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Abstract - The inductive learning (IL) technique, radial basis
function (RBF) type of artificial neural network (ANN), and the
combination of IL and RBF were used to predict muscle activa-
tion patterns and sensory data based on the preceding sensory
data. The input consisted of the hip and knee joint angles,
horizontal and vertical ground reaction forces recorded in an
able-bodied human. The output data consisted of the patterns of
muscle activities, These patterns were obtained from simulation
of walking with a functional electrical stimulation (FES) system.
The simulation takes into account the individual biomechanical
characteristics of the eventual user having spinal cord injury
(SCI). The mappings were tested using numerous data from five
minutes of walking previously not used for the training. We
illustrate the technique by presenting the estimation of the
activations of the equivalent flexor knee muscle and the knee
joint sensor for four strides. The correlation is better and
tracking errors are smaller when the combination of IL and
RBF is used compared to the usage of IL or RBF. We show that
the prediction of sensory state is achievable; thus, the delays
imposed by the properties of the neuro-muscular system can be
minimized.

Keywords - Machine learning, FES, Walking, Inductive learning,
Radial Basis Function ANN

I. INTRODUCTION

Despite all of the theoretical advantages of feedback
control, most Functional Electrical Stimulation (FES) systems
today operate without feedback, the only control input comes
from a manually operated switch. Subjects with spinal cord
injury (SCI) decide about changes on the basis of visual,
auditory, and somatosensory information. In more sophisti-
cated systems the patterns of stimulation follow the known
electromyographic profiles (EMG) for able-bodied subjects
[1]. These FES systems in some subjects using a rolling
walker allowed a walking speed up to 1.1 m/s, and distances
over 1 km.

An alternative for gait restoration is the usage of a rule-
based controller. In this case the sensory space is mapped to

" muscle stimulator control commands. For precise tuning of
this map the sensory input should be mapped to both the
muscle timing, and the level of stimulation. In order to
acquire this mapping it is important to take into account the
desired kinematics, body parameters and neuro-musculo-
tendonal properties of an eventual subject. Simulation study
which takes into account all of these elements was recently

developed [2], and provides input and output for the map-
ping. The input are the desired trajectories given as sensory
information vs. time, while the output are the profiles of
calculated activities of muscles required for optimal tracking
vs. time.

The determination of these sensory-motor synergies is
simplified due to the development of machine learning and
other non-parametric methods for estimation. The usual set
of input in a non-parametric system comes from joint angles,
joint angular velocities and accelerations, foot pressures, and
data recorded from afferent nerves [3,4,5,6,7,8]. The usual
output is the estimated EMG pattern or the graded EMG.

The inductive learning (IL) is a well known technique of
mapping [9], where the machine learns by examples. In this
study IL algorithms are compared for their ability to recon-
struct: 1) muscle activation patterns; 2) sensory data, and to
predict the timing of sensory data which corresponds to the
timing of muscle activity from preceding sensory data. The
recognized sensory combination which precedes the muscle
activity allows sufficient time to turn on the stimulation, and
muscle to contract. The three algorithms are: 1) symbolic
(based on minimization of entropy IL [8,10,11]); 2) connec-
tionist (radial basis function type of artificial neural network
(ANN) [8,12]); and 3) their combination [8]. The radial basis
function (RBF) may also be considered as an IL method
because it belongs to supervised leamning techniques.

A rule-based IL estimation is explicit, easy to imple-
ment, computationally simpler, and easy to comprehend,
compared to ANN (although there are methods which extract
approximate classification rules from trained ANN, and they
contribute to giving readability to the ANN [13]). A rule-
based estimation does not work well enough for estimation of
the muscle activity level, and ANN does not work well
enough for estimation of the muscle timing [8]. ANN gives
a continuous, whereas rule-based learning gives discrete
output. The best solution is to combine rule-based and ANN
methods to get the best from both approaches [8]. In this
paper we show that this combination gives the best results for
the prediction of sensory states and muscle activations.

