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Abstract—Optical tomographic imaging requires an accurate
forward model as well as regularization to mitigate missing-data
artifacts and to suppress noise. Nonlinear forward models can pro-
vide more accurate interpretation of the measured data than their
linear counterparts, but they generally result in computationally
prohibitive reconstruction algorithms. Although sparsity-driven
regularizers significantly improve the quality of reconstructed
image, they further increase the computational burden of imaging.
In this paper, we present a novel iterative imaging method for opti-
cal tomography that combines a nonlinear forward model based
on the beam propagation method (BPM) with an edge-preserving
three-dimensional (3-D) total variation (TV) regularizer. The cen-
tral element of our approach is a time-reversal scheme, which
allows for an efficient computation of the derivative of the trans-
mitted wave-field with respect to the distribution of the refractive
index. This time-reversal scheme together with our stochastic
proximal-gradient algorithm makes it possible to optimize under a
nonlinear forward model in a computationally tractable way, thus
enabling a high-quality imaging of the refractive index through-
out the object. We demonstrate the effectiveness of our method
through several experiments on simulated and experimentally
measured data.

Index Terms—Optical phase tomography, total variation
regularization, compressive sensing, sparse reconstruction, beam
propagation method, stochastic proximal-gradient.

I. INTRODUCTION

O PTICAL tomography is a popular and widely investi-
gated technique for three-dimensional (3D) quantitative

imaging of biological samples. In a typical setup, the sample
is illuminated with a laser over multiple angles and the scat-
tered light is holographically recorded giving access to both the
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amplitude and the phase of the light-field at the camera plane.
The refractive index distribution of the sample is then numeri-
cally reconstructed from the scattered light-field by relying on
a model describing the interaction between the sample and the
light. Quantitative reconstruction of the refractive index is a
central problem in biomedical imaging as it enables the visual-
ization of the internal structure, as well as physical properties,
of nearly transparent objects such as cells.

Most approaches for estimating the refractive index rely on
various approximations to linearize the relationship between the
refractive index and the measured light-field. For example, one
approach is based on the straight-ray approximation and inter-
prets the phase of the transmitted light-field as a line integral of
the refractive index along the propagation direction. The recon-
struction under straight-ray approximation can be performed
efficiently by using the filtered back-projection (FBP) algo-
rithm [1]. Another popular approach is diffraction tomography
that was proposed by Wolf [2] and later refined by Devaney
[3]. Diffraction tomography establishes a Fourier transform–
based relationship between the measured field and the refractive
index, which enables the recovery of the refractive index via a
single numerical application of the inverse Fourier transform.
These linear approaches are typically valid only for objects
that are weakly scattering; their application on highly con-
trasted or large objects often results in images of poor spatial
resolution.

Regularization is a standard approach for improving the
resolution in optical diffraction tomography. It provides effec-
tive means for mitigating various artifacts and for suppressing
noise. For example, Choi et al. [4] demonstrated that, under
the straight-ray approximation, the missing cone artifact, which
results in elongation of the reconstructed shape and underesti-
mation of the value of the refractive index, can be significantly
reduced by iteratively imposing positivity on the refractive
index. The benefits of this iterative approach was further
demonstrated in the weakly-scattering regime by Sung et al.
[5]. In recent years, sparsity-promoting regularization, which
is an essential component of compressive sensing theory [6],
[7], has provided more dramatic improvements in the quality of
tomographic imaging [8], [9]. The basic motivation is that many
optical tomographic images are inherently sparse in some trans-
form domain and can be reconstructed with high accuracy even
with low amount of measured data.

In this paper, we present a novel iterative imaging method
for optical tomography that combines sparsity-driven regular-
ization with a nonlinear forward physical model of the propa-
gation of the light-field. Specifically, our model is based on a
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popular technique in optics called beam propagation method
(BPM), which is extensively used for modeling diffraction
and propagation effects of light-waves [10]–[14]. Accordingly,
BPM provides a more accurate model than its linear counter-
parts, especially when scattering effects cannot be neglected.
Unlike other nonlinear alternatives, such as the ones based
on the coupled dipole approximation [15], [16], BPM has the
advantage that it is reasonably fast to implement and that it
can be efficiently optimized via a time-reversal scheme. This
scheme allows to compute the derivative of the transmitted
light field with respect to the distribution of refractive index by
simple error backpropagation. This allows us to develop a fast
iterative algorithm based on stochastic version of the proximal-
gradient descent that uses measurements in an online fashion
and thus significantly reduces the memory requirements for
the reconstruction. Our results demonstrate that the proposed
method can reconstruct high-quality images of the refractive
index even when missing significant amounts of data.

In our companion paper, we have presented the optical
and conceptual aspects of our BPM–based imaging framework
[17]. Here, we complement our initial report by providing the
algorithmic details of the reconstruction and by presenting addi-
tional validations on simulated as well as on experimentally
measured data. Our work is also related to the recent iterative
optimization method by Tian and Waller [18] that was demon-
strated for imaging 3D objects using incoherent illumination
and intensity detection. The primary difference is that these
authors use intensity measurements directly while our method
relies on digital holography [19], [20] to record the complex
amplitude of the field. The other improvement is on the signal
processing side with the introduction of sparse regularization in
order to achieve high-quality imaging with undersampled data.
An interesting future work would be to see if the method pro-
posed in this paper works for imaging phase objects directly
from their intensity measurements.

