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ARTICLE INFO ABSTRACT

A novel method to detect and classify several classes of diseased and healthy lung tissue of interstitial lung
diseases is presented, as these diseases are hard to diagnose and differentiate. Local organizations of image
directions at several scales drive the process of creating discriminative lung tissue texture signatures using
spatial and Fourier domain information extracted from the images. The signatures are generated for four dis-
eased tissue classes and healthy tissue, all of which appear in the Interstitial Lung Disease (ILD) database, using a
novel one-versus-one approach for learning discriminative filter signatures. A multiclass tissue classification
accuracy of 80.31% is observed using Radial Basis Function (RBF) Support Vector Machines (SVMs). The pre-
sented method compares well against a variety of state-of-the-art approaches. Another strong feature of our
approach is the ability to access the individual class probabilities before a final classification decision is made.
This enables an analysis of the causes of misclassification in this paper. We also make the case against total
reliance on the accuracy of the ground truth given that the ILD database only contains a single label for a specific
region and sometimes more than one pattern can be present, particularly for regions classified as healthy tissue.
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Measures to address misclassifications in this context are also proposed.

1. Introduction

Respiratory diseases are a leading cause of premature mortality
according to the White Book of the European Respiratory Society (ERS)
(European, 2016). In 2008, 9.5 million deaths were attributed to them,
corresponding to 1 in every 6 deaths worldwide. In addition, they ac-
counted for an annual cost of 380 billion Euros for the European Union
(EU) alone in terms of direct medical care, prescription of drugs, and
loss of productive output. Tackling such diseases is therefore a priority
in the healthcare sector and is also of economic significance. To prevent
avoidable deaths and costs, it is vital that an accurate diagnosis is found
as early as possible. Clinicians can then administer the correct treat-
ment directly. This can provide the patient either with the highest
achievable quality of life while living with the disease and with the best
chance of survival.

Among such diseases, those affecting lung parenchyma are very
common. Interstitial lung diseases (ILDs) form a large and diverse group
of such diseases. They consist of more than 200 pathologies affecting
the small lung airways, the pulmonary interstitium, and the alveoli
(Kreuter et al., 2015). Their accurate diagnosis is based on information
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gathered from clinical, radiological, and pathological analyses.

High Resolution Computed Tomography (HRCT) images are typi-
cally used for the detection of ILDs due to the superior amount of details
they provide over other imaging modalities (Barr et al., 2016). Radi-
ologists are subject to a certain degree of subjectivity when interpreting
the content of the images. As many diseases are rare and clinical di-
agnoses rely on experience, some ailments can easily be misdiagnosed.
Ideally, an objective and accurate approach for detecting interstitial
lung pathologies is required and we contribute towards it in this paper
through an automatic interstitial lung disease detection and classifica-
tion method that leverages the advances made in the field of visual
pattern recognition. In addition, our approach leads towards a quanti-
tative analysis of the prevalence of diseased tissue in a patient. This can
facilitate clinical decision-making by giving probabilities for different
tissue types.

To fully exploit visual pattern recognition in the detection of lung
tissue pathologies, we note that pattern discrimination relies heavily on
local organization of scales and directions in the image being analyzed
(Blakemore and Campbell, 1969; ter Haar Romeny, 2010). An analysis
of scales and directions in tissue patterns needs to be done together
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because co-occurrence of the two provides vital discriminatory prop-
erties. It is also important to avoid the loss of local variations of pattern
properties such as local anisotropy, as they might be key in dis-
criminating between tissue texture types (Depeursinge et al., 2014a).
The spatial domain representation of images provides insufficient in-
formation to properly examine the local organization of scales and di-
rections. To obtain a more complete overview of the relationships be-
tween them, we complement intensity information with frequency
domain information.

Many techniques that explicitly exploit the local organization of
scales and directions exist. For the case of directional analysis, separ-
able and non-separable wavelets (Jeng-Shyang and Jing-Wein, 1999),
grey-level co-occurrence matrices (GLCM) (Haralick et al., 1973), run-
length encoding (RLE) (Xu et al., 2004), histograms of gradients (HOG)
(Dalal and Triggs, 2005) used in the scale-invariant feature transform
(SIFT) (Lowe, 2004), and oriented filterbanks and wavelets (Gaussian,
Gabor, Leung-Malik, Maximum Response (Cula and Dana, 2004; Leung
and Malik, 2001; Porter and Canagarajah, 1997; Randen and Husoy,
1999; Xu et al.,, 2010) have been proposed. Separable wavelets un-
fortunately present bias along the horizontal and vertical directions
(Mallat, 1989) and the remaining methods all require an arbitrary
choice of image directions for directional analysis (Depeursinge et al.,
2014a). Local binary patterns (LBP) (Ojala et al., 2002) are also com-
monly used and they perform multidirectional analysis using a se-
quence of pixels along perimeters of radius r but do not come with
multiresolution capabilities and r has to be determined through manual
optimization. To overcome such challenges, methods based on brush-
lets (Meyer and Coifman, 1997), curvelets (Candeés and Donoho, 2000),
ridgelets (Donoho, 2001) and contourlets (Do and Vetterli, 2002; Po
and Do, 2006) were developed. They allow comprehensive multi-
directional analysis for neighborhoods of any radius.

