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S. Jonića,e,�, C.O.S. Sorzanoa,b, P. Thévenaza, C. El-Bezc,
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Abstract

This paper presents an algorithm based on a continuous framework for a posteriori angular and translational

assignment in three-dimensional electron microscopy (3DEM) of single particles. Our algorithm can be used

advantageously to refine the assignment of standard quantized-parameter methods by registering the images to a

reference 3D particle model. We achieve the registration by employing a gradient-based iterative minimization of a

least-squares measure of dissimilarity between an image and a projection of the volume in the Fourier transform (FT)

domain. We compute the FT of the projection using the central-slice theorem (CST). To compute the gradient

accurately, we take advantage of a cubic B-spline model of the data in the frequency domain. To improve the

robustness of the algorithm, we weight the cost function in the FT domain and apply a ‘‘mixed’’ strategy for

the assignment based on the minimum value of the cost function at registration for several different initializations.

We validate our algorithm in a fully controlled simulation environment. We show that the mixed strategy improves

the assignment accuracy; on our data, the quality of the angular and translational assignment was better than 2 voxel

(i.e., 6.54 Å). We also test the performance of our algorithm on real EM data. We conclude that our
e front matter r 2005 Elsevier B.V. All rights reserved.
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algorithm outperforms a standard projection-matching refinement in terms of both consistency of 3D reconstructions

and speed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Three-dimensional (3D) electron microscopy
(EM) comprises methods that facilitate the visua-
lization of biological structures with sizes ranging
from 100 Å to 1m [1–4]. A 3D model of a particle
is usually computed from its EM images in a two-
step procedure. First, the in-plane coordinates of
the center of the particle as well as its in-plane and
out-of-plane rotations are determined and as-
signed to each particle image [5–18]. Second, a
reconstruction algorithm is applied to compute the
3D model using the particle images and the
previous angular and translational assignment
[19–21]. Sometimes, the two steps are performed
simultaneously [22,23].
We can classify all the techniques for the

angular assignment into two groups: reference-
free [5,6,8,9,12,14,16,18] and reference-based
[7,10,11,13,15,17]. The goal of the reference-based
methods is to refine a particle assignment with
respect to a reference volume. The operation of
positioning an image plane with respect to a
volume is known as image-to-volume registration.
The goal of the new assignment is to improve the
previous 3D reconstruction. As the goal of
reference-free methods is to build a volume from
scratch, we do not discuss them any further, but
we take for granted the existence of an imperfect
reference that we want to refine.
The standard reference-based techniques

[13,15,17] determine the center and the orientation
of the particles by a set of quantized parameters.
Penczek et al. [13] and Sorzano et al. [17] assign
these parameters based on the cross-correlation
between the EM images and a library of projec-
tions of the reference volume. The cross-correla-
tion is computed using the two-dimensional (2D)
Fourier transforms (FTs) of the EM images and of
the library images [13] or using their 2D wavelet
transforms [17]. We refer to the former method as
projection matching (PM), and to the latter as
multiresolution projection matching (MPM). By
contrast, Radermacher [15] performs the assign-
ment relying on the cross-correlation between the
2D radon transform (RT) of each EM image and
the 3D RT of the volume. We refer to this method
as radon assignment (RA). The advantage of the
latter method is that the 3D RT contains the same
information as a discrete set of all possible volume
projections but it is represented using a smaller
data set. These quantized-parameter methods
apply exhaustive-search techniques to determine
the optimal parameters. Their main drawback is
that the quality of the registration depends on the
quantization step. The smaller is the step, the more
accurate, but slower is the parameter assignment.
In our previous work, we have developed an

algorithm that registers a computed-tomography
volume to a set of fluoroscopy images by assigning
a set of continuous orientational and translational
parameters to the images [24,25]. This algorithm
performs the registration in the space domain. In
this paper, we present its FT equivalent applied to
a posteriori angular and translational assignment
in 3DEM. To determine the center and the
orientation of the particles by a set of continuous
parameters, it employs a Levenberg–Marquardt
(LM) minimization of a least-squares measure of
dissimilarity between the 2D FT of the EM image
and the extracted corresponding central slice of the
3D FT of the volume based on the central-slice
theorem (CST).
The two algorithms that are the most similar to

ours are that of Provencher and Vogel [22,23] and
FREALIGN [10] which also compute continuous
parameters of the particle orientation and posi-
tion. The method of Provencher and Vogel [22,23]
performs the parameter refinement and the 3D
reconstruction simultaneously. It models the 3D
FT of the electron density of the particle by a
truncated expansion in a complete orthonormal
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set of basis functions in spherical polar coordi-
nates. The data are compressed, and the expansion
coefficients together with the parameters of the
particle orientations are estimated for all particles
simultaneously. The estimation is accomplished
using a modified Gauss–Newton minimization of a
weighted variance of the CST-based fit of the 2D
FT of each particle image into the 3D model. Their
method optimizes a large number of parameters,
which means a higher risk for the algorithm to get
trapped into local optima of the cost function, and
an augmented dependence on the quality of the
starting estimates for the parameters. In contrast,
FREALIGN [10] and our algorithm have an easier
parameter control since they estimate 5 parameters
per particle only, for each particle independently.
Another advantage of these algorithms is their
versatility since they can be applied in combination
with any available reconstruction algorithms with-
in a procedure for iterative refinement of the
estimated parameters (Fig. 1). However, while
FREALIGN minimizes the phase dissimilarity
between the FT of the experimental image and
its model weighted by the amplitude of the FT of
the experimental image, our algorithm minimizes
both the amplitude dissimilarity between the FT of
the experimental image and its model, and the
phase one. Both algorithms use a 3D reference
Data

