Three views of an isosurface.
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Figure 5.10: 3D model of the Hexon from the PDB.

diseases. Adenovirus Type 5 causes mild respiratory infections. This type is
mainly used for gene therapy. It consists of a shell that contains three pro-
teins: hexon, penton base, and fiber. The hexon is the largest among the three
proteins. The 3D model of the Hexon protein, used here (Figure 5.10), has
been obtained by x-ray crystallography. This protein has a threefold rotational
symmetry.

Synthetic cryo-EM images

These images were synthesized by C. Ó. S. Sorzano (Centro Nacional de Biotec-
noloǵıa, Madrid, Spain) in a two-step procedure as in [93].

In a first step, 1,000 projections of the reference model were computed with
random poses determined by a set of uniformly distributed angles ϕ ∈ [0◦, 120◦]
and θ ∈ [0◦, 175◦]. The three remaining parameters ψ, ∆x and ∆y were equal
to zero for each projection.

In a second step, noise was added and the CTF was applied according to
(5.2). Noise and the CTF were simulated using a model proposed by Velázquez-
Muriel et al. [113]. The noise before the CTF (nb) was modeled by a Gaussian
white noise with the standard deviation σb = 0.54. The noise after the CTF
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(na) was modeled by a low-pass filtered Gaussian noise with the standard de-
viation σa = 2.20 generated at the input n

′

a. The standard deviations were
adjusted so that the ratio between the power of the signal and the power of the
total noise was approximately equal to 1/3. The filter (Figure 5.11) and the
CTF (Figure 5.4) have been estimated simultaneously [113] from an electron
micrograph for the following parameters of the electron microscope: acceler-
ating voltage=200 kV, defocus=-27700 Å , spherical aberration=2 mm, and
convergence cone=0.21 mrad. The CTF, the background spectrum filter, and
the synthesized cryo-EM images were of size 64 × 64 pixel. The synthesizing
procedure is schematically shown in Figure 5.12. A few examples of these ran-
dom projections and the corresponding synthesized cryo-EM images can be seen
in Figure 5.13.

Figure 5.11: Low-pass filter used to simulate noise for the synthetic cryo-EM
images. Courtesy of the Centro Nacional de Biotecnoloǵıa, Madrid, Spain.

5.3.3 Experiments

Initialization

Three standard algorithms for the particle pose refinement were compared by C.
Ó. S. Sorzano [93] using different proteins from the PDB. The algorithms under
investigation were wavelet-projection matching, space-projection matching, and
Radon angular assignment. The wavelet-projection matching and the space-
projection matching are based on a library of projections of the reference volume.
Each of the two libraries contained 500 images uniformly distributed in the 3D
space with an angular step of 5◦. The Radon transform was also sampled every
5◦. We show here the results of this comparison for the Hexon data described
in Section 5.3.2.

According to the mean value and standard deviation of the misregistration
(Table 5.1), the wavelet-projection matching was the most accurate (with 95%
confidence) among the three methods. We have therefore decided to initialize
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Figure 5.12: Procedure of synthesizing cryo-EM images.

our algorithm by the wavelet-projection matching.

Refinement

Starting from the initial misregistration of 4.50 ± 6.86 voxel, we performed the
frequency-based assignment with adjusted standard deviations of the Gaussian
functions, space-limiting, and cost-weighting, such that a good registration ac-
curacy could be achieved. The standard deviation in each dimension for each
Gaussian was 30.

The mean and the standard deviation of the misregistrations are shown in
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Projections.

Projections after having applied the noise and the CTF.

Figure 5.13: Projections of the 3D model of the Hexon and the corresponding
synthetic cryo-EM images. Courtesy of the Centro Nacional de Biotecnoloǵıa,
Madrid, Spain.

Table 5.1: Accuracy of the Hexon pose assignment by three standard angular
refinement algorithms.

Misregistration [voxel]
Mean Standard deviation

Wavelet-projection matching 4.50 6.86
Space-projection matching 9.13 14.05
Radon angular assignment 35.00 11.59

Table 5.2. The frequency-based assignment was performed with a misregistra-
tion of 3.38±7.64 voxel. The initial mean misregistration was reduced by about
25%. This is a significant accuracy improvement (with 95% confidence). The
histograms of the initial and final misregistrations are shown in Figure 5.14.
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Table 5.2: Accuracy of the Hexon pose assignment by the frequency-based
registration for the initial wavelet-projection matching.

Misregistration [voxel]
Mean Standard deviation

Wavelet-projection matching 4.50 6.86
Frequency-based registration 3.38 7.64
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Figure 5.14: Histogram of the Hexon data misregistration. The frequency-based
registration vs. the initial wavelet-projection matching.