Other techniques in the literature leverage the local organization of
scales and directions indirectly. Such methods include convolutional
neural networks (CNN) (LeCun et al.,, 2004, 2010), the scattering
transform (Ablowitz et al., 1974; Ablowitz and Segur, 1981), and to-
pographic independent component analysis (TICA) (Hyvirinen et al.,
2001). Another approach is based on steerable filterbanks (Freeman
and Adelson, 1991; Simoncelli and Farid, 1996) that allow continuous
directional characterization (Depeursinge et al., 2014a). For scale
analysis, (Mallat, 1989) provides an elegant multiresolution approach
whereby a wavelet representation is defined after study of the in-
formation difference between successive resolutions of a signal. Its
usefulness was demonstrated through its application to texture dis-
crimination.

Another point to note is that the same texture pattern can exist in
different local orientations. The approach described in this paper needs
to be able to deal with such variations. Rotation invariance or covar-
iance in the features extracted from images is a solution. Invariance
implies that the features are the same even if the images undergo ro-
tation while covariance implies that the features have a bilinear re-
lationship with the rotational transformation. Digging deeper into this
notion, however, one discovers that, in actual fact, rotation invariance
(implemented in Schmid, 2001; Van De Ville et al., 2005) cannot deal
with certain important directional properties such as local anisotropy.
That is the case because one of the most common ways of achieving
invariance is to average the output of directional operators over all
directions (Depeursinge et al., 2014a). We clearly require rotation-
covariance, which retains information relating to local directional
variations. Several methods exhibiting rotation covariance exist, such
as rotation-covariant LBP (Ojala et al., 2002) and rotation-covariant
SIFT (also known as RIFT) (Lazebnik et al., 2005). These, however,
require exhaustive calculations and do not model discriminative pat-
terns specifically (Depeursinge et al., 2014a). Steerable filters are able
to generate rotation-covariant features without these difficulties
(Depeursinge et al., 2011a; Do and Vetterli, 2002).

Once suitable features for optimal discrimination between diseased
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tissue types can be reliably found, an appropriate classification tech-
nique is necessary. For each region of interest being analyzed, a vector
of discriminative features can be created. The basic idea from here on is
to compute the vector of features for regions with unknown disease
label and then automatically assign the label with highest probability to
each of them. Machine-learning-based classification is perfect for this
type of inference. Machine learning techniques exist in many different
forms. Supervised learning methods employ labeled training data while
unsupervised techniques do not use any labeled data. The goal in the
latter is usually to find clusters of similar data so they can be grouped
together as belonging to the same category. Semi-supervised learning
algorithms are a mix of the above two approaches and work well on
partially labeled datasets or data containing errors in the labels. Many
classifiers are in regular use in the field to achieve automatic identifi-
cation of the labels of image regions. Random Forests (RF) (Breiman,
2001) are an example of decision-tree learning. They are an ensemble of
weak classifiers and often yield excellent results in practice. In Zarzar
et al. (2015), for instance, they were successfully used in cancer diag-
nosis. Artificial neural networks are also often used as classifiers. They
were designed to mimic the network of neurons in the human brain.
One example is the Multilayer Perceptron (MLP) (Ruck et al., 1990). It
has, for instance, successfully been used for heart disease diagnosis
(Yan et al., 2006). The main problem with neural networks is that they
operate as black boxes with intermediate levels between image input
and classification output that are often difficult to interpret. A Con-
volutional Neural Network (CNN) has been used on a lung disease da-
tabase in Gao et al. (2016) where classification performance was not
assessed explicitly and in Li et al. (2014) with a reasonable level of
accuracy, precision, and recall. Support Vector Machines (SVM) (Cortes
and Vapnik, 1995) are very popular as well and represent an instance of
a non-probabilistic binary linear classifier. They aim at finding an op-
timal separation hyperplane between two classes. In the literature, they
have been used for cancer diagnosis with success (Guyon et al., 2002).
Although very accurate, they have high computational complexity and
large memory demands. In addition, it is not straightforward to set the
optimal parameters and performance can vary if not well optimized.

