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Abstract—Automatic prediction of gait events (e.g., heel con-
tact, flat foot, initiation of the swing, etc.) and corresponding
profiles of the activations of muscles is important for real-
time control of locomotion. This paper presents three supervised
machine learning (ML) techniques for prediction of the activation
patterns of muscles and sensory data, based on the history of
sensory data, for walking assisted by a functional electrical stim-
ulation (FES). Those ML’s are: 1) a multilayer perceptron with
Levenberg–Marquardt modification of backpropagation learning
algorithm; 2) an adaptive-network-based fuzzy inference system
(ANFIS); and 3) a combination of an entropy minimization type
of inductive learning (IL) technique and a radial basis function
(RBF) type of artificial neural network with orthogonal least
squares learning algorithm. Here we show the prediction of the
activation of the knee flexor muscles and the knee joint angle for
seven consecutive strides based on the history of the knee joint
angle and the ground reaction forces. The data used for training
and testing of ML’s was obtained from a simulation of walking
assisted with an FES system [39]. The ability of generating rules
for an FES controller was selected as the most important criterion
when comparing the ML’s. Other criteria such as generalization
of results, computational complexity, and learning rate were also
considered. The minimal number of rules and the most explicit
and comprehensible rules were obtained by ANFIS. The best
generalization was obtained by the IL and RBF network.

Index Terms—Adaptive-network-based fuzzy inference system
(ANFIS), artificial neural networks (ANN’s), functional electrical
stimulation (FES), inductive learning (IL), multilayer perceptron,
radial basis function (RBF) ANN, walking.

I. INTRODUCTION

CONTEMPORARY functional electrical stimulation
(FES) systems use volitionally controlled four or six

channels of stimulation [25], or a preprogrammed sequence
of stimulation patterns applied to as many as 48 muscles
[19]. Tuning the stimulation patterns in the later case is hand-
crafted for each user [19]. Several more sophisticated control
strategies were presented in the literature, involving open-
loop [8], [19], [34] and closed-loop control [16], [17]. When
considering the closed-loop control it is important to speak of
dynamic characteristics of muscles. They operate as low-pass
filters with respect to neural inputs. Dynamics of muscles
can be characterized by rise time of approximately 50–100
ms, depending on the muscle type. Muscle activity is delayed
after the neural signal for about 30–50 ms. Those features of
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a muscular system impose that a command signal precedes
the required muscle activity when a real-time control is to be
implemented, and are the most important arguments against
implementing closed-loop control.

An alternative for control is using nonanalytical control to
clone the biological control [36], [38]. The basic mechanism
for implementation of such algorithms is a rule-based system
[37]. Rule-based controllers for locomotion were originally
hand crafted [1], [2], [4], [12], [44]–[46], and lately automat-
ically tuned [11], [15], [18], [20]–[24], [31]–[33] but none
was sufficiently practical to be widely used. A rule-based
control is an implementation of “if–then” relations. “If” part
of a rule describes the sensory states, while a “then” part
of a rule defines the corresponding motor, that is muscle
activity. In other words, when a characteristic sensory pattern
is recognized, a muscle activity must occur.

In order to design a rule-based system a knowledge base
has to be generated. It was hypothesized that machine learning
(ML) can help in acquiring the needed knowledge. Learning
in general can be described as capturing and memorizing of a
connectivism between facts. ML is a computerized capturing
and memorizing process. ML’s were applied successfully to
automate the walking [11], [18], [20], [33], [37], but the
walking pattern was not improved.

We propose to use simulation results of a fully customized
biomechanical model of a human with disability for inputs and
outputs required for ML, therefore to clone a desired pattern of
walking. The simulation described in [14] and [39] generates a
set of inputs and outputs which is suitable for the said cloning.

ML’s used in this study are: 1) a multilayer perceptron
(MLP) with the Levenberg–Marquardt improvement of back-
propagation (BP) algorithm [41]; 2) an adaptive-network-
based fuzzy inference system (ANFIS) [13]; and 3) a combina-
tion of an entropy minimization-type of inductive learning (IL)
technique [11], [32], [33], [35], [47] and a radial basis function
(RBF)-type of artificial neural network (ANN) [6], [32] with
orthogonal least squares (OLS) learning algorithm [6].

