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ABSTRACT

We consider the denoising of signals and images using

regularized least-squares method. In particular, we propose

a simple minimization algorithm for regularizers that are

functions of the discrete gradient. By exploiting the connec-

tion of the discrete gradient with the Haar-wavelet transform,

the n-dimensional vector minimization can be decoupled

into n scalar minimizations. The proposed method can ef-

ficiently solve total-variation (TV) denoising by iteratively

shrinking shifted Haar-wavelet transforms. Furthermore, the

decoupling naturally lends itself to extensions beyond �1
regularizers.

Index Terms— signal denoising, soft-thresholding, cycle

spinning, TV denoising

1. INTRODUCTION

Two popular signal-denoising methods, wavelet shrinkage [1]

and total-variation (TV) denoising [2], have been shown to be

effective in reducing noise, while preserving important signal

features such as edges. Both methods serve the same purpose

and rely on the concept of sparsity, either in the wavelet or in

the finite-differences domains. In fact, in the 1-D case and for

Haar wavelets, TV denoising has been shown to be closely

related to wavelet shrinkage on a single scale with cycle spin-

ning [3, 4].

The contribution of the present paper to image denoising

is twofold: Our first contribution is to uncover the connection

between cycle-spinning Haar denoising and TV denoising,

both for the 1-D and 2-D cases. The observation is that TV

denoising can be reformulated as a constrained minimization

problem in the Haar-wavelet domain by making the transform

shift-invariant. We then solve the equivalent constrained opti-

mization problem via the augmented Lagrangian method [5].

Our technique decouples the n-dimensional optimization

problem into n scalar problems, each of which can be solved

directly. Our second contribution is to extend our algorithm

to general, possibly non-convex, potential functions. By uti-

lizing the decoupling, we can solve the high-dimensional

problem by precomputing the solution of the scalar subprob-

lems.
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2. SIGNAL DENOISING

2.1. Conventional Cycle Spinning

Consider the standard problem of estimating an unknown

discrete-signal x ∈ R
n from measurements y = x + e where

e is a Gaussian white noise. In the simple wavelet shrink-
age [1], the signal x is represented as x = W−1w, where

the matrix W represents an orthogonal wavelet transform.

Then, the estimation is performed by shrinking the wavelet

coefficients as

ŵ = η (Wy; λ) , (1)

where the soft-thresholding operator η is applied component-

wise and defined as η (x;λ) = max (|x| − λ, 0) sgn(x). The

final signal estimate is then computed as x̂ = W−1ŵ. The

scalar parameter (or threshold) λ is called the regularization

parameter and has to be chosen suitably [1]. If the wavelet

representation w has both coarse and detail coefficients, the

shrinkage is performed on detail coefficients only.

Basic wavelet-shrinkage methods perform fairly well;

however, they can be further improved by applying cycle
spinning [4]. Consider an orthogonal transform W to be

periodically shift-invariant with integer period K and define

Wk = WSk to be the transform of a shifted signal, where Sk

represents shifting by k ∈ [1 . . . K]. Cycle spinning works

by using periodic shift-invariance of the wavelet transform

to minimize artifacts by denoising wavelet representations

of the shifted versions of the signal. Wavelet regularization

with cycle spinning is often used in denoising and inverse

problems and consistently improves performance at no extra

cost [6, 7]. Here, this type of cycle spinning will be referred

to as conventional cycle spinning to distinguish it from our

method.

2.2. Total Variation

The idea of TV regularization is to penalize the total variation

of the signal, which in the discrete case results in the mini-

mization problem

x̂ = argmin
x∈Rn

{
1
2‖x − y‖2

�2 + λ‖Lx‖�1

}
, (2)

where λ is a scalar parameter to tune and Lx is the vector

containing the magnitude of the discrete gradient of x ∈ R
n
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at all pixels, defined as

[Lx]i =

⎧⎨
⎩

|xi+1 − xi| 1-D signals√
(xi+m − xi)

2 + (xi+1 − xi)
2

2-D signals,

where we assume that the image of size (m × l) has been

stored in a column-major order. In this paper, we assume

isotropic TV regularization, but the concept is easily applica-

ble to the anisotropic case as well. Besides substantial noise

reduction, another motivation to use TV denoising is the ex-

istence of fast algorithms such as FISTA [8] for solving (2).

2.3. Connection to the Haar-Wavelet

The Haar-wavelet is one of the lazy and most popular wavelet

transforms. For a given signal, the 1-level Haar transform

produces coefficients

ui = 1√
2

(x2i−1 + x2i) , vi = 1√
2

(x2i−1 − x2i) , (3)

where i ∈ [1 . . . n/2], assuming that n is even. The coef-

ficients u and v are referred to as coarse and detail coeffi-

cients, respectively. The Haar-wavelet expansion is orthonor-

mal. Hence, it satisfies Parseval’s theorem ‖x‖2
�2

= ‖w‖2
�2

=
‖u‖2

�2
+ ‖v‖2

�2
.