Since the ILD dataset is being used to evaluate performance in this
paper, it has to be noted that it was annotated by two radiologists in
agreement with each other. As a result, the ground truth can contain a
level of subjectivity and inter-rater disagreement cannot be measured.
Many publications have, however, made use of that database and re-
sults therein provide a useful indication of relative performance to
compare with. It can be pointed out that classification methods that
abstain from classifying data with limited annotation quality exist and
are important to consider (Condessa et al., 2017). Common classifica-
tion performance measures are not adapted to evaluate the perfor-
mance of such classifiers and three other evaluation measures are
proposed in Condessa et al.: non-rejected accuracy, classification
quality and rejection quality. In our work, we tackle this problem by
moving a threshold on the classification likelihood before making a
final decision.

The rest of this paper is structured as follows. We begin by pre-
senting the database used to validate the proposed approach. Work
done by other researchers using the same data and similar validation
schemes are also covered. This is followed by an in-depth description of
the theoretical foundations of the proposed method. Subsequently, the
results are displayed. These are then analyzed thoroughly to
interpret all observed behavior. Finally, we draw conclusions from the
work done and propose some measures for further improvement in
future work.

2. Methods
An overview of the proposed method is provided in Fig. 1. A suitable

database for training and testing is first chosen. A steerable Riesz fil-
terbank is then applied to the training set to obtain a one-versus-one
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Fig. 1. The workflow for the proposed method first identifies the database used for
training and testing. A steerable Riesz filterbank is then used on the training set to obtain
a one-versus-one SVM that yields a weighing scheme for the above filterbank. That is used
to generate optimal class-wise filters that are then applied on the training set to get an
SVM classification model. Applying this on the test set yields the desired classification
results.

SVM model. This is used to generate a weighing scheme for the above
filterbank.

A weighted sum of the components of the filterbank lead to an
optimal filter for each class of tissue considered. Applying these optimal
filters on the training set allows for the creation of an SVM classification
model that is subsequently used to classify lung tissue.

More details on each step of the above process is provided in the rest
of this section.

2.1. Data used

To assess the effectiveness of our method in diagnosing ILDs, we use
a publicly available ILD database for validation (Depeursinge et al.,
2012b). It consists of 108 HRCT volumes corresponding to 13 histolo-
gical diagnoses of ILDs. A total of 1946 ROIs were annotated by two
radiologists in agreement, which translates to more than 41 liters of
annotated tissue. Fig. 2 illustrates one slice from the database showing a
cross-section of the thorax of a patient along with an expert-generated
annotation highlighted in the mid-left of the slice. Several publications
have used the same dataset for validation and they will be described

Fig. 2. A sample slice from an image in the ILD database with highlighted annotation is
presented here. The annotated tissue is the bright area in the mid-left of the slice.
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briefly. In the results section, the reported performance values are
compared to ours. The exact evaluation scenario can vary between
publications and thus not all of the results are directly comparable. The
radiologists explicitly aimed to find healthy tissue in all patients
eventhough this can have some abnormal patters mixed in the tissue.

Many authors tried to classify five lung tissue types: healthy, em-
physema, ground glass, fibrosis, and micronodules. Early on,
Depeursinge et al. (2007, 2008) worked on an incomplete version of the
ILD dataset with fewer images and combined clinical parameters with
image data. In further work, Depeursinge et al. (2012c) use isotropic
wavelet frames for near-affine-invariant texture learning. They also
used the Riesz transform for multiscale texture signature learning
(Depeursinge et al., 2012a). In yet further work, they apply a method
based on steerable Riesz filterbanks on the ILD database (Depeursinge
et al.,, 2011a). Low-level localized features are used in Depeursinge
et al. (2011Db) on the same set of classes. The evaluation methodologies
slightly varied over the years switching to leave-one-patient-out early.

Song et al. (2013) use feature-based image patch approximation for
classification while in Song et al. (2015), a locality-constrained sub-
cluster representation ensemble is used. Li et al. (2014) use a custo-
mized CNN approach to classify ILD images. Gao et al. (2016) use a
deep CNN approach. As for Li et al. (2013), they use automatic feature
learning for image patch classification. Some authors extended the set
of classes considered to six by including the consolidation class. For
instance, Shin et al. (2016) use a deep CNN for classification on this set.
Similarly, Foncubierta-Rodriguez et al. (2012) use the six classes to test
an implementation of multiscale visual words for classification and
retrieval. Finally, it is also possible to use almost completely different
classes for classification. For example, Anthimopoulos et al. (2016)
apply a deep CNN to the following classes: healthy, ground glass opa-
city (GGO), micronodules, consolidation, reticulation, honeycombing,
and a combination of GGO and reticulation. Thus, even though the data
set is the same there can be several ways the evaluation can be done and
for this reason absolutely performance comparisons need to be taken
with care.

We use supervised learning (the ILD dataset has regions of interest
annotated) on the five classes that are most commonly encountered in
the literature, namely healthy, emphysema, ground glass, fibrosis, and
micronodules. This facilitates performance comparisons with many of
the methods above. Furthermore, these classes have a reasonably high
representation, with other classes containing fewer examples. Fig. 3
illustrates their respective appearance and it is clear that the difference
in appearance can occasionally be subtle. This is especially noticeable
for healthy tissue, emphysema and micronodules.