5.4 Validation using data with an unknown ground-

truth alignment

We now show the performance of our frequency-based algorithm in refining a
3D model of a GroEL chaperonin. The input for our algorithm was a set of
experimental cryo-EM images, a 3D model of the GroEL, and an initial assign-
ment for the particle poses obtained by using the wavelet-projection matching.
In this case, there is no ground-truth alignment of the cryo-EM images to the
3D model. Besides, the input volume may be a completely wrong model of the
protein. This means that we cannot evaluate objectively the accuracy of the
assignment.
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There have been many attempts in the literature on 3D EM to design a
measure of resolution of a reconstructed protein model. The overview of the
resolution measures is given in Section 5.4.1.

The cryo-EM images and the 3D model of the GroEL used for the experiment
are described in Section 5.4.2. We evaluate the performance of our algorithm
in Section 5.4.3. The results are given in terms of the Fourier Shell Correlation
(FSC) which is the resolution measure that is most often used in practice.

5.4.1 Resolution

The theoretical resolution of the reconstruction that is expected from the data
collection geometry is usually not achieved [26]. There are several reasons for
this. One reason is that the structure of the particle is not defined to that level
of resolution because of conformational variability. In stained preparations, for
instance, the stain fluctuations limit the definition of small specimen features.
Also, different electron optical effects (partial coherence, charging, specimen
movement) limit the transfer of information from the specimen to the image.
Errors in the angular assignment are additional limiting factors. The significant
resolution is the resolution up to which object-related features are represented
in the 3D reconstruction [26].

Measures of resolution

The resolution measures can be classified into two groups. Differential Phase
Residual (DPR) [29] and Fourier Ring Correlation (FRC) [87] belong to the first
group. Initially developed as measures of resolution for correlation-averaged
images, they assess resolution in terms of the spectral range of consistency
between the FTs of the averages computed for two data subsets. Similarly, 3D
extensions of FRC and DPR assess resolution of the 3D reconstruction in terms
of the spectral range of consistency between the FTs of the 3D reconstructions
computed for two data subsets. The FSC is the 3D counterpart of the FRC
[38]. The disadvantage of these measures is that their statistical properties
are not well understood and that they are not true resolution measures but
reproducibility measures.

The second group contains Q-factor [112] and Spectral Signal-to-Noise Ratio
(SSNR) [72, 108, 109]. In the case of 2D data, they compare the FTs of all
images participating in the average to the FT of the average. The statistical
properties of the data are therefore directly captured. Q-factor is rarely used
since it does not give results that can be expressed as a 1D function of frequency.
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2D SSNR was introduced in [108]. It measures the SNR as a function of spatial
frequency, and it provides a framework for relating FRC and DPR to each other
in a meaningful way.

In [72], 3D SSNR was derived for a particular class of 3D reconstruction
algorithms that use interpolation in the FT domain. An SSNR measure that
can be used with any reconstruction algorithm has been proposed in [109]. This
is a 2D approach to assess resolution of the 3D reconstruction. It is based on
the comparison of the experimental projections to their predictions computed
from the 3D reconstruction (estimate of the signal present in the experimental
data). The article proposes to characterize the noise-reducing effect of the 3D
reconstruction algorithm by introducing the noise reduction factor which is a
function of spatial frequency, but also depends on the type of the reconstruction
algorithm, the angular assignment, the type of symmetry, and the number of
views. This factor cannot be determined analytically in general. The authors
propose to estimate it in a two-step procedure. In the first step, they reconstruct
a volume out of noise-only images with the same angular assignment as for the
experimental images. In the second step, they get the estimate by computing
the SSNR for the noise-only images. The final SSNR is the ratio between the
SSNR for the experimental images and the SSNR for the noise-only images.

The 2D approaches have been criticized for not giving a fair assessment of
3D resolution since they do not consider all spatial directions. Since the study
of 3D SSNR measures is still research in progress, 3D extensions of FRC and
DPR are commonly used in practice.

3D DPR and FSC

The experimental images are randomly divided into two subsets of equal size.
One set is commonly formed from even-numbered images, and another set from
odd-numbered images of the data set. Two volumes are reconstructed, one for
each subset. The resulting volumes are compared along shells in Fourier space.
Let the 3D DFT of the two volumes be denoted by f̂1 and f̂2, and let k be the
3D frequency on the regular Fourier grid within the Nyquist range. If ∆ϑ is the
phase difference between the two transforms, then DPR is defined as

DPR(k,∆k) =

∣
∣
∣
∣
∣

∑

[k,∆k](∆ϑ(k))2(|f̂1(k)| + |f̂2(k)|)
∑

[k,∆k](|f̂1(k)| + |f̂2(k)|)

∣
∣
∣
∣
∣

1/2

, (5.11)
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whereas FSC is defined as

FSC(k,∆k) =
Re
{
∑

[k,∆k] f̂1(k)f̂∗2 (k)
}

∣
∣
∣
∑

[k,∆k] |f̂1(k)|2∑[k,∆k] |f̂2(k)|2
∣
∣
∣

1/2
. (5.12)