3D reconstruction

Sufficient improvement in resolution?
No

Yes

Continuous-parameter method

End

Fig. 1. Refinement of the 3D model of a particle using

continuous-parameter image-to-volume registration.
model that is created from electron micrographs of
the particles. In return, they require interpolation
of the 3D FT of the volume.
Contrary to FREALIGN which uses the FT of

a box for the interpolation process, our algorithm
uses a cubic B-spline model [26–29] of the volume
in the FT domain for an accurate extraction of the
slices of the 3D FT as well as for having the
gradient of the dissimilarity measure well-defined
everywhere. This is a necessary condition for an
accurate assignment of the particle orientations
and positions in the space of continuous para-
meters. This interpolation scheme allows us to take
advantage of the powerful LM optimization
method that is faster than Powell’s method of
FREALIGN since we have access to the gradient
of the cost function. We contribute also to the
improvement of the algorithm robustness.
Like all iterative algorithms, our method re-

quires an initial guess for the unknown para-
meters. To reduce the sensitivity to the choice of
the initial parameters, we have developed a novel
strategy for the assignment that launches the
algorithm for a number of initial guesses and,
then, selects the best starting point for each
experimental image. As criterion for the selection
of the best initialization, we use the minimum
value of the dissimilarity measure at registration.
The advantage of this strategy is in avoiding
‘‘bad’’ starting points, which improves the regis-
tration robustness and accuracy. We also weight
the dissimilarity measure such that all frequencies
are attenuated, particularly the high ones while the
DC component is discarded. In this paper, we
show the performance of our algorithm when
using this strategy based on three starting points.
More precisely, we initialize the algorithm using
the assignments by MPM, PM, and RA (Fig. 2). A
generalization to any number of points is straight-
forward.
The paper is organized as follows: we describe

the geometry of the problem in Section 2. The
basic elements of our frequency-based algorithm
are given in Section 3. In Section 4, we validate the
algorithm using 3D models of proteins from the
Protein Data Bank [30] (PDB) (http://www.
rcsb.org/pdb/) and synthesized EM images of
these proteins. These images have a known

http://www.rcsb.org/pdb/
http://www.rcsb.org/pdb/
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Fig. 2. Initialization by a standard quantized-parameter method.
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ground-truth alignment with respect to the 3D
protein model. This allows an objective measure of
the assignment accuracy. We also have at our
disposal a set of experimental EM images and a
3D model of a protein for which we do not know
the ground-truth alignment. The performance of
the algorithm using such data is investigated in
Section 5. The conclusions are given in Section 6.
2. Geometrical setup

We define the volume orientational and transla-
tional parameter a ¼ ða1; a2; . . . ; a6Þ in the refer-
ence coordinate system (R-COS) by three
rotations and three translations of the volume.
Let us denote the system of 3D voxel indexes m ¼

ðm1;m2;m3Þ 2 R3 by the voxel coordinate system
(V-COS) and the system of 2D pixel indexes k ¼

ðk1; k2; 0Þ 2 R2 � f0g by the pixel coordinate sys-
tem (P-COS). We rotate the volume by applying a
3� 3 rotation matrix R to the V-COS coordinate
of each voxel of the volume. This matrix is
determined by three Euler angles: j; y; and c;
that is, R ¼ RzðcÞRyðyÞRzðjÞ; where RxðaÞ indi-
cates the matrix of rotation around the x-axis by
the angle a: The volume translation is described by
a vector t ¼ ðDx;Dy;DzÞ; where Dx; Dy; and Dz are
translations along the x- , y- , and z-axes. We
transform the V-COS coordinate m of a point of
the volume into its corresponding P-COS coordi-
nate k ¼ L1HðRL2m þ tÞ; where L1 and L2 are
diagonal scaling matrices, and where H projects a
3D vector onto the xy-plane, with

H ¼

1 0 0

0 1 0

0 0 0

0
B@

1
CA. (1)

Similarly, we transform the P-COS coordinate of a
point k inside the image into a line of corresponding
V-COS coordinates n0 þ xn; where x 2 R is some
free scalar parameter, with n0 ¼ L	1