A comparison of IL with adaptive logic networks (ALN)
using restriction rules [22], [24] shows that ALN’s have some
advantages over IL. The application of ALN’s is intentionally
omitted since it was published earlier in great details [20]–[24].
Heller et al. [11] compared an IL method based on an
algorithm called “hierarchical mutual information classifier”
[42] with a MLP with BP algorithm in reconstructing mus-
cle activation from kinematic data during normal walking.
The conclusion was that both techniques show comparable
performance, although each technique has some advantages
over the other one. A comparison of IL method based on
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Fig. 1. Model of a human body showing the knee joint angle, ground
reaction forces, and the equivalent hip and knee flexors and extensors. The
model is used for calculating data used as inputs and outputs for pattern
matching.

minimization of entropy and the RBF network in predicting
muscle activation and sensory data from the history of sensory
data for a human with spinal cord injury (SCI) [15] shows
that the best generalization comes from combining both. The
benefits of merging fuzzy logic and an ANN were explored
extensively in the literature [13], [27].

The aim of the study was to analyze which technique is
the best when considering the number of rules, the simplicity
and comprehensibility of rules, and the generalization of the
results.

II. TASK FORMULATION

The muscle activation patterns and sensory data used for
pattern matching were obtained from biomechanical analysis
of a human walking with FES [39]. The leg is modeled as
a planar, two-segment linkage of rigid bodies (Fig. 1). It is
assumed that the leg was driven by two pairs of equivalent
monoarticular flexor and extensor muscles acting around the
hip and knee joints (Fig. 1). The term equivalent muscle relates
to the simplification that all of the muscles contributing to
the activity at a joint are represented with a single muscle.
The inputs for simulation are: the ground reaction forces,
hip acceleration, the knee and hip joint angles, and the angle
between the trunk and the horizontal. This data was recorded
during a self-paced, level walking of an able-bodied human.
The outputs are the muscle activation patterns at the knee and
hip joints, as well as the corresponding knee and hip joint
angles. Dynamic programming was used to determine muscle
activation patterns by optimizing the tracking of the trajecto-
ries of the joints and minimizing the overlap of agonist and
antagonist activities as showed in details in Popović et al. [39].

The set of inputs and outputs for the supervised ML was
selected from the collection of results obtained by simulation.
Fig. 2 shows inputs borrowed with permission from the au-
thors of [39] and used in this pattern matching study. The top
panel is the angle at the knee joint, the middle panel shows
the ground reaction forces, and the bottom panel shows the
activation pattern of the equivalent knee flexor muscle. The
maximum activation was assumed to be one, while the resting
muscle is described as zero. The sampling rate for all data
was 100 per s.

The design of rules has the following two elements: 1) the
pattern matching, that is the prediction of activation patterns
of the equivalent knee flexor muscle; and 2) the pattern
matching, that is the prediction of the knee joint angle. The
estimation of muscle activation patterns with respect to the
sensory signals provides the timing for the onset and offset
of the change of activity, but as said this command must
precede the actual activity. Thus, the pattern matching of a
sensory data is required to predict a sensory pattern which
will follow after 100 ms. The knee joint angle and the ground
reaction forces preceded for 50 ms were used as inputs when
predicting the muscle activation pattern. The knee joint angles
preceding for 50, 100, and 150 ms were used as inputs when
predicting the sensory pattern. The training set for this study
included intentionally only the four consecutive strides (Fig. 2,
HC3 to HC7). The testing set included the sequence of seven
consecutive strides (Fig. 2). The first two strides and the last
stride were not used for the training. The learning algorithms
were implemented using MatLab 4.2c.1 on a PC platform
(Pentium 133-MHz, 16-Mb RAM).

The evaluation of results for all three techniques was done
by comparing the following:

1) the errors in the timing of muscle activations that is
periods when a muscle is active given in the form

where and are the th sample of estimated
and simulated (desired) muscle activations, respectively,

is a threshold defined for the desired signal allowing
to say that a muscle is active if the activation is bigger
than

2) cross correlation between simulated (desired) and esti-
mated signals (muscle activation and joint angle) in the
form

where and are the th sample of the estimated
and the desired signals, respectively, andis the number
of signal samples;

3) elapsed time for the training and testing.
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(a)
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(c)

Fig. 2. Data obtained from the simulation and used as input and output sets for pattern matching. (a) Shows the angle at the knee joint, (b) shows the
ground reaction forces, and (c) shows the activation patterns of the equivalent knee flexor muscle. The activation is normalized at one. The arrows in middle
panel show heel contact. Time interval between two consecutive arrows is one gait stride.

