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Abstract

We introduce a new class of wavelets that behave like a given differential oper-
ator L. Our construction is inspired by the derivative-like behavior of classical
wavelets. Within our framework, the wavelet coefficients of a signal y are the
samples of a smoothed version of L{y}. For a linear system characterized by
an operator equation L{y} = x, the operator-like wavelet transform essentially
deconvolves the system output y and extracts the “innovation” signal x.

The main contributions of the thesis include:
Exponential-spline wavelets. We consider the system L described by a linear

differential equation and build wavelets that mimic the behavior of L. The link
between the wavelet and the operator is an exponential B-spline function; its
integer shifts span the multiresolution space. The construction that we obtain
is non-stationary in the sense that the wavelets and the scaling functions de-
pend on the scale. We propose a generalized version of Mallat’s fast filterbank
algorithm with scale-dependent filters to efficiently perform the decomposition
and reconstruction in the new wavelet basis.

Activelets in fMRI. As a practical biomedical imaging application, we study
the problem of activity detection in event-related fMRI. For the differential sys-
tem that links the measurements and the stimuli, we use a linear approximation
of the balloon/windkessel model for the hemodynamic response. The corre-
sponding wavelets (we call them activelets) are specially tuned for temporal
fMRI signal analysis. We assume that the stimuli are sparse in time and extract
the activity-related signal by optimizing a criterion with a sparsity regulariza-
tion term. We test the method with synthetic fMRI data. We then apply it to a
high-resolution fMRI retinotopy dataset to demonstrate its applicability to real
data.

Operator-like wavelets. Finally, we generalize the operator-like wavelet con-
struction for a wide class of differential operators L in multiple dimensions. We
give conditions that L must satisfy to generate a valid multiresolution analysis.
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We show that Matérn and polyharmonic wavelets are particular cases of our
construction.

Keywords: operators, splines, wavelets, multiresolution analysis, continuous-
discrete signal processing, event-related fMRI



Résumé

Nous introduisons une nouvelle classe d’ondelettes qui imitent un opérateur
différentiel donné. Notre construction est inspirée par la similitude de comporte-
ment entre les ondelettes classiques et les dérivées. Selon notre concept, les coeffi-
cients d’ondelette d’un signal y sont les échantillons d’une version lissée de L{y}.
Pour un système linéaire caracterisé par l’équation opérationnelle L{y} = x, la
transformée en ondelettes correspondante déconvolue la sortie y du système et
extrait le signal “d’innovation” x.

Les contributions principales de la thèse comprennent :
Ondelettes à base de splines exponentielles. Nous considerons le système L

qui est décrit par une équation différentielle linéaire et nous construisons des
ondelettes dont le comportement est similaire à celui de L. Le lien entre l’on-
delette et l’opérateur est une fonction B-spline exponentielle ; ses décalages par
pas entiers génèrent l’espace multirésolution. La construction que l’on obtient
est non-stationnaire, dans le sens que les ondelettes et les fonctions d’échelle
dépendent de l’échelle. Nous proposons une version généralisée de l’algorithme
rapide en bancs de filtres de Mallat avec les filtres qui dépendent de l’échelle,
afin de pouvoir effectuer la décomposition et la reconstruction dans la nouvelle
base d’une manière efficace.

Activelets en IRM fonctionnelle. Comme application pratique en imagerie
biomédicale, nous étudions le problème de détection d’activité en IRM fonction-
nelle événementielle. Pour un système différentiel qui lie les mesures avec les sti-
muli, nous utilisons une approximation linéaire du modèle “ballon/accumulateur”
pour la réponse hémodynamique. Les ondelettes correspondantes (que nous ap-
pelons “activelets”) sont spécialement réglées pour l’analyse temporelle du signal
en IRM fonctionnelle. Nous supposons que les stimuli sont clairsemés dans le
temps et nous extrayons le signal lié à l’activité en optimisant le critère avec
un terme creux de régularisation. Nous testons la méthode avec des données
synthétiques d’IRM fonctionnelle. Ensuite, nous l’appliquons à un ensemble
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de données de rétinotopie par IRM fonctionnelle en haute résolution, afin de
démontrer son applicabilité aux données réelles.