2 R	1ðL	1
1 k 	 tÞ;

n ¼ L	1
2 R	1L	1

1 e3; and e3 ¼ ð0; 0; 1Þ:
Given an EM image and a 3D model of a

particle, our algorithm assigns a set of orienta-
tional and translational parameters a to the
corresponding image plane in the R-COS such
that the volume projection onto the plane is the
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most similar to the given image. This is equivalent
to positioning the volume in the R-COS with
respect to a fixed image plane. We repeat the same
assignment procedure for each image from a set of
given EM images. We compute a by minimizing
the cost function which is a real-valued function of
five variables ai; i ¼ 1; 2; . . . ; 5 (the out-of-plane
and in-plane rotation angles, and the in-plane
translations).
Note that, in this application, we do not opti-

mize the cost function in all six unknown para-
meters but in only five of them. These parameters
are a ¼ ðj; y;c;Dx;DyÞ: We cannot recover Dz

because the parallel-beam projection geometry is
invariant with respect to the shift along the
projection direction (here, the z-axis).
Fig. 3. Continuous angular and translational assignment in the

frequency domain.
3. Algorithm

Our frequency-based algorithm is summarized
in Fig. 3. The input data for the algorithm are: (1)
the 3D model of the particle, (2) the EM images of
the particle, (3) the pixel and voxel sizes, and (4)
the initial angular and translational assignment for
the particle images.
This method minimizes the dissimilarity be-

tween the FTs of the EM images and the extracted
corresponding central slices of the 3D discrete FT
(DFT) of the volume; the extraction is performed
according to the CST approach given in Section
3.1. The required interpolation in the frequency
domain is described in Section 3.2. The weighting
of the dissimilarity measure for the robustness
improvement is shown in Section 3.3. The
optimization algorithm is presented in Section 3.4.
Error-free (sinc-based) interpolation in the FT-

domain can be achieved if the data are space-
limited, which is not always the case. To inter-
polate the data in the FT-domain accurately
enough, we assume that they are nearly space-
limited. To enforce this assumption, we perform a
spatial apodization of the input volume and
images by Gaussian windows with the appropriate
standard deviations. The apodization of the input
volume and images by Gaussian windows is
represented by the two ‘‘Windowing’’ blocks in
Fig. 3.
3.1. CST approach

Given a volume f whose orientation and
translation in the R-COS is described by a

(Fig. 4), a projection of the volume along the ray
determined by the unit vector e3 through the
image-plane point with the P-COS coordinate k ¼

ðk1; k2; 0Þ is as follows:

paðkÞ ¼

Z
R

f ðn0 þ xnÞdx. (2)

Let us write the 2D FT of the projection pa as

p̂aðxÞ ¼

Z
R2

Z
R

f ðn0 þ xnÞdx
� 	

e	jhx;ki d2k, (3)
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where x ¼ ðo1;o2; 0Þ 2 R2 � f0g is a spatial-fre-
quency vector and where hx; yi ¼ x>y stands for
the inner product between the vectors x and y:
Recalling the definitions of n0 and n; we can
rewrite (3) as

p̂aðxÞ ¼

Z
R3

f ðL	1
2 R	1ðL	1

1 r 	 tÞÞe	jhx;ri d3r, (4)

where r ¼ k þ xe3: Let us perform the change of
variable s ¼ L	1

2 R	1ðL	1
1 r 	 tÞ; which leads to

p̂aðxÞ ¼ jdet L1L2j

Z
R3

f ðsÞe	jhx;L1ðRL2sþtÞi d3s

¼ jdet L1L2j

Z
R3

f ðsÞe	jhðL1RL2Þ
>x;si d3s

� 	
�e	jhx;L1ti, ð5Þ

where the term in parentheses represents the 3D
FT f̂ of the volume f evaluated at the 3D
frequency ðL1RL2Þ

>x: The 2D FT of the projec-
tion pa is therefore given by

p̂aðxÞ ¼ jdet Ljf̂ ððL1RL2Þ
>xÞe	jhx;L1ti, (6)

where L ¼ L1L2:
Eq. (6) is a matrix form of the CST suited to our

parameterization. It tells us how we can obtain the
2D FT of a projection with the orientational and
translational parameters a using the 3D FT of the
volume. It comprises the extraction of the central
slice at orientation determined by L1R L2 from the
3D FT, the slice phase shift determined by L1 and
t; and the slice scaling given by jdet Lj: Since we
have discrete data at our disposal, we replace the
FT by the DFT. The slice extraction involves the
interpolation of the real and imaginary parts of
the 3D DFT of the volume. We model each part of
the complex 3D DFT by a continuous B-spline 3D
data model presented below.

3.2. Data interpolation

Given the discrete samples x̂n ¼ x̂ðnÞ; n ¼

ðn1; . . . ; nN Þ 2 ZN ; of the FT of a function x, we
can reconstruct some continuously defined FT of a
function y using the following B-spline model:

ŷðxÞ ¼
X
n2ZN

dnb
n
ðx 	 nÞ,

8x ¼ ðo1; . . . ;oNÞ 2 RN , ð7Þ

where dn are complex coefficients obtained by
recursive digital filtering [31] of the samples x̂n;
independently for the real and imaginary part of
the sequence x̂n: There, ŷðnÞ ¼ x̂ðnÞ; and bn

ðxÞ is
the N-dimensional B-spline of degree n which is a
separable function given by

bn
ðxÞ ¼

YN
j¼1

bn
ðojÞ, (8)

where bn
ð�Þ denotes the centered B-spline of degree

n [29]. The separability makes possible that an
operation on N-dimensional data is performed as a
successive processing of one-dimensional (1D)
data along each of the N dimensions. In return,
the data processing is simple and fast.