For training and testing on the dataset, a leave-one-patient-out
(LOPO) cross-validation strategy is employed. This means that the
patches belonging to one patient are removed from the pool for training
and are then used for testing. The remaining patches are taken to train a
classification model. The model is then used to classify the patches set
aside. The predictions on the test set are compared with the actual class
values in order to evaluate the classification accuracy. If only one patch
is left out instead of a full patient, bias can lead to much better results
and not in all publications this is explicitly mentioned. Finally, the
whole process is repeated such that each patient in the ILD dataset is set
aside once and all patches are classified.

We do not use 3D regions of interest as the data base has anisotropic
data, meaning that the slice thickness is 1 mm and pixel size is 1 mm in
all three directions, but there is a 10 mm gap between two slices. This
missing information cannot easily be reconstructed.

2.2. Tissue characterization

Through this work, we aim to generate texture features that are
multiscale, multidirectional, and rotation-covariant. From the methods
presented in this paper so far, steerable filterbanks based on wavelets
seem to be the most appropriate approach to follow. The use of
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Fig. 3. Five classes were selected for classi-
fication from the ones available in the ILD
database with a high representation. They
represent healthy tissue as well as tissue
representative of emphysema, ground glass,
fibrosis, and micronodules.

Healthy Emphyv=ema Groundslass Fibrosis Micronocdules

multiresolution wavelets caters to the need for multiscalability while
the steerable filterbanks allow for continuous directional characteriza-
tion along with rotation-covariance. Additionally, no assumption is
made on the scales and directions and there is no need for arbitrary
choices of neighborhood radii. The wavelet-based approach is also easy
to adapt to the problem being resolved (Castellano et al., 2004). Spe-
cifically, we concentrate on the use of Riesz filterbanks (Depeursinge
et al., 2014b,a, 2013, 2012a, 2011a; Held et al., 2010) as much recent
work has been done with this technique with very good results on
texture.

2.2.1. Building Riesz filters with desirable properties

We begin the process of detecting and classifying lung tissue types
by observing that the information contained in any 2D patch can be
represented with pixel position (x and y coordinates) and grayscale
value. The information contained in a patch can therefore be mathe-
matically modeled as a function having finite boundaries and, as a re-
sult, finite energy content. Let f(x) represent the finite energy function
that models the content of a patch where x encodes the pixel co-
ordinates within the patch in the two-dimensional space. In other
words, f: x = f(x), x € R?, where x = (x1, X2).

Since texture information is solely encoded in the spatial transitions
between the pixel values, the characterization of the imaging features is
best described in the Fourier domain in terms of spatial frequencies. We
choose the Fourier domain as it is fast and straightforward to compute
using the Fast Fourier Transform (FFT) (Brigham, 1988). The Fourier
domain representation of f(x) is defined as:

FEOSf @) = [, Feeen duds, ®

where w = (w1, w,) and <, -> denotes the scalar product.

We first define the Riesz filterbanks needed for our work, which are
based on the real Riesz transform (Unser et al., 2011). For a 2D signal,
the N + 1 components of the Nth-order Riesz transform are defined as

0N (f)x)
RY{f)(x) = | #0800 {f3o) |,

AN {fHx) ©)

withn =0, 1, ..., N. A kernel #"N=" {f}(x) that represents the action
of a generic member of the filterbank on the signal is defined in the
spatial and Fourier domains as:

RN () (20) o 0N (7 (@),

where
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In Eq. (3), multiplication by jw; and/or jw, in the numerator fol-
lowed by division with the norm of w produces filterbanks that behave
as allpass filters that only retain the phase information defining direc-
tions according to partial image derivatives of maximal order N
(Depeursinge et al., 2014a; Unser and Van De Ville, 2010). N de-
termines the angular selectivity of the Riesz kernels. Fig. 4 illustrates a
representation of the Riesz kernels for N =1, ..., 5.

Fig. 4. A representation of the Riesz filterbanks for orders 1 to 5 are illustrated here. The
Riesz transform was applied to an isotropic Gaussian function to represent the filters on a
finite spatial support.

One of the most interesting properties of the Riesz filterbanks is
steerability (Freeman and Adelson, 1991; Unser and Van De Ville,
2010). What this essentially means is that a linear combination of the
filterbanks can be used to model any local rotation and this represents
an advantage over such techniques as CNNs where rotation-invariance
is achieved through the expensive process of augmenting the original
training images with several rotated versions.

For a given rotation angle 0, a steering matrix Ag can be used to
obtain the response of any orientation of the kernels in the filterbank to
an image f(x) for a rotation around the position 0 as

RY{;}(0) = ARV {f}(0), 4)

where fy denotes the rotation of f as fg(x) = f(Rgx) and Ry is a 2D ro-
tation matrix parameterized by 6.