III. U SE OF MLP

A. MLP and BP Learning Algorithm

Investigations of MLP’s have been intensified since the
formulation of the BP learning algorithm [41]. An MLP is a
feed-forward network, typically consisting of several layers of
nonlinear processing nodes called hidden layers with a linear
output layer. Processing nodes take as input only the outputs of
the previous layer, which are combined as a weighted sum and
then passed through a nonlinear processing function known as
the “activation function.” This activation function is typically
sigmoidal in shape. An MLP with three hidden layers can form
arbitrarily complex decision regions and can separate classes
that are meshed together. It can form regions as complex as
those formed using mixture distributions and nearest neighbor
classifiers [28]. The MLP used here has a single linear output
node and a single hidden layer. The network function can be
described by

where is the input vector, is the number of nodes in the
hidden layer, and is activation function selected here as
sigmoidal. The input vector is connected to theth hidden
node by weight , and is the scalar bias for this node. The
output from th hidden node is connected to the output node
by weight , and is the scalar bias for the output node.

The weight vector contains all the weights and biases called
parameters of the network.

The BP learning algorithm is a generalization of a gradient
descent algorithm. It uses a gradient search technique to mini-
mize a cost function equal to the sum of the squares differences
between desired and estimated net outputs. Derivatives of error
(called delta vectors) are calculated for the network’s output
layer, and then backpropagated through the network until delta
vectors are available for each hidden layer of the network. The
BP algorithm may lead to a local, rather than a global error
minimum. If the local minimum found is not satisfactory, use
of several different sets of initial conditions or a network with
more neurons can be tried.

B. Improvements of BP Learning Algorithm

A simple BP algorithm is very slow because it must use
small learning rates for stable learning. There are ways to
improve the speed and general performance of a BP algorithm.
It can be improved in two different ways: by heuristics and by
using more powerful methods of optimization. Speed and reli-
ability of BP can be increased by techniques called momentum
and adaptive learning rates. The momentum technique helps
the network to get out, if stacked in shallow minimum. By
the use of adaptive learning rates it is possible to decrease the
learning time. In this paper we used a Levenberg–Marquardt
modification of BP algorithm. By using Levenberg–Marquardt
optimization the training time can be shortened. Its update
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Fig. 3. Results of applying the MLP with Levenberg–Marquardt modification of BP learning algorithm. (a) Shows the simulated activation patterns of
the equivalent knee flexor muscle shown at Fig. 2 (full line) and the predicted activation patterns (dashed line). The inputs used for this pattern matching
were the simulated knee joint angle and the ground reaction forces shifted back for 50 ms. (b) Shows the errors in the muscle activation timing. (c)
Shows the simulated knee joint angle (full line) and the predicted angle (dashed line). The three inputs for this matching were the simulated knee joint
angle shifted back for 50, 100, and 150 ms.

rule is

where is column matrix whose number of rows matches
the number of network parameters,is the Jacobian matrix
of derivatives of network function error, that is the difference
between desired and estimated net outputs, for each training
pattern to each network parameters. The number of rows in

matches the number of training patterns, and the number
of columns matches the number of network parameters.
is a column matrix of errors for each training pattern. The
number of rows in matches the number of training patterns.

is the identity matrix whose number of rows as well as
columns matches the number of network parameters.is a
scalar. If is very large, the above expression approximates
gradient descent, while if is small this expression becomes
the Gauss-Newton method. The coefficientis changed in
such a way as to join good features of both algorithms: gradient
descent algorithm (it does not require that initial values of
parameters are well chosen), and Gauss–Newton algorithm (it
has quadratic convergence near an error minimum). As long
as the error gets smaller,is made bigger, but, once the error
starts increasing, is made smaller. The Levenberg–Marquardt
is much faster than the gradient descent algorithm, on which
the standard BP algorithm is based. However, it requires more
memory than the gradient descent algorithm.

C. Results of Using Multilayer Perceptron
with Levenberg–Marquardt Modification of
Backpropagation Learning Algorithm

Fig. 3 shows results of application of the MLP with
Levenberg–Marquardt modification of BP learning algorithm.
Fig. 3(a) shows the predicted (dashed line) and simulated (full
line) activation patterns of the equivalent knee flexor muscle.
The inputs for this pattern matching were the knee joint angle
and the ground reaction forces from the preceding 50 ms,
while the output was the muscle activation pattern. Fig. 3(b)
shows the errors in the muscle activation timing. Fig. 3(c)
shows the simulated (full line) and the predicted (dashed line)
knee joint angle. The inputs for this pattern matching were
the knee joint angle preceding for 50, 100, and 150 ms, while
the output was the knee joint angle. Two different networks
were used for matching of muscle activation and joint angle.