The sums are computed over shells defined by radii k ± ∆k, where k = |k|.
The two measures are plotted as functions of k. The two curves show the
degree of consistency between the two volumes. The DPR curve starts with a
value of 0 which indicates perfect agreement at zero frequency, and raises up
with increasing frequency which indicates poor agreement for higher frequencies.
In contrast, the FSC curve starts with a value of 1 which indicates perfect
agreement at zero frequency, and falls gradually down which indicates poor
agreement for higher frequencies. A typical behavior of the two measures can
be seen in Figure 5.15. As a single DPR figure of merit, one usually selects the
Fourier radius k for which DPR(k,∆k) = 45◦. As a single FSC figure of merit,
two cutoffs are usually considered. One is the radius k for which FSC(k,∆k) =
0.5, while the other is the radius for which the FSC curve intersects the (3− σ)
curve [27]. The (3−σ) curve is obtained by multiplying the FSC curve for pure
noise by 3.

The three figures have different values for the same data. The least opti-
mistic is the 45◦-DPR criterion, whereas the most optimistic is the (3−σ)-FSC
criterion. Unfortunately, there is no formal justification for using any of the
three cutoffs. Besides, the quotation of a single number cannot do justice to
the information conveyed by the whole curve [27]. The use of the (3 − σ)-FSC
criterion was questioned in [27] using the relationship between the FSC and
the SNR. The SNR drops quite rapidly with a decreasing FSC. An FSC of 0.5
corresponds to an SNR of 1. This means that a (3− σ)-FSC cutoff corresponds
to an even lower SNR, which makes this kind of cutoff questionable since the
information cannot be reliably distinguished from noise at these frequencies.

Here, we compute the FSC in the absence of a better measure of resolution.

5.4.2 Data

We used the cryo-EM images of a GroEL chaperonin from E. coli that have
been acquired by S. De Carlo (Laboratoire d’analyse ultrastructurale, UNIL,
Lausanne, Switzerland) as descibed in [22]. We used the 3D model of the GroEL
that has been computed from these images by S. De Carlo as well. The 0.5-FSC
of this volume of 14 Å was reported in [22].
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Differential phase residual.

Fourier shell correlation.

Figure 5.15: Typical differential phase residual and Fourier shell correlation
profiles.
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Shift too big!
Discarded images.

Figure 5.16: Cryo-EM images of GroEL. Courtesy of Laboratoire d’analyse
ultrastructurale, UNIL, Lausanne, Switzerland.

GroEL chaperonin consists of two heptameric rings of identical subunits
stacked back to back. In other words, it has a sevenfold rotational symmetry
around one axis, and a twofold symmetry around one of the remaining axes.
It assists protein folding in an ATP-regulated manner. Each subunit of GroEL
contains an ATP binding site so that the entire GroEL has, therefore, 14 ATP
binding sites.

We describe the procedure [22] used by S. De Carlo to obtain the cryo-EM
images and the 3D model of the GroEL next.

Cryo-EM images

GroEl particles were prepared for cryo-negative staining as described in [22].
Homemade holey carbon films were mounted on 200-mesh copper grids, one
side of the grid was coated by a thin layer of Au/Pd, and the plastic film was
dissolved with ethyl acetate. The grid with a drop of the sample applied onto
the metal-coated side was staying in the staining solution for 30 s before it
was mounted on the plunger, blotted, and vitrified in liquid ethane. The stain
preparation is described elsewhere [22].

The micrographs were recorded at a temperature of −180 ◦C and at a magni-
fication of 53,000 in a Philips CM100 transmission electron microscope (cathode
source operated at 100 keV). A low-dose of 1,000 e−/nm2 was delivered to the
sample in each exposure using the Philips beam-deflection unit.
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The negatives were digitized using a Kodak RFS 3570 Scanner with a pixel
size of 0.24 nm. The GroEL particles were picked using WEB, the graphic
interface of the SPIDER package. The center of a window of size 96 × 96 pixel
was manually placed onto the particle center, and the particle image of the
same size was extracted from the micrograph. In this way, a set of about 2,500
particle images was created. Like described in [22], the images were contrast-
normalized and no CTF correction was applied. Note that, although the CTF
was not corrected, the particles stand out from the background (Figure 5.16),
thanks to the technique of cryo-negative staining.

After discarding images that have excessive shift (for examples, see Fig-
ure 5.16), the total number of images for a further analysis was 2,322.

Three views of an isosurface.

A few slices.

Figure 5.17: 3D model of GroEL.