II. METHOD

The data for training have two sets: 1) input; and 2)
output, and they were prepared using recordings in an able-
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bodied subject, and the parameters determining the dynamic
properties (muscles, tendons, segments, etc.) of a subjects
with paralysis of legs. The recorded kinematics was consid-
ered as a first approximation of a desired gait pattern.

The kinematic data were recorded during a five minute
session, while an able-bodied subject walked on a powered
treadmill with a variable speed. The subject used shoe-horn
type ankle-foot orthoses in order to stabilize her ankle joints
and limit the range of movements at ankle joints. This
limitation was introduced to simulate the locomotion with a
simple FES system used for gait restoration. The knee and
hip joints, and ground reaction forces were measured with
flexible goniometers and pressure sensitive transducers [14].
The data were sampled at 100 Hz, and stored for later
analysis in a portable custom designed device. The recordings
were smoothed at 5 Hz, and digitized to a desired series of
levels in order to present them to a training algorithm. The
input set used a series of time shifted sensory recordings. The
delay between two series was always 10 ms. The data were
divided into the learning and testing sets. The learning set
was intentionally small, and consisted from only few strides.
In the example presented the training set included only three
consecutive strides.

A simulation of walking was employed to generate the
output. This simulation [2] calculates patterns of muscle
activations for a given, desired trajectory using optimal
tracking. The simulation includes dynamical specifics of a
subject with SCI such as: 1) increased tonic activity of
muscles; 2) limited range of movements in joints; 3) modified
reflex responses; 4) reduced strength of externally stimulated
muscles; 5) activity of antagonistic muscles; 6) body parame-
ters, etc. Hence, the simulation generates a set of muscle
activity patterns, that is the output for learning algorithms.

A rule-based inductive learning method based on
minimization of entropy was tested. The output (muscle
activation and sensory data) were divided using eight fixed
levels. The attempt was to estimate quantified levels using the
minimization of entropy for the design of one production rule
for each level. Rules were designed using the data from a
training set, and tested on data from the testing set {3].

The radial basis function type of supervised ANN was
used to estimate continuous levels of outputs. This type of
ANN was selected because of its characteristic fast training,
and capability for generalization. Adjustment of connection
weights for ANN was done using data from the same training
set used for IL, and the test was done based on test set data.

The third method used both the rule-based IL and RBF
methods. The muscle timing (when a muscle is active) was
estimated using rule-based IL method, and muscle activation
level was estimated using RBF. The connection weights for
RBF were calculated based only on elements from the
training set that fall in interval in which a muscle was
estimated to be active. Sensory data were estimated using
mostly RBF because the connection weights for RBF were

calculated based on almost whole training set.
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Fig. 1: The testing set consisted of data from four gait strides.

The evaluation of techniques was done by comparing the
timing errors (differences between the actual and the estima-
ted muscle timings), cross-correlation between the actual and
the estimated muscle activities, cross-correlation between the
actual and the estimated value of sensory data, elapsed
training and testing time.

The learning algorithms were implemented using the
MatLab 4.2c.1 on a PC platform (Pentium 133 MHz, 16 Mb
RAM).

III. RESULTS

The estimated activation patterns of the equivalent flexor
knee muscle, and estimation of the knee joint angle delayed
for 50 milliseconds, for four consecutive strides not used for
training is presented.

The representative series of input and output data is
shown in Fig. 1. The upper two panels show the joint angles
and ground reactions, while the bottom panel shows the
simulated activity of the equivalent knee flexor muscle.