3.2.1. Interpolation accuracy

Let f T be the function that has been recon-
structed from the samples of a function f, that is,
f T ðxÞ ¼

P
k2Z ckjðx=T 	 kÞ; where T is the sam-

pling step and where ck are coefficients computed
from the samples f k using digital filtering [28]. We
can define the error of approximation of f by f T

using the mean-square norm �2ðTÞ ¼ kf 	 f Tk
2
L2

¼R1

	1
ðf ðxÞ 	 f T ðxÞÞ

2 dx: A prediction of this ap-
proximation error can be obtained using the
formula Z2ðTÞ ¼ 1

2p

R1

	1
jf̂ ðoÞj2EðoTÞdo [32–34].

The interpolation error kernel E depends on the
basis function only. For bandlimited functions, we
have that � is equal to Z; and the prediction is exact
in this case.
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The kernel E must vanish at the origin to ensure
that the approximation error vanishes for T ¼ 0:
The vanishing rate is controlled by two properties
of the basis function j: the approximation order L

and the approximation constant C40: They
determine Z as follows:

ZðTÞ ¼ CTLkf ðLÞ
kL2

as T ! 0, (9)

where f ðLÞ is the Lth derivative of f. This means
that the error predicted by Z decreases like TL as
T ! 0: The higher is L, the faster is the decay of
the approximation error for the same, sufficiently
small T. Also, the smaller is C, the smaller is the
approximation error. However, the decay of the
approximation error is dominated by TL for TpC

which is very often the case. Therefore, C is used
for ranking basis functions of identical approx-
imation order L. See [28] for a systematic overview
of standard basis functions.
It turns out that the approximation order (and

the support) of a B-spline of degree n is equal to
L ¼ n þ 1 [28]. They have been shown to be
maximally continuous basis functions, with the
minimal support for a given order of approxima-
tion, and the maximal order of approximation for
a given support [35].

3.3. Multiresolution cost function

We minimize the following cost function:

SðaÞ ¼
1

2

X
n2Z2

�

wðnÞ
RaðnÞ

sa

	
RðnÞ

s

� 	2
"

þ
IaðnÞ

sa

	
IðnÞ

s

� 	2
#
, ð10Þ

where Z2
� ¼ Z2nf0g; Ra and Ia are the real and

imaginary part of the discrete version of (6),
respectively, and where R and I are the real and
imaginary part of the 2D DFT of the EM image,
respectively.
EM images and projections have different

ranges of intensities. To take this into account,
we perform a normalization by their standard
deviations, s and sa; respectively, where s2 ¼P

n2Z2
�
ðR2ðnÞ þ I2ðnÞÞ; and s2a ¼

P
n2Z2

�
ðR2

aðnÞ þ

I2aðnÞÞ:We improve the robustness of the algorithm
by weighting the cost function by a 2D Gaussian
w. A coarse-to-fine processing can be performed
by increasing the standard deviation of the
Gaussian which increases the contribution of the
higher frequencies to the cost function.
We adjust the standard deviations of the

Gaussian functions, space-limiting and cost-
weighting, such that a good registration accuracy
can be achieved. In this paper, we have chosen
these standard deviations as sg ¼ N=2; where the
image size was N � N pixel and the volume size
was N � N � N voxel. The role of the cost-
weighting function is to attenuate all frequencies,
particularly the high ones; at the same time, we
also discard the DC component at frequency x ¼

0: We can therefore say that the overall effect of
our algorithm is a band-pass filtering. Note that
the highest frequency is attenuated by approxi-
mately 40%. The attenuation of the higher
frequencies is beneficial because of a poor signal-
to-noise ratio (SNR) at these frequencies.

3.4. Optimization

3.4.1. Levenberg– Marquardt optimizer

We apply the LM algorithm to optimize the cost
function. It achieves the best tradeoff between the
robust but generally inefficient method of steepest
descent and the efficient but non-robust Newton
method [36,37]. This method uses the gradient
½=SðaÞ�i ¼ qS=qai; i ¼ 1; 2; . . . ; 5 and the Hessian
=2SðaÞ:
Let H be a modified Hessian such that the

diagonal elements of the Hessian are multiplied by
a factor ð1þ lÞ while its off-diagonal elements are
not changed

½HðaÞ�i;j ¼ ½=2SðaÞ�i;jð1þ ldi;jÞ, (11)

where Kronecker’s delta is given by di;j ¼ 1	
jsignði 	 jÞj with i; j 2 f1; 2; . . . ; 5g: Then, the LM
optimization algorithm can be described by

aðkþ1Þ ¼ aðkÞ 	 ðHðaðkÞÞÞ	1=SðaðkÞÞ. (12)

Eq. (12) approximates the gradient algorithm
for l ! þ1; albeit with vanishing steps. Simi-
larly, it approximates the Newton algorithm
for l ! 0: The parameter l is adaptively tuned
[36,37] to provide a smooth transition from the
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S. Jonić et al. / Ultramicroscopy 103 (2005) 303–317310
steepest-descent algorithm (used in the beginning)
to the Newton algorithm (used as approaching the
solution).