Ondelettes basées sur un opérateur. Finalement, nous généralisons la construc-
tion des ondelettes basées sur un opérateur pour une grande classe d’opérateurs
différentiels L en dimensions multiples. Nous donnons les conditions que L doit
satisfaire pour que l’analyse multirésolution générée soit valide. Nous montrons
que les ondelettes de Matérn, comme les ondelettes polyharmoniques, sont des
cas particuliers de notre construction.

Mots clés : opérateurs, splines, ondelettes, analyse multi-échelle, traitement
du signal continu-discret, IRM fonctionnelle événementielle
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Chapter 1

Introduction

1.1 Wavelets In Medical Imaging

The human mind naturally considers things at different levels of detail. For
example, our visual system interprets the scene from distinct pixels to meaning-
ful objects as the neuronal impulses propagate from the primary to the higher
visual areas. In signal processing, it is the concept of scale that allows control
over the level of detail. The wavelet transform, acting as a mathematical eye
for signals, provides the multi-scale representation of a signal at a linear com-
putational cost. Since its introduction in the early 1990s, the wavelet transform
have been successfully applied to a wide range of problems.

Medical imaging problems in signal processing are challenging, one of the
important reasons being the size of the data which can be 3D and time-varying.
The quest to reduce healthcare costs results in the attempt to shift the effort
from the doctor and/or the imaging device to the signal processing software.
Typical characteristics of medical images are low SNR, imaging artifacts, etc.
Unlike many other applications, medical data processing is targeted at the en-
hancement/preservation of relevant (e.g., anatomical) structures in the image,
rather than the gain in traditional criteria such as SNR. The need for fast pro-
cessing algorithms naturally places the spotlight on wavelets.

In imaging tasks, wavelets owe much of their success to the way in which
they differentially treat smooth and edge-like components of the signal. The
vanishing moment property ensures that, for wavelets of order n, the wavelet
coefficients of a polynomial of order up to n − 1 will be zero. Such a polyno-
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2 Introduction

mial will be reproduced by the scaling functions at the coarsest scale, resulting
in few large coefficients. Because wavelets behave like multiscale derivatives,
an edge-like structure would be represented by a sparse set of wavelet coeffi-
cients across scale. These two properties explain why the energy of piecewise
smooth signals tends to be compacted in a few coefficients in the wavelet do-
main. Closely related are the improved non-linear approximation properties
of the wavelet transform on certain classes of discontinuous signals. Last but
not least, wavelet decomposition and reconstruction are implemented with fast
filterbank algorithms at a computational cost that is proportional to the data
size.

In the sequel, we briefly illustrate the relevance of the properties of wavelets
by considering some specific imaging problems.

Vanishing moments and image reconstruction. The way to use wavelets
efficiently can be inspired by the image formation model. In computed tomog-
raphy (CT) image reconstruction, the density function must be recovered from
the samples of its Radon transform. The direct inversion formula is unstable.
Instead, the filtered backprojection algorithm is used, where a ramp filter is
followed by the adjoint of the Radon operator. The ramp filter’s impulse re-
sponse is not differentiable at the origin, which explains the non-local character
of the inverse operator. Typically, during a CT exam, we are only interested in
a particular region of the body. When the signal is decomposed in the wavelet
domain, the vanishing moment property improves the smoothness of the spec-
trum, and local reconstruction becomes possible from fewer measurements [1].
This reduces both the exposure time for the patient and the cost of the exam
itself.

Sparsity and regularization. Image reconstruction from fewer measure-
ments in many modalities such as positron emission tomography (PET) is an
ill-posed problem that requires prior knowledge on the imaged object. One way
to take into account prior information is to include a regularizing penalty term
into the Lagrangian-like cost functional of the problem, as it is done in the vari-
ational approach to reconstruction. Due to the energy compaction property of
the wavelets, we can assume that the signal of interest has a small support in the
wavelet domain. Therefore, a norm that enforces compact energy distribution
among the wavelet coefficients is a good penalty function candidate [2].