Fig. 2 shows results of application of minimum entropy
IL technique. The top panel shows the actual simulated
activation of the muscle (full line) and the estimated activa-
tion (dashed line), the middle panel shows the errors in
timing, where the value 1 corresponds to the delay of the
estimated activity, while -1 the preceding of the estimate. The
bottom panel shows the prediction of the knee joint angle,
based on the sensory information which precedes for 50 ms.
The differences in predicted sensory value (dashed line) and
actual sensory value (full line) are substantial because the
number of discrete levels for training was low. If the number
of discrete levels is increased, the rules are very complicated
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Fig. 2: The results of application of the minimum entropy rule-base
generator. The top panel represents the actual and the estimated
activation pattern for the equivalent flexor knee muscle. The middle
panel represents muscle timing error, and the bottom panel the
actual and the estimated angle at the knee joint delayed for 50 ms.
Full lines show recordings and simulation, while the dashed lines
show the estimated output.

and all of the advantages of this approach are compromised.
For the estimation of activity elapsed training time was 31.56
s, and testing time is 0.11 s. For the estimation of sensory
data elapsed training time is 31.90 s, and testing time is 0.17
s. Cross-correlation between the actual and the estimated
muscle activity is 0.7878, and cross-correlation between the
actual and the estimated value of sensory data is 0.9611.
Fig. 3 shows results of application of RBF. This method
estimates muscle activity level and sensory data level very
well because it gives continuous output (top and bottom
panels), but it does not work well for estimation of muscle
timing (middle panel). Rules used by RBF are not explicit
and comprehensible. For the estimation of activity elapsed
training time was 15.82 s, and testing time was 5.5 s. For the
estimation of sensory data elapsed training time was 14.44 s,
and testing time was 5.49 s. Cross-correlation between the
actual and the estimated muscle activity is 0.9248, and cross-
- correlation between the actual and the estimated value o
sensory data is 0.9997. ' :
Fig. 4 shows results of the combined application of both
IL and RBF network. This method estimates muscle timing
(middle panel), muscle activity level (top panel), and sensory
level (bottom panel) very well. The error is small enough to
make the full and dashed line hard to distinguish at the
bottom panel. For the estimation of activity elapsed training

time was 7.03 s, and testing time was 3.07 s. For the
estimation of sensory data elapsed training time was 15.66 s,
and testing time was 5.22 s. Cross-correlation between the
actual and the estimated muscle activity is 0.9081, and cross-
correlation between the actual and the estimated value of
sensory data is 0.9992.
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Fig. 3: The results of RBF application (see details in Fig. 2).
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Fig. 4: The results of the application of both minimum entropy rule-
base IL and RBF (for details see Fig. 2).

IV. DISCUSSION

In order to judge the acceptability of the timing errors,
they should be related to the dynamical characteristics of the
musculoskeletal system: the dynamics of muscles can be
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characterized by rise time of approximately 50-100 ms,
depending on the muscle type. The resonance frequency of
the skeletal system depends on the phase of the walking cycle
(stance or swing), but can be estimated to be lower then 1
Hz. Therefore, timing errors on the order of SO ms seem to
be acceptable.

A possible explanation for the observation that the
muscle timing appeared to be reconstructed with sufficient
accuracy, but not the muscle activity, is that more informa-
tion is needed for a good reconstruction of the activity then
for a good reconstruction of the timing. Because simulated
studies [15] show that the gait pattern is more sensitive to
muscle stimulus on/off timing than to stimulus amplitude, and
because the aim is reduction of number of used sensors,
muscle activity errors seem to be also acceptable. Based on
these errors it is possible to identify the most important
sensors.

Rule-based inductive learning method based on minimi-
zation of entropy can produce only discrete values as output.
This is not a problem for the muscle activation pattern which
is used to control a muscle stimulator, since the muscle filters
out transitions between discrete values. However, dividing
muscle activity into several predetermined levels, and
attempting to estimate quantified levels, can lead to more
complicated rules than if rule-based inductive learning method
is used to estimate the muscle timing only. RBF can estimate
muscle activation level and sensory data level very well, but
it does not work well enough for estimation of the muscle
timing. This gives continuous output. The advantage of rule-
based learning method is that the rules used are both explicit
and comprehensible, whilst the rules used by the RBF are
implicit within its structure and not easily comprehended.
However, there are methods which extract approximate
classification rules from trained ANN, and they help us to
evaluate the learned knowledge in light of our knowledge.
Furthermore, RBF is computationally intensive. The best
solution is to combine these two methods.
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