The number of nodes in a hidden layer of the network
estimating muscle activity was chosen to be six, and the
number of nodes in a hidden layer of the network estimating
the joint angle was chosen to be four. The multiplier factor
for increasing was selected to be 1.2, and the multiplier
factor for decreasing of was selected to be 1/1.2 in both case
of pattern matching. The number of training epochs in both
case was chosen to be 25. All of the numbers given above
were selected after numerous and tedious trials to get the best
pattern matching results. The cross correlation between the
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desired and estimated value of muscle activity was 0.94, and
cross correlation between the desired and estimated value of
joint angle was 0.999. The muscle activation pattern matching
lasted approximately 22 s. The joint angle pattern matching
lasted approximately 18 s.

IV. USE OF ADAPTIVE-NETWORK-BASED

FUZZY INFERENCE SYSTEM

A. Fuzzy Sets and Fuzzy Models

Fuzzy sets are a generalization of conventional set theory.
They were introduced by Zadeh [50] as a mathematical way
to represent vagueness in everyday life. A formal definition
of fuzzy sets that has been presented by many researchers
is following: a fuzzy set is a subset of the universe of
discourse that admits partial membership. The fuzzy set
A is defined as the ordered pair , where

and . The membership function
describes the degree to which the objectbelongs

to the set , where represents no membership,
and represents full membership.

One of the biggest differences between conventional (crisp)
and fuzzy sets is that every crisp set always has a unique
membership function, whereas every fuzzy set has an infinite
number of membership functions that may represent it. This
is at once both a weakness and a strength; uniqueness is sacri-
ficed, but this gives a concomitant gain in terms of flexibility,
enabling fuzzy models to be “adjusted” for maximum utility
in a given situation.

The typical steps of a “fuzzy reasoning” consist of: 1)
Fuzzification, that is comparing the input variables with the
membership functions of the premise (IF) parts in order
to obtain the membership values between zero and one;
2) Weighing, that is applying specific fuzzy logic operators
(e.g., AND operator, OR operator, etc.) on the premise parts
membership values to get a single number between zero and
one; 3) Generation, that is creating the consequent (THEN)
part of the rule; and 4) Defuzzification, that is aggregating the
consequent to produce the output.

There are several kinds of fuzzy rules used to construct
fuzzy models. These fuzzy rules can be classified into the
following three types according to their consequent form [26]:

1) Fuzzy rules with a crisply defined constant in the con-
sequent

IF is and and is THEN is

.
2) Fuzzy rules with a linear combination of the systems

input variables in the consequent

IF is and and is

THEN is
.

3) Fuzzy rules with fuzzy set in the consequent

IF is and and is THEN is

where is the th rule of the fuzzy system,
are the inputs to the fuzzy system, and

is the output from the fuzzy system. The linguistic
terms and are fuzzy sets, and denote crisp
constants.

The so-called zero-order Sugeno, or Takagi–Sugeno–Kang
fuzzy model [43] has rules of the first type, whereas the
first-order Sugeno fuzzy model has rules of the second type.
The easiest way to visualize the first-order Sugeno fuzzy
model is to think of each rule as defining the location of
a “moving singleton” (a single spike from the consequent)
depending on what the input is. Sugeno models are similar
to the Mamdani model [29] which has rules of the third
type, and which is more intuitive, but computationally less
efficient. Fuzzification and weighing, are exactly the same,
but generation and defuzzification are different [26].

For the type of fuzzy rules used in Mamdani model various
methods are available for defuzzification: the centroid of area,
bisector of area, middle of maximum, largest of maximum etc.
[10], but all of these methods are based on the calculation of
the two-dimensional-shape surface, that is on the integration.
The Sugeno-style enhances the efficiency of the defuzzification
process because it greatly simplifies the computation; i.e., it
has to find just the weighted average of a few data points. The
implication method (generation) is simply multiplication, and
the aggregation operator just includes all of the singletons. For
the first-order Sugeno fuzzy model, that is used in this paper,
defuzzified value is

where is the membership degree of input
to the antecedent linguistic term for the th

rule of the fuzzy system.