3D model

The images were multireference-aligned and classified using a multivariate sta-
tistical analysis, as implemented in the SPIDER package. The class averages
were visualized in WEB. Since the class averages contained mainly top and side
views of the GroEL chaperonin (this is also visible in Figure 5.16), the starting
3D model based on only these two views was computed in the Spider package
using a back-projection reconstruction method.
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The space-projection matching was applied to refine the starting model as
explained in [22]. The volume used for the evaluation of our algorithm is the
result of six refinement cycles. The 3D reconstruction is computed so that it
takes into account the GroEL symmetries. A 3D visualization of this volume of
size 96 × 96 × 96 voxel is given in Figure 5.17.

5.4.3 Experiments

Our frequency-based algorithm used the 3D model from Section 5.4.2 and the
initial pose assignment by the wavelet-projection matching. The initial assign-
ment based on the same 3D model from Section 5.4.2 was performed by C. Ó.
S. Sorzano.
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Figure 5.18: Fourier shell correlation for the GroEL assignment using the
frequency-based method initialized by wavelet-projection matching.

Using the pose assignment by the wavelet-projection matching, we recon-
structed two volumes from two subsets of the GroEl cryo-EM images. After
having performed the frequency-based assignment, we reconstructed another
two volumes from two subsets of the GroEl cryo-EM images. All four volume
reconstructions were accomplished by C. Ó. S. Sorzano using ART with smooth
spherically symmetric volume elements (Section 5.1.7).
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Next, we computed the FSC curves for the two assignments, the initial one
and the final one. The two FSC curves are shown in Figure 5.18. A striking
feature is that the FSC in either of the two cases does not follow its “common”
textbook behavior. It does not cross 0.5 at any frequency. Moreover, it increases
at higher frequencies instead of falling down. An independent analysis has shown
that it was possible to have two very consistent volumes at all frequencies using
better-qualities reconstruction algorithms as the one used here. This is a good
example for not trusting the FSC as the resolution measure but only as the
consistency measure.

Therefore, the only conclusion that we can draw from Figure 5.18 is that
the frequency-based algorithm improves the consistency of the initial volumes
at all frequencies.

115



116



Chapter 6

COMPARISON OF THE
PERFORMANCE: SPACE
VS. FREQUENCY

In Chapter 4, we showed the performance of the space-based algorithm using
orthopedic data. In Chapter 5, we evaluated the performance of the frequency-
based algorithm using electron-microscopy data. In this chapter, we compare
the performance of the frequency-based algorithm with that of the space-based
algorithm in the same electron-microscopy application. This application (Sec-
tion 5.1) implies the parallel-beam geometry described in Chapter 3.

Let us recall that the frequency-based algorithm relies on the computation
of the FTs of the volume projections using the CST approach and on a multires-
olution weighting of the cost function (Chapter 3). The space-based algorithm
is based on the computation of the volume projections by ray casting using
the shearing method and on the spline multiresolution volume/image pyramids
(Chapter 3).

We compare the quality of the assignment by the two algorithms using data
with a known ground-truth alignment. For this purpose, we have repeated the
procedure described in Section 5.3.2 to create synthetic cryo-EM images from a
protein from the PDB. To measure the quality of the assignments, we employ
the measure of misregistration given in Section 5.3.1.

The data are described in Section 6.1. In Section 6.2, we show two sets
of experiments. The first one (Section 6.2.1) compares the robustness of the
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Three views of an isosurface.

A few slices.

Figure 6.1: 3D model of the Bacteriorhodopsin from the PDB.

two algorithms to a random value for the initial assignment. The other set
of experiments (Section 6.2.2) compares the ability of the two algorithms to
refine the initial assignment obtained using the wavelet-projection matching.
We compare the speed of the two approaches in Section 6.2.3. A discussion is
found in Section 6.3.

6.1 Data

6.1.1 Volume

We used the Bacteriorhodopsin volume from the PDB (accession code: 1BRD
[40]). The size of the volume was 64 × 64 × 64 voxel and its sampling rate was
3.27 Å (Figure 6.1).

The Bacteriorhodopsin found in Halobacterium halobium is a membrane
protein that functions as a light-driven pump of protons across the cell mem-
brane. The proton gradient is used by a second membrane protein called ATP
synthese to generate metabolic energy in the form of ATP which is used by the
cell to drive many vital processes. When crystallized, the Bacteriorhodopsin
forms hexagonal 2D crystals. They are sufficiently well ordered for determin-
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Projections.

Projections after having applied the noise and the CTF.

Figure 6.2: Projections of the 3D model of the Bacteriorhodopsin and the
corresponding synthetic cryo-EM images. Courtesy of the Centro Nacional de
Biotecnoloǵıa, Madrid, Spain.

ing a 3D structure at near-atomic resolution using high-resolution cryoelectron-
microscopy [40]. This protein has a threefold rotational symmetry.

6.1.2 Images

The synthetic cryo-EM images of the Bacteriorhodopsin were synthesized by C.
Ó. S. Sorzano (Centro Nacional de Biotecnoloǵıa, Madrid, Spain) in the two-step
procedure described in Section 5.3.2.

