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Abstract: This paper focuses on techniques for rigid-body registration of 
a Three-Dimensional (3D) model to a set of Two-Dimensional (2D) x-
ray images in Computer-Assisted Orthopedic Surgery (CAOS) and in 3D 
Electron Microscopy (3D EM). In the first part of the paper, we present a 
survey of these techniques. In the second part, we describe our strategy 
for solution of these two problems. Our algorithm relies on a space-based 
iterative minimization of the least-squares dissimilarity between the x-ray 
images and their simulations. To allow for a well-defined gradient of the 
dissimilarity measure when simulating the x-ray images, we use cubic B-
splines for interpolation of the volume. We improve the robustness of the 
algorithm thanks to the multiresolution data pyramids that we compute 
using cubic B-splines too. In the third part, we show the performance of 
our algorithm using phantom CAOS and EM data with the ground-truth 
registration that is known a priori.  
 
1. INTRODUCTION 
 
The registration of two sets of points assumes two steps: 1) determination 
of a geometric transformation between the sets, and 2) application of the 
transformation to one of them to align it with the other. The most general 
transformation between the sets is elastic, which means that a straight 
line is mapped onto a curve. If the transformation preserves the distance 
between any two points, it is called a rigid-body transformation. The 
need for registration exists in many fields like medicine, biology, 
manufacture, robotics, computer vision, computer graphics etc. [1-5]. 

Our work is focused on the techniques for registration of Two-
Dimensional (2D) images of a subject to its Three-Dimensional (3D) 



representation. We consider the application of these techniques in 
medicine and biology. These images may be acquired at different times, 
from different sensors, from different viewpoints, or from different 
subjects [6-8]. In this paper, we present our algorithm for 3D-to-2D 
image registration and its potential application in Computer-Assisted 
Orthopedic Surgery (CAOS) [9-10] and in 3D Electron Microscopy (3D 
EM) [11]. 
 
1.1 Intuitive 3D-to-2D registration 
 
Let us imagine a sunny day. We are in a room with a window and a desk 
is placed along a wall. The desk makes a shadow on the wall. Let us now 
imagine that someone cleaning the room has moved the desk to some 
other place but its shadow on the wall has been captured by some means. 
We may be assigned the following task: Return the desk to its original 
position by matching its actual shadow to the captured one. Obviously, to 
make it, we have to come the next day at the same time at which the 
shadow has been captured the day before, that is, when there is the same 
sunlight in the room. The positioning of the desk, by matching its 
reference and current shadows, is an illustration of what we are doing 
when performing the 3D-to-2D image registration. In this case, we would 
return the desk in a few simple movements, that is, we would only have 
to shift it and/or to turn it. In a more complicated case, for instance, of 
having to position a cat (instead of a desk) by shadow matching, we 
would have to account for more complex, free movements of the cat. In 
the case of the desk, we would therefore perform a rigid-body 
registration of the desk to its reference shadow while, in the case of the 
cat, we would have to perform an elastic registration of the cat to her 
reference shadow. 

We will now consider two applications of 3D-to-2D image 
registration where we have access to more than just shadows. By 
replacing sunshine by x-rays, we will have access to the interior of the 
objects; this will make for richer, but more challenging data. 
 
1.2 Registration requirements of CAOS and of 3D EM 
 

One of the requirements of CAOS is an intraoperative 
visualization of the position of surgical tools in preoperative 3D 
Computed Tomography (CT) patient data. To achieve this, one registers 



the CT to a set of intraoperatively acquired cone-beam x-ray images of 
the patient (Figure 1) [12-23]. The registration accuracy is mainly limited 
by the following six factors: 1) few images (less than five) because of a 
limited radiation to which the staff and the patient are exposed, 2) limited 
field of view, 3) tools that are visible in the images, 4) limited data 
resolution (in particular, that of the CT volume), 5) accuracy of the 
registration algorithm, 6) movements of the patient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3D EM yields a 3D model from a set of x-ray parallel-beam 
images of single particles (Figure 2). The orientation of these images is 
unknown and has to be estimated before applying an algorithm for 3D 
reconstruction [24-25]. Given an earlier 3D reconstruction, the 3D-to-2D 
image registration can be used to refine these estimates [26-41]. A new 
3D reconstruction based on a better estimate of these orientations should 
improve on the previous one. Contrary to the CT-to-x-ray image 
registration, one can collect thousands of images for 3D EM but they 