B. Subtractive Clustering Method and
Adaptive-Network-Based Fuzzy Inference System

Membership functions are subjective and context-
dependent, so there is no general method to determine
them. Currently, when fuzzy set theory is applied in control
systems, the system designers are given enough freedom to
choose membership functions and operators, usually in a
trial and error way. After a hand-tuning process, the system
can function effectively. However, the same methodology
is hardly applicable when the system is a general purpose
one, or when the context changes dynamically. This suggests
an explanation why the most successful applications of
fuzzy logic happen in control systems, rather than in natural
language processing, knowledge base management, general
purpose reasoning.

The method used for identification of a first-order Sugeno-
type fuzzy interference system (FIS) is a two step procedure:
the first step used subtractive clustering method [7] for initial
identification of FIS, the second step used an adaptive-network
with BP and least squares (LS) algorithms for tuning of initial
identified FIS [13]. The approach used here to extract the
initial rules is based on replacing identification of membership
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Fig. 4. Results of applying the subtractive clustering method for initial identification of a first- order Sugeno-type FIS and the adaptive-network with BP
and LS learning algorithms for tuning of initial identified FIS. For details see the caption of Fig. 3.

functions of input variables with identification of the centers of
cluster-like regions. Fuzzy c-means the technique introduced
by Bezdek [5] as an improvement on earlier data clustering
methods and requires that the number of clusters is known. If
there is not a clear idea how many clusters there should be
for a given set of data, subtractive clustering method [7] can
be used for estimating the number of clusters and the cluster
centers in a set of data. This method is used here and it is
an extension of the Mountain clustering method proposed by
Yager [48]. It assumes each data point is a potential cluster
center and calculates a measure of the potential for each data
point based on the density of surrounding data points. The
algorithm selects the data point with the highest potential as the
first cluster center and then destroys the potential of data points
near the first cluster center. The algorithm then selects the data
point with the highest remaining potential as the next cluster
center and destroys the potential of data points near this new
cluster center. This process of acquiring a new cluster center
and destroying the potential of surrounding data points repeats
until the potential of all data points falls bellow a threshold.
The range of influence of a cluster center in each of the data
dimensions is called cluster radius. A small cluster radius will
lead to finding many small clusters in the data (resulting in
many rules) and vice versa. The cluster information obtained
by this method are used for determining the initial number
of rules and antecedent membership functions, that is for
identifying the FIS. Then, the linear least-squares estimation
is using to determine the consequent for each rule. The result
is the initial fuzzy rule base. However, for different initial

values, this method may give different results, because the
identification algorithm depends on an optimization procedure.

An adaptive-network with a single output node and a single
hidden layer was used here for tuning the initial identified
FIS. The LS method and the BP gradient descent method
were used for tuning linear and nonlinear parameters of first-
order Sugeno-type FIS, respectively [13]. A network structure
facilitates the computation of the gradient for parameters in
a FIS. The adaptive-network improves the rules determined
from initial identification of FIS. The result is an FIS which
corresponds to the minimum training error.

C. Results of Using Subtractive Clustering Method and ANFIS

Fig. 4 shows results of application of the subtractive cluster-
ing method for initial identification of a first-order Sugeno-type
FIS and the adaptive-network with BP and LS learning algo-
rithms for tuning of initial identified FIS. The top panel shows
the predicted (dashed line) and simulated (full line) activation
patterns of the equivalent knee flexor muscle. The inputs for
this pattern matching were the knee joint angle and the ground
reaction forces from the preceding 50 ms, while the output
was the muscle activation pattern. The middle panel shows
the errors in the muscle activation timing. The bottom panel
shows the simulated (full line) and the predicted (dashed line)
knee joint angle. The inputs for this pattern matching were the
knee joint angle preceding for 50, 100, and 150 ms, while the
output was the knee joint angle. Two different ANFIS’s were
used for matching of muscle activation and joint angle.
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The cluster radius of each input was chosen to be 0.5. 46
nodes were obtained in a hidden layer of the adaptive-network
for FIS estimating muscle activity, and five fuzzy rules were
obtained. 30 nodes were obtained in a hidden layer of the
adaptive-network for FIS estimating the joint angle, and only
three fuzzy rules. The number of training epochs in both case
was chosen to be ten. The cluster radius and the number of
epochs were selected based on the experience gained through
numerous trials while trying to get the best matching. The
cross correlation between the desired and estimated value of
muscle activity was 0.95, and cross correlation between the
desired and estimated value of joint angle was 0.999. The
muscle activation pattern matching lasted approximately 53 s.
The joint angle pattern matching lasted approximately 46 s.