A few examples of these random projections and the corresponding synthe-
sized cryo-EM images can be seen in Figure 6.2.

6.2 Experiments

We computed three-level dyadic volume and image pyramids for the space-
based registration. As far as the frequency-based method is concerned, we have
adjusted the standard deviations of the Gaussian functions, space-limiting and
cost-weighting as described in Section 5.3.3.
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6.2.1 Robustness

We designed four experiments to test the robustness of the two algorithms on
the initial assignment. In the first experiment, we initialized the parameters by
their ground-truth values. In the second experiment, we initialized the angles
by their ground-truth values modified by 5◦ or −5◦ with probability 0.5. The
initial values for the translation parameters were equal to their ground-truth
values. In the third and fourth experiments, the angular perturbation was ±10◦

and ±15◦, respectively. The initial misregistration is reported in Table 6.1 by
its mean value and its standard deviation.

Table 6.1: Initial Bacteriorhodopsin data misregistration for the robustness
comparisons.

Initial assignment Misregistration [voxel]
Mean Standard deviation

Ground truth 0 0
Ground truth ±5◦ 3.55 0.89
Ground truth ±10◦ 7.10 1.76
Ground truth ±15◦ 10.55 2.61

Table 6.2: Robustness of the space-based algorithm. The Bacteriorhodopsin
data misregistration.

Space-Based Misregistration [voxel]
Mean Standard deviation

Ground truth 1.25 0.58
Ground truth ±5◦ 1.89 0.77
Ground truth ±10◦ 4.30 2.22
Ground truth ±15◦ 7.86 3.93

The space-based method assigned the poses with a misregistration whose
mean and standard deviation are shown in Table 6.2. The residual data mis-
registration by the frequency-based method is shown in Table 6.3.

Starting from the ground-truth assignment, the two algorithms performed
in a similar way (with a confidence of 95%). Both algorithms converged to
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Table 6.3: Robustness of the frequency-based algorithm. The Bacteri-
orhodopsin data misregistration.

Frequency-based Misregistration [voxel]
Mean Standard deviation

Ground truth 1.30 0.77
Ground truth ±5◦ 1.61 0.85
Ground truth ±10◦ 1.83 1.31
Ground truth ±15◦ 2.53 2.91

an assignment that was not the ground-truth one. This can be attributed to
the presence of noise and to the CTF, which make a synthetic cryo-EM image
differ from the corresponding theoretical projection. But when the angular
perturbation was substantial, both algorithms were successful in reducing the
initial misregistration. For the angular perturbation of ±5◦, the frequency-
based method achieved a registration that was slightly more accurate (with a
confidence of 95%) than the one achieved by the space-based method. In the
two remaining cases, ±10◦ and ±15◦, the frequency-based method was much
more accurate (with a confidence of 95%) than the space-based method.

6.2.2 Refinement of a standard-method assignment

Initialization

In this section, we initialize our frequency- and space-based algorithms using
the wavelet-projection matching since it showed the best performance when
compared with two other standard refinement algorithms.

For completeness purposes, we show here the results of this comparison for
the Bacteriorhodopsin data. This comparison was done by C. Ó. S. Sorzano
[93]. The mean and the standard deviation of the Bacteriorhodopsin data mis-
registration after having run the three standard algorithms are summarized in
Table 6.4. The values of the mean and standard deviation of the misregistra-
tion are computed in two ways. One uses the assignments for all 1,000 synthetic
images while the other takes into account only the images that were misregis-
tered with respect to the volume for not more than 10 voxel (that we consider
as reasonably assigned images). A misregistration of 10 voxel corresponds to
an angular perturbation of about 15 degree around the ground-truth angular
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assignment. The number of images taken into account is also reported in Ta-
ble 6.4.

The proportions of the reasonably assigned images were [98.7%,99.8%],
[93.2%,96.1%], and [59.3%,65.4%] for the wavelet-projection matching, the
space-projection matching, and the Radon angular assignment, respectively,
which means that the wavelet-projection matching was the most robust (with
95% confidence) among the three methods. According to the mean value of the
misregistration, the wavelet-projection matching appears to have a lesser accu-
racy than the space-projection matching. However, when statistical significance
is taken into consideration (with 95% confidence), these two methods are similar.
Both also perform significantly better than the Radon angular assignment.

Table 6.4: Accuracy and robustness of the Bacteriorhodopsin pose assignment
by three standard refinement algorithms.

Misregistration [voxel] Number of
Mean Standard deviation images

Wavelet-projection matching 3.18 1.85 1,000
Space-projection matching 2.99 3.68 1,000
Radon angular assignment 16.55 18.80 1,000

All synthetic images taken into account.