Wavelet approximation and compression. With the growing amounts
of data in medical imaging, compression is an important issue. Good non-linear
approximation properties of wavelets, together with their apparent ability to
preserve medically-relevant structures, was used for better compression of MRI
and CT images [3]. In combined imaging modalities, such as PET-MRI, images
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0-1 1

Figure 1.1: Haar wavelet ψ.

from two devices must be co-registered. The multi-scale wavelet representations
form a base for robust registration algorithms [4].

Wavelet-domain denoising and detection. In dynamic imaging modal-
ities, such as fMRI, a sequence of images is acquired to study the temporal
evolution of the signal. Similar to static imaging, wavelets could be applied
on a frame-by-frame basis, e.g., for denoising purposes [5]. In WSPM, the
decorrelation property of wavelets in space is used for to improve statistical
detection [6].

By reviewing the imaging literature [6,7], it is quite apparent that the use of
wavelets has been exploited with good success in the spatial domain. There is
much less work with dynamic imaging that applies wavelets along the temporal
dimension. This may be explained by the mismatch between the models of
the temporal signal generation with the pure derivative nature of traditional
wavelets. In this work, we would like to extend the wavelet construction and
tune it to the characteristics of temporal data. To motivate our approach,
we start by investigating the reasons underlying the favorable behavior of the
wavelets for certain classes of signals (e.g., piecewise smooth functions).

1.2 Wavelets And Derivatives

To gain a better understanding of the wavelet transform properties, let us have a
closer view at the first-order case. The Haar wavelet function ψ that corresponds
to the first-order derivative operator D = d

dt is shown in Fig. 1.1. It satisfies

ψ = D∗φ,

where φ is the triangle function (see Fig. 1.2) and D∗ = −D.
Consider the piecewise-constant signal x(t) represented in Fig. 1.3. Let

us denote by al and tl the heights and the locations of the jumps in x(t),
respectively. If we apply the derivative operator to x(t), we get a stream of
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0-1 1

Figure 1.2: Haar multiscale smoothing kernel φ.

tl

Figure 1.3: Piecewise constant signal x(t).

Dirac impulses D{x}(t) =
∑

l alδ(t − tl) as shown in Fig. 1.4. At the same
time, the wavelet at the scale i acts upon x(t) leading to

x(t) ∗ ψ∗(
t

2i
) = D{x}(t) ∗ φ(

t

2i
) =

∑

l

alφ(
t− tl

2i
). (1.1)

The resulting function, which is shown in Fig. 1.5, can be seen as a multiscale
approximation of the Dirac train in Fig. 1.4. Its samples yield the wavelet
representation, which will be sparse if the distance between two consecutive
events tl+1 − tl is larger than the length of the support of φ(t/2i).

The vanishing moment property goes hand in hand with this operator-like
behavior. Indeed, if we apply the Haar wavelet transform to the signal xc(t) =

tl

Figure 1.4: The derivative turns x(t) into the Dirac train.
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tl

Figure 1.5: The function x(t) ∗ ψ∗( t
2i ).

System“information” “signal of interest”

L

L{y} = xx y0

y

Disturbance

Figure 1.6: Signal formation model.

const, we get

xc(t) ∗ ψ∗(
t

2i
) = D{xc}(t) ∗ φ(

t

2i
) = 0.

In other words, the Haar wavelet annihilates constant signals; i.e., it has one
vanishing moment.

Likewise, N -th order wavelets act as N -iterated derivatives. They annihilate
polynomial signals up to order N − 1 and provide sparse representations of
piecewise polynomials.

1.3 Extension of the piecewise-constant model

Typical biomedical time signals are not piecewise-constant. They contain os-
cillations and are often ruled by some differential equation. Consider a general
signal formation model in Figure 1.6. The signal of interest y0 is related to an
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“information” (or “innovation”) process x through a linear system

Ly0 = x, (1.2)

where L is a differential operator. Additional components that are not described
by the model (e.g., noise) are typically superposed onto y0 and the composite
signal y is measured. Suppose that we are interested in the information x.
For a well-chosen model, applying the operator L to the measurement y would
separate the “disturbance” term L(y − y0) from x; e.g., when the support of x
is small and the energy of L(y− y0) is distributed among many coefficients, the
two components can be separated by thresholding. In the classical stochastic
framework, x is assumed to be a gaussian white process, while L corresponds
the prior information available on the signal power spectrum and essentially is
the decorrelating, or whitening, operator for y0.