3.4.2. Gauss– Newton approximation of the

Hessian

The exact components of the true Hessian matrix
depend on the first derivatives of Ra and Ia with
respect to the parameters a as well as on their
second derivatives. Since the influence of the second
derivative terms can be destabilizing when the
current guess is far from the solution, we use an
approximation of the elements of the Hessian
matrix that ignores them [37]. This approximation
makes the optimization work better because it is
necessarily positive-definite for a sufficiently large l:

3.4.3. Gradient

The gradient of the cost function depends on
the first derivatives of Ra and Ia with respect to the
parameters a: To obtain these derivatives, we
compute the gradient of the volume in the
frequency domain

=ŷðxÞ ¼
X
n2ZN

dn=b
n
ðx 	 nÞ; 8x 2 RN . (13)

For B-splines of degree nX2; we have the
guarantee that the first derivative d=dxbn

ðxÞ is
continuous, which is not the case if n ¼ 0 (nearest-
neighbor interpolation) or n ¼ 1 (linear interpola-
tion). We choose to model the data using cubic B-
splines (n ¼ 3) since they provide a gradient of the
cost function which is well-defined everywhere. At
the same time, they offer a good tradeoff between
computational cost and interpolation quality.
4. Validation with ground-truth alignment

In this section, we perform an objective evalua-
tion of the accuracy of our algorithm using
simulated EM images with a priori known
ground-truth orientational and translational para-
meters. For this purpose, we have designed a
measure of the assignment accuracy that we call a
measure of misregistration and that we present in
Section 4.1. As volumetric data, we use the models
of two proteins from the PDB. To obtain the
reference images, we simulate a set of cryo-EM
images by projecting the 3D protein model with
known orientational and translational parameters,
by applying noise, and by simulating the effect of
the CTF. The volumetric data and the procedure
of synthesizing cryo-EM images are given in
Section 4.2.
We performed four sets of experiments. The first

set (Section 4.3) tests the robustness of the
algorithm with respect to the initial values for
the parameters a: We compare the robustness of
the frequency-based algorithm to that of the space-
based method [24,25] on the same EM data set.
The second set (Section 4.4) was designed to
investigate which quantized-parameter method to
apply for the initial assignment. It also tests
the ‘‘mixed’’ strategy based on several different
initializations. The third set (Section 4.5) tests
the sensitivity of our algorithm when initialized
by MPM to the library quantization step. The
fourth set (Section 4.6) tests the influence of the
quality of the 3D reference model on the
performance of the algorithm. We have therefore
low-pass filtered the model used for the robustness
experiment and repeated it for the same initial
conditions.
4.1. Measure of misregistration

We transform the 3D index of each voxel of a
virtual volume, given in homogenous coordinates
m ¼ ðm1;m2;m3; 1Þ; by using two transformations:
the ground-truth transformation B and the esti-
mated transformation Ba

a: The transformation
matrices B and Ba

a are of size 4� 4 (homogenous
coordinates) and comprise rotation, translation,
and scale parameters. The transformation Ba

a takes
into account the symmetries of the particular
protein. They involve a rotation by an angle a
around the symmetry axis before applying the
transformation parameters a estimated by image-
to-volume registration. In the case of a protein
with a threefold rotational symmetry, a takes the
following values: 60�; 120�; and 240�: We compute
the average of the norm of the difference between
the two transformed coordinates over all m for
each a: We define the misregistration as the



ARTICLE IN PRESS
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minimum averaged norm, that is,

$ ¼ min
a

1

cardðf Þ

X
m2f

kðB 	 Ba
aÞmk. (14)

A smaller $ indicates a more-accurate angular and
translational assignment. The perfect assignment
should result in $ ¼ 0: Note that this measure is
expressed in voxel units but takes into account
both angular and translational assignment accu-
racy.

4.2. Data

4.2.1. Volumes

The Bacteriorhodopsin (PDB accession code:
1BRD, Fig. 5(a)), found in Halobacterium halo-

bium, has been solved using high-resolution cryo-
EM [38]. The Adenovirus Type 5 Hexon (PDB
accession code: 1RUX, Fig. 5(b)), found in
humans, has been solved by X-ray crystallography
[39]. Each protein has a threefold rotational
symmetry. The two volumes were of size 64�
64� 64 voxel and their sampling rate was 3.27 Å.