By comparing equations for the discrete gradient of the

signal x at some pixel i with the Haar-wavelet expansion (3),

we can guess that TV denoising is related to wavelet shrink-

age. In fact, it has been shown in [3] that, for 1-D signals,

Haar-wavelet shrinkage with conventional cycle spinning is

equivalent to a single iteration of TV denoising. In this work,

we would like to take advantage of this connection to derive

a new fast method for generalized TV denoising.

3. PROPOSED METHOD

3.1. Problem Formulation

We would like to find an efficient solution to determine

x̂ = argmin
x∈Rn

{
‖x − y‖2

�2 + λφ (Lx)
}

, (4)

where the role of the regularizer with the general potential

function φ is to enforce some desired features in the final so-

lution. The TV-regularized least-squares objective function in

(2) is a special case of the function in (4) when φ (·) = ‖·‖�1
.

When φ is non-convex, it is still possible to derive an itera-

tive optimization algorithm that converges, although it is not

guaranteed to reach the global optimum anymore.

3.2. One-Dimensional Signals

Let us first solve the problem for 1-D signals, since exactly the

same reasoning applies to 2-D. Consider two complementary

shifted Haar-wavelet transforms (only one level is considered)

wk = Wkx, (5)

where k ∈ {1, 2}. Then, by using Parseval’s theorem, (4)

is expressed as the equivalent constrained minimization prob-

lem

min
w1,w2∈Rn

G (w1,w2) = F (w1) + F (w2)

subject to W−1
1 w1 = W−1

2 w2.
(6)

There, the function F is defined as

F (wi) = 1
2‖wi − Wiy‖2

�2 + λ
∑

j

φ
(√

2|wij |
)

. (7)

We have deliberately omitted the summation range for j.

The reason for this is that the penalization is only applied

to the detail (or highpass) Haar coefficients. Note that Prob-

lem (6) is equivalent to (4) since, in the feasible region{
(w1,w2) : W−1

1 w1 = W−1
2 w2

}
, the cost functions coin-

cide with one another.

Since a constrained minimization problem such as (6) is

difficult to handle directly, we replace it with an equivalent

unconstrained minimization problem. One traditional tech-

nique for doing this is the augmented Lagrangian method [5].

To apply it, we replace the objective function in (6) with the

new penalty function

L(w1,w2,η, θ) =G (w1,w2) (8)

+ θ
2

∥∥W−1
1 w1 − W−1

2 w2

∥∥2

�2

− ηT
(
W−1

1 w1 − W−1
2 w2

)
,

where θ > 0 is called the penalty parameter and η ∈ R
n

is the vector of Lagrange multipliers. The method works by

minimizing L with respect to (w1,w2) while keeping θ fixed

and updating η according to the simple rule

ηt+1 = ηt − θ
(
W−1

1 wt+1
1 − W−1

2 wt+1
2

)
, (9)

where t > 0 is the iteration number.

To solve the minimization of the functional in (8), we ap-

ply alternating direction method of multipliers (ADMM) [9]

and alternate between solving the denoising problem in one

wavelet basis with the other one fixed. By alternating the

wavelet bases, the minimization will be reduced to n-scalar

minimizations of the form

Tφ (wd;λd) = min
w∈R

{
1
2 (w − wd)2 + λdφ

(√
2 |w|

)}
, (10)

where wd is function of y, η, θ, and wk(the basis we have

fixed). Similarly, the regularization parameter rescales to

λd = λ/ (θ + 1). In the case of TV denoising, Problem (10)

admits a closed-form solution η(wd;
√

2λd). For the general

potential function φ, the solution can be precomputed and

stored in a lookup table. We call the resulting algorithm

Augmented Lagrangian Cycle Spinning (ALCS).
As can be seen, the algorithm is conceptually similar to

conventional cycle spinning: it denoises in each of the wavelet
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Algorithm Augmented Lagrangian Cycle Spinning (ALCS)

1: input : y
2: choose : λ, θ > 0;η0, x̂0

2

3: set : t = 0, μ = 1/(1 + θ)
4: repeat
5: x̂t+1

1 = W−1
1 Tφ (μW1(y + θx̂t

2 + ηt);μλ)
6: x̂t+1

2 = W−1
2 Tφ

(
μW2(y + θx̂t+1

1 − ηt);μλ
)

7: ηt+1 = ηt − θ
(
x̂t+1

1 − x̂t+1
2

)
8: t = t + 1
9: until stopping criterion

10: return x̂ = x̂t+1
2

Note : The scalar function Tφ is applied component-wise only

on the detail coefficients.

bases and combines the solutions. However, our algorithm

avoids the oscillations that were observed for example in [7],

due to changing wavelet bases, since we are constraining our

solutions to be consistent across shifted bases. Furthermore,

as we have mentioned previously, the algorithm decouples the

minimization to n-scalar shrinkages, which results in a final

algorithmic complexity of O(n) per iteration.