We see that the continuous operator L for (1.2) possesses the same properties
as the wavelets in discrete image processing. This is not a random observation;
in fact, wavelets act as a multiscale version of the edge-detecting Laplacian
operator. In the one-dimensional case, the derivative-like behavior of wavelets
ensures energy compaction around signal discontinuities, while the orthogonality
property means that the noise is distributed uniformly around the coefficients.

1.4 Contributions

In this thesis, we consider the use of wavelets that are matched to the general
model (1.2). Here is the list of the main contributions of the present work:

• In the one-dimensional case, we consider a system L characterized by
some differential equation with constant coefficients. We derive a new
class of exponential-spline wavelets that act as a multiscale version of L.
In particular, the exponential polynomials that belong to the kernel of L
are annihilated by the new wavelet transform. Furthermore, the wavelet
coefficients at each scale correspond to the samples of a smoothed version
of the system input. The wavelet representation is non-stationary in the
sense that the scaling and wavelet filters are scale-dependent; however,
efficient decomposition and reconstruction is still possible. We give explicit
expressions of the filters that are used for the fast decomposition and
reconstruction routines.

• The operator-like behavior of exponential-spline wavelets suggests their
use in biomedical imaging problems that admit differential-equation-based
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models. In this work, we are interested in the brain activity detection
problem in fMRI. FMRI is a non-invasive brain mapping technique that
relies on the blood-oxygenation level-dependent (BOLD) signal change in
MRI. We rewrite the model for BOLD under the form (1.2) and intro-
duce wavelets (to which we give the name “activelets”) that model the
underlying operator. The extraction of the activity-related component is
performed by means of a sparse-solution search algorithm in the activelet
representation.

Unlike traditional data analysis techniques, our method does not require
any prior knowledge on experimental timing. The activelet approach lays
the foundation to new experimental paradigms, where timing is unknown
or imprecise. In the present study, we limit our interest to testing the
approach with synthetic and real fMRI datasets where timing is known.
As an evaluation scenario for the spatial resolution of the method, we
apply it to high-field retinotopy data.

• After having demonstrated the feasibility of our approach in brain local-
ization mapping, we get back to the general model (1.2). We introduce
the construction of operator-like wavelets that mimic the behavior of a
given differential operator L in multiple dimensions. Starting from the
Fourier-domain description of the operator, we define a scale-dependent
wavelet function whose shifts span the wavelet space. The apparent sim-
plicity of the concept — we have only one wavelet function per scale —
makes it particularly attractive from the mathematical point of view. The
fast decomposition and reconstruction algorithms in traditional wavelet
processing are easily adapted to the new framework.

1.5 Organization

The cornerstone construction of the thesis — the exponential-spline wavelets
— is presented in Chapter 2. In Chapter 3, we give a brief overview of the
human brain anatomy and obtain the operator that links the fMRI measure-
ments with the stimulus sequence in neuroscience studies. The activity-related
signal extraction problem is formulated in mathematical terms in Chapter 4.
In Chapter 5, we consider classical and modern techniques to solve the sparsity
problem efficiently. Experimental results are presented and analyzed in Chapter
6; a more subtle retinotopy experiment is described in Chapter 7. Finally, in
Chapter 8, we present a general theory of operator-like wavelets that makes our
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construction applicable to an even wider range of biomedical imaging problems.



Chapter 2

From Differential Equations
To The New Wavelet-Like
Bases

Abstract — We introduce an approach based on differential operators to con-
struct wavelet-like basis functions. Given a differential operator L with rational
transfer function, we obtain elementary building blocks that are shifted repli-
cates of the Green’s function of L. We show that these can be used to specify
a sequence of embedded spline spaces that admit a hierarchical exponential B-
spline representation. The corresponding B-splines are entirely specified by their
poles and zeros; they are compactly supported, have an explicit analytical form,
and generate multiresolution Riesz bases. Moreover, they satisfy generalized
refinement equations with a scale-dependent filter and lead to a representa-
tion that is dense in L2. This allows us to specify a corresponding family of
semi-orthogonal exponential spline wavelets, which provides a major extension
of earlier polynomial spline constructions. We completely characterize these
wavelets and prove that they satisfy the following remarkable properties:

• they are orthogonal across scales and generate Riesz bases at each resolu-
tion level;

• they yield unconditional bases of L2 — either compactly supported (B-
spline-type) or with exponential decay (orthogonal or dual-type);

9



10 From Differential Equations To The New Wavelet-Like Bases

• they have N vanishing exponential moments, where N is the order of the
differential operator;

• they behave like multiresolution versions of the operator L from which
they are derived;

• their order of approximation is (N−M), where N and M give the number
of poles and zeros, respectively.

