
PDE-CONSTRAINED OPTIMIZATION FOR NUCLEAR MECHANICS

Yekta Kesenci1,2, Aleix Boquet-Pujadas3, Emma van Bodegraven4,
Sandrine Étienne-Manneville5, Elisabeth Labruyère1, Jean-Christophe Olivo-Marin1

1 BioImage Analysis Unit, Institut Pasteur, CNRS UMR 3691, Paris, France.
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ABSTRACT
We propose an image based PDE-constrained optimisation
framework to compute the dynamical quantities of a cell nu-
cleus undergoing deformation. It allows retrieving the dis-
placement, strain and stress at each pixel of the nuclear do-
main, as well as the traction force on the boundary. It is based
on a mechanical model of the nuclear components and a pair
of images documenting the deformation of the cell nucleus.
To test our approach, we provide a warping method that pro-
duces a second image from an initial one along with the ex-
pected mechanical quantities. Both quantitative and quali-
tative analysis conclude for a significant and consistent im-
provement of our method over optical flow techniques.

Index Terms— Nuclear mechanics, adjoint method, op-
tical flow

1. INTRODUCTION

The cell nucleus is a complex structure that can transmit
force from the cytoskeleton to its interior [1]. Defects in its
mechanical properties have been linked to multiple severe
diseases, including Hutchinson-Gilford Progeria Syndrome,
Emery-Dreifuss muscular dystrophy, and cancer [2]. Being
the largest organelle, its stiffness is furthermore a limiting
factor for cell deformation and, hence, for 3-D migration in
dense environments [3]. Understanding how the cell nucleus
deforms after structural change and under constraint is key to
pursue further studies in these areas.

The literature provides three types of methods to tackle
this challenge for in vivo settings. Finite element analysis as-
sumes that the nucleus and its environment follow precise dy-
namical equations the solution of which can be approximated
from their variational form [4]. While the inferred dynamical
values are highly accurate, the user is forced to ascribe sim-
plistic geometries to intranuclear and extranuclear elements
that cannot account for the complex configuration of nuclear
live movement. Morphological methods overcome this issue
by deriving strain and force from the analysis of the shape of

(a) 3D cell (b) Tesselation (c) Domains

Fig. 1: (a) 3D image of the nucleus (blue) and of its cytoplasm (red). (b)
Mesh generation. (c) Lamin domain (light blue) and chromatin domain (dark
blue). Mesh is coarser for visibility.

the nuclear surface [5], but intranuclear movement – which is
of foremost importance if one is to consider the role of chro-
matin in overall nuclear mechanics – evades their investiga-
tion. Optical flow methods take both the shape of the nucleus
and intranuclear movement into account [6]. Such approaches
generally require two images of the nucleus, one before defor-
mation and the other after, and define with them a functional
to minimize that contains data and regularization terms. Ac-
curacy can be improved by choosing the right regularisation
parameters, but these generally overlook mechanical proper-
ties such as stiffness. Furthermore, these methods generally
consider the entire image, but we would like to constrain the
mechanical analysis only to the nuclear domain. We demon-
strate that a combination of optical flow and mechanical mod-
eling allows to unite the strengths of these two approaches.

Following the work of [7], we propose a PDE-constrained
optimisation framework to compute all the mechanical quan-
tities of interest in the study of nuclear deformation, namely:
displacement, strain and stress at each of the pixels inside, and
the traction force on the boundary. First, a displacement field
is derived using optical flow [8]. Then an inverse optimization
problem is formulated: it seeks to find those displacements
that come closest to the computed field while also abiding by
the dynamical model of the nucleus. We solve it by resorting
to the theory of optimal control [9]. Using finite differences,
we retrieve from this solution the strain and stress fields, as
well as the traction force on the boundary. Simulating traction
over the nuclear boundary, we warp a 2D image of a nucleus
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to create a second one after deformation. These two images
are used to test the validity of our method: we show that our
reconstruction not only faithfully reproduces the mechanical
quantities guiding deformation, but that it distinctly surpasses
the results we would get from optical flow techniques alone.

2. DYNAMICAL MODEL OF THE NUCLEUS

Building a comprehensive model that would account for
all nuclear components and all protein interactions such as
the LINC complex is still out of reach. Yet research over
the last decades agree its overall mechanical response relies
mostly on the properties of two of its constituents [2]: the
nuclear lamina and the chromatin. The nuclear lamina is a
10− 100 nm meshwork that underlies the nuclear envelope.
The chromatin fills the nuclear interior, which is about 10 µm
thick. Both domains are linked through molecular interac-
tions. We therefore model them as a lamin shell wrapping the
chromatin domain without sliding on it (Fig 1.c).