This paper is organized as follows. In Section II, we present
our forward model based on BPM. In Section III, we present our
algorithmic framework for the recovery of the refractive index
from the measurements of the light field. Specifically, our algo-
rithm estimates the refractive index by minimizing a cost func-
tional, where the data-term is based on BPM and the regularizer
promotes solutions with a sparse gradient. Fundamentally, the
algorithm relies on the computation of the derivatives of the
forward model with respect to the refractive index, which
will be presented in a great detail. In Section IV, we present
some experimental results illustrating the performance of our
algorithm on experimental as well as simulated data.

II. FORWARD MODEL

This section presents the BPM forward model, whose com-
plete derivation can be found in Appendix A. Although, BPM
is a standard technique in optics for modeling propagation
of light in inhomogeneous media [10]–[14], it is less known
in the context of signal reconstruction and inverse problems.
We shall denote our nonlinear forward model by y = S(x),
where the vector y ∈ C

M contains the samples of the measured
light-field, x ∈ R

N is the discretized version of the refractive

index, and S : RN → C
M is the nonlinear mapping. Note that

the nonlinearity of BPM refers to the relationship between
the refractive index and the measured light-field, not to the
relationship between input and output light-fields, which is
linear.

A. Fourier Beam-Propagation

The scalar inhomogeneous Helmholtz equation implicitly
describes the relationship between the refractive index and the
light field everywhere in space.(

Δ+ k2(r) I
)
u(r) = 0, (1)

where r = (x, y, z) denotes a spatial position, u is the total
light-field at r, Δ = (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2) is the
Laplacian, I is the identity operator, and k(r) = ω/c(r) is
the wavenumber of the light field at r. The spatial depen-
dence of the wavenumber k is due to variations of the speed
of light c induced by the inhomogeneous nature of the medium
under consideration. Specifically, the wavenumber in (1) can be
decomposed as follows

k(r) = k0n(r) = k0(n0 + δn(r)), (2)

where k0 = ω/c0 is the wavenumber in the free space, with
c0 ≈ 3× 108 m/s being the speed of light in free space. The
quantity n is the spatially varying refractive index of the sam-
ple, which we have written in terms of the refractive index of
the medium n0 and the perturbation δn due to inhomogeneities.
We assume that the refractive index is real, which is an accurate
approximation when imaging weakly absorbing objects such as
biological cells.

BPM is a class of algorithms designed for calculating the
optical field distribution in space or in time given initial condi-
tions. By considering the complex envelope a(r) of the paraxial
wave u(r) = a(r) exp(jk0n0z), one can develop BPM as an
evolution equation for a in which z plays the role of evolution
parameter

a(x, y, z + δz) = e jk0(δn(r))δz

×F−1

⎧⎪⎨⎪⎩F {a(·, ·, z)} × e
−j

(
ω2
x+ω2

y

k0n0+
√

k2
0n2

0−ω2
x−ω2

y

)
δz

⎫⎪⎬⎪⎭ .

(3)

Therefore, BPM allows to obtain the wave-field in space
via alternating evaluation of diffraction and refraction steps
handled in the Fourier and space domains, respectively (see
Appendix A for mode details).

It is important to note that BPM ignores reflections. This can
be seen from the fact that if the solution exists for an arbitrary
initial condition a0 � a(x, y, z = 0), then a0 does not depend
on a(r).

B. Numerical Implementation

We consider a 3D volume [−Lx/2, Lx/2]×
[−Ly/2, Ly/2]× [0, Lz] that we refer to as computational
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Fig. 1. Visual representation of the scattering scenario considered in this paper.
A sample with a real refractive index contrast δn(r) is illuminated with an
input light u(x, y, z = 0), which propagates through the sample, and results in
the light u(x, y, z = Lz) at the camera plane. The light at the camera plane is
holographically captured and the algorithm proposed here is used for estimating
the refractive index contrast δn(r).

domain. The domain is sampled with steps δx, δy, and δz,
which will result in Nx, Ny , and K samples, respectively. We
will additionally use the following matrix-vector notations
• x: samples of the refractive-index distribution δn in the

computational domain.
• y: samples of the complex light-field a.
• S: nonlinear forward operator that implements BPM and

maps the refractive index distribution into the complex
light-field y = S(x).

We use the index k to refer to the quantities described above at
the kth slice along the optical axis z. For simplicity, we assume
that all 2D quantities at the kth slice are stored in a vector.
Then, given the initial input field y0 = S0(x) and the refrac-
tive index distribution x, the total field {yk}k∈[1...K] can be
computed recursively as follows

Sk(x) = diag (pk(xk))HSk−1(x), (4)

where the operator diag(u) creates a square matrix with the
elements of the input vector u the main diagonal. The matrix
H denotes the diffraction operator; it is implemented by tak-
ing the discrete Fourier transform (DFT) of the input field,
multiplying it by a frequency-domain phase mask, and taking
the inverse DFT. The vector pk(xk) = exp(jk0δz xk), which
depends on the kth slice of the refractive index xk, accounts
for a phase factor corresponding to the implementation of the
refraction step. Finally, the measured data y corresponds to the
light-field at the Kth slice of the computational domain, i.e.,
y = yK = SK(x). Note that from (4), one can readily evaluate
the computational complexity of BPM, which roughly corre-
sponds to 2K evaluations of FFT or O(N log(N/K)) with
N = NxNyK.