Last but not least, the new wavelet-like decompositions are as computationally
efficient as the classical ones. They are computed using an adapted version of
Mallat’s filterbank algorithm, where the filters depend on the decomposition
level.

This chapter is based on our paper [8].

2.1 Introduction

In recent years, the wavelet transform has emerged as a powerful tool for per-
forming multiresolution signal analysis and processing [9–11]. Wavelets have
led to a multitude of applications with a significant impact on image compres-
sion, communications, and on other areas of applied mathematics. There has
also been an intense activity in wavelet design leading to the construction of a
large variety of wavelet bases, the most prominent ones being tailored to spe-
cial requirements such as orthogonality and short support [12], high number
of vanishing moments [13], symmetry and regularity [14], explicit analytical
form [15–17], near-optimal time-frequency localization [18], to cite but a few.

One of the key mathematical properties of wavelets is that they behave
like multiscale differentiators [9]; i.e., the wavelet coefficients of a signal are
the samples of the N -th order derivative of smoothed versions of it. Thus,
there is a correspondence between a wavelet with N vanishing moments and the
differentiation operator DN . One of the questions that motivated this work is:
What happens if we consider an arbitrary linear differential operator L instead
of DN? Will we be able to construct wavelets that qualitatively behave like L?
In this chapter, we show that this is indeed possible for differential operators
with arbitrary rational transfer functions.

The derivative-like behavior of wavelets was investigated in some depth
in [19]. Specifically, it was shown that it is the regular component of the scal-
ing function (i.e., the polynomial B-spline that lies hidden within) that induces
this property. Mathematically, this behavior turns out to be intimately linked
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to the property that the polynomial B-spline of order N is a localized version
(i.e., a linear combination of shifted replicates) of the Green’s function of the
operator DN . Thus, a possible way to induce a modified wavelet behavior is to
consider generators that are localized versions of the Green’s functions of more
general differential operators. In the case of ordinary differential operators,
the exponential B-splines are natural candidates [20]. In the cardinal setting,
it has been shown recently that these B-splines share all important properties
of their polynomial counterparts: they are compactly supported, they gener-
ate Riesz bases, and they satisfy some general multiresolution-like embedding
properties [21, 22]. In this chapter, we go one step further and use these func-
tions to specify an extended family of exponential spline wavelets that satisfy
some interesting mathematical properties. While we believe that our proposi-
tion to construct wavelets based on operators with rational transfer function
is novel, there is a theoretical connection with earlier work on non-stationary
wavelets [23–28]. For instance, the present construction falls within the gen-
eralized multiresolution framework of de Boor, DeVore and Ron [24]. These
authors even briefly considered exponential splines as an illustrative example of
their general scheme [24, Section 6]; they established the existence of such mul-
tiresolution bases of L2, but they did not go into much practical details beyond
this. Also relevant is the work of Lyche and Schumaker [27], who construct
general L-spline wavelets with non-uniform knots on the interval, starting with
a time-varying differential operator. There is a link between exponential spline
wavelets and some non-stationary subdivision schemes that preserve exponential
polynomials [29]. We note, however, that these only correspond to the lowpass
synthesis part of the wavelet algorithm and that the filters are interpolating,
which is typically not the case here.