4.2.2. Synthetic EM images

1000 projections of the reference model were
computed with random orientation determined by
a set of uniformly distributed angles j 2 ½0�; 120��
and y 2 ½0�; 175��: The three remaining parameters
Fig. 5. Three views of an isosurface of (a) the Bacteriorho-

dopsin and (b) the Hexon from the PDB.
c; Dx; and Dy were equal to zero for each
projection.
Noise and the CTF were simulated using a

model proposed by Velázquez–Muriel et al. [40].
The noise before the CTF (nb) was modeled by a
Gaussian white noise with the standard deviation
sb ¼ 0:54: The noise after the CTF (na) was
modeled by a low-pass filtered Gaussian noise
with the standard deviation sa ¼ 2:20 generated
at the input n0

a: The standard deviations were
adjusted so that the ratio between the power of
the signal and the power of the total noise
was approximately equal to 1

3
: The filter and

the CTF have been estimated simultaneously [40]
from an electron micrograph for the following
parameters of the electron microscope: accelerat-
ing voltage ¼ 200 kV; defocus ¼ 	27700 (A;
spherical aberration ¼ 2mm; convergence cone ¼
0:21mrad: The CTF, the background spectrum
filter, and the synthesized EM images were of size
64� 64 pixel. The synthesizing procedure is
schematically shown in Fig. 6.

4.3. Robustness

We performed four experiments using the
Bacteriorhodopsin data. In the first experiment,
we initialized the parameters by their ground-truth
values. In the second experiment, we initialized the
angles by their ground-truth values modified by
�5� with probability 0.5. The initial values for the
translation parameters were equal to their ground-
truth values. In the third and fourth experiments,
the angular perturbation was �10� and �15�;
respectively.
The mean values and the standard deviations of

the initial misregistration and of the misregistra-
tion after having performed the space-
and frequency-based registrations are shown in
Table 1. Starting from the ground-truth assign-
ment, the two algorithms performed in a similar
way (with a confidence of 95%). Both algorithms
converged to an assignment that was not the
ground-truth one. This can be explained by the
presence of noise and of the CTF, which makes a
synthetic EM image differ from the corresponding
theoretical projection. In all three cases of angular
perturbation, both algorithms were successful in
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Fig. 6. Procedure for synthesizing EM images.

Table 1

Robustness of the space- and frequency-based algorithm

Misregistration [voxel]

Initial Space-based Frequency-based

Mean Standard Mean Standard Mean Standard

deviation deviation deviation

Ground truth 0 0 1.25 0.58 1.30 0.77

Ground truth �5� 3.55 0.89 1.89 0.77 1.61 0.85

Ground truth �10� 7.10 1.76 4.30 2.22 1.83 1.31

Ground truth �15� 10.55 2.61 7.86 3.93 2.53 2.91
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reducing the initial misregistration. For the angu-
lar perturbation of �5�; the frequency-based
method was slightly more accurate (with a con-
fidence of 99.9%) than the space-based method. In
the two remaining cases, �10� and �15�; the
frequency-based method was much more accurate
(with a confidence of 99.9%) than the space-based
method.
The synthesized images were very similar to the

data commonly encountered in 3D cryo-EM. Since
they were nearly space-limited, their accurate
interpolation in the Fourier domain could be
achieved using sinc-like basis functions. Our
algorithms are based on cubic-spline interpolation.
The cardinal cubic spline is quite similar to the sinc
function [29]. We observe that the frequency-based
registration outperforms the space-based method.
We explain this result by the fact that the space-
limitedness assumption is better satisfied by the
data at hand than the band-limitedness assump-
tion implicit with real-space data interpolation.

4.4. Refinement of a previous assignment

Here, we show the performance of the fre-
quency-based method when initialized by MPM,
PM, or RA assignments. We also show their joint
result based on the minimum final value of the
dissimilarity measure among the three methods.
MPM and PM methods used a library of 1704

images uniformly distributed in the 3D space with
an angular step of 5�: The RT was also sampled
every 5�: The results of this experiment for the
Bacteriorhodopsin and the Hexon are shown in
Tables 2 and 3, respectively. From these tables, we
observe that our algorithm was successful in
reducing (with 99.9% confidence) the initial
misregistration coming from the MPM and PM
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Table 3

Accuracy of the frequency-based algorithm for three initial

assignments in the Hexon case, as well as their joint result

Initial

guess a0

Initial misregistration

[voxel]

Final misregistration

[voxel]

Mean Standard

deviation

Mean Standard

deviation

MPM 4.50 6.86 3.38 7.64

PM 9.13 14.05 8.91 15.62

RA 35.00 11.59 33.70 14.90

MPM-

PM-RA

N/A N/A 1.97 3.57

Table 2

Accuracy of the frequency-based algorithm for three initial

assignments in the Bacteriorhodopsin case, as well as their joint

result

Initial

guess a0

Initial misregistration

[voxel]

Final misregistration

[voxel]

Mean Standard

deviation

Mean Standard

deviation

MPM 3.18 1.85 1.77 1.11

PM 2.99 3.68 1.70 1.54

RA 16.55 18.80 15.83 19.56

MPM-

PM-RA

N/A N/A 1.70 1.06
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Fig. 7. A joint result of MPM, PM, and RA assignments of the

frequency-based algorithm in the Hexon case. Difference

between the two lowest-cost functions vs. difference between

the corresponding misregistrations.