 
(a) 

 

 
(b) 

Figure 1: Application of the 3D-to-2D image registration in image-guided 
orthopedic surgery. A 3D CT of a patient (a) is aligned to his fluoroscopy (x-
ray) images (b) to allow display of the position of surgical tools in the CT 
during the intervention. 



suffer from a very low signal-to-noise ratio. An additional difficulty is an 
image distortion due to the Contrast Transfer Function (CTF) of the 
electron microscope. This makes the image differ from the theoretical 
parallel-beam projection and this problem often difficult to solve at sub-
nanometer resolutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. STATE OF THE ART 
 
We can classify existing 3D-to-2D image registration algorithms in two 
groups. The first group of algorithms is based on matching features that 
have first to be extracted from both the volume and the images. They 
match either markers (artificial features) implanted onto the subject prior 
to data acquisition [9], or anatomical features [12-14,16,21-22,42]. The 
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Figure 2: Application of the 3D-to-2D image registration in 3D electron 
microscopy. A 3D model of a protein (a) is aligned to its Cryo-Electron 
Microscopy (Cryo-EM) images (b) for refinement of their orientation such that 
a more accurate 3D model of the protein can be reconstructed. 
 



registration based on artificial markers is not enthusiastically accepted for 
medical applications because of its invasiveness. 

The registration based on anatomical features requires an accurate 
segmentation, which is difficult to achieve fully automatically. It takes 
advantage of an extension of the standard fast iterative closest point 
algorithm for registration of curves and surfaces. However, the time 
required for accurate segmentation makes it unattractive for surgical 
interventions. An additional disadvantage is a low robustness against a 
partial data problem (presence of a feature in one imaging modality and 
its absence in the other). 

   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Neither of the two approaches can be applied for electron-

microscopy data registration since the true 3D model is not known; 
Feature extraction makes therefore no sense there. Fortunately, the 
second group of methods, projection-based methods [15,17-20,27-
28,33,37,39,40-41,43-44], can be used in 3D EM since they do not 
require feature extraction. These methods achieve the registration by 
matching a set of images to their simulations (Figure 3). The simulations 
are traditionally computed by integrating the volume intensities along 
simulated x-rays through the volume (Figure 4). The matching is done by 
minimizing a measure of dissimilarity between the images and their 
simulations using an iterative refinement of an initial estimate for the 
unknown parameters. Thus, the robustness of these methods depends on 
the quality of the estimate. When close to the solution initially, they 
promise a high accuracy because of use of a large amount of data. 

 
Figure 3: Diagram of the projection-based 3D-to-2D registration methods. 

 



However, their speed decreases with an increase in data size. Some of 
these methods perform the registration in the Fourier space based on the 
central-slice theorem [27-28,37,41]. These methods are perfectly suited 
to 3D EM because of its parallel-beam projection geometry. More 
general are the methods that perform the registration in real space since 
they can be adapted to cone-beam or parallel-beam geometry depending 
on the application. In this paper, we present a real-space projection-based 
algorithm that satisfies this requirement and could therefore be applied in 
both 3D EM and CAOS.     

 
 
 
 
 
 
 
 
 

 
 
 
 

To simulate the acquired images, the projection-based methods 
require a 3D interpolation of the given volume. Given some equidistant 
samples of a function, the ideal reconstruction kernel is the sinc function. 
However, this function is not acceptable in practice due to its slow decay. 
Thus, it is traditionally replaced by some approximation with faster decay 
(optimal Keys' cubic interpolant, the triangle function for the linear 
interpolation, and the rectangular pulse for the nearest-neighbor 
interpolation) [45]. 