Figure 2 illustrates a simulation where a plane-wave of λ =
561 nm with a Gaussian amplitude is propagated in an immer-
sion oil (n0 = 1.518 at λ = 561 nm) with an angle of π/32
with respect to the optical axis z. The computational domain of
dimensions Lx = Ly = Lz = 36.86 μm is sampled with steps
δx = δy = δz = 144 nm. In (a)–(c) we illustrate the propa-
gation of the light-field in immersion oil, while in (d)–(f) we
illustrate the propagation when a spherical bead of diameter 10
μm with refractive index n = 1.548 is immersed in the oil. As
we can see in (f) even for a relatively weak refractive index

Fig. 2. Propagation of a plane-wave of λ = 561 nm in an immersion oil with
n0 = 1.518 simulated with BPM. (a–c) Propagation in oil. (d–f) Immersion
of a 10 μm bead of n = 1.548. (a, d) x–y slice of the beam magnitude at
z = Lz/2. (b, e) x–y slice of the beam phase at z = Lz/2. (c, f) x–z slice of
the beam magnitude at y = 0. The circle in (f) illustrates the boundary of the
bead at y = 0. Scale bar, 10 μm.

contrast of δn = 0.03, one can clearly observe the effects of
scattering on the magnitude of the light-field.

III. PROPOSED METHOD

In practice, the input field y0 is known and the output field
yK is measured using a holographic technique that gives access
to the full complex-valued light-field. Our goal is to recover
x from a set of L views {y�

K}�∈[1...L] corresponding to input
fields {y�

0}�∈[1...L]. We shall denote with M the total number of
measurements in a single view y� and with N the total number
of voxels in x.

A. Problem Formulation

We formulate the reconstruction task as the following mini-
mization problem

x̂ = argmin
x∈X

{C(x)} (5a)

= argmin
x∈X

{D(x) + τR(x)} , (5b)

where D is the data-fidelity term and R is the regularization
term to be discussed shortly. The convex set X ⊆ R

N is used to
enforce certain physical constraints on the refractive index such
as its non-negativity. The parameter τ > 0 controls the amount
of regularization.

The data fidelity term in (5) is given by

D(x) � 1

L

L∑
�=1

D�(x) (6a)

� 1

2L

L∑
�=1

∥∥y�
K − S�

K(x)
∥∥2
�2
, (6b)

where L denotes the number of measured views. For a given
view �, the forward operator S�

K can be computed recursively
via equation (4).
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Algorithm 1. Time-reversal scheme for computing ∇DH

input: input field y0, output field yK , and current estimate of
the refractive-index distribution x̂.
output: the gradient [∇D(x̂)]H .
algorithm:

1) Compute the total field ŷ = S(x̂) using the BPM recur-
sion (4), keeping all the intermediate light-fields ŷk =
Sk(x̂) in memory.

2) Compute the residual rK = ŷK − yK and set sK = 0.

3) Compute s0 =
[

∂
∂xSK(x̂)

]H
rK using the following iter-

ative procedure for m = K, . . . , 1
a) sm−1 = sm +

[
∂
∂xpm(x̂m)

]H
diag

(
H ŷm−1

)
rm.

a) rm−1 = HHdiag
(
pm(x̂m)

)
rm.

4) Return [∇D(x̂)]H = Re{s0}.

As a regularization term in (5), we propose to use the
3D isotropic total variation (TV) [21] of the refractive index
distribution

R(x) �
N∑

n=1

‖[Dx]n‖�2 (7)

=

N∑
n=1

√
([Dxx]n)2 + ([Dyx]n)2 + ([Dzx]n)2 (8)

where D : RN → R
N×3 is the discrete counterpart of the gra-

dient operator. The matrices Dx, Dy , and Dz denote the finite
difference operations along the x, y, and z directions, respec-
tively (see Appendix B for more details). The TV prior on
images has been originally introduced by Rudin et al. [21] as
a regularization approach capable of preserving image edges,
while removing noise. It is often interpreted as a sparsity-
promoting �1-penalty on the magnitudes of the image gradient
[22]. TV regularization has proven to be successful in a wide
range of applications in the context of sparse recovery of images
from incomplete or corrupted measurements [6], [23].

The minimization in (5) is a nontrivial optimization task.
Keeping the regularization aside, the primary difficulty resides
in the fact that the data term D is based on a nonlinear for-
ward operator S. The other challenging aspects are the massive
quantity of data that need to be processed and the presence
of a nonsmooth regularization term R. We next present a
novel algorithm based on iterative stochastic proximal-gradient
descend that is made tractable via the time-reversal scheme that
allows for an efficient computation of the gradient of D with
respect to x.

B. Computation of the Gradient

The crucial component of our method is recursive compu-
tation of the gradient of D with respect to x, summarized in
Algorithm 1, which is explained next. For notational simplic-
ity, we consider the scenario of a single view and thus drop
the indices � from the subsequent derivations. The generaliza-
tion of the final formula to an arbitrary number of views L is
straightforward.

We start by expanding the quadratic term as

D(x) = 1

2
‖yK − SK(x)‖2�2

=
1

2
〈yK ,yK〉 − Re {〈SK(x),yK〉}+ 1

2
〈SK(x),SK(x)〉,

(9)

where 〈x, z〉 = zHx, where the Hermitian transposition H is
due to the complex nature of the quantities. We adopt the
convention

∂

∂xj
S(x) =

⎡⎢⎢⎣
∂

∂xj
[S(x)]1

...
∂

∂xj
[S(x)]M

⎤⎥⎥⎦ . (10)

Then, the gradient is given by

∇D(x) =
[
∂D(x)
∂x1

. . .
∂D(x)
∂xN

]
(11)

= Re

{
(SK(x)− yK)

H

[
∂

∂x
SK(x)

]}
, (12)

where

∂

∂x
SK(x) =

[
∂

∂x1
[SK(x)] . . .

∂

∂xN
[SK(x)]

]

=

⎡⎢⎣
∂

∂x1
[SK(x)]1 . . . ∂

∂xN
[SK(x)]1

...
...

...
∂

∂x1
[SK(x)]M . . . ∂

∂xN
[SK(x)]M

⎤⎥⎦ .