S. Jonić et al. / Ultramicroscopy 103 (2005) 303–317 313
assignments in the Bacteriorhodopsin case and
from the MPM assignment in the Hexon case. We
also see that it fails to register data that are
initially too much misregistered as in case of the
RA assignment for both proteins and of the PM
assignment for the Hexon.
We notice that the strategy that involves all

three methods improves the accuracy of our
algorithm for both proteins. For these data sets,
it achieves registration with a mean accuracy that
is better than 2 voxel (i.e., 6.54 Å). In these
examples, it has rarely selected the starting points
coming from RA, which shows an improved
robustness. By help of the next two figures, we
investigate the quality of this strategy using the
Hexon data. In Fig. 7, we show the goodness of
the cost function as a selection criterion by
plotting the difference between the two lowest-
cost functions vs. the difference between the
corresponding objective misregistrations. In the
cases where both differences are negative,
the strategy was right. We see that, because of
the noise, it failed in a small region where the
difference between the cost functions was close to
0. In most cases, the difference between the
corresponding misregistrations was small which
means that the assignment error was small too.
Fig. 8 shows the initial and final joint misregistra-
tions. We observe that, using this strategy, our
algorithm reduces any joint misregistration, as
long as it is lower than about 25 voxel.
As far as speed is concerned, for the image size

64� 64 pixel and for the volume size 64� 64� 64
voxel, our registration takes about 12 s on a Power
Mac G4, 733MHz.

4.5. Robustness to the angular step of the library

We explored the effect of a coarser library of
projections, used by MPM, on the performance of
our frequency-based algorithm. We created a
library of 150 projections of the Bacteriorhodopsin
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Table 4

Effect of a 5� library and a 10� library of the volume

projections, used for the initial MPM, on the performance of

the frequency-based algorithm

Bacteriorhodopsin 5� library 10� library

Misregistration

[voxel]

Misregistration

[voxel]

Mean Standard Mean Standard

deviation deviation

Initial 3.18 1.85 3.85 3.68

Final 1.77 1.11 1.81 1.44
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with an angular step of 10�: Then, we performed
the assignment using MPM. We run our algorithm
with the volume and the images initially misregis-
tered by 3:85� 3:68 voxel. The registration was
achieved with an accuracy of 1:81� 1:44 voxel.
We notice that the initial misregistration was

significantly higher (with 99.9% confidence) than
the misregistration used to initialize the registra-
tion based on the 5� library (Table 4). In both
cases, we significantly reduced (with 99.9% con-
fidence) the initial misregistration. However, the
two assignments are not significantly different
(with 95% confidence) (Table 4), which means that
we can initialize our algorithm with the assignment
based on a coarser library of projections without
any significant loss in accuracy.

4.6. Quality of the reference

We have low-pass filtered the 3D Bacteriorho-
dopsin model described in Section 4.2 to 2.4 nm
and repeated the robustness experiment (Section
4.3). We compare in Table 5 the results of the
experiment with the low- and the high-resolution
reference volumes for the same initial conditions.
When the initial assignment is different from the
ground truth, the algorithm reduces the initial
misregistration in the case of the low- and of the
high-resolution volume. For bigger initial mis-
alignments (ground truth �10�; ground truth
�15�), we can note a smaller standard deviation
of the measure of misregistration in the case of the
low-resolution volume than in the case of the high-
resolution one. This can be explained by a better
convergence toward a global minimum of the cost
function in the case of a low-resolution volume.
5. Validation without ground-truth alignment

Given a set of experimental images of a GroEL
chaperonin from Escherichia coli and its low-
resolution 3D model, we show here the perfor-
mance of our algorithm in refining this model. In
this case, the ground-truth orientation and trans-
lation of the particle images are unknown and
have to be estimated. This means that we cannot
perform an objective evaluation of the accuracy of
the assignment anymore. Therefore, we have
chosen to evaluate the performance of our algo-
rithm by measuring the consistency of volume
reconstructions in terms of the Fourier-shell
correlation (FSC).
We had at our disposal a set of experimental

GroEL images acquired by De Carlo et al. [41] and
a first estimation of their orientational and
translational parameters. This first assignment
has been obtained after having performed one
iteration of PM for refinement of a starting
model (the zero-iteration model), as explained in
Ref. [41]. Using these data, we reconstructed a 3D
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Table 5

Robustness of the frequency-based algorithm for two reference 3D models of different resolutions

Misregistration [voxel]

Initial Low resolution High resolution

Mean Standard Mean Standard Mean Standard

deviation deviation deviation

Ground truth 0 0 1.98 1.13 1.30 0.77

Ground truth �5� 3.55 0.89 2.26 1.05 1.61 0.85

Ground truth �10� 7.10 1.76 2.40 1.14 1.83 1.31

Ground truth �15� 10.55 2.61 2.70 1.87 2.53 2.91
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Fig. 9. Fourier-shell correlation and 0.5 threshold for the

following GroEL volume reconstructions: (1) corresponding to

the assignment by the spline frequency-based algorithm for

refinement of the second-iteration model, (2) corresponding to

the initialization of the spline frequency-based algorithm by

MPM that was using the same 3D reference, that is, the second-

iteration model, and (3) corresponding to the assignment after

four iterations of PM for refinement of the zero-iteration

model.
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GroEL model that had a very low resolution. We
refer to this volume as the first-iteration model.
We performed one iteration of the refinement of