This chapter is organized as follows: In Section II, we illustrate our wavelet-
construction method by producing an extension of the Haar transform that is
matched to the first-order differential operator (D−αI) with parameter α ∈ C.
In Section III, we consider the general case of a differential operator L and in-
troduce the corresponding exponential B-splines as space-generating functions.
We specify the embedding properties of the exponential B-spline spaces and
give a new result on their approximation properties that guarantees that the
representation is dense in L2. In Section IV, we use these functions to construct
orthonormal and semi-orthogonal wavelets and characterize the corresponding
filters. This provides the generalization of the polynomial spline wavelet fam-
ily [17] for a much larger class of splines. In Section V, we identify the key
mathematical properties of the exponential B-spline wavelets. Finally, we dis-
cuss the computational aspects of the introduced wavelet transform and consider
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specific examples.

2.2 An Exponential Extension of the Haar Sys-
tem

To introduce our new wavelet concept, we start with a simple illustrative exam-
ple and show how piecewise exponentials can be used to construct an extended
version of the Haar transform.

2.2.1 E-Spline Multiresolution: First-Order Case

Consider the first-order linear differential operator L = D−αI : Lf = f ′−αf,α ∈
C. As is well known from linear differential equation theory, the Green’s function
for this operator is ρα(t) = eαt · u(t), where u(t) is a step function. We recall
that the Green’s function ρ is causal and satisfies Lρ = δ, where δ denotes the
Dirac impulse; it is simply the impulse response of the causal inverse operator
H = L−1.

By definition, the exponential spline s(t) associated with the operator L is
a function such that

L{s}(t) =
∑

k∈Z
a[k]δ(t− tk),

where the a[k]’s are arbitrary coefficients, and where the tk’s are called the knots
of the spline. In our case where L is a first-order differential operator, the spline
s(t), as defined above, is discontinuous at these points. We can integrate this
equation by applying the inverse operator H = (D−αI)−1 to this relation, which
yields

s(t) =
∑

k∈Z
a[k]ρα(t− tk) + pα(t), (2.1)

where the additional term pα(t) = p0eαt, with p0 ∈ C, is a solution of the homo-
geneous equation Lpα = 0 to be chosen so that s(t) satisfies specific boundary
conditions.

To be able to apply fast filtering algorithms, we restrict ourselves to the case
where the knots are equally spaced; i.e., tk = Tk, k ∈ Z, where T is the interval
between two knots. The corresponding spline space VT = span{ρα(· − Tk)} is
in this case T -shift invariant. One can also omit pα, the element of the null
space of L in (2.1), because it can be expressed through the shifts of the Green’s
function [21].
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While the representation of a spline in terms of shifted Green’s functions
ρα(t− Tk) is attractive conceptually, it has the disadvantage of involving basis
functions that are not compactly supported. The key idea, which is in the
foundation of the present work, is that one can construct an equivalent set of
compactly supported basis functions by taking a suitable linear combination of
basis functions. It is not difficult to see that the shortest-possible functions in
VT take the form

βα,T (t) = ρα(t)− eαT ρα(t− T ). (2.2)

This function, which is compactly supported in [0, T ], is the exponential B-
spline of order one. In effect, the Green’s function is truncated by substracting
its weighted and shifted version (see Figure 2.1).

1 0 1 2 3
0

0.5

1

Figure 2.1: Localization of the Green’s function, T = 1.

The T -integer-shifted B-splines {βα,T (t− Tk)}k∈Z are obviously orthogonal
to each other, and they form a Riesz basis. Conversely, it is also possible to
invert (2.2) and to express the Green’s function as the linear combination of
B-splines

ρα(t) =
∞∑

k=0

eαkT βα,T (t− Tk).

The above Green-function reproduction formula, which is easily visualized graph-
ically, implies that all T -shifts of the Green’s function ρα belong to span{βα,T (·−
Tk)}, and thus

VT = span{βα,T (·− Tk)}.
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The Green’s function itself does not depend on the step size T . Thus, given
a fixed parameter α, we can construct the Green’s function ρα and build VT

as a span of T -shifts of ρα. On the contrary, the B-splines βα,T (t) depend on
the scale imposed by T , and this is the price paid for their compact support.
Moreover, if we compare the B-spline to a standard scaling function, we can
clearly see that the relation between the scales T and 2T is no longer a dilation
(see Figure 2.2).