Multiscale analysis proceeds by partitioning the Fourier domain into
several dyadic bands of decreasing sizes. This is done using Simoncelli's
isotropic multiresolution framework (Simoncelli and Freeman, 1995)
and it controls the spatial support (i.e., scale) of the Riesz filters. Class-
specific texture signatures for several tissue classes can be obtained by
determining a weighting scheme for the Riesz filterbanks for every
scale. This is illustrated in Fig. 5 where a Riesz filterbank of order 5 is
used to generate a signature for the micronodule class using a suitable
weighting scheme for the individual Riesz filters. More formally, we are
looking for an optimal texture signature I of the class ¢ from a linear
combination of the individual Riesz filters in the filterbank as:

¥ =w'RY

= Wl%(O,N) + Wz%(l‘N_l)-l- .. '+WN+1<9Z(N’O)’ (5)
where w contains the weights of the respective Riesz filters. For our
specific case, a multiscale texture signature is obtained by extending Eq.
(5) using multiscale Riesz filterbanks (Depeursinge et al., 2012a) as:
Y = w (2O, + wy (ZON-D) g+

+ Wy vy (2N ), (6)

where s;, for j = 1, ..., J is the scale index. The image to be analyzed is

mapped onto the Fourier domain. Then, different bands of frequencies
from this domain are extracted using Simoncelli's multi-resolution
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framework for domain partitioning to obtain different filtered versions
of the original image. The weighting scheme described above is de-
termined for each scale such that we obtain texture signatures at dif-
ferent frequency-domain scales for the same image.

2.2.2. Determining optimal texture signatures using a novel one-versus-one
approach

The weighing scheme itself may be determined by using an SVM-
based one-versus-one classification technique. The energies of the filter
responses E (#ZN-" {f}(x)) need to be calculated for one class c versus
each one from the remaining classes and then fed to an SVM that finds
the optimal separation (in the sense of structural risk minimization
Vapnik, 1995; Guyon et al., 2002) between ¢ and each of the remaining
classes. Each class is thus uniquely characterized against the remaining
classes, meaning that this approach produces highly discriminative
classification variables. Since there are five classes, the approach leads
to 5 X 4=20 different optimal signatures. However, the optimal se-
paration between a class A and a class B is the same as separation be-
tween class B and class A, the number of optimal signatures reduces to
10. The optimal weights w = (w;, ...,wy41) are directly derived from
the support vectors of the optimal separation found above as in
Depeursinge et al. (2014a).

2.3. Classification

The images are filtered using the Riesz template and steerability is
used to obtain the responses of class-wise locally aligned texture sig-
natures I'V. The average energy of these responses within a patch is
used to build a feature space for classification. This feature space is
complemented by a histogram of Hounsfield Units (HU) from the spatial
domain as it is important to include the so-called DC component of
image signals that is neglected in the Fourier domain approach we have
presented so far. The average air content of lung tissue in a patch under
investigation is also an important characteristic of the tissue class.
Therefore, the number of pixels representing air per block is also in-
cluded as a variable in the final feature vector for a patch. As a result,
the feature space for each patch consists of the histogram of HU values,
the average air content, and 10 filter responses (one for each optimal
one-versus-one Riesz filter).

The features are then used to train an SVM model as part of a su-
pervised learning approach. First, the vector containing the histogram
of HU values is combined with the vector containing the response of the
healthy-versus-emphysema Riesz filter (the first of the ten filters used)
for training instances of the class ‘healthy’ (first of the five tissue classes
being investigated here) and all other classes, collectively labeled as ‘all
others’. An SVM is used to find the optimal separation between them.
The vectors within the feature space of the test patches are similarly
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Fig. 5. The process of building a texture
signature for the micronodule class is illu-
strated here through an appropriate
weighing scheme for a Riesz filterbank of
order 5.

partitioned and combined. Another strong feature of our method is that
it allows the analysis of classwise probabilities that are used to make a
final classification decision. Using the SVM model just trained, the re-
lative probabilities of a patch belonging to each one of the five classes
are determined. This is followed by a similar calculation for the training
instances of the remaining four classes in turn against all others. The
process is repeated for the remaining nine Riesz filters. The class
probabilities are subsequently aggregated and the class having the
highest probability for each of the patches is chosen as the predicted
class for the patch.

2.4. Parallel computing

Calculating Riesz energies is a computationally expensive process
since this has to be done by iterating over individual pixels in each
patch of the ILD dataset. The required timescale is too large for our
method to be viable on typical workstations. Thanks to the power of
dedicated Graphical Processing Units (GPUs), filter responses are cal-
culated in parallel within a workstation using techniques developed in
previous work (Vizitiu et al., 2016). Several classification tasks on
different sets of training and test images are handled in parallel on
separate workstations through the use of Hadoop on a local network of
workstations.

