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Abstract - This paper shows that the radial basis function
neural networks are suitable tools for determining the
synergies between the leg joint angles for cyclic activities.
The study was motivated by earlier studies showing the
Jfollowing: 1) cyclic functional movements (e.g., walking) are
synergistic [1]; and 2) machine learning techniques for
recognizing gait events perform similar when a training set
includes one or more joint angles [2]. The results of this
study prove that the only one joint angle sensor is sufficient
to describe a cyclic motor pattern, and that the second joint
angle sensor is redundant for cyclic activities, but very
useful to detect the change of the mode of locomotion or
hazard [3]. The results of the study will be implemented for
restoring walking of humans with disabilities using a
Sunctional electrical stimulation system
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1. INTRODUCTION

It was demonstrated that walking can be restored with
multi channel functional electrical stimulation (FES) systems
[4], and that performances of the gait will be improved if a
rule-based controller (RBC) is implemented [5]. RBC is a
sensory driven controller requiring "If-Then" model of the
process. RBC eliminates the dynamical model and operates
even if the parameters are not known with adequate accuracy
[6]. Studies determining if-then model [e.g., 6,7,8,9,10] used
a-priori selected sensors, but did not analyze the minimal
number of sensors required [7,10].

Synergies are time sequences of central motor commands
to groups of muscles that lead to simple coordinated motor
acts [1,11]. Existence of synergies, i.e. invariant features, in
the execution of motor tasks can be explained by the existence
of inherent optimization laws governing the acquisition of
motor skills. Bernstein [1] considered maintenance of vertical
posture during a voluntary movement an illustration of the
concept of synergies. Presence of synergies is assumed to
simplify the control of the vertical posture thus solving (at
least partially) a problem of mechanical redundancy. The
question: How does the central nervous system (CNS) choose
a certain sequence of motor commands to execute a motor
task from an infinite number of possibilities is known as the
Bernstein  problem. According to equilibrium-point
hypothesis, that is, A-model [12], the CNS can use only one
independently controlled variable A for each muscle, thus
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avoiding the Bernstein problem at the single-muscle level.

For multijoint movements we have not a central language
similar to the A-language for single-joint movements, that is,
we cannot suggest even a hypothetical independently
controlled central variable that would be analogous to A for
single-joint movements [11]. Therefore, the Bernstein
problem overcoming excessive degrees of freedom at a
control level is frequently substituted by a different problem
of overcoming this redundancy at the level of performance.
This problem, termed as the pseudo-Bernstein problem [11],
can be formulated as finding a combination of joint angles
(known as the problem of inverse kinematics) or muscle
forces (the problem of inverse dynamics) required for
executing a motor task when the number of mechanical
degrees of freedom for the effectors exceeds the number of
parameters defining the task. Both problems belong to the
class of ill-posed problems.

The usage of a sensory driven FES system is a direct
implementation of the synergistic control found in biology.
This study follows our earlier work, which was dedicated to
determine the timings and levels of muscle activities by using
artificial neural networks (ANN) [2]. The study showed that
machine learning (ML) predictions of timings and levels of
muscle activations (outputs) when using the knee joint angle
and ground reaction forces (inputs) are similar to the
predicted activations when the hip, knee, and ankle joint angle
and ground reaction forces were used as inputs. This finding
imposed that we prove that by knowing one joint angle (e.g.,
the knee joint angle) other joint angles are determined for a
given locomotor pattern. The ML technique used is a radial
basis function (RBF) type of ANN [2,13]. RBF network with
a supervised learning, that is, with orthogonal least squares
(OLS) learning algorithm [13] is characterized by fast
training, tuning and ability for good generalization [2,14].
The examples presented are for level walking.