The ray casting is usually done using tri-linear interpolation [43-
44]. In our method, the registration process is driven by the gradient of 
the dissimilarity measure. To get the gradient well defined everywhere, 
we use B-splines for the volume interpolation [46-47]. We select the 
spline degree such that we achieve a good tradeoff between the 
computational speed and interpolation quality. Traditionally, we use B-
splines of degree 3 (cubic B-splines). 

Different methods have been used to minimize the selected 
measure of dissimilarity [48] such as exhaustive-search techniques 

 
Figure 4: Simulation of an experimental image of a protein by casting the 
simulated x-rays through its 3D model. 



[33,39], Powell's multidimensional direction-set method [37,43-44], 
gradient-descent-type search techniques [18], and a quasi-Newton 
algorithm [40]. To make the first derivative of the measure of 
dissimilarity easy to compute analytically, we have chosen to use a least-
squares dissimilarity measure. Besides, least-squares criterions are 
known to be good for data fitting (parameter identification), which is our 
case since we match the input images to their respective models. To 
make the registration fast, we employ a Levenberg-Marquardt (LM) [49] 
algorithm to minimize the dissimilarity measure as described in [41]. 

The 3D-to-2D image registration for CAOS is commonly done 
within a space of continuous values of geometrical parameters 
[15,18,20]. However, in 3D EM, a great number of images is usually 
processed. To reduce the time required for processing of all particle 
images in a first phase of the 3D model refinement, one commonly does 
the search within a space of quantized geometrical parameters [33-
34,39]. These methods are in general based on building a discrete set 
(library) of volume projections that are evenly distributed in space, and 
on matching of the captured images to the library. The quantization step 
is reduced gradually in the repeated refinement cycles. In the final stage, 
one performs a refinement of continuous values of the parameters in the 
Fourier domain [37,41]. Yang et al. [40] propose the continuous 
refinement of the parameters in real space but with a simultaneous 
refinement of the 3D model. A similar strategy for the search of the 
geometrical parameters and a simultaneous 3D reconstruction in the 
Fourier domain has been promoted by Provencher and Vogel [27-28]. 
These methods optimize a large number of parameters, which means a 
higher risk for the algorithms to get trapped into local optima of the cost 
function, and an augmented dependence on the quality of the starting 
estimates for the parameters. Our algorithm performs the refinement of 
continuous values of the geometrical parameters. To allow for the 
application of our algorithm in both CAOS and 3D EM, we separate the 
parameter refinement from the 3D reconstruction. 

The registration is often performed iteratively at multiple data 
resolutions. The coarse-to-fine data processing is a standard tool for 
improving the robustness of optimization algorithms. The data at coarser 
resolutions are smoothed versions of the data at full resolution. The 
registration using data with no or just a few details augments the chances 
of reaching the global optimum instead of getting trapped on the way into 
a local one. Data of a lower resolution are usually obtained by blurring, 



using an averaging filter, and by their subsequent subsampling 
[15,44,48]. In [44], a multiresolution pyramid of the volume was not 
computed explicitly but the projections of a lower resolution were 
computed by simply reducing the sampling rate along each ray through 
the volume, which introduces aliasing. A multiresolution pyramid of a 
region of interest extracted from the images and from the volume has 
been used in [48] and [15]. The method proposed in [39] computes the 
similarity between the images and the library of volume projections 
based on their wavelet transforms. 

The strategies that are based on reducing the data size speed up 
the optimization. The cost of the iterations at some coarse data resolution 
is negligible since there is few data to process, and it increases towards 
finer resolutions. Consequently, one can afford a lot of iterations at 
coarse resolutions but only few of them at finer ones. This means that the 
total time required to achieve the registration in a multiresolution fashion 
is much shorter than required for the registration at full resolution. We 
use 2L  spline multiresolution volume/image pyramids to make our 
algorithm more robust as well as faster [50]. 
 
3. SPLINE PROJECTION-BASED ALGORITHM 
 
In this section, we describe main building bricks of our algorithm. 
 