3. Results
3.1. Experimental results

MATLAB was used for the calculations described above. Square
patches with a length of 33 pixels were extracted from the annotated
region in each of the slices of the training and test images. A patch is
extracted only if at least 75% of the 33-by-33 square lies inside the
annotated region and its center is at least half a patch length away from
the respective centers of other extracted patches in both the horizontal
and vertical axis directions. The specific patch length was chosen after
preliminary investigations of appropriate patch lengths that give good
results and have a sufficiently large number of patches for classification.
Patch extraction is illustrated in Fig. 6 where several overlapping
square patches are identified on a particular slice with a known label.
14,594 patches are obtained in this way from the ILD dataset. Their
distribution according to tissue class: healthy (H), emphysema (E),
ground glass (G), fibrosis (F), and micronodules (M) is presented in
Table 1.

For each of the patches generated, the respective grey level histo-
gram is computed. Since we are dealing with HRCT images, the in-
tensity values are expressed in HU. The histogram used in computing
the feature space for a patch has 22 bins and is restricted to the value
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Fig. 6. The extraction of several overlapping patches is exemplified here on an annotated
slice from the ILD database that was shown in Fig. 2.

Table 1
The classwise distribution of patches extracted from the ILD database is
shown here.
Class Number of patches
Healthy (H) 3011
Emphysema (E) 407
Ground glass (G) 2226
Fibrosis (F) 2962
Micronodules (M) 5988
Total 14,594

range — 1000 (HU value for air) to 650 (typical HU value for bone). A
variable for air content in the patch (HU less than or equal to —1000) is
also included. The feature space is completed using energy values
computed using the multiscale approach presented in the previous
section for J = 4 scales. This number of scales was chosen to optimally
cover spatial frequencies contained in 33 X 33 image patches.

After a series of initial investigations (not detailed in this paper) into
an appropriate value for the Riesz order N, a value of 5 was chosen. For
N =5, 10 texture signatures of length (N + 1) *J = 24 each are ob-
tained. To create the final feature vector, the 24 x 10 = 240 variables
obtained in the previous step are concatenated with the 22 variables
from the histogram and one variable for air content.

As a result, a feature vector of length 263 is obtained for each patch.
Classification is then carried out on the feature vectors for several va-
lues of Radial Basis Function (RBF) kernel SVM cost parameters:
gamma, and cost. Gamma controls how far the influence of a single
training instance extends in the determination of support vectors; low
gamma corresponds to a far-reaching influence. The cost parameter
controls the penalty for misclassification; high cost forces the algorithm
to explain the input information better, leading to a higher risk of
overfitting. A maximum absolute accuracy of 80.31% is achieved for
gamma = 1.0e0 and cost = 1.0e — 2. The confusion matrix for this
result is shown in Table 2. Using the confusion matrix, the true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN)
are identified for each individual tissue class. Subsequently, the per-
class specificity, precision, recall, F-score, and accuracy are calculated
and shown in Table 3. In particular, the accuracy is calculated using Eq.
(7). Finally, Table 4 shows the precision, recall, and F-score for the
proposed method and comparable work for which those figures are
available.

TP + TN
TP + TN + FP + FN @)

Accuracy =
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Table 2
The confusion matrix for the highest classification accuracy observed using our method is
shown here.

True label Predicted label
H E G F M

H 2186 18 21 19 767

E 48 233 7 59 60

G 124 2 1619 205 276

F 20 22 250 2441 229

M a4 9 152 144 5242
Table 3

The per-class specificity, precision, recall, F-score, and accuracy for the experiment
yielding maximum observed classification accuracy are shown in the table.

Class Specificity Precision Recall F-Score Accuracy

H 0.9454 0.7755 0.7260 0.7499 0.9001

E 0.9964 0.8204 0.5725 0.6744 0.9846

G 0.9652 0.7901 0.7273 0.7574 0.9289

F 0.9633 0.8511 0.8241 0.8373 0.9350

M 0.8452 0.7974 0.8754 0.8346 0.8576
Table 4

The overall precision, recall, and F-score for the proposed method and comparable work
are shown below. The exact evaluation scenario might not always exactly be the same,
with differences in patch size and training/test splits.

Method Precision Recall F-Score
Ours 0.807 0.745 0.771
Song et al. (2013) 0.807 0.826 0.815
Song et al. (2015) 0.825 0.841 0.833
Depeursinge et al. (2012c) 0.763 0.758 0.760
Depeursinge et al. (2011b) 0.649 0.716 0.667
Li et al. (2014) 0.738 0.770 n/a

Li et al. (2013) 0.702 0.744 n/a

4. Discussion

The results obtained using our method are compared with the re-
sults obtained by other authors who used the same ILD dataset but with
possibly slight variations in terms of the evaluation methodology.
Table 5 displays the accuracies for the different tissue types obtained by
our method and others. Fig. 7 allows a comparison of classwise recall,
Fig. 8 allows a comparison of classwise precision, and Fig. 9 allows a
comparison of classwise F-scores.

