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ABSTRACT

Many recent algorithms for sparse signal recovery can be

interpreted as maximum-a-posteriori (MAP) estimators rely-

ing on some specific priors. From this Bayesian perspective,

state-of-the-art methods based on discrete-gradient regulariz-

ers, such as total-variation (TV) minimization, implicitly as-

sume the signals to be sampled instances of Lévy processes

with independent Laplace-distributed increments. By extend-

ing the concept to more general Lévy processes, we propose

an efficient minimum-mean-squared error (MMSE) estima-

tion method based on message-passing algorithms on factor

graphs. The resulting algorithm can be used to benchmark

the performance of the existing or design new algorithms for

the recovery of sparse signals.

Index Terms— signal denoising, sparse estimation, TV

denoising

1. INTRODUCTION

Lévy processes constitute the archetype of sparse stochastic

signals [1]. Except for Brownian motion, which is the only

Gaussian member of the family, these processes exhibit fat-

tail statistics shown to fulfill the requirements of compress-

ibility [2]. The simplest example is the compound Poisson

process, which is a piecewise-constant signal with a finite rate

of innovation. By a limiting argument, one can show that such

signals can result in a MAP estimator that is equivalent to the

popular TV [3,4]. Due to the availability of a complete statis-

tical description, Lévy processes are particularly interesting

for designing or testing algorithms aimed at the recovery of

sparse signals.

Our present contribution is the derivation of an MMSE es-

timator for general Lévy processes. While the joint probabil-

ity densities of the processes do not always admit closed-form

expressions, they are much easier to describe by their charac-

teristic function. For that reason, we perform the estimation

in the Fourier domain by representing the characteristic func-

tion with its samples. The tree-like structure of the underly-

ing graphical model allows us to perform MMSE estimation

of the sampled signal from its noisy observations. Having ac-

cess to this estimator, we can compare its MSE performance
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against that of the TV for various stochastic signals. In order

to keep things simple, we concentrate our efforts on the 1-D

case, while generalizations will be considered in forthcoming

publications.

2. ESTIMATION PROBLEM

2.1. Lévy Denoising Problem

Consider the standard signal-denoising problem

y = x + e, (1)

where we would like to estimate the unknown discrete signal

x ∈ R
n from its noisy observations y. We assume the noise

to be white Gaussian of variance σ2 and our underlying signal

model is that x are integer samples of a Lévy process X =
(X(t) : t ≥ 0)

xi = X (i) , i = 1, . . . , n. (2)

The fundamental defining property of Lévy processes is that

they have stationary and independent increments [5], which

means that, by taking the finite differences of the discrete

signal x, we can decouple it into a sequence of independent

identically distributed (i.i.d.) random variables. Consider the

vector w ∈ R
n obtained by applying the finite-difference op-

erator L to x. Then, we have

wi = (Lx)i = xi − xi−1 ∼ pW (·), (3)

where i ∈ {1, . . . , n}. Note that, by definition of Lévy pro-

cesses, we must have x0 = 0 [5]. The probability distribution

pW of the Lévy process increments can be uniquely described

in its characteristic form by the well-known Lévy-Khintchine
theorem [5]

p̂W (ω) =E
[
ejωW

]
=

= exp
(
jaω − 1

2bω2

+
∫

R\{0}

(
ejωz − 1 − jω1|z|<1(z)

)
v(z)dz

)
,

where a ∈ R, b ≥ 0, and 1|z|<1(z) is the indicator function.

The function v(z) ≥ 0 is the Lévy density satisfying∫
R

min
(
1, z2

)
v(z)dz < ∞.
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Although, the formulation above might look mysterious at

first, it allows us to completely characterize a Lévy process

with a triplet (a, b, v(z)). In principle, the distribution pW

is obtained by taking the inverse Fourier transform pW (x) =
F−1{p̂W (ω)}(x). However, it does not necessarily admit a

closed form.

What makes the Lévy processes particularly interesting

for the sparse estimation problem is the fact that the sparsity

of the vector w is completely determined by the parameters

of the Lévy-Khintchine formula. Compound-Poisson and α-

stable vectors are two interesting members of the family and

have been demonstrated to be sparse [1, 2]. This allows us

to test different estimation algorithms on signals of varying

degrees of sparsity and to objectively compare their perfor-

mance. Moreover, having access to the characteristic function

p̂W allows us to derive regularized least-squares functionals

for performing the MAP estimation of the signal x. Hence,

the estimation can be performed by solving

x̂ = argmin
x∈Rn

{
1
2‖x − y‖2

�2 +
n∑

i=1

φ(xi − xi−1)

}
, (4)

where x0 = 0 and the potential function φ is given by

φ(x) = − log
(
F−1 {p̂W (·)} (x)

)
, (5)

where F−1 represents the inverse Fourier transform of the

characteristic function p̂W . Note that the popular TV-

denoising algorithm can be derived as the MAP estimator

for the Lévy process with the parameter triplet (0, 0, v(z) =
1
|z|e

−|z|), which results in increments distributed according

to the Laplace distribution pW (x) = λ
2 e−λ|x|.