2. RADIAL BASIS FUNCTION TYPE OF ARTIFICIAL
NEURAL NETWORK

RBF neural network [2,13] is a feed-forward type of
ANN. RBF network used here has a single output node and a
single hidden layer which contains as many neurons as are
required to fit the function within the specifications of error
goal. The transformation from the input space to the hidden-
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unit space is nonlinear, whereas the transformation from the
hidden-unit space to the output space is linear. The output of
this network can be described by:

flo)=6+ T Eed v-an |
z

where V is the input vector, N is the number of the hidden
nodes, and £(e) is the activation function (known as the
radial basis function for a RBF network). Theoretical
investigations and practical results show that the type of
nonlinearity {(») is not crucial to the performance of RBF
network [15], and it is usually taken to be bell-shaped
function as in this case. The |o | denotes a norm that is
usually taken to be Euclidean. The ¢, are known as vectors
of radial basis function centers, &, and £, are the g-th
weight and the bias for output linear node.

A common learning algorithm for RBF networks is based
on first choosing randomly some data points as radial basis
function centers and then using singular value decomposition
to solve for the weights of the network. An arbitrary selection
of centers may not satisfy the requirement that centers should
suitably sample the input domain. Furthermore, in order to
achieve a given performance, an unnecessarily large RBF
network may be required. Since performance of an RBF
network critically depends upon the chosen centers, we used
an alternative learning procedure based on the OLS learning
algorithm [13]. By providing a set of inputs and
corresponding outputs, the values of weights & e bias &,,
and radial basis function centers (parameters for RBF
network) can be determined using the OLS algorithm in one
pass of the learning data so that a network of an adequate size
can be constructed.

When an input vector V is presented to such a network,
each neuron in the hidden layer will output a value according
to how close the input vector is to the centers vector of each
neuron. The result is that neurons with centers vector are very
different from the input vector will have outputs near zero.
These small outputs will have a negligible effect on the linear
output neurons. In contrast, any neuron whose centers vector
is very close to the input vector will output a value near 1. If
a neuron has an output of 1, its output weights in the second
layer pass their values to the neuron in the second layer. The
width of an area in the input space to which each radial basis
neuron responds can be set by defining a spread constant for
each neuron. This constant should be big enough to enable
neurons to respond strongly to overlapping regions of the
input space. The same spread constant is usually selected for
each neuron.

3. TASK FORMULATION AND PREPARATION OF
DATA FOR MACHINE LEARNING

Examples presented in this paper illustrate the method for
determining the synergies between the leg joint angles.

x

Figure 1: Model of a human body showing the ankle, knee and
hip joint angles used for pattern matching

TIME [sec]

Figure 2: Data recorded during a level walking of an able-bodied
human and used as input and output data for ML.
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The results show that by measuring the knee joint angle
it is possible to determine the ankle and hip joint angle using
ML. Nineteen consecutive strides during level walking of an
able-bodied human are included in the results, but the study
analyzed synergies between those three angles for level
walking with various velocities, and climbing up and down
the stairs. The geometry that was analyzed, that is the ankle,
knee and hip joint angles are shown in Fig, 1.

Fig. 2 shows the recorded data used for ML. The top
panel shows the knee angle, the middle panel shows the ankle

angle, and the bottom panel shows the angle at the hip joint.
The sampling rate for all data was 100 per second. The input
to the ANN was the knee joint angle, while the output was
either the ankle or the hip joint angle. Since the determination
of synergies by the ML was not good enough when using only
one input signal, and because of a plausible future
implementation for real-time control, the training set for ML
was generated by using two data series: the knee joint angle
data time shifted (preceding values) for 50 ms and for 100 ms.
It was shown that those intervals allow sufficient time for
turning on the stimulation, and for a muscle to contract [8].

During the training phase the number of the nodes and the
parameters of the network were tuned using the OLS learning
algorithm on the basis of the provided inputs and desired
outputs of the system, called the examples in the supervised
learning. The spread constant of the network was selected to
secure as good as possible matching. For testing of the
obtained network only inputs were provided, and the goal was
to generate outputs. The quality of matching was evaluated by
comparing the desired outputs with the estimated ones. The
testing was done for two cases: 1) using data used for the
training (the first seven strides), and 2) using data that was not
used for training (the last twelve strides), being somewhat
different from the one used for training.

The correlation can be graphically observed, but the
cross-correlation between the desired outputs and the
estimated outputs by the network was selected as a measure
of the generalization.