It can be seen that the performance of our approach compares and
sometimes improves over a variety of current methods (including deep

Table 5
The diagonal of the confusion matrices obtained for our method versus others is shown
below.

Method Class
H E G F M
Ours 0.7260 0.5725 0.7273 0.8241 0.8754
Song et al. (2013) 0.8760 0.8060 0.8270 0.8120 0.8110
Shin et al. (2016) 0.6800 0.9100 0.7000 0.8300 0.7900
Depeursinge et al. (2012c) 0.6728 0.7872 0.7136 0.8273 0.8156
Depeursinge et al. (2012a) 0.8270 0.7270 0.6840 0.8420 0.8350
Foncubierta-Rodriguez et al. 0.0530 0.7450 0.4960 0.7460 0.519
(2012)

Depeursinge et al. (2011a) 0.7750 0.7330 0.7230 0.8450 0.8050
Li et al. (2013) 0.7600 0.6700 0.7000 0.7400 0.8400
Depeursinge et al. (2011b) 0.7900 0.6920 0.5930 0.8050 0.7020
Gao et al. (2016) 0.9142 0.8270 0.8151 0.8910 0.8799
Song et al. (2015) 0.8850 0.7960 0.8000 0.8540 0.8720
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Fig. 7. Classwise recall obtained with our
Riesz-based approach is compared with the
approaches in the literature that use the ILD
dataset.
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CNNs and feature-based learning) in the classification of ILDs while
using a novel one-versus-one method of generating classification sig-
natures. It is important to note that although the dataset used is the
same, the exact validation scheme differs from one method to another
according to patch size, selection of patches (percentage contained in
the ROI), distribution of the classes, and cross-validation. We aim to
reuse the same methodology of own prior work. Our performance for
the healthy class is not as good as other approaches and this requires
further analysis. It is appropriate to question the existence of latent lung
tissue damage in the patients who contributed to the healthy class given
the fact that they had been recruited while they were under examina-
tion for suspected lung problems and all of them have some regional
abnormal texture. The radiologists who annotated the images were

Fig. 8. Classwise precision obtained with
our Riesz-based approach is compared with
the approaches in the literature that use the
ILD dataset.
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B Li{52]

specifically ask to find healthy tissue in each patient if possible and this
may have led to some healthy tissue annotations containing other un-
derlying patterns.

In fact, it might be wise to consider whether the entire initial
ground-truth annotations are fully clean in the annotated areas. In Aziz
et al. (2004), a study of inter-observer disagreement between thoracic
radiologists during the diagnosis of diffuse parenchymal lung disease
(DPLD) using HRCT images was carried out. The study found that ob-
server agreement was only moderate on the whole. It even advised the
use of the expertise of a reference panel for cases diagnosed with low
confidence. This is relevant here since annotation of the ILD database
was carried out by a consensus of two clinicians and no inter-observer
disagreement was measured. Inter-annotator disagreement thus
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presents a non-negligible risk of causing under- or over-estimation of
the classification accuracy observed in this paper and various others
that used the ILD database.

In an attempt to find further causes of misclassification, a detailed
analysis of the patches that were wrongly classified was conducted.
Fig. 10 illustrates an instance of a common occurrence of mis-
classification on an HRCT image slice from the ILD database. The cor-
rect class for all the patches extracted from this slice was emphysema
(class 2 in internal calculations). Out of 11 patches present, nine were
correctly classified, one was classified as fibrosis (class 4, shown in red
and labeled accordingly in Fig. 10), and the remaining one was clas-
sified as micronodules (class 5, also shown in red and labeled accord-
ingly in Fig. 10). The error seems to occur at the border of the ROI
where a significant portion (up to 25%) of the patch contains tissue not
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Fig. 9. Classwise F-score obtained with our Riesz-
based approach is compared with the approaches in
the literature that use the ILD dataset.

W Depeusinge[47] m Depeusinge[49]

part of the annotated region, most frequently the healthy class. In fact,
of the 14,594 patches, 14,550 (or 99.7%) are at the edges. That per-
centage is large because of the way edge patches are defined in our
approach: a patch is at the edge of an ROI when at least one pixel in it
lies outside that ROI. Their classification accuracy, standing at 80.27%,
is lower than the overall accuracy. The accuracy for the 44 patches fully
within the ROI stands at 93.18%. This is an indication that non-anno-
tated tissue in edge patches have a nefarious influence on the classifi-
cation algorithm, leading to erroneous behavior.