In the remaining of this paper, we will assume that lam-
ina and chromatin are both continuous media. This assump-
tion holds true at the microscopic level, where most confo-
cal microscopes operate, but would need to be reevaluated if
one were to work with smaller scales, where the meshwork
structure of the lamin and the fractal-like configuration of the
chromatin might be more relevant. Suppose now the nucleus
encompasses a domain Ω ⊂ Rn, where n ∈ {2,3}. We define
lamin as the boundary of this domain and chromatin as its
complement, i.e. as the whole domain except the boundary.
The literature concurs on assigning either of two main me-
chanical models to them: elastic or viscoelastic. We will as-
sume both domains follow an isotropic linearly elastic model,
albeit of different stiffness; this is a good approximation at
large timescales and small deformations, two regimes that
well fit our biological data. We suppose here that nuclear de-
formation happens only from external mechanical constraints
and not from volumic forces as to model mechanotransduc-
tion. The framework we propose applies nonetheless to any
other kind of mechanical model. This settled, we can estab-
lish the equations ruling the nuclear domain Ω:

∇ ·σ = 0 in Ω,

σ(u) := λ tr(ε(u))I +2µε(u) in Ω,

ε(u) := 1
2 (∇u+∇uT ) in Ω,

λ = λl , µ = µl on Γ,

λ = λc, µ = µc in Ω\Γ

u = g on Γ.

(1)

The first two equations are the balance and constitutive
equations, the third defines a compatible strain. u ∈ L2(Ω)
is the displacement field, ε,σ ∈ Mn,n(Ω) the second order
strain and stress tensors, respectively, and g the displacement
on the boundary. The functions λ and µ are the Lamé pa-
rameters that take different values specific to the chromatin

and the lamin domains. Their dimension is that of stress.
The first one becomes larger as the compressibility of the
material increases, whereas the second rules the material be-
haviour in the face of shear deformation. Both can be com-
puted from Young’s modulus and Poisson’s ratio, two con-
stants more readily available in the literature.

3. PDE-CONSTRAINED OPTIMIZATION

Optical flow is a generic term for a set of methods to compute
velocity fields between a pair of images of a moving object.
The seminal Horn-Schunck method (HS) assumes three hy-
pothesis: brightness constancy, small displacements and reg-
ularity of the solution [8]. Immunofluorescence microscopy
employs biological markers that yield texturised fluorescence
images that agree with the brightness constancy assumption.
While photobleaching decreases the intensity over time, it
does so homogeneously and would not affect the framework
after proper normalization. The small displacement assump-
tion is likewise fulfilled here, the confocal microscope being
faster than the time scale of the movement, but could other-
wise be tackled with a multiresolution scheme.

Together, the three assumptions assert that the velocity v
at each pixel in the first image will be obtained through the
resolution of the following problem:

argmin
v

∫
ΩI

(
∂ I
∂ t

+ v ·∇I
)2

+α||∇v||2, (2)

where ΩI is the domain of the image function I and α is a
regularization constant. This problem is in turn solved using
an iterative scheme on the Euler-Lagrange equations. Starting
with the solutions computed with optical flow, one can differ-
entiate the velocity to compute the strain, then the stress, and
then the traction vector over the boundary. But we wouldn’t
profit from the information we might get from the mechanical
knowledge we hold on the nucleus: there is a better strategy.

One would like to choose, among all the displacement
fields, the ‘closest’ to the one computed with optical flow
that still obeys the dynamical equations stated in the previous
paragraph. We thus propose an alternative problem. Noting û
the solution computed from (2):

argmin
u,g

J(u,g) :=
∫

(u− û)2 +β (∇g ·n⊥)2 dΩ,

s.t. eq. (1)
(3)

where g is the boundary displacement, here acting as a control
variable, and n⊥ the boundary’s tangent. The gradient of the
displacement is again penalized to ensure regular solutions,
which otherwise would lead to spurious values of the strain
and the stress.

Using the finite element method, we compute for each
boundary condition g the solution u of the equations. The im-
plicit function theorem allows us to consider u as a function
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of g, and therefore the functional J as a function of g alone.
This means that we can formulate our constrained problem
into an unconstrained one. It is then solved through the use of
a quasi-Newton gradient descent algorithm that seeks to find
the boundary condition g that minimizes the prescribed func-
tional. In order to avoid large computations, we compute the
gradient using the adjoint method [9].

4. RESULTS

Optical flow methods enjoy a set of carefully crafted tests
to assess their performance. Mechanobiology lacks such
database, so one must design their own ground truth to com-
pare the accuracy of what they set forth. We propose a
warping strategy that will give a pair of images, one be-
fore deformation and the other after, along with the ground
truth displacement field, strain and stress tensors, and trac-
tion boundary, that underly this deformation. We start with
an image of a nucleus issued from a confocal microscope
(Fig. 1.a). We segment it using k-means hierarchical clus-
tering followed by active contours. We apply Delaunay’s
algorithm [10] on the resulting contour to create a mesh of
the nuclear domain (Fig. 1.b). We define on this mesh the
forward problem in variational form, which can be derived ei-
ther by minimizing the Hellinger-Reisner energy potential of
isotropic linear elasticity or by differentiation of the provided
dynamical equations with Green’s theorem:

a(u,w) = L(w),
a(u,w) :=

∫
σ(u;λ ,µ) : ε(w) dΩ,

L(w) :=
∫

T ·w dΓT .