4. RESULTS OF MACHINE LEARNING
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Figure 3: Matching of the desired (full line) and the estimated
value of the ankle joint angle (dashed line) obtained by applying the
RBF neural network with OLS learning algorithm.

The ML algorithm was implemented using MatLab 5.1 on
a PC platform. Fig. 3 shows the results of the pattern
matching between the desired and estimated ankle joint
angles. The desired ankle joint angle (full line) is
superimposed over the estimated angle (dashed line).
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Figure 4: Matching of the desired (full line) and the estimated
value of the hip joint angle (dashed line) obtained by applying the
RBF neural network with OLS learning algorithm

The spread constant for this pattern matching was
selected at 1.6, and the obtained network had 440 nodes in the
hidden layer. The cross-correlation between the desired and
the estimated value of ankle joint angle was 0.94.

Fig. 4 shows the results of pattern matching between the
desired and the estimated hip joint angles. The desired hip
joint angle (full line) is superimposed over and the estimated
angle (dashed line).

The spread constant in this case was selected at 2, and the
obtained network had also 440 nodes in the hidden layer. The
cross-correlation between the desired and estimated value of
hip joint angle was 0.95. The number of training epochs for
pattern matching was one for both examples presented.

It is noticeable that the results of estimating the ankle
joint angle are somewhat better than the results for estimating
the hip joint angle. The results obtained are acceptable for the
purpose of this study, because the step to step variability
found in normal walking is comparable to the differences
generated by the ML.

5. DISCUSSION

At present most clinically applied FES systems for
restoration of locomotion use manually triggered open-loop
control methods. Other FES systems use open-loop control
based on the concept of "stored" sequences of muscle
activation associated with the phases in the gait cycle.
Regardless of the technology or control principle utilized, the
achievements, including practicality, gait speed and
endurance, efficiency etc. in spinal cord injured (SCI) patients
are not substantially different. Having in mind that it is
necessary to integrate machine control with biological control,
and even more recent findings on the role of synergies RBC
seems to be a promising control technique.

RBC is a sensory driven system; hence, the complexity of
FES based rehabilitation device system rises with the
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incorporation of sensors mounted on the body. Minimizing
the number of sensors is also desirable for other reasons such
as: simplifying donning the system, tuning it for every day
usage, minimizing the need for filtering out drifis and noise,
etc. Since the walking is a process which may lead to
dangerous situations (e.g., falling, overloading joints, non-
physiological stresses, etc.) it is of great importance to use
some redundant sensors to increase the reliability.

The ML technique for searching of a synergy between the
ankle, knee and hip joint angles during cyclic, locomotor
activity of an able-bodied human is described in this paper.
The ML used is a RBF neural network with OLS learning
algorithm because fast training and ability for good
generalization characterize it. The tuning of this network is
not too complicated because it requires only that the spread
constant be chosen, while the remaining elements in the
network are determined automatically. However, a large
number of the rules, which are not explicit and not easily
comprehensible, are obtained by using this type of ANN. Yet,
there are methods that extract approximate rules from a
trained ANN, thus helping in evaluating the knowledge [16].

We analyzed several types of cyclic activity: level and
slope walking with various speeds, stairs climbing and
descending, starting and stopping walking, standing up from
a wheelchair and sitting down to a wheelchair that are not
presented in this paper. The experiments included eight
volunteer, able-bodied subjects. We found that a mapping
found for one type of locomotor activity is applicable to other
subjects, but in this case the correlation was about 80 percent.
We found that each locomotor activity requires separate
mapping. When analyzing level walking, the conclusion was
that the same RBF ANN mapping is to be used if the
difference in speed of progression is within 15 percent.

We found that the difference from day to day in the same
subject is neglectable viewed from the point of sensory
mapping. It became evident that the second sensor, positioned
at the neighboring joint, can be used for detecting the mode
of locomotion but the ANN with RBF were not the most
suitable tool for this task.

By using this ML the existence of synergies between joint
angles was affirmed. These synergies obtained in a form of
rules can be used for control of FES-assisted human walking
[4,9,17]. The importance of the findings presented here is the
reduction of the number of sensors that are required, and
increasing of error tolerance because of the potential
malfunctioning of sensors.
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