the first-iteration model using MPM. We refer to
the subsequent reconstructed volume as the
second-iteration model. In the next iteration, we
applied our spline frequency-based algorithm to
the refinement of the second-iteration model. To
provide our algorithm with an initial angular and
translational assignment, we performed one itera-
tion of MPM that was also using the second-
iteration model as the reference.
Using the assignment by our algorithm, we

reconstructed two volumes from two subsets of the
GroEL images, and computed the corresponding
FSC curve. The 0.5-FSC for the two volumes was
12.5 Å(Fig. 9). We reconstructed two more vo-
lumes corresponding to the initial angular and
translational assignment used by our algorithm,
and computed the corresponding FSC curve. The
0.5-FSC for these two volumes was 22.2 Å(Fig. 9).
We also had at our disposal the angular and
translational assignment for the images after
having performed four iterations of PM for
refinement of the zero-iteration model, as ex-
plained in Ref. [41]. We therefore reconstructed
two volumes corresponding to this assignment,
and computed the FSC curve. Their 0.5-FSC was
29.0 Å(Fig. 9). All six volume reconstructions were
accomplished using the algebraic reconstruction
technique (ART) with smooth spherically symme-
tric volume elements [42]. From Fig. 9, we con-
clude that our spline frequency-based algorithm
improves the consistency of 3D reconstructions. It
outperforms PM-based refinement procedure in
terms of both consistency and speed; it leads to
more consistent 3D reconstructions in a smaller
number of iterations (Fig. 10).
6. Conclusion

We have developed a frequency-based algorithm
for computing the parameters of orientation and
translation of cryo-EM single-particle images with
respect to a 3D model of the particle. Our
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Fig. 10. Experiments performed, with the reconstruction index in parentheses, and with the corresponding FSC resolution. For the

proposed method, the effective model is that which results from reconstruction ð2Þ0; and we use the assignments resulting from MPM

only as initial conditions. (The reconstruction at 22.2 Å was performed solely for monitoring purposes.) We reach a better resolution in

fewer reconstructions than with the PM method.
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algorithm assigns a set of continuous orientational
and translational parameters to the images. There-
fore, its application is the refinement of the
assignment obtained by the algorithms that result
in a set of quantized orientational and transla-
tional parameters. Our algorithm uses a gradient-
based iterative minimization of a least-squares
measure of dissimilarity between an image and a
projection of the volume in the frequency domain.
It is based on the CST for computing FT of the
projections. To interpolate the data accurately and
to compute the gradient of the dissimilarity
measure exactly, we use a continuous data model
based on cubic B-splines.
We validated the algorithm in a fully controlled

simulation environment where the ground-truth
solution was known a priori. We synthesized a set
of images with known orientations and transla-
tions using a 3D model of a protein from the PDB.
We designed a measure of the assignment quality
that is expressed in voxel units but takes into
account both angular and translational assignment
accuracy.
We compared the robustness of this algorithm

to that of an algorithm that performs the registra-
tion in the space domain. We observed that the
frequency-based registration was more robust than
the space-based method, which we explain by the
space-limitedness assumption that is better satis-
fied by the EM data than the band-limitedness
assumption implicit with real-space data interpo-
lation.
Then, we showed the performance of the

frequency-based method when initialized by ap-
plying one of three standard quantized-parameter
methods. We also showed their joint result
obtained by employing a strategy that selects for
each image the method that gives the minimum
final value of the dissimilarity measure. This
strategy improves the robustness of our algorithm;
for the data sets used here, it achieves assignment
with a mean error that is smaller than 2 voxel (i.e.,
6.54 Å).
Our experiments point out that we could

initialize our algorithm with an assignment based
on a 10� library of projections without any
significant loss in accuracy with respect to an
assignment based on a 5� library. This good
robustness suggests a strategy where a coarse
initialization is performed using any of a series of
quantized-parameter algorithms, followed by our
continuous-parameter approach.
We also tested the influence of the quality of the

3D reference model to the performance of the
algorithm. We have low-pass filtered the model
used for the robustness experiment and repeated
the robustness experiment with the lower-quality
model. When the initial assignment is different
from the ground truth, the algorithm reduces the
initial misregistration with the low-resolution
volume like with the high-resolution reference.
We noticed once more that robustness to local
minima of the cost function was better in the case
of a low-resolution reference than in the case of a
high-resolution one.
Finally, we presented the performance of our

frequency-based algorithm in refining a 3D model
of a GroEL chaperonin using real EM data where
there was no ground-truth solution. We initialized
it by MPM. We observed that our algorithm
improved the consistency of the volumes from a
previous iteration and outperformed PM-based
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assignment in terms of consistency and speed. In
particular, we observed on this data that our
proposed approach was able to reach, in
three iterations, a better 0:5-FSC accuracy
(12.5 Å) than that achieved by four iterations of
PM (29.0 Å).
Our frequency-based method is available in the

Xmipp package [43].
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