3. MESSAGE PASSING

3.1. Exact Formulation

In this section, we specify the MMSE estimator for the sig-

nal x under the Lévy-process model described in the previous

section. We begin by constructing the following conditional

probability distribution for the variable x given the measure-

ments y:

pX|Y (x|y) =

1
Z(y)

n∏
i=1

G
(
yi − xi, σ

2
) n∏

i=1

pW (xi − xi−1) ,
(6)

where Z(y) is a normalization constant, x0 = 0, and G is the

normal probability density function

G
(
x − μ; σ2

)
=

1
σ
√

2π
e−

(x−μ)2

2σ2 . (7)

The posterior distribution (6) of the signal provides a com-

plete statistical characterization of the problem. For instance,

the MMSE estimator is given by the conditional expectation

x̂MMSE (y) = E [X |Y = y] . (8)

. . .

. . .

x1 x2 x3 xn

pW (x1) pW (x2 − x1) pW (x3 − x2) pW (x4 − x3) pW (xn − xn−1)

1 2 3 4 n

n + 1 n + 2 n + 3 2n

G(y1 − x1, σ
2) G(y2 − x2, σ

2) G(y3 − x3, σ
2) G(yn − xn, σ2)

Fig. 1: Factor-graph representation of the posterior distribu-

tion.

Algorithm 1 Message-Passing in time-domain

1: input : y ∈ R
n, σ2 > 0, and pW (·)

2: initialize : μl
1(x) = pW (x), μr

n(x) = 1
3: for i = 1, . . . , n − 1 do
4: μl

i+1(x) ∝ R
R

pW (x − z)G(yi − z; σ2)μl
i(z)dz

5: μr
n−i(x) ∝ R

R
pW (z − x)G(yn−i+1 − z; σ2)μr

n−i+1(z)dz
6: end for
7: set : pXi|Y (x |y) ∝ μl

i(x)μr
i (x)G(yi − x; σ2)

8: return x̂i =
R

R
xpXi|Y(x |y)dx, for all i ∈ {1, . . . , n}

Remark : The ∝ symbol means that the expression on the right-
hand side should be normalized to unity.

Unfortunately, due to the high-dimensionality of the integral,

this estimation is intractable in the direct form. However, sev-

eral computational methods exist for computing this integral

iteratively. One natural approach is to use sum-product mes-
sage passing, which iteratively updates the estimates by pass-

ing messages along a graph [6, 7]. In communications and

coding communities, the algorithm is commonly known as

belief propagation and was successfully applied for iterative

decoding of LDPC codes [8].

In order to introduce the method, we consider the factor
graph G = (V, F, E) shown in Figure 1. The graph consists

of two sets of nodes, the variable nodes V = {1, . . . , n} (cir-

cles), the factor nodes F = {1, . . . , 2n} (squares), and a set

of edges E linking variables to the factors they participate in.

The graph is structured according to the factorization of the

posterior distribution in (6). Hence, G is a cycle-free bipartite

graph with n variable nodes and 2n factor nodes.

The simple tree-like structure of the factor graph gives rise

to the efficient message-passing Algorithm 1. This algorithm

computes the marginals of the posterior distribution by send-

ing messages along the edges of the tree. The messages are

functions on R that represent marginals of parts of the pos-

terior, and, combined together, result in the marginals pXi|Y
for all i ∈ {1, . . . , n}. The algorithm is initialized at the left

and right edges of the tree and builds the MMSE estimate by

making a single pass along the tree.

The message-passing Algorithm 1 reduces intractable

high-dimensional integration into 2n convolutions. How-

ever, it requires a closed-form solution for the probability

distribution pW . As indicated before, this form is not al-

ways available, since the distribution is obtained via the

Lévy-Khintchine theorem and is defined by its characteristic
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Algorithm 2 Message-Passing in frequency-domain

1: input : y ∈ R
n, σ2 > 0, and p̂W (·)

2: initialize : μl
1(ω) = p̂W (ω), μr

n(ω) = δ(ω)
3: for i = 1, . . . , n − 1 do
4: μl

i+1(ω) ∝ p̂W (ω)
R

R
Ĝ(ω − ν; yi, σ

2)μl
i(ν)dν

5: μr
n−i(ω) ∝ p̂W (−ω)

R
R
Ĝ(ω−ν; yn−i+1, σ

2)μr
n−i+1(ν)dν

6: end for
7: set : p̂ (ω |y) ∝ R

R
Ĝ(ω − ν; yi, σ

2)
`
μl

i(ω) ∗ μr
i (ω)

´
dν

8: return x̂i = j d
dω

p̂ (ω |y)|ω=0
for all i ∈ {1, . . . , n}

Remark 1 : The ∝ symbol means that the expression on the right-
hand side should be normalized by its zero frequency component.
Remark 2 : The ∗ symbol denotes a convolution of two functions.

function. Hence, we propose to perform the estimation in

the frequency domain. Denote with Ĝ
(
ω; y, σ2

)
the Fourier

transform of the Gaussian pdf in (7). Then, we can pro-

ceed with Algorithm 2 in the frequency domain. The algo-

rithm has been obtained by using the convolution property

of the Fourier transform. Note that the last estimation step

is obtained by applying the moment property of the Fourier

transform ∫
R

xf(x)dx = j
d

dw
f̂(ω)|ω=0 ,

where f̂(ω) =
∫

R
f(x)e−jωxdx is the Fourier transform of

f(x).