In practice, we are interested in a column vector

[∇D(x)]H = Re

{[
∂

∂x
SK(x)

]H
(SK(x)− yK)

}
. (13)

Therefore, we need to derive a tractable algorithm to compute
(13). The recursive BPM formula (4) allows us to write

∂

∂x
Sk(x) =

∂

∂x
[diag (pk(xk))H Sk−1(x)]

= diag (H Sk−1(x))

[
∂

∂x
pk(xk)

]
+ diag (pk(xk))H

[
∂

∂x
Sk−1(x)

]
.

Then, we have the following equality[
∂

∂x
Sk(x)

]H
=

[
∂

∂x
Sk−1(x)

]H
HHdiag

(
pk(xk)

)
+

[
∂

∂x
pk(xk)

]H
diag

(
H Sk−1(x)

)
, (14)

where the vector v contains complex conjugated elements of
vector v. Also, note that since the input field is known and does
not depend on x, for k = 0, we have[

∂

∂x
S0(x)

]H
= 0. (15)
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Algorithm 2. Minimizes: C(x) = D(x) + τR(x)
input: light-field data {y�}�∈[1...L], initial guess x̂0, steps
{γt}t∈N, regularization parameter τ > 0, and parameter L̃ ∈
[1 . . . L].
set: t← 1, s0 ← x̂0, q0 ← 1
repeat

Select randomly with equal probability a subset of L̃
views. We index them with {�i}i∈[1...L̃]

zt ← st−1 − (γt/L̃)
∑L̃

i=1 ∇D�i(s
t−1)

x̂t ← proxR(zt, γtτ)

qt ← 1
2

(
1 +

√
1 + 4q2t−1

)
st ← x̂t + ((qt−1 − 1)/qt)(x̂

t − x̂t−1)
t← t+ 1

until stopping criterion
return estimate of the refractive index x̂t

Based on the recursion (14) with the boundary condition (15),
we obtain a practical implementation of (13), which is summa-
rized in Algorithm 1. Conceptually, our method is similar to
the error backpropagation algorithm extensively used in deep
learning for neural networks [24]. Similarly, to backpropaga-
tion, we compute the gradient by propagating the error in a
time-reversed fashion. Computational complexity of the time-
reversal scheme is of the same order as that of BPM and
essentially corresponds to a constant number of K FFTs of
Nx ×Ny images.

C. Iterative Reconstruction

By relying on the time-reversal scheme, we propose a novel
algorithm, summarized in Algorithm 2, that reconstructs the
refractive index x from optical tomographic measurements
{y�

K}�∈[1...L]. Conceptually, the algorithm is similar to the
fast iterative shrinkage/thresholding algorithm (FISTA) [25],
which is a popular approach for minimizing cost-functions that
consist of sums between smooth and nonsmooth terms. One
notable difference of Algorithm 2 with respect to FISTA, sum-
marized in Algorithm 3 of Appendix B is that the gradient is
only computed with respect to L̃ ≤ L measurements selected
with equal probability, at each iteration, from the complete set
of measurements {y�

K}�∈[1...L]. For L̃� L, this incremental
proximal-gradient approach [26] reduces the per-iteration cost
of reconstruction significantly; moreover, since gradient com-
putation for our BPM model is highly parallelizable the number
L̃ can be adapted to match the number of available process-
ing units. Also, the overall convergence of Algorithm 2 can
be substantially faster to that of full FISTA in Algorithm 3. To
understand this consider an example where the measured views
of the object are the same or very similar. Then, the partial
gradient in Algorithm 2 will require (L− L̃) times less compu-
tation, but will still point to the right direction. A more detailed
discussion on the benefits of incremental algorithms for solv-
ing very large scale optimization problems can be found in the
recent work by Bertsekas [26].

Fig. 3. Evolution of the cost C(x̂t) during the reconstruction over 1000
iterations for a 10 μm bead in immersion oil.

Fig. 4. Reconstruction of a 10 μm bead of refractive index 1.548 in an immer-
sion oil with n0 = 1.518 from BPM simulated measurements. (a–d) True
refractive index distribution. (e–h) Reconstructed refractive index distribution:
SNR = 22.74 dB. (a, e) A 3D rendered image of the bead. (b, f) x–y slice of the
bead at z = Lz/2. (c, g) z–x slice of the bead at y = 0. (d, h) z–y slice of the
bead at x = 0. Scale bar, 10 μm.

Fig. 5. Reconstruction of a 10 μm bead of refractive index 1.588 in
an immersion oil with n0 = 1.518 from experimentally measured data.
(a–d) Reconstruction using our algorithm. (e–h) Reconstruction using the FBP
algorithm. (a, e) A 3D rendered image of the bead. (b, f) x–y slice of the bead
at z = 21.17 μm. (c, g) z–x slice of the bead at y = −2.30 μm. (d, h) z–y
slice of the bead at x = 0.58 μm. Scale bar, 10 μm.

A crucial step in Algorithm 2 is the proximal operator for the
regularizerR

proxR(z, τ) � argmin
x∈X

{
1

2
‖x− z‖2�2 + τR(x)

}
. (16)
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Fig. 6. Reconstruction with a proposed method of a 37× 37× 30 μm sample containing a HeLa cell for various values of the data-reduction factor.
(a–c) Reconstruction with gradient-sparsity and positivity. (d–f) Reconstruction only with positivity. (a, d) 2× data reduction. (b, e) 8× data reduction.
(c, f) 32× data reduction. Right panel shows the SNR (see text) versus the data-reduction factor for both priors. Scale bar, 10 μm.