3.3. Two-Dimensional Signals

For 2-D signals, we proceed in exactly the same fashion:

(a) express discrete gradient in terms of Haar-coefficients;

(b) by using Parseval’s theorem, derive constrained mini-

mization problem equivalent to (4); (c) using the augmented-

Lagrangian method, change the constrained problem into

an unconstrained one; (d) solve unconstrained problem by

simple shrinkage rules, either in closed form, or stored as a

lookup table.

To represent the discrete gradient Dix at every pixel i, we

need four orthogonal 1-D Haar transforms (two for each di-

mension of the gradient). Note that a 1-D Haar representation

of a 2-D signal can be computed by applying the transform ei-

ther column-wise or row-wise. Let us denote these transforms

as wk = Wkx for k = 1, 2, 3, 4. To simplify our notation,

let us reorganize all the wavelet coefficients into a single w̃,

such that, for the detail coefficients, we have

Dix ≡
(

xi+m − xi

xi+1 − xi

)
=

√
2w̃i. (11)

We denote this transform as w̃ = W̃x. Then, by using Parse-

val’s theorem, we write an equivalent constrained minimiza-

tion problem as

min
w̃

G (w̃)

subject to W−1
k wk = W−1

l wl, ∀k, l.
(12)

The function G is given by

G (w̃) = 1
4

∥∥∥w̃ − W̃y
∥∥∥2

�2
+ λ

∑
i

φ
(√

2 ‖w̃i‖�2

)
, (13)
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Fig. 1: Total-variation cost-functional evolution with respect to CPU
time for FISTA and ALCS.

where we penalize only detail coefficients. Then, we can pro-

ceed as before and write out the corresponding augmented-

Lagrangian objective function, which we omit due to space

limitations. The augmented Lagrangian then can be mini-

mized by alternating with respect to pair of bases, which will

result in n-shrinkages over vectors in R
2. For example, for

TV denoising, the shrinkage admits the closed form

S (x;λ) = max {‖x‖�2 − λ, 0} x
‖x‖ �2

, (14)

where x ∈ R
2. As in the 1-D case, for a general φ we store

the shrinkage into a lookup table. Note that, since the method

amounts to recursively shrinking wavelet coefficients in dif-

ferent bases, its algorithmic complexity is O(n) per iteration.

4. EXPERIMENTS

To investigate the performance of our method, we conducted

three simple numerical experiments on a Mac Pro computer

with 2.66 GHz Quad-Core Intel Xeon processor. All the

schemes were implemented in MATLAB.

In the first experiment, we compare the performance

of ALCS and the state-of-the-art FISTA, in terms of CPU

time to reach the same value of the TV objective function.

We consider a 1-D signal that follows the innovation model

in [10] and generate a compound Poisson process (piecewise-

constant signal) for which TV regularization is particularly

well tailored. We show in Figure 1 the plots of the TV ob-

jective function for a signal of length 4000, generated with

Prob(x = 0) = 0.9 and a Gaussian amplitude distribution of

variance 1. The noise-free signal is degraded by AWGN with

zero mean and unit variance. The regularization parameters

were optimized for both methods with the reference signal

acting as the oracle. It was observed that the speed of ALCS

is comparable to that of FISTA.

In Figure 2 , we consider the denoising of 1-D sparse Lévy

processes with increments that are Cauchy distributed [11]. A

MAP estimator for the process can be designed by using the

potential function φ(Lx) = log((Lx)2 + 1). ALCS equipped
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Fig. 2: Comparison of different estimators (noise variance vs. SNR
improvement) for a Cauchy process. See text for a description of the
experiment.

with a lookup table is used to solve this non-convex optimiza-

tion problem. In the experiment, we compare three estima-

tors: log-regularizer (MAP), TV, and LMMSE. For differ-

ent noise levels, 100 realizations are made. For each real-

ization, regularization parameters are optimized and SNR im-

provements are recorded. Algorithms are allowed to run for

200 iterations. As expected, the MAP estimator outperforms

TV and Wiener filter reconstructions over the whole range of

noise variances.

In Figure 3, we denoise the Shepp-Logan phantom, which

has a sparse gradient. We use the log-potential function

φ(Lx) = log((Lx)2 + ε) which is more sparsity-encouraging

than the �1 norm [12]. The original image is corrupted by

AWGN with zero mean and a variance of 0.01. We use ALCS

to solve TV and log regularization problems where ε is set

to 10−3. Both methods are allowed to run for 500 iterations

without any stopping criterion with optimal λ parameters. As

expected, the log-regularizer achieves significant improve-

ments over TV for this type of signal.

5. CONCLUSION

We presented an augmented-Lagrangian-based cycle-spinning

algorithm for signal-denoising problems. We further showed

that the method is able to perform TV denoising where we

represented the discrete gradient operator by 1-level Haar

wavelet transforms. The resulting algorithm involves the

straightforward combination of Haar wavelet transforms and

shrinkage steps so that it is computationally cheap if shrink-

age is in closed form or stored in a lookup table. We also

showed that the algorithm can deal with different potential

functions in general and can be applied to a variety of convex

and non-convex optimization problems.
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