3.1 Projection 
 
We simulate a set of captured x-ray images by computing projections of 
the volume. We define the orientation and the position of the volume in 
the Reference Coordinate System (R-COS) by three rotations and three 
translations of the volume. Let ( )621 ...,,, ���=µµµµ  be a vector of these 
geometrical parameters. We compute the projections by simulating x-
rays through the volume. Given a volume f  with the geometrical 
parameters µµµµ  in the R-COS, we cast the simulated x-rays through each 
pixel of the image plane. We project the volume along a ray on the pixel 
with the coordinate ( )1,, 21 kk=k  as  
  
 

( ) ( ) .d��fp
R
� += µµµµµµµµµµµµ bak  



A direct implementation of this equation would require a 3D 
interpolation of the volume f at the coordinate .µµµµµµµµ ba �+  We perform 

a fast computation of the projection by replacing the 3D interpolation by 
a 2D interpolation as described in [51]. To interpolate the data, we use 
the B-spline data model that we present below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 B-spline data model 
 
The B-spline model of a function f  reconstructed from its samples 

( ) ( ) N
N Zkkkf ∈= ...,,,, 21kk  is given by 

 
 
 
where the coefficients kc are obtained by recursive digital filtering [47] 

of the samples ( )kf , and where ( )xn�  is the separable N -dimensional 
B-spline of degree n given by 
 
 
 

where ( )⋅n�  denotes the centered B-spline of degree n  [46] (Figure 5). 
The separability makes possible an operation on N -dimensional data to 
be performed by a successive processing of one-dimensional data along 
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Figure 5: Centered B-splines of degree n=0,1,2, and 3.  

 



each of the N dimensions. In return, the data processing is simple and 
fast.  

The B-splines have many interesting properties. For instance, the 
approximation order (and the support) of a B-spline of degree n  is equal 
to 1+n  [45]. They are shown to be maximally continuous basis 
functions, with the minimal support for a given order of approximation, 
and with the maximal order of approximation for a given support [52]. 
 
3.3 Solution of the optimization problem 
 
We compute the orientation and the position of the volume µµµµ  with 
respect to the acquired x-ray images by minimizing a real-valued cost 
function S  that is a function of six variables 6...,,2,1, =iiµ . We solve 
the registration problem as a nonlinear least-squares problem, that is, we 
minimize the function 
 
 
 
where qr  is a difference between the normalized (mean=0, standard 

deviation=1) th−q  x-ray image and its simulation (the projection of the 
volume at orientation µµµµ ) that are both expressed in a vector form, Q  is 

the number of acquired images, and where Hr denotes the Hermitian 
transpose of r . The spline data model (Section 3.2) makes the cost 
function smooth and makes the exact computation of the gradients 
possible. 

We apply the LM algorithm to minimize the cost function. This is 
a Newton-like method that is used with least-squares cost functions; in 
this case, a specific approximation of the Hessian leads to very good 
convergence properties of the method [41,49].  

 
3.4 Multiresolution strategy 
 
Given a volume and a set of images, we propose to pre-compute their 
spline 2L  pyramids [50]. We register the volume to the images starting 
from their coarsest resolution. We use the final estimate obtained at some 
pyramid level to resume the registration at the next finer one. We repeat 
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the registration procedure at finer resolutions until we reach a resolution 
that provides a good tradeoff between accuracy and time [53]. 
 
3.5 Measure of misregistration 
 
We transform every volume coordinate n  from the Voxel Coordinate 
System (V-COS) into the R-COS by using two transformations: the 
ground-truth transformation B  and the transformation µµµµB  that we 

estimate using our algorithm. We define the misregistration as the 
average of the norm of the difference between the two R-COS 
coordinates over all V-COS indexes n , that is, 

( ) ( ) .
card

1
� −=ϖ
∈ f

BB
f n

nµµµµ  

In case of perfect registration, which is achieved when BB =µµµµ , we have 

that .0=ϖ  Note that this measure is expressed in voxel units but takes 
into account both angular and translational assignment accuracy. 
 
4. REGISTRATION OF A 3D CT TO C-ARM IMAGES  
 
In this section, we show the performance of our algorithm when 
registering the CT volume to a set of C-arm images of a cadaver spine. 
Here, we determined the ground-truth registration using fiducial markers. 
 