Fig. 7. Comparison of the proposed method on a HeLa cell when applying the
proximal operator (a) at every iteration, (b) only once at the end for denoising
purposes. The proximal operator imposes sparsity on the gradient of the image.
This figure illustrates the benefits of imposing sparsity which influences the
convergence to a better solution. Scale bar, 10 μm.

The proximal operator corresponds to the regularized solution
of the denoising problem with the forward operator corre-
sponding to identity. Note that although our proximal operator
for 3D TV regularizer does not admit a closed form, it can
be efficiently computed [25], [27]–[29]. Here, we rely on the
dual minimization approach that was proposed by Beck and
Teboulle [25], which we review in Appendix B and summarize
in Algorithm 4.

The theoretical convergence of our algorithm is difficult to
analyze due to nonlinear nature of S. However, in practice, we
found that by providing the algorithm with a warm initializa-
tion and by setting the steps of the algorithm γt proportional
to 1/

√
t, the algorithm achieves excellent results as reported in

Section IV. The progressive reduction in γt is commonly done
for ensuring the convergence of incremental proximal-gradient
algorithms [26]. One practical approach for finding a warm
initializer is to use the standard FBP algorithm that assumes
a straight ray approximation. When imaging semi-transparent
objects such as cells, even simpler but sufficient initialization
is a constant value. Additionally, we fix the maximal number
of iterations for the algorithm to t max and select an additional
stopping criterion based on measuring the relative change of
the solution in two successive iterations as

‖x̂t − x̂t−1‖�2
‖x̂t−1‖�2

≤ δ, (17)

where we use δ = 10−4 in all the experiments.

IV. NUMERICAL EVALUATION

Based on the above developments, we report the results of
our iterative reconstruction algorithm in simulated and experi-
mental configurations. The specifics of our experimental setup
were discussed in the companion paper [17]. Essentially, the
setup is holographic, which means that a laser source of λ =
561 nm is split into the reference and sample beams that
are combined into a hologram, which is subsequently used to
extract the complex light field at the measurement plane [30].

We first tested our BPM-based reconstruction algorithm on
simulated data. In particular, we considered the reconstruc-
tion of a simple 10 μm bead of refractive index n = 1.548
immersed into oil of refractive index n0 = 1.518. We sim-
ulated L = 61 measurements with equally spaced angles in
[−π/8, π/8] with BPM. The illumination beam is tilted perpen-
dicular to the y axis, while the angle is specified with respect
to the optical axis z. The dimension of computational domain
is set to Lx = Ly = 36.86 μm and Lz = 18.45 μm and it is
sampled with steps δx = δy = δz = 144 nm. The reconstruc-
tion is performed via the proposed approach in Algorithm 2
with X = {x ∈ R

N : 0 ≤ x ≤ 0.1}, L̃ = 8, and τ = 0.01. In
Figure 3, we illustrate the convergence of the algorithm by plot-
ing the cost C for 1000 iterations. In Figure 4, we show the
true and reconstructed refractive index distributions. The final
signal-to-noise ratio (SNR) of the solution is 22.74 dB. The
visual quality of the reconstruction is excellent; we can observe
that on simulated data, the method corrects the missing cone
due to limited angle of illumination and yields a sharp image
along the z-axis.

We next validate the BPM forward model and our reconstruc-
tion algorithm on a similar dataset that was obtained experi-
mentally. The sample is a 10 μm polystyrene bead of refractive
index n = 1.588 immersed in oil with a refractive index of
n0 = 1.518 so that the refractive index contrast is δn = 0.07.
The data was obtained by collecting L = 61 measurements with
equally spaced angles in the range [−32.16◦, 30.80◦]. We per-
form reconstruction with the regularization parameter τ = 10.
In Figure 5(a)–(d), we show the result that was obtained by
initializing our algorithm with the solution of the standard
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Fig. 8. Comparison of three reconstruction algorithms for various levels of data-reduction on a sample of size 37× 37× 30 μm containing a HeLa cell.
(a–c) Proposed method. (d–f) Iterative reconstruction based on a straight ray approximation [4]. (g–i) Iterative reconstruction based on diffraction tomography
[31]. (a, d, g) 2× data reduction. (b, e, h) 8× data reduction. (c, f, i) 32× data reduction. Scale bar, 10 μm.

FBP performed on the phase of the measured wave field. The
FBP approach assumes a straight ray approximation and its
results are illustrated in Figure 5(e)–(h). Note that such a warm
initialization is useful due to the non-convex nature of our opti-
mization problem. In the x–y slice at z = 21.17 μm, the bead
reconstructed with our method has the diameter of approxi-
mately 10.08 μm and an average refractive index of 0.067. As
we can see, one of the major benefits of using the proposed
method is the correction of the missing cone that is visible in
Figures 5(g) and (h).

Next, we investigated the ability of our method to recon-
struct real biological samples from limited amounts of data.
Specifically, we illuminated a sample containing a HeLa cell
at 161 distinct angles uniformly distributed in the range
[−45◦, 45◦]. The data was used for imaging a volume of size
37× 37× 30 μm (δx = δy = δz = 72 nm). In this experi-
ment, the data-reduction or undersampling factor refers to the
ratio between the total number of holograms 161 and the actual
number used for reconstruction. In particular, data-reduction
factors 2, 4, 8, 16, and 32 correspond to 81, 41, 21, 11, and 6
holograms used for reconstruction, respectively. We illustrate
the reconstruction results in Figure 6, where we compare the
results of the proposed BPM–based method with and with-
out TV regularization. We again initialize the algorithms with
the volume that was obtained by running the standard FBP
algorithm that assumes straight ray propagation. However, we

observed that the algorithm is robust in the sense that it typically
converges to the same solution independently of the initializer
(also see Fig. 6 from our companion paper [17]). To quan-
tify the quality of the reconstructed volume as a function of
data-reduction factor, we also defined

SNR (dB) � 10 log10

(
‖x ref‖2�2
‖x ref − x̂‖2�2

)
,

where x ref is the reconstructed volume from all the 161 pos-
sible measurements. The right panel of Figure 6 illustrates
the evolution of the SNR with undersampling rate. As can be
see, the sparse-regularization plays a critical role and signifi-
cantly boosts the quality of the solution at all undersampling
rates. Also note that the result in Figure 6(c) was obtained by
using only 6 holograms of size 512× 512 for reconstructing a
signal of size 512× 512× 400 voxels, which corresponds to
data-to-parameter ratio of 1.5/100.