Misregistration [voxel] Number of
Mean Standard deviation images

Wavelet-projection matching 3.12 1.65 994
Space-projection matching 2.25 1.58 948
Radon angular assignment 3.13 2.09 624

Synthetic images with a misregistration of
less than 10 voxel taken into account.

Refinement

The goal of our algorithms was to reduce the initial data misregistration of
3.18 ± 1.85 voxel. The mean values and the standard deviations of the initial
and final data misregistrations for both algorithms are shown in Table 6.5.

Both algorithms were successful in reducing (with 95% confidence) the ini-
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Table 6.5: Accuracy of the frequency- and space-based algorithms for the initial
wavelet-projection matching (Bacteriorhodopsin).

Misregistration [voxel] Number of
Mean Standard deviation images

Wavelet-projection matching 3.18 1.85 1,000
Space-based registration 2.23 1.54 1,000
Frequency-based registration 1.77 1.11 1,000

tial misregistration. The frequency-based method registered the volume to the
images with an accuracy of 1.77 ± 1.11 voxel which was slightly better (with a
confidence of 95%) than the accuracy of the space-based method (2.23 ± 1.54
voxel). The space-based method reduced the initial mean misregistration by
about 30%, while the frequency-based method reduced it by 44%.

We conclude that the frequency-based volume-to-image registration algo-
rithm was more accurate than the space-based method. These results are con-
sistent with the results obtained from experiments on the robustness of the two
algorithms which showed that the frequency-based algorithm was more robust
than the space-based method.

Robustness to the angular step of the library

We explored the effect of a coarser library of projections, used by the wavelet-
projection matching, on the performance of the frequency-based algorithm. We
did not consider the space-based method since it seemed slightly less robust
than the frequency-based method. We created a library of 150 projections of
the Bacteriorhodopsin with an angular step of 10◦. Then, we performed the
assignment using the wavelet-projection matching. We run the frequency-based
algorithm with the volume and the images initially misregistered by 3.85± 3.68
voxel. The registration was accomplished with an accuracy of 1.81± 1.44 voxel.

We can notice that the initial misregistration was significantly higher (with
95% confidence) than the misregistration used to initialize the registration based
on the 5◦-library. In both cases, we significantly reduce (with 95% confidence)
the initial misregistration (Table 6.6). The histograms of the misregistration
(with a bin width of 0.35 voxel) in the two cases are shown in Figure 6.3.
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Table 6.6: Influence of a 5◦-library and a 10◦-library of the volume projec-
tions, used for the initial wavelet-projection matching, on the performance of
the frequency-based algorithm (Bacteriorhodopsin).

5◦ Misregistration [voxel]
Mean Standard deviation

Wavelet-projection matching 3.18 1.85
Frequency-based registration 1.77 1.11

5◦-Library.

10◦ Misregistration [voxel]
Mean Standard deviation

Wavelet-projection matching 3.85 3.68
Frequency-based registration 1.81 1.44

10◦-Library.
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Figure 6.3: Histogram of the Bacteriorhodopsin data misregistration. Influ-
ence of a 5◦-library and a 10◦-library of the volume projections, used for the
initial wavelet-projection matching, on the performance of the frequency-based
algorithm.
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6.2.3 Speed

For the image size 64 × 64 pixel and the volume size 64 × 64 × 64 voxel, the
frequency-based registration takes about 12 sec while the space-domain reg-
istration takes about 17 sec per image on a Power Mac G4, 733MHz. The
computation of the volume and image pyramids takes approximately 1.8 sec
and 0.2 sec, respectively.

6.3 Discussion

We compared the space-based algorithm with the frequency-based algorithm in
a fully controlled simulation environment where the ground-truth solution was
known a priori. We synthesized a set of images at known poses using a 3D
model of a protein from the PDB. The synthesized images were very similar to
the data commonly encountered in 3D electron cryo-microscopy. Since they have
a nearly limited extent in the space domain, their accurate interpolation in the
Fourier domain can be achieved using sinc-like basis functions. Our algorithms
are based on cubic-spline interpolation. The cardinal cubic spline is quite similar
to the sinc function as we have seen in Section 2.2. This is an explanation for
the gain in accuracy achieved by the frequency-based registration method over
the space-based method.
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Chapter 7

CONCLUSIONS

7.1 Summary

In this thesis, we have described two novel algorithms for the registration of a
volumetric image to a set of given 2D projections. The first algorithm performs
the registration in the space domain, while the second does it in the frequency
domain. They rely on the iterative minimization of the least-squares difference
between the given projections and simulated projections of the volume in the
corresponding domain. The main novelty of our algorithms is the use of cu-
bic splines for performing interpolation, either in the space domain or in the
frequency domain. This allows for a well-defined gradient of the dissimilarity
measure, which is a necessary condition for efficient and accurate registration.