4.1 CT/C-arm data 
 
The data were provided by M.E. Müller Institute for Biomechanics, Bern, 
Switzerland. A human cadaver spine specimen was frozen so that it can 
be treated as a truly rigid body. This gives us the opportunity to jointly 
consider more data (three vertebræ) than is available in clinical practice 
where each vertebra can exhibit independent motion, thus providing an 
upper bound to the performance of our registration method. Meanwhile, 
we can also restrict the focus of our experiments on a single vertebra to 
obtain results that are indicative of the performance of our method in 
practice. Five fiducial markers (custom-made, Titanium) were implanted 
on the spine. One was placed in the L5, two in the L4, and two in the L3 
vertebra. 



The specimen, placed in a plastic bag that is apparent in the 
transversal and sagittal views of Figure 6, was CT-scanned (GE 
LightSpeed Ultra CT scanner) with seventy-two slices of size 512x512, 
in pixel units. The intra-slice pixel size was 0.36x0.36, in mm units, and 
the inter-slice thickness was 2.5 mm. The tilt angle was zero. 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The images were acquired using a Siemens ISO-C C-arm 

instrumented with LED markers. Their positions were tracked using an 
optoelectronic position sensor (Northern Digital Optotrak 3020). The 
geometric parameters of the C-arm x-ray image (the orientation and the 
position of the image plane as well as the position of the illumination 
source) were determined according to the two-step procedure proposed 

 
 

Figure 7: C-arm images with visible fiducial markers and a superimposed grid 
of crosses used to un-warp the images in a calibration step. 

 

 
Figure 6: CT with visible fiducial markers. Transversal (left), sagittal (center), 
and frontal (right) CT slices. 

 



by Hofstetter et al. [54]. The optical tracking system and the calibration 
procedure resulted in the navigation error being 0.5±0.5 mm [54]. The 
captured images were un-distorted before further use [54]. We display 
two of them in Figure 7 and their simulations that were computed using 
our algorithm in Figure 8. The images were of size 768x576, in pixel 
units, and the pixel size was 0.36x0.36, in mm units. 

 
 

 
 
 
 
 
 
 
 

Typical clinical settings involve a device called a Dynamic 
Reference Base (DRB) to define the Patient Coordinate System (P-COS) 
in which the tools are tracked. In spinal surgery, the DRB is commonly 
clamped to one of the vertebræ; Both DRB and clamp are therefore 
visible in the C-arm images. Their presence challenges our registration 
algorithm because neither DRB nor clamp is present in the CT data. Two 
of these images are presented in Figure 9.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Simulated C-arm images from Figure 7. 
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Figure 9: C-arm images with a visible Dynamic Reference Base (DRB). 
 



To determine the ground-truth registration, the coordinates of the 
fiducial markers were digitized in the P-COS using an optoelectronically 
tracked (Northern Digital Optotrak 3020) pointer. Then, they were 
transformed into the R-COS. The coordinates of the fiducial markers in 
the V-COS were estimated by fitting a sphere to the marker heads. 
 
4.2 Ground-truth transformation 
 
To measure the registration accuracy, we replace B  in the measure of 
misregistration ϖ  (Section 3.5) by the transformation estimated using a 
given list of coordinates of the fiducial markers in the R-COS ( 

5...,,1, =iiv ) and in the V-COS ( 5...,,1, =iin ). The estimation of B  is 

done by minimizing � −= =
5

1
22

5
1

� i ii B nv in terms of B . 

4.3 Multiresolution 
 
We use four-level dyadic CT-volume and C-arm-image pyramids. These 
pyramids are dyadic in only two directions; we do not change the number 
of CT slices while performing the data reduction. We perform the 
registration at the two coarsest pyramid levels only, since this strategy 
gives a good tradeoff between accuracy and time. We have found that we 
do not gain more than 0.2 mm accuracy if we perform additional 
processing at the two finest data resolutions. This does not justify the 
huge additional registration time. We could have coarsened the data 
further, for example by computing five-level pyramids, or by reducing 
the number of CT slices. However, such pyramids do not improve the 
performance of our algorithm since they result in either failures at the 
coarser data resolutions, or fail to perform better at finer data resolutions. 
 