V. USE OF ENTROPY MINIMIZATION

TYPE OF IL AND RBF TYPE OF ANN

A. Entropy Minimization Type of Inductive Learning Technique

The IL is a symbolic technique which uses supervised
learning and generates a set of “if–then–else” decision rules.
A method [32], [33] used here is based on an algorithm called
“hierarchical mutual information classifier” [42]. A program
Empiric described in [11] implements this algorithm. This
algorithm produces a decision tree by maximizing the average
mutual information at each partitioning step. It uses Shannon’s
entropy as a measure of information.

Mutual information is a measure of the amount of informa-
tion that one random variable contains about another random
variable. It is a reduction of the uncertainty of one random
variable due to the knowledge of the other. Consider two
random variables and with a joint probability density
function and marginal probability density functions

and . Mutual information is the relative
entropy between the joint distribution and the product distri-
bution

The mutual information can also be written as

where is Shannon’s entropy

and is conditional entropy

is the conditional probability density function.
An effective method of integrating results of a mutual infor-

mation algorithm into a production rule formalism, following
the original work of Pitas [35] and Watanabe [47] is shown
in [32] and [33]. While generating the decision tree, the
algorithm performs a hierarchical partitioning of the domain
multidimensional space. Each new node of the decision tree

contains a rule based on a threshold of one of the input signals.
Each new rule further subdivides the example set. The training
is finished when each terminal node contains members of
only one class. An excellent feature of this algorithm is that
it determines threshold automatically based on the minimum
entropy [32], [33], [35]. This minimum entropy method is
equivalent to determination of the maximum probability of
recognizing a desired event (output) based on the information
from an input.

B. RBF Type of ANN

RBF network [6], [32] is a feed-forward network. The
RBF used here has a single output node and a single hidden
layer which contains as many neurons as are required to
fit the function within the specifications of error goal. The
transformation from the input space to the hidden-unit space
is nonlinear, whereas the transformation from the hidden-unit
space to the output space is linear. Its function is given by

where is the input vector, is the number of the hidden
nodes, and is the activation function (known as the radial
basis function for a RBF network). Theoretical investigations
and practical results show that the type of nonlinearity is
not crucial to the performance of RBF network [40], and it is
usually taken to be bell-shaped function as in this case. The

denotes a norm that is usually taken to be Euclidean. The
are known as vectors of RBF centers,and are the th

weight and the bias for output linear node.
A common learning algorithm for RBF networks is based

on first choosing randomly some data points as RBF centers
and then using singular value decomposition to solve for the
weights of the network. An arbitrary selection of centers may
not satisfy the requirement that centers should suitably sample
the input domain. Furthermore, in order to achieve a given
performance, an unnecessarily large RBF network may be
required. Since performance of an RBF network critically
depends upon the chosen centers, we used an alternative
learning procedure based on the OLS learning algorithm [6].
By providing a set of inputs and corresponding outputs, the
values of weights , bias , and RBF centers (parameters for
RBF network) can be determined using the OLS algorithm in
one pass of the learning data so that a network of an adequate
size can be constructed.

When an input vector is presented to such a network,
each neuron in the hidden layer will output a value according
to how close the input vector is to the centers vector of each
neuron. The result is that neurons with centers vector very
different from the input vector will have outputs near zero.
These small outputs will have a negligible effect on the linear
output neurons. In contrast, any neuron whose centers vector
is very close to the input vector will output a value near one.
If a neuron has an output of one, its output weights in the
second layer pass their values to the neuron in the second
layer. The width of an area in the input space to which each
radial basis neuron responds can be set by defining a spread
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Fig. 5. Results of applying the minimum entropy IL and RBF network with OLS learning algorithm. For details see the caption of Fig. 3.

constant for each neuron. This constant should be big enough
to enable neurons to respond strongly to overlapping regions of
the input space. The same spread constant is usually selected
for each neuron.

C. Results of Using Entropy Minimization
Type of IL and RBF Type of ANN

The muscle timing was estimated using minimum entropy
IL, and the level of muscle activation was estimated using
RBF network with OLS learning algorithm. The RBF network
estimates the level very well because it gives a “continuous”
output, therefore it does not work so well for the muscle timing
estimation [15]. Thus, the rules designed using IL method
correct the muscle timing estimated using RBF [15]. The
parameters for RBF network were calculated based only on
elements from the input and output sets that fall in the interval
in which a muscle was estimated to be active. The joint angle
was estimated using only RBF network.