In a first step, we have developed our space-based and frequency-based regis-
tration strategies in the context of the axonometric projection. We have focused
on methods for a fast simulation of volume projections and on multiresolution
strategies for improvement of the robustness. We have used ray casting to sim-
ulate the volume projections for the space-based registration. To speed-up the
computations, we proposed a novel one-step approach for fast ray casting that
requires mere 2D interpolation instead of the more costly 3D interpolation. To
improve the robustness of the space-based approach, we proposed a multireso-
lution optimization strategy where spline-based data pyramids are processed in
coarse-to-fine fashion, which improves speed as well. In the context of axono-
metric projection, we have also discussed the use of the central-slice theorem
to determine a signature of the simulated projections; this is at the core of
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our frequency-based registration algorithm. Then, Parseval’s theorem allows
for a fast computation of the dissimilarity measure. To improve robustness,
we proposed to emulate the coarse-to-fine strategy by applying weights in the
frequency domain.

We have also adapted our space-based algorithm to the perspective projec-
tion model, sometimes called a conical-beam projection. This allows us to apply
it to the registration of a CT volume to a set of C-arm images for computer-
assisted orthopedic surgery. We observe that the registration accuracy achieved
in this case is consistent with the current standards. When registering the CT
to pairs of real C-arm images, we obtain an accuracy of about 1.7 ± 0.5 mm,
which is subvoxel with respect to the inter-slice CT thickness of 2.5 mm. We
have shown that the registration accuracy could be improved by increasing the
number of C-arm images. The use of three C-arm images results in a registration
accuracy of 1.4 ± 0.2 mm.

Then, we have applied our frequency-based registration algorithm to the 3D
reconstruction of a protein from its 2D electron-microscopy images, which is
an application that is perfectly suited to the axonometric projection. We have
shown that our algorithm could be used to obtain a refined 3D model of a protein
with respect to currently available algorithms. In this case, we achieve a bet-
ter registration accuracy because we deal with a continuous space of geometric
parameters, while the standard methods achieve only limited accuracy because
they deal with quantized parameters. In the experiments on synthetic bacteri-
orhodopsin data, our algorithm reduces the initial misregistration achieved by
wavelet-projection matching by about 44%. In case of less cooperative hexon
data, our algorithm refines the solution by 25%. We have also performed ex-
periments with real protein data. They show that our algorithm improves their
consistency at all frequencies.

Last, we have compared the performance of the two algorithms in the context
of electron microscopy, in a fully controlled simulation environment where the
ground-truth solution was known a priori. The frequency-based registration was
slightly more accurate than the space-based one. This result can be attributed
to the suitability of interpolation in the frequency domain to data that are
strictly limited in space.
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7.2 Possible extensions

Space-based registration

• Explore the use of other dissimilarity measures. For instance, the mutual
information has been shown to suit well the task of registering multimodal data.
• Investigate the use of weights that are related to the in-volume ray length.
Note that the in-volume ray length depends on the volume pose, which means
that the weight given to each pixel will change in each iteration.
• Extend the rigid-body transformation to elastic transformations.

Frequency-based registration

• Substitute the Fourier domain by some other domain for which the central-
slice theorem holds, for instance the Hartley domain, which has the advantage
of being real-valued.
• Consider the perspective projection, which requires the development of a for-
mulation of the central-slice theorem that is tuned to the perspective geometry.

Applications

Computer-assisted orthopedic surgery

• Validate with other data sets (simple-geometry phantom data, missing data
in one of the two modalities, patient data).

3D electron-microscopy

• Validate with other real-data sets.
• Investigate the use of the spectral signal-to-noise ratio as a measure of reso-
lution of a 3D reconstruction instead of the Fourier-shell correlation.

Other applications

• Interventional neuroradiology (registration of 3D x-ray angiography data or
3D magnetic resonance angiography data to 2D digital subtracted angiography
images of vessels in the brain or kidney)
• Breast pathology assessment (registration of 3D magnetic resonance data to
2D x-ray mammography images of the breast).
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[68] F. Natterer and F. Wübbeling, Mathematical Methods in Image Re-
construction, Philadelphia, PA: Society for Industrial and Applied Math-
ematics, 2001.

[69] L.-P. Nolte, M. A. Slomczykowski, U. Berlemann, M. J.

Strauss, R. Hofstetter, D. Schlenzka, T. Laine, and T. Lund, A
new approach to computer-aided spine surgery: Fluoroscopy-based surgical
navigation, Eur. Spine J., 9 (2000), pp. S78–S88.

[70] S. J. Norton, Tomographic reconstruction of 2-D vector fields: Applica-
tion to flow imaging, Geophys. J., 97 (1989), pp. 161–168.

[71] P. Penczek, M. Radermacher, and J. Frank, Three-dimensional
reconstruction of single particles embedded in ice, Ultramicroscopy, 40
(1992), pp. 33–53.