4.4 Performance 
 
We have found that our algorithm operates successfully if the angle 
between at least two image planes is larger than some threshold that 
depends on the amount of available data. When sufficient data are 
available (three vertebræ), this threshold is 10º. In more-demanding 
clinical conditions (single vertebra), it is 25º. Also, we have found that 
the registration accuracy could be improved by increasing the number of 
C-arm images. Moreover, we found that a good tradeoff between the 



radiation dosage, the registration accuracy, and the registration time, 
could be achieved with three different C-arm orientations. When 
registering the CT volume to triplets of C-arm images, the accuracy of 
our algorithm is 1.4±0.2 mm for a joint registration of all three vertebræ, 
and 1.7±0.3 mm for a registration of a single vertebra at a time. In the 
literature on the 3D-to-2D registration of CT volumes to fluoroscopy 
images, a registration is commonly treated as successful if some measure 
of misregistration is below 2 mm [21-22], which is clearly our case. 

The residual misalignment can be explained by the fact that some 
errors were made when digitizing the fiducial markers (the mean 
navigation error was 0.5 mm), and that some more errors were made 
when determining the CT indexes of the markers. An independent 
analysis has shown that the maximum error committed when determining 
the CT indexes of the markers was about 0.6 mm (25% slice off). This 
means that, in the experiments carried out, our algorithm is perhaps 
responsible for a lesser misregistration than that reported. Note that the 
mean misregistration of 1.4 mm (three vertebræ) and of 1.7 mm (single 
vertebra) is clearly subvoxel with respect to the inter-slice CT thickness 
of 2.5 mm.  
 
 5. REGISTRATION OF A 3D MODEL OF A PROTEIN TO ITS 
CRYO-EM IMAGES 
 
In this section, we apply our algorithm to the registration of a 3D model 
of a protein from the Protein Data Bank (PDB) 
(http://www.rcsb.org/pdb/) to synthesized cryo-EM images of this 
protein. These images have a known ground-truth alignment with respect 
to the 3D model of the protein, which allows for an objective evaluation 
of the performance of our algorithm. 

We test our algorithm using two sets of experiments. The first one 
shows the robustness of the algorithm to a random value for the initial 
assignment. The other set of experiments tests the ability of the algorithm 
to refine an assignment obtained using the wavelet-projection matching 
[39], a method that is implemented in the Xmipp image processing 
package for EM. In all the experiments, we run our algorithm using 
three-level dyadic volume and image pyramids. To measure the accuracy 
of the assignments, we use the measure of misregistration (Section 3.5) 
that we adapt to symmetrical particles as described in [41]. 
 



5.1 Data 
 
We used a 3D model of the Bacteriorhodopsin from the PDB (accession 
code: 1BRD [55]). The size of the volume was 64x64x64 voxel and its 
sampling rate was 3.27Å (Figure 10). The Bacteriorhodopsin found in 
Halobacterium halobium is a membrane protein that functions as a light-
driven pump of protons across the cell membrane. The proton gradient is 
used by a second membrane protein called ATP synthese to generate 
metabolic energy in the form of ATP, which is used by the cell to drive 
many vital processes. When crystallized, the Bacteriorhodopsin forms 
hexagonal 2D crystals. They are sufficiently well ordered for determining 
a 3D structure at near-atomic resolution using high-resolution cryo-EM 
[55]. This protein has a threefold rotational symmetry. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The synthetic cryo-EM images of the Bacteriorhodopsin were 

computed in a two-step procedure as in [39,41]. In a first step, 1000 
projections of the reference model were computed with random 
orientations. In a second step, noise was added and the CTF was applied 
using a model proposed by Velázquez-Muriel et al. [56]. The synthesized 
images were of size 64x64 pixel. A few examples of these random 
projections and of the corresponding synthesized cryo-EM images are 
shown in Figure 11. 
 

 
(a) 

 

 
(b) 

 
Figure 10: 3D model of the Bacteriorhodopsin from the PDB. (a) Three views 
of an isosurface. (b) A few slices of the 3D model. 