Fig. 5 shows results of applying the minimum entropy IL
and RBF network with OLS learning algorithm. The top panel
shows the predicted (dashed line) and simulated (full line)
activation patterns of the equivalent knee flexor muscle. The
inputs for this pattern matching were the knee joint angle and
the ground reaction forces from the preceding 50 ms, while
the output was the muscle activation pattern. The middle panel
shows the errors in the muscle activation timing. The bottom
panel shows the simulated (full line) and the predicted (dashed
line) knee joint angle. The inputs for this pattern matching
were the knee joint angle preceding for the 50, 100, and 150

ms, while the output was the knee joint angle. Two different
networks were used for matching of muscle activation and
joint angle.

The spread constant for the RBF network estimating muscle
activity was selected at 80 000, and the obtained network had
290 nodes in the hidden layer. The spread constant for the
RBF network estimating the joint angle was selected at three,
and the obtained network had 455 nodes in the hidden layer.
Each input signal was divided into 30 fixed levels (chosen
potential thresholds) for the application of minimum entropy
IL. The spread constant and the number of potential thresholds
were selected to get as good as possible pattern matching.
The number of training epochs in both cases was one. The
cross correlation between the desired and estimated muscle
activity was 0.90, and cross correlation between the desired
and estimated value of joint angle was 0.999. The muscle
activation pattern matching lasted approximately 10 s, while
the joint angle pattern matching lasted approximately 31 s.

VI. DISCUSSION

In this paper three supervised ML’s for prediction of muscle
activation patterns (knee flexor muscles) and sensory data
(knee joint angle) were compared. The data for training and
testing was prepared using the results of the simulation of a
walking with an FES system. The ML’s are: 1) a MLP with
Levenberg–Marquardt modification of BP learning algorithm;
2) an ANFIS where a subtractive clustering method was used
for initial identification of a first-order Sugeno-type FIS and
an adaptive-network with BP and LS algorithms was used
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TABLE I
THREE CRITERIA FOR EVALUATION OF MLS: 1) THE CROSSCORRELATION BETWEEN

SIMULATED (DESIRED) AND ESTIMATED SIGNALS (KNEE FLEXOR MUSCLE ACTIVATION AND

KNEE JOINT ANGLE); 2) THE ERRORS IN THETIMING OF MUSCLE

ACTIVATIONS; AND 3) THE ELAPSED TIME FOR THE TRAINING AND TESTING

for tuning of initial identified FIS; and 3) combination of an
entropy minimization type of IL technique and a RBF type of
ANN with OLS learning algorithm.

The presentation includes only seven strides. Four strides
were used for the training, while the whole sequence for the
testing. The small number of strides was intentionally used
to demonstrate that even though the repeatability is very low
from stride to stride, and the limited number of strides is used,
all ML’s employed are capable of predicting the outputs within
acceptable margins of error. The aim of the study was to
analyze which technique is the best for design of the rules
for an FES controller, and not to get the perfect map of
muscle activations. The simulation used to get the inputs and
the outputs for pattern matching provided only one plausible
sensory-motor map, and its accuracy is questionable because
it utilizes a very simplified biomechanical model of a human
walking. Therefore, the obtained map of muscle activations
only represents a starting point for fitting an FES controller
to a person with disability. We tested all three ML’s using
longer sequence of level walking with up to 50 successive
strides, up and down the stairs walking and the like, and the
results obtained are very similar to the one presented here, but
they are not included because they could not help in explaining
the differences between the different pattern matchings.

It is noteworthy that the ML’s tested require ad-hoc selec-
tion of a number of elements such as a number of nodes in a
hidden layer, a clustering radius, etc. We listed the values that
were chosen after thorough testing and inspecting the cross
correlation, timing error, and complexity aiming to get the
best pattern matching.

Table I summarizes some of the elements which can be used
for assessing the efficacy and quality of ML’s. Those elements
are: cross correlation between simulated (desired) and esti-
mated signals, errors in the timing of muscle activations, and
elapsed time for the training and testing.