(4)

Here ΓT is the subdomain of the nuclear boundary where we
will be simulating the tension induced by a micropipette. u ∈
H1(Ω) is the trial function and w ∈ {v ∈ H1(Ω)|v = 0 on Γ}
is the test function. Given the values of T and of the Lamé
parameters, we use the finite element method to compute the
”ground truth” displacement u (Fig. 2.d.) and warp our ini-
tial image using an order 2 spline interpolation to produce an
image of the deformed nucleus (Fig. 2.a, 2.b). We apply HS
to these two images (Fig. 2.e), then solve problem (3) thanks
to the dolfin adjoint library [11](Fig. 2.f). Derivation allows
retrieving the hydrostatic strain εh = tr(ε), along with the von

Mises stress σM =
√

3
2 s : s, where s = σ − 1

3 tr(σ)I, (Fig. 2.g-
j) and the traction boundary (Fig. 2.k-m).

Error norms and constants. We measure the accuracy
of our method with the root mean square error (RMSE) of
the hydrostatic strain and of the von Mises stress, normalized
over the range, along with the ratio of the norm of the com-
puted boundary traction over the norm of the true traction. We
suppose a Young modulus of 250 Pa and a Poisson ratio of 0.3
for the chromatin, and that the lamin is 5 times stiffer. To pro-
duce higher deformations, we extend the traction domain to
the bottom of the nucleus. We compare the accuracy of our

(a) Initial image (b) Warped image (c) 3D u

(d) True u (e) HS u (f) Proposed u

(g) True σM (h) HS σM (j) Proposed σM

(k) True T (l) HS T (m) Proposed T

Fig. 2: Comparison of the mechanical quantities of interest (displacement,
stress, traction) obtained using HS and our method in regard of the ground
truth quantities obtained from finite element analysis. Here ||T || = 2.5 Pa
and lamin is 5 times stiffer than chromatin.

method over some of the most popular optical flow methods
in biology: Horn Schunck (HS) [8], TV-L1 [12], large dis-
placement optical flow (LDOF) [13], iterative Lukas-Kanade
(ILK) [14]. We choose the regularization parameters of all
these methods according to the L-curve criterium.

First experiment. We compare the variation in accu-
racy for increasing values of the boundary traction ||T || ∈
{0.25,0.375, ...,0.75} Pa (Table 1). While excellent at com-
puting the strain and the stress, optical flow methods prove
less accurate and less robust against varying deformations
compared to our method (Fig. 3.a-c). Furthermore they
outright fail at retrieving the traction, despite good stress re-
covery. On the contrary, our method is relatively accurate,
although it does suffer from deviations with increasing trac-
tion. We believe this can be overcome by using non-linear
elasticity equations to account for larger deformations.

Second experiment. We fix the initial traction to 2 Pa
and compute the accuracies for varying values of the Pois-
son ratio of the lamin νlamin ∈ {0.30,0.34, ...,0.48} (Table 1).
Again, our method proves consistently more accurate and ro-
bust. This is especially true when the lamin becomes incom-
pressible: while our method’s stress accuracy remains stable,
the accuracy of optical flow methods plunges (Fig 3.d.).
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(a) (b) (c) (d)

Fig. 3: Evolution of the accuracies of the von Mises stress, the hydrostatic strain and the traction boundary of our method against the three top performing
optical flow methods.

Experiment 1 NRMSE σM NRMSE Ehyd Traction ratio Experiment 2 NRMSE σM NRMSE Ehyd Traction ratio
Proposed 95.67 ± 0.16 94.60 ± 0.03 84.16 ± 6.82 Proposed 95.86 ± 0.14 95.10 ± 0.37 88.25 ± 2.45

TV-L1 94.65 ± 0.23 90.76 ± 1.81 20.39 ± 6.31 TV-L1 94.80 ± 0.39 91.38 ± 0.55 13.84 ± 2.35
ILK 67.86 ± 1.17 41.78 ± 2.3 4.92 ± 0.29 ILK 59.09 ± 7.05 45.03 ± 3.57 3.40 ± 0.83

LDOF 89.48 ± 3.33 82.31 ± 4.97 12.13 ± 3.45 LDOF 88.09 ± 1.80 84.14 ± 1.33 8.04 ± 1.53
HS 94.33 ± 0.24 90.16 ± 0.55 15.25 ± 0.50 HS 93.32 ± 0.99 90.74 ± 0.59 11.35 ± 2.81

Table 1: Mean and standard deviation of the accuracy over the varying constants.

5. CONCLUSION

We proposed a PDE-constrained optimization framework that
allows the retrieval of mechanical quantities from images of a
nucleus undergoing deformation. For now, only optical flow
techniques are capable of similar feats, but our method proves
more accurate and more stable by including mechanical infor-
mation into the variational problem. We also showed that op-
tical flow fails at recovering the traction, and that our method
offers a convincing alternative. This technique has already al-
lowed us to recover live nuclear deformations (Fig. 2c) at the
accuracy required to distinguish the contribution of different
proteins involved in cell migration.
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