A further explanation for error at the edges of an ROI is the influ-
ence of transitions at the lung boundaries on the response of wavelets at
large scales (Depeursinge et al., 2015b). Fig. 11 shows the respective
distribution of probabilities for belonging to a certain class versus all
others for the two misclassified patches: the left one misclassified as

Fig. 10. Typical misclassifications of HRCT regions from the ILD database
are shown here. They occur often at the boundary of the annotated region.
Emphysema was wrongly classified as fibrosis and micronodules.
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Fig. 11. Bar charts of individual probabilities for a patch belonging to a certain class versus all others is shown here for a patch misclassified as fibrosis (left) and one misclassified as

micronodules (right). The correct class was emphysema.

fibrosis and the right one misclassified as micronodules. The correct
class was emphysema and it was a strong candidate (appearing in the
top two most likely) for the final classification decision but was erro-
neous.

Taking into account the fact that the presence of more than one
tissue class in a patch creates noise in the learned signatures and that
ground-truth annotation used to assess classification accuracy may
partly be subjective. We subsequently explored the possibility of pre-
dicting a class only if the individual probability of belonging to that
class versus all others (vertical axis in Fig. 11) is high. Fig. 12 shows the
effect on absolute accuracy of choosing only the best candidate classes
displaying a high value for the probability. As can be seen, the classi-
fication accuracy improves significantly for each class and overall.
However, the number of patches conforming to the probability
threshold and classified in this way is reduced accordingly as is shown
in Fig. 13. An analysis of probability distributions for each candidate
class for the remaining patches may be used to suggest the two most
likely tissue types along with relevant probability instead of proposing a
single tissue type. We could also increase the amount of a patch re-
quired to be in the region of interest when he patches are created but
this would make results uncomparable to our own prior work. The
above analysis of probability distributions before classification is a way
to quantify the likelihood of the presence of tissue types and may help
clinicians become aware that a certain outcome might not be solid. This

0,95

0.9

Accuracy
_O
o
ol

0.8} P .
A healthy
Pk — emphysena
B ground glass
075 /,__7~——*“_;7 fibrosis
| — ~— micronodules
all
o 3 7 1 1 1 1

0.75 0.8 0.85 0.9 0.95 1

Probability Threshold

Fig. 12. The classification accuracy overall and for each individual class is seen to in-
crease as the probability threshold utilized to enact classification is raised.
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Fig. 13. As the probability threshold used to enact classification is raised, the percentage
of patches classified in this way drops.

could substitute the role of a reference panel (recommended in Aziz
et al., 2004) providing reproducible advice regarding possible tissue
types and diagnoses.

Finally, Tables 2 and 3 show that there is some room for improve-
ment in the classification of the emphysema class, especially regarding
the recall obtained. Indeed, only 407 patches with identified emphy-
sema are encountered in the ILD database while the next least frequent
disease class is ground glass with 2226 patches. That is a large disparity
and we would argue that our Riesz filter for emphysema is consequently
less well trained as compared to the other classes due to a much lower
number of patches used for training. In addition, emphysema has very
large intra-class variations and would require learning several steerable
models or signatures per class. We contend that the use of more patches
belonging to that class for training and the use of more than one sig-
nature for emphysema in subsequent work would significantly improve
the overall classification accuracy.

In more future work, we plan to address the outstanding challenges
regarding classification accuracy by taking into account an important
aspect that has been neglected in most approaches seen so far: the use of
a-priori information regarding the physical location of a patch within a
slice and within an HRCT volume (Zrimec and Wong, 2007;
Depeursinge et al., 2015a; Gao et al., 2016). From Fig. 10, it is clear that
patches lying adjacent to each other more than likely belong to the
same tissue class. The exploitation of this property is expected to help
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us with incorrect classifications at the border of annotations and im-
prove overall classification accuracy.

5. Conclusion

In this paper, a method to characterize several tissue types in chest
CTs of patients with ILDs using Riesz-wavelet-based texture signatures
is presented. A maximum classification accuracy of 80.31% was ob-
served for texture classification of 5 tissue classes in the ILD database.
This is better then previous own work with the same evaluation
methodology. The approaches with slightly higher performance may
have slightly different patch selection and evaluation techniques, which
makes a direct comparison hard.

Accuracy improves if classification is only carried out when we have
high confidence in the outcome. For patches with lower confidence, we
can propose two of the most likely tissue classes along with the corre-
sponding probability for the clinicians’ consideration much in the same
way as a reference panel of experts could do. In addition, existing
methods classify image patches independently from each other, ne-
glecting the fact that adjacent patches often come from the same an-
notated area within an HRCT slice. Future work aims at leveraging this
in order to correct for the misclassification of patches at the border of
annotated areas.

It is important to note that differences in the visual appearance of
the classes encountered in this paper were often only visible as subtle
changes to normal lung tissue texture. The methods presented have
promising potential for future applications of other organ textures.
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