In Figure 7, we highlight the importance of sparsity-driven
iterative reconstruction. Specifically, we compare our algo-
rithm, where the TV proximal operator is applied at each
iteration, against an algorithm that first reconstructs the refrac-
tive index only with positivity constraints and then applies 3D
TV denoising to the final result. Although, both algorithm rely
on BPM, by imposing the gradient sparsity at every iteration
our algorithm converges to a visibly higher-quality solution.
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In Figure 8, we compare the performance of our algorithms
against two standard iterative algorithms that are commonly
used in practice. The first one, whose results are shown in
Figure 8 (d)–(f), is based on the algorithm that was proposed
by Choi et al. [4]. It assumes a straight ray propagation of
the light through the medium and iteratively minimizes the
quadratic distance between the true and predicted phase mea-
surements under positivity constraints. This iterative approach
is an improvement over FBP and was shown to yield high qual-
ity results when imaging biological samples [4]. The second
method, whose results are shown in Figure 8 (g)–(i), was pro-
posed by Kim et al. [31] and is based on iterative diffraction
tomography with positivity constraints. Diffraction tomography
improves over the straight ray approximation by incorporating
diffraction effects due to inhomogeneities in the sample into
the forward model. As can be seen, our proposed method yields
sharper and higher-quality images with a significant reduction
in the missing cone artifacts.

V. CONCLUSION

We have presented a novel computational method for the esti-
mation of the refractive index distribution of a 3D object from
the measurements of the transmitted light-field. Our method
relies on a nonlinear forward model, which is based on sim-
ulating the physical propagation of electromagnetic waves with
BPM. We compensated the ill-posedness of the inverse prob-
lem, by imposing positivity as well as the gradient-sparsity to
the solution. The method is computationally efficient due to the
time-reversal scheme for computing the gradients and the fact
that only a subset of gradients are evaluated at every iteration.
Overall, we believe that our approach opens rich perspectives
for high-resolution tomographic imaging in a range of practi-
cal setups. We have demonstrated the use of the method for
experimentally reconstructing a polystyrene bead as well as a
HeLa cell immersed in oil and water, respectively. Even when
the number of measurements is severely restricted, the method
can recover images of surprisingly high-quality.

There are several limitations that may be addressed in future
work. Although, in practice, we did not encounter any con-
vergence problems, the nonlinear nature of the forward model
makes the theoretical convergence of the method difficult to
analyze. Since the proposed BPM optimization scheme is sim-
ilar to the error backpropagation algorithm used for training
deep neural networks [32], there may be some benefit in trans-
posing the analysis techniques that are being rapidly developed
there to our framework.

In our current experimental setup the measurements are
obtained by only changing the illumination angle. However, our
forward model can handle arbitrary illumination patterns. This
makes it much more general than its linear counterparts that
are based on Radon or on diffraction tomography. Accordingly,
another avenue of work would be to investigate the performance
of the proposed method under different and less standard types
of illumination.

APPENDIX A
FOURIER BEAM-PROPAGATION METHOD

In this section, we present the full derivation that supports
the use of BPM as a forward model. We start by introducing the

inhomogeneous Helmholtz equation that completely character-
izes the light field at all spatial positions in a time-independent
form [33]. We then describe the important paraxial simpli-
fication of the Helmholtz equation, which is often used for
describing the propagation of electromagnetic waves. Note that
the derivations here are based on the paraxial version of BPM,
which is simpler to derive, but is slightly less accurate that the
nonparaxial version [34] used in (3). While, an extensive dis-
cussion on the merits and drawbacks of either version is beyond
the scope of this paper, both versions are sufficiently accurate
to be used in the experiments presented here.

A. Paraxial Helmholtz Equation

Our starting point is the scalar inhomogeneous Helmholtz
equation (

Δ+ k2(r) I
)
u(r) = 0,

where r = (x, y, z) denotes a spatial position, u is the total
light-field at r, Δ = (∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2) is the
Laplacian, I is the identity operator, and k(r) = ω/c(r) is
the wavenumber of the light field at r. Equation (1) implic-
itly describes the relationship between the refractive index and
the light field everywhere in space. The spatial dependence
of the wavenumber k is due to variations of the speed of
light c induced by the inhomogeneous nature of the medium
under consideration. Specifically, the wavenumber in (1) can be
decomposed as follows

k(r) = k0n(r) = k0(n0 + δn(r)),

where k0 = ω/c0 is the wavenumber in the free space, with
c0 ≈ 3× 108 m/s being the speed of light in free space. The
quantity n is the spatially varying refractive index of the sam-
ple, which we have written in terms of the refractive index of the
medium n0 and the perturbation δn due to inhomogeneities. We
next develop the paraxial Helmholtz equation for the complex
envelope a(r) of the paraxial wave1

u(r) = a(r)e jk0n0z. (18)

One way to interpret (18) is to say that it corresponds to a plane
wave propagating along z in the medium, modulated by the
complex amplitude a. Now consider

∂2

∂z2
u(r)

=
∂

∂z

((
∂a(r)

∂z

)
e jk0n0z + jk0n0a(r)e

jk0n0z

)
= e jk0n0z

(
∂2a(r)

∂z2
+ 2jk0n0

(
∂a(r)

∂z

)
− k20n

2
0a(r)

)
.