3.2. Computational implementation

In principle, our message-passing algorithms result in the ex-

act MMSE estimation of the signal x from its noisy measure-

ments y. However, the algorithms cannot be implemented in

direct form, as the computations involve continuous-time in-

tegrals. To obtain a realizable solution, we need to choose

some practical discrete parametrization for the messages ex-

changed in the algorithm. The simplest and the most generic

approach is to sample the functions and represent them on a

uniform grid with finitely many samples. In our implemen-

tation, we fix the support set of the functions to δ [−N, N ]
Z

.

The parameters δ ∈ R+ and N ∈ N depend on the distri-

bution to represent and on the measurements y. Then, both

time- and frequency-domain versions can be obtained by im-

plementing continuous integrals via some quadrature rules.

Our frequency-domain implementation has the advantage

of directly using the characteristic function p̂W . The numeri-

cal tabulation of the probability density pW , which would be

difficult for some (heavy-tail) distributions, is avoided More-

over, as the estimation converges, the frequency-domain mes-

sages become broader, which allows us to adapt the grid ac-

cordingly.

Fig. 2: Comparison of the performance of the LMMSE, TV

estimator, and MMSE on the Lévy processes with Cauchy

prior as function of the noise power.

4. EXPERIMENTS

We implemented our method in MATLAB and conducted

three simple numerical experiments. In the experiments, we

compare three estimators: LMMSE, TV, and MMSE obtained

via frequency-domain message-passing method described in

Algorithm 2. The TV algorithm was implemented using

FISTA [9] and was allowed to run for 500 iterations. For

each realization of the problem, the regularization parameter

λ > 0 of TV was optimized for the best MSE performance.

The simulations in Figures 2 and 3 were conducted with

50 random realizations of the problem, while the one in Fig-

ure 4 with 500. Signals of length n = 500 were considered.

On the horizontal axis, we plot the input noise level, while on

the vertical we show the average MSE reduction after estima-

tion given by

ΔMSE = 10 log10

(
‖x − x̂‖2

�2

‖x − y‖2
�2

)
,

where x̂ is the estimate of x. We approximated integrals in

the message-passing rules by simple Riemann sums. As can

be seen, the MP-MMSE estimator outperforms TV and linear

MMSE reconstructions over the whole range of experiments

and noise variances.

In Figure 2, the signal increments are distributed accord-

ing to a Cauchy distribution, which has been shown to be

highly compressible due to its heavy-tail nature [2]. We ob-

serve that TV outperforms LMMSE for all noise levels. This

is due to the fact that the TV method is better suited for sparse

estimation, preserving the tails of the prior.

In Figure 3, we denoise the sample values of a Lévy pro-

cess with Laplace prior pW for which the MAP estimator is

given by TV. Although TV performs well at lower noise lev-

els, it is outperformed by LMMSE for high noise powers. At
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Fig. 3: Comparison of the performance of the LMMSE, TV

estimator, and MMSE on the Lévy processes with Laplace

prior as function of the noise power.

high noise levels, the performance of the LMMSE is identical

to the MP-MMSE, as the statistics of the measurements y are

dominated by Gaussian noise.

In the final experiment (Figure 4), we generate the com-

pound Poisson process (piecewise-constant signal) consid-

ered in [3]. The distribution of the increments of these

signals is sparse, in the sense that it contains a probability

mass at 0. In our experiment, we set the mass probability to

Prob(wi = 0) = e−0.5 ≈ 0.6 with Gaussian distributed am-

plitudes. We observe that, for lower noise levels, TV almost

achieves the MP-MMSE performance, which may motivate

it as an approximate MMSE for compound Poisson signals at

low noise levels.

5. CONCLUSION

We have derived and implemented a minimum mean-squared

error estimator for denoising samples of sparse Lévy pro-

cesses. The availability of a complete statistical character-

ization of such signals makes them attractive for designing

new and testing standard sparse estimation algorithms. Our

method is based on the message-passing algorithms over bi-

partite graphs and is implemented entirely in the frequency

domain. This is consistent with the fact that statistics of the

Lévy processes are described by their characteristic function.

Finally, we have demonstrated the superior performance of

our method by an empirical comparison with the standard

LMMSE and TV estimation methods.
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