[72] P. A. Penczek, Three-dimensional spectral signal-to-noise ratio for a
class of reconstruction algorithms, J. Struct. Biol., 138 (2002), pp. 34–46.

137



[73] P. A. Penczek, R. A. Grassucci, and J. Frank, The ribosome at im-
proved resolution: New techniques for merging and orientation refinement
in 3D cryo-electron microscopy of biological particles, Ultramicroscopy, 53
(1994), pp. 251–270.

[74] G. P. Penney, P. G. Batchelor, D. L. G. Hill, D. J. Hawkes, and

J. Weese, Validation of a two- to three-dimensional registration algorithm
for aligning preoperative CT images and intraoperative fluoroscopy images,
Med. Phys., 28 (2001), pp. 1024–1032.

[75] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G.

Hill, and D. J. Hawkes, A comparison of similarity measures for use in
2-D-3-D medical image registration, IEEE Trans. Med. Imag., 17 (1998),
pp. 586–595.

[76] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Nu-
merical Recipes, The Art of Scientific Computing, Cambridge University
Press, 1988.

[77] S. W. Provencher and R. H. Vogel, Three-dimensional reconstruc-
tion from electron micrographs of disordered specimens. I. Method, Ultra-
microscopy, 25 (1988), pp. 209–222.

[78] M. Radermacher, Weighted back-projection methods, in Electron To-
mography: Three-Dimensional Imaging With the Transmission Electron
Microscope, J. Frank, ed., Plenum Press, New York, 1992, pp. 91–115.

[79] , Three-dimensional reconstruction from random projections: Ori-
entational alignment via Radon transforms, Ultramicroscopy, 53 (1994),
pp. 121–136.

[80] J. W. Rector and J. K. Washbourne, Characterization of resolution
and uniqueness in crosswell direct-arrival traveltime tomography using the
Fourier projection slice theorem, Geophys., 59 (1994), pp. 1642–1649.

[81] T. Rohlfing, D. B. Russakoff, M. J. Murphy, and C. R. Maurer,
An intensity-based registration algorithm for probabilistic images and its
application for 2-D to 3-D image registration, in Proc. SPIE. Medical
Imaging 2002: Image Processing, M. Sonka and J. M. Fitzpatrick, eds.,
vol. 4684, 2002, pp. 581–591.

138



[82] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach,

and D. J. Hawkes, Nonrigid registration using free-form deformations:
Application to breast MR images, IEEE Trans. Med. Imag., 18 (1999),
pp. 712–721.

[83] D. B. Russakoff, T. Rohlfing, D. Rueckert, R. Shahidi, D. Kim,

and C. R. Maurer, Fast calculation of digitally reconstructed radio-
graphs using light fields, in Proc. SPIE. Medical Imaging 2003: Image
Processing, M. Sonka and J. M. Fitzpatrick, eds., vol. 5032, 2003, pp. 684–
695.

[84] J. J. Rux and R. M. Burnett, Type-specific epitope locations revealed
by X-ray crystallographic study of adenovirus type 5 hexon, Molecular
Therapy, 1 (2000), pp. 18–30.

[85] D. B. Salzman, A method of general moments for orienting 2D projec-
tions of unknown 3D objects, Comput. Vision Graphics Image Process, 50
(1990), pp. 129–156.

[86] D. Sarrut and S. Clippe, Geometrical transformation approximation
for 2D/3D intensity-based registration of portal images and CT scan, in
Proc. MICCAI 2001, W. Niessen and M. Viergever, eds., 2001, pp. 532–
540.

[87] W. O. Saxton and W. Baumeister, The correlation averaging of a reg-
ularly arranged bacterial envelope protein, J. Microsc., 127 (1982), pp. 127–
138.

[88] I. J. Schoenberg, Contributions to the problem of approximation of
equidistant data by analytic functions, Quart. Appl. Math., 4 (1946),
pp. 45–99,112–141.

[89] G. W. Sherouse, K. Novins, and E. Chaney, Computation of dig-
itally reconstructed radiographs for use in radiotherapy treatment design,
Int. J. Radiation Oncology Biol. Phys., 18 (1990), pp. 651–658.

[90] R. Singh, R. M. Voyles, D. Littau, and N. P. Papanikolopou-

los, Shape morphing-based control of robotic visual servoing, Autonomous
Robots, 10 (2001), pp. 317–338.

[91] L. M. Sirois, D. H. Hristov, and B. G. Fallone, Three-dimensional
anatomy setup verification by correlation of orthogonal portal images and
digitally reconstructed radiographs, Med. Phys., 26 (1999), pp. 2422–2428.

139



[92] C. O. S. Sorzano, Algoritmos Iterativos de Tomograf́ia Tridimensional
en Microscopía Electrónica de Transmisión, Univ. Politécnica de Madrid,
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