So far, we have constructed the spaces VT . The Green-function representa-
tion makes the inclusion V2T ⊂ VT obvious, as illustrated in Figure 2.3. It is
then a natural step to attempt the construction of a multiresolution-like struc-
ture using B-splines at a dyadic scale T = 2i. For this purpose, we localize the
Green’s functions and consider B-splines as basis functions (see Figure 2.2).

i = 0

i = 1

i = 2

T = 1

T = 2

T = 4

4 3 2 1 0 1 2 3 4
0

0.5

1

4 3 2 1 0 1 2 3 4
0

0.5

1

4 3 2 1 0 1 2 3 4
0

0.5

1

Figure 2.2: Multiresolution analysis: E-spline representation.

What we get is not a multiresolution analysis in the classical sense because it is
not dilation that links the B-splines at different scales. Also, as soon as ρα ∈ L2

belongs to each space V2i (i.e., when Re{α} < 0), the intersection ∩∞i=−∞V(i) is
not empty. In this case, this happens because the Green’s function is square-
integrable. This means that the sum in the wavelet-space decomposition of L2
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i = 0

i = 1

i = 2

T = 1

T = 2

T = 4

Figure 2.3: Towards a multiresolution analysis: Green-function repre-
sentation of spline spaces. The basis of V2T contains every other element
of the basis of VT .
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must start from a finite scale and include the corresponding lowpass space. One
should mention, however, that in practical applications one always keeps low-
pass data at the coarsest scale, which makes the empty-intersection property
irrelevant.

From now on, we denote V(i) the space VT with T = 2i, ci = ||βα,2i ||L2 , and
ϕi(t) = 1

ci
βα,2i(t), the corresponding normalized generating function. As we see

from the Green-function representation of these spaces, V(i+1) is a subset of V(i).
This means that we can expand ϕi+1 ∈ V(i+1) in {ϕi(·− 2ik)}k∈Z. Specifically,
we have that

ϕi+1(t) =
ci

ci+1
(ϕi(t) + e2iαϕi(t− 2i)),

which points out a fundamental difference with conventional wavelet theory: the
present filter coefficients exhibit a scale dependence. The Fourier expression for
the refinement filter is

Hα,i(ej2iω) =
ϕ̂i+1(ω)
ϕ̂i(ω)

=
ci

ci+1
· (1 + e2i(α−jω)),

which is clearly (2−i · 2π)-periodic in ω.
The next step is to examine the orthogonal complement W(i+1) such that

V(i+1) ⊕W(i+1) = V(i), as it is done in classical wavelet construction. It is not
difficult to see that the function ψi+1(t) = ci

ci+1
(e2iα∗ϕi(t) − ϕi(t − 2i)) is a

generator of W(i+1). It is clearly included in V(i) and is orthogonal to ϕi+1, as
justified by

〈ϕi+1,ψi+1〉 =
c2
i

c2
i+1

e2iα

∫ 2i

0
|e2αt|dt

− c2
i

c2
i+1

∫ 2i+1

2i

e2iα · |e2α(t−2i)|dt = 0

We show this wavelet in Figure 2.4. We observe that the Haar wavelet corre-
sponds to α = 0.

There are several important properties that can be seen with this first E-
spline wavelet. First, its integral is not necessarily zero, which means that
the corresponding filter is not necessarily highpass. Second, the wavelets (and,
consequently, their spectra) at different scales are not dilated replica of each
other. For instance, when α = jω0, the wavelet is complex of constant amplitude
and its spectrum is shifted by ω0 as compared to the Haar case. Finally, we can
prove that the extended Haar multiresolution is dense in L2 (cf. Section III.B).
This is the final ingredient that is required to have a wavelet-like basis of L2.
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Figure 2.4: Left: First-order E-spline wavelet ψi at different scales.
Right: Haar wavelet at different scales.
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2.3 E-Splines

In this section, we generalize the previous construction by introducing E-splines
associated with higher-order operators and by defining the corresponding mul-
tiresolution analysis of L2. We then consider the approximation properties of
the constructed multiresolution representation and prove that it is dense in L2.