(19)

By using this expression and substituting (18) into (1), we
obtain

1A wave is said to be paraxial if its wavefront normals are paraxial rays
(i.e. when sin(θ) ≈ θ is valid). The variation of a with position must be slow
within the distance of a wavelength, so that the wave approximately maintains
its underlying plane-wave nature.
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(
Δ+ k2(r) I

)
u(r)

=

(
Δ⊥ +

∂2

∂z2
+ 2jk0n0

∂

∂z
− k20n

2
0I + k2(r)I

)
× a(r)e jk0n0z

=

(
Δ⊥ +

∂2

∂z2
+ 2jk0n0

∂

∂z
+ 2k20n0δn(r)I + k20(δn(r))

2I

)
× a(r)e jk0n0z

= 0, (20)

where Δ⊥ = (∂2/∂x2 + ∂2/∂y2) is the transverse Laplacian.
We now introduce two simplifications. The first is the slowly
varying envelope approximation (SVEA), which is valid when
|(∂2/∂z2)a| � |k0n0(∂/∂z)a| and which allows us to sup-
press the second derivative of a in z [33], [35]. In the second
simplification, we ignore the term (δn)2. We thus obtain

∂

∂z
a(r) =

(
j

1

2k0n0
Δ⊥ + jk0δn(r)I)

)
a(r). (21)

Equation (21) is the slowly varying envelope approximation of
the Helmholtz equation and is often referred to as the paraxial
Helmholtz equation [35].

B. Fourier Beam-Propagation

BPM is a class of algorithms designed for calculating the
optical field distribution in space or in time given initial condi-
tions [14]. The paraxial Helmholtz equation (21) is an evolution
equation in which the space coordinate z plays the role of
evolution parameter.

We start by rewriting (21) in the operator form

∂

∂z
a(r) = D{a}(r) + N{a}(r), (22)

where

D � j
1

2k0n0
Δ⊥ and N � jk0δn(r)I.

Note that the operator D is linear and translation-invariant
(LTI), while the operator N corresponds to a pointwise mul-
tiplication. The solution of (22) at a sufficiently small z = δz
may be written formally as a complex exponential2

a(x, y, δz) = e(D+N)δza(x, y, 0). (23)

The operators exp(Dz) and exp(Nz) do a priori not com-
mute; however, Baker-Campbell-Hausdorff formula [36] can be
applied to show that the error from treating them as if they do
will be of order δz2 if we are taking a small but a finite z step δz.
This suggests the following approximation

a(x, y, z + δz) = eNδzeDδza(x, y, z). (24)

2Note that for an operator T, we define a new operator eTz in terms
of series expansion eTz �

∑∞
n=0

zn

n!
Tn. Therefore, for a(r), we write

eTz{a}(r) = ∑∞
n=0

zn

n!
Tn{a}(r).

Now, it is possible to get explicit expressions for the diffrac-
tion exp(Dδz) and refraction exp(Nδz) operators, since they
are independent. Diffraction is handled in the Fourier domain as

a(ωx, ωy, z + δz) = e−j
ω2
x+ω2

y
2k0n0

δza(ωx, ωy, z), (25)

which can also be expressed, for a fixed z, with a 2D Fourier
filtering formula

a(x, y, z + δz) = F−1

{
F {a(·, ·, z)} × e−j

ω2
x+ω2

y
2k0n0

δz

}
. (26)

For refraction, we get

a(x, y, z + δz) = e jk0(δn(r))δza(x, y, z), (27)

which amounts to a simple multiplication with a phase mask in
the spatial domain.

A more refined version of BPM for simulating waves propa-
gating at larger angles was derived by Feit and Flack [34]. By
relying on their results, we can replace the diffraction step (26)
by a more accurate alternative

a(x, y, z + δz)

= F−1

⎧⎪⎨⎪⎩F {a(·, ·, z)} × e
−j

(
ω2
x+ω2

y

k0n0+
√

k2
0n2

0−ω2
x−ω2

y

)
δz

⎫⎪⎬⎪⎭ .

(28)

Our practical implementation in Section II-B relies on this
nonparaxial version of BPM.

APPENDIX B
TOTAL VARIATION MINIMIZATION

In this section, we discuss the concepts and algorithms
behind total variation (TV) regularized image reconstruction
(5). The material presented here is the review of the ideas that
were originally developed by Beck and Teboulle in [25].