 



5.2 Robustness 
 
We designed four experiments to test the robustness of our algorithm on 
the initial assignment. In the first experiment, we initialized the 
parameters by their ground-truth values. In the second experiment, we 
initialized the angles by their ground-truth values modified by 5º or -5º 
with probability 0.5. The initial values for the translation parameters 
were equal to their ground-truth values. In the third and fourth 
experiments, the angular perturbation was ±10º and ±15º, respectively.  

 
 
 
 
 
 
 
 
 
 

 
 
 
Starting from the ground-truth assignment, the algorithm 

converged to an assignment that was not the ground-truth one 
(misregistration of 1.25±0.58 voxel). This can be attributed to the 
presence of noise and to the CTF, which make a synthetic cryo-EM 
image differ from the corresponding theoretical projection. For the 
angular perturbation of ±5º (the initial misregistration of 3.55±0.89 
voxel), our method achieved the registration with an accuracy of 
1.89±0.77 voxel. In the two remaining cases, ±10º (the initial 
misregistration of 7.10±1.76 voxel) and ±15º (the initial misregistration 
of 10.55±2.61 voxel), the registration was accomplished with an 
accuracy of 4.30±2.22 voxel and 7.86±3.93 voxel, respectively.  
 
5.3 Refinement of a standard-method assignment 
 
We initialized our algorithm using the assignment by the wavelet-
projection matching [39] since it showed the best performance when 
compared with two other quantized-parameter algorithms [41]. This 

 

 
 

Figure 11: Projections of the 3D model of the Bacteriorhodopsin (first row) and 
the corresponding synthesized cryo-EM images (second row). 

 



initial assignment meant an initial misregistration of 3.18±1.85 voxel, 
which was reduced by our algorithm to 2.23±1.54 voxel. 
 
6. Conclusion 
 
We have developed an algorithm for registration of a volumetric image to 
a set of given 2D x-ray images. The algorithm performs the registration 
in the space domain. It relies on an iterative minimization of the least-
squares difference between the given and simulated projections of the 
volume. To simulate the x-ray images, our algorithm uses cubic B-
splines for interpolation of the volume. This allows for a well-defined 
gradient of the dissimilarity measure, which is a necessary condition for 
efficient and accurate registration. To get a consistent approach, we also 
use the cubic B-splines to compute the multiresolution volume and image 
pyramids. The multiresolution improves the robustness of the algorithm. 
To speed-up the simulation of the x-ray images, we use a one-step 
approach for fast ray casting that requires mere 2D interpolation instead 
of the more costly 3D interpolation.  

We have adapted our algorithm to the perspective projection 
model, sometimes called a cone-beam projection. This allows for its 
application to the registration of a CT volume to a set of C-arm images of 
a patient for Computer-Assisted Orthopedic Surgery (CAOS). For the 
data set that we used here, our algorithm achieves the accuracy of 
1.7±0.3 mm when registering a single vertebra at a time based on triplets 
of C-arm images that meet at an angle greater than 25º. The achieved 
accuracy is subvoxel with respect to the CT that has an inter-slice 
thickness of 2.5 mm. 

We have also adapted our registration algorithm to the parallel-
beam projection model such that it can be used for a 3D reconstruction of 
a protein from its 2D cryo-Electron Microscopy (cryo-EM) images. In 
the robustness experiments with synthetic Bacteriorhodopsin data, we 
found that our algorithm reduces each of the three tested initial random 
angular misalignments (±5º,±10º, and ±15º). This reduction is about 45% 
for the initial misalignment of ±5º, and it decreases to about 25% for the 
initial misalignment of ±15º. In terms of our measure of misregistration, 
the misalignment of ±5º corresponds to about 3.5 voxel while the 
misalignment of ±15º corresponds to about 10.5 voxel. Our algorithm can 
be used to refine the alignment obtained by standard quantized-parameter 



methods. In the experiments described here, it improves the initial 
registration achieved by the wavelet-projection matching by about 30%. 

These results are promising and require further tests of our 
algorithm using more sets of CAOS and cryo-EM data, including real 
data sets.  
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