The advantage of a rule-based learning method (e.g., min-
imum entropy IL method and fuzzy logic) is that the rules
determined are both explicit and comprehensible, while the
rules used by the ANN’s (e.g., MLP and RBF network) are
implicit within their structure and not easily comprehensible.
There are methods which extract approximate classification
rules from a trained ANN, and they help in evaluating the
learned knowledge [30]. Furthermore, ANN’s are computa-

tionally intensive. In view of the versatility of ANN and rule-
based learning methods, their combination can be expected to
exhibit many advantageous features such as: 1) the parameters
of the system have clear physical meanings, which they do not
have in general ANN; and 2) human linguistic descriptions
or prior expert knowledge can be directly incorporated, for
example, into fuzzy neural network structure. On the other
hand, the disadvantage is that the network structure requires a
large number of term nodes and there is no efficient process
for reducing the complexity of combined neural network with
rule-based method.

RBF networks and MLP’s are examples of nonlinear layered
feed-forward networks. These networks are both universal
approximators. The RBF network with supervised learning
has some advantages over the MLP: 1) the RBF network
with supervised learning of cluster centers as well as network
weights has characteristic fast training; often it can be designed
in a fraction of the time it takes to train the MLP with a
BP learning algorithm, even the RBF network may require
more nodes than the MLP; 2) this RBF network is able to
exceed the generalization performance of the MLP with a BP
algorithm substantially [9]; and 3) the spread constant is the
only element which has to be selected for this RBF network.
The idea employed by a RBF network is very similar to a
fuzzy logic method. The output from a radial basis neuron can
be interpreted as a membership of input vector to that neuron.

Better prediction of the knee joint angle was obtained
compared to the prediction of the activation pattern of the knee
flexor muscle for all three used ML’s when using the same
input and output sets for training and testing. The knee joint
angle was predicted with sufficient accuracy by each applied
technique (cross correlation was 0.999). The level of knee
flexor muscle activity was predicted in a similar way by each
applied technique (cross correlation was 0.94 for the MLP,
0.95 for the ANFIS, and 0.90 for the combination of minimum
entropy IL and RBF network), but not the muscle timing. The
best results for prediction of muscle timing were obtained by
using a minimum entropy IL with RBF network, and the worst
by MLP (maximum of muscle activation timing error was 300
ms for the MLP, 220 ms for the ANFIS, and 80 ms for the
combination of entropy minimization IL and RBF network).

In order to assess the acceptability of the muscle timing
errors, they should be related to the dynamic characteristics
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of the musculoskeletal system: the dynamics of muscles can
be characterized by rise time of approximately 50–100 ms,
depending on the muscle type. The resonance frequency of
the skeletal system depends on the phase of the walking cycle
(stance or swing), but can be estimated to be lower then 1
Hz. Therefore, timing errors on the order of 50 ms seem to be
acceptable. Because simulated studies [49] show that the gait
pattern is more sensitive to muscle stimulus on/off timing than
to stimulus amplitude, muscle activity timing errors obtained
by MLP and ANFIS are less acceptable than other.

The small number of rules being explicit and compre-
hensible was obtained by using the first order Sugeno-type
FIS network. The tuning procedure is not too complicated
because it requires only the cluster radius and the number
of epochs to be assumed, while the remaining elements are
determined automatically. The other two methods give a large
number being implicit and very difficult to comprehend. The
use of the RBF network is by far the easiest to implement
because it requires only the spread constant to be assumed,
and everything else is automatic. The most complicated is the
MLP pattern matching because it requires a large number of
parameters to be adopted.

The overall goal of the study was to develop a procedure of
acquiring knowledge needed for the better control of bipedal
walking when using a functional electrical stimulation system.
It was postulated that control of bipedal locomotion relies
on prestored synergistic actions. The specific questions that
were answered relate to the plausible use of machine learning
techniques for acquiring nonexisting knowledge needed for
real-time rule-based control with an assistive system. The
kinematics of an able-bodied subject walking was used as
a desired trajectory which has to be cloned. The kinematics
and dynamics of the walking were used also for two other
purposes: 1) calculating the patterns of muscle activities that
are required to achieve the tracking of the desired kinematics
[39]; and 2) determining a mapping between the kinematics
and patterns of muscle activities by using a machine learning
technique. The biomechanical model used for simulation was
fully customized using geometrical, inertial and other dynamic
parameters recorded from a subject with disability who will
eventually use the assistive system [39].

The result of the study will be included into a clinical
procedure. Determining individual skeletal and neuromuscular
properties of an eventual user of the system is needed in
order to simulate the locomotion and determine the pattern
which has to be cloned. The simulation results would be
used for the training of a machine learning technique, and the
results would be the rules for rule-based control of locomotion.
This rule-based control would be used as the initial protocol
for functional electrical stimulation. The same procedure is
directly applicable for control of an externally controlled
artificial leg.
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