C. Two Variants of TV

Two common variants of TV are anisotropic TV regularizer

R(x) �
N∑

n=1

‖[Dx]n‖�1 (29a)

=

N∑
n=1

(|[Dxx]n|+ |[Dyx]n|+ |[Dzx]n|) (29b)

and isotropic TV regularizer

R(x) �
N∑

n=1

‖[Dx]n‖�2 (30a)

=

N∑
n=1

√
([Dxx]n)2 + ([Dyx]n)2 + ([Dzx]n)2 (30b)
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Algorithm 3. FISTA

input: light-field data {y�}�∈[1...L], initial guess x̂0, step
γ > 0, and regularization parameter τ > 0.
set: t← 1, s0 ← x̂0, q0 ← 1
repeat
zt ← st−1 − γ∇D(st−1)
x̂t ← proxR(zt, γτ)

qt ← 1
2

(
1 +

√
1 + 4q2t−1

)
st ← x̂t + ((qt−1 − 1)/qt)(x̂

t − x̂t−1)
t← t+ 1

until stopping criterion
return estimate of the refractive index x̂t

Here, D : RN → R
N×3 is the discrete gradient operator, with

matrices Dx, Dy , and Dz denoting the finite difference oper-
ators along x, y, and z, respectively. Assuming column-wise
vectorization of a 3D matrix of size Ny ×Nx ×Nz , which
represents the 3D image, the gradient of x at position n ∈
[1, . . . , N ] is given by

[Dx]n =

⎛⎝[Dxx]n
[Dyx]n
[Dzx]n

⎞⎠ =

⎛⎜⎝
xn+Ny−xn

δx
xn+1−xn

δy
xn+NxNy−xn

δz

⎞⎟⎠ , (31)

with appropriate boundary conditions (periodization, Neumann
boundary conditions, etc.). The constants δx, δy, and δz denote
sampling intervals along x, y, and z directions, respectively.
Practical implementations of TV, often assume uniform sam-
pling by setting δx = δy = δz.

The anisotropic TV regularizer (29) can be interpreted as a
sparsity-promoting �1-penalty on the image gradient, while its
isotropic counterpart (30) as an �1-penalty on the magnitudes
of the image gradient, which can also be viewed as a penalty
promoting joint-sparsity of the gradient components. By pro-
moting signals with sparse gradients, TV minimization recovers
images that are piecewise-smooth, which means that they con-
sist of smooth regions separated by sharp edges. Isotropic TV
regularizer (30) is rotation invariant, which makes it preferable
in the context of image reconstruction.

One must note that similar to other regularization schemes,
there is, unfortunately, no theoretically optimal way of setting
τ ; its optimal value might depend on a number of parame-
ters including the sample, forward model, and noise. Generally,
higher levels of τ imply stronger regularization during the
reconstruction and the optimal value of τ , in our experiments,
was in the range [10−2, 101] for the configurations considered.

B. Minimization of TV

Fast iterative shrinkage/thresholding algorithm (FISTA),
summarized in Algorithm 3, is one of the most popular
approaches for solving (5). FISTA relies on the efficient eval-
uation of the gradient ∇D and of the proximal operator
(16). Time-reversal scheme, in Algorithm 1, makes applica-
tion of FISTA straightforward for solving (5) with regularizers
that admit closed form poximal operators such as �1-penalty.

Algorithm 4. FGP for evaluating x = proxR(z, τ)

input: z ∈ R
N , τ > 0.

set: t← 1, d0 ← g0, q0 ← 1, γ ← 1/(12τ)
repeat
gt ← projG

(
dt−1 + γD

(
projX

(
z− τDTdt−1

)))
xt = projX

(
z− τDTgt

)
qt ← 1

2

(
1 +

√
1 + 4q2t−1

)
dt ← gt + ((qt−1 − 1)/qt)(g

t − gt−1)
t← t+ 1

until stopping criterion
return xt

However, some regularizers including TV do not have closed
form proximals and require an additional iterative algorithm for
solving (16).

In our implementation, we solve (16) with the dual approach
that was proposed by Beck and Teboulle in [25]. The approach,
summarized in Algorithm 4, is based on iterative solving the
dual optimization problem

ĝ = argmin
g∈G

{Q(g)} , (32)

where

Q(g) � − 1

2
‖z− τDTg − projX (z− τDTg)‖2�2 (33)

+
1

2
‖z− τDTg‖2�2 . (34)

Given the dual iterate gt, the corresponding primal iterate can
be computed as

xt = projX (z− τDTgt). (35)

The operator projX represents an orthogonal projection onto
the convex set X . For example, a projection onto N -
dimensional cube

X �
{
x ∈ R

N : a ≤ xn ≤ b, ∀n ∈ [1, . . . , N ]
}
, (36)

with bounds a, b > 0, is given by

[projX (x)]n =

⎧⎪⎨⎪⎩
a if xn < a

xn if a ≤ xn ≤ b

b if xn > b,

(37)

for all n ∈ [1, . . . , N ].
The set G ⊆ R

N×3 in (32) depends on the variant of TV used
for regularization. For anisotropic TV (29), the set corresponds
to

G � {g ∈ R
N×3 : ‖[g]n‖�∞ ≤ 1, ∀n ∈ [1, . . . , N ]} (38)

with the corresponding projection

[projG(g)]n =

⎛⎜⎜⎜⎝
[gx]n

max(1,|[gx]n|)
[gy]n

max(1,|[gy]n|)
[gz ]n

max(1,|[gz ]n|)

⎞⎟⎟⎟⎠ , (39)
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for all n ∈ [1, . . . , N ]. Similarly, for isotropic TV (30), the set
corresponds to

G � {g ∈ R
N×3 : ‖[g]n‖�2 ≤ 1, ∀n ∈ [1, . . . , N ]} (40)

with the corresponding projection

[projG(g)]n =
[g]n

max (1, ‖[g]n‖�2)
, (41)

for all n ∈ [1, . . . , N ].
While the theoretical convergence of FISTA requires the full

convergence of inner Algorithm 4, in practice, it is sufficient
to run about 5-10 iterations with an initializer that corresponds
to the dual variable from the previous outer iteration. In our
implementation, we thus fix the maximal number of inner iter-
ations to t in = 10 and enforce an additional stopping criterion
based on measuring the relative change of the solution in two
successive iterations as ‖gt − gt−1‖�2/‖gt−1‖�2 ≤ δin, where
δin = 10−4 in all the experiments here.
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