2.3.1 E-Spline Multiresolution

We start with the specification of a linear differential system. This system takes
an input function x(t) and produces an output y(t); its behavior is generally
described by

DNy + aN−1DN−1y + · · ·+ a0y =

DMx + bM−1DM−1x + · · ·+ b0x

with M < N . This equation can also be written in the equivalent operator form
L{y} = x. To obtain the transfer function of L, we take the Laplace transform
of both sides and solve for X(s)/Y (s), which yields

L#α,#γ(s) =
ΠN

n=1(s− αn)
ΠM

m=1(s− γm)
(2.3)

with parameter vectors +α = (α1, . . . ,αN ) and +γ = (γ1, . . . , γM ), where {αn}N
n=1

and {γm}M
m=1 are the roots of the polynomials sN + aN−1sN−1 + · · · + a0 and

sM + bM−1sM−1 + · · ·+ b0, respectively. The Green’s function of the system is
given by

ρ#α,#γ(t) = L−1

{
ΠM

m=1(·− γm)
ΠN

n=1(·− αn)

}
(t),

which can be determined by explicitly computing the inverse Laplace transform.
We will therefore refer to the spline-defining parameters, {αn}N

n=1 and {γm}M
m=1,

as the poles and the zeros, respectively.
A generalized E-spline with vector of poles +α, vector of zeros +γ and knots

−∞ < · · · < tk < tk+1 < · · · < +∞ is a function of the form

s(t) =
∑

k∈Z
a[k]ρ#α,#γ(t− tk) + p#α,#γ(t),

where p#α,#γ is a linear combination of exponential polynomials from the null
space N#α of the operator L#α,#γ . To make the notation simpler, from now on, we
will omit the indices +α,+γ.
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As in our illustrative example, we now consider exponential splines on a
uniform grid with knots tk = Tk, k ∈ Z. In this case [22], all null-space elements
p ∈ N#α are reproduced by {ρ(· − Tk)}k∈Z. Consequently, from the definition
of an E-spline, the shifted versions of the Green’s functions form a basis of the
space of generalized exponential splines.

Now, we are interested in a localized basis function. If +γ is empty, the Green’s
function is a convolution of first-order ones, and we use the composition of
first-order localization operators (which corresponds to the convolution of their
impulse responses) to localize it, as in

∆#α,T = ∆(α1,α2,...,αn),T = T (∆(α1),T . . .∆(αn),T )

where ∆(αi),T f(t) = 1
T (f(t) − eαiT f(t − T )). It can be further seen [22] that

the same localization operator ∆#α,T can be used to localize ρ#α,#γ for arbitrary
+γ, as long as M < N .

The function βT (t) = β#α,#γ,T (t) = ∆#α,T ρ(t) is called an exponential B-spline;
it is supported in [0, TN). Its Fourier transform is given by

β̂T (ω) =
1

TN−1

N∏

k=1

1− eT (αk−jω)

(jω − αk)

M∏

l=1

(jω − γl). (2.4)

We assume the stability condition αl−αm *= 2πkj/T for all distinct pure imag-
inary roots αl,αm. The T -integer shifts of the B-spline then form a Riesz ba-
sis [22, Theorem 1]; i.e., they provide a stable signal representation. In addition,
one can show that the Green’s function can be reconstructed as

ρ(t) =
+∞∑

k=0

pT [k]βT (t− Tk),

where pT [k] are some suitable weights [22]. This reproduction formula ensures
the completeness of {βT (·−Tk)}k∈Z in the space spanned by the shifted Green’s
functions. Thus, the exponential B-splines form a stable and complete basis of
this space.

To define a corresponding multiresolution analysis, we focus on the dyadic
scales T = 2i. The V(i)’s are the subspaces of L2 spanned by 2i-shifts of the
Green’s function

V(i) = {si =
∑

k∈Z
ckρ(·− 2ik)} ∩ L2,

where the ck’s are arbitrary coefficients.
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(localization)∆T

L

(Green function
reproduction) ∆

−1

T

VT = span{βT (·− Tk)}

VT = span{ρ(·− Tk)}

LVT = span{δ(·− Tk)}

H = L−1

Figure 2.5: Construction of exponential-spline spaces.

Due to the equivalence provided by the localization process and by the
Green-function reproduction formula, we can also write

V(i) = {si(t) =
∑

k∈Z
ckϕi(t− 2ik) : c ∈ l2},

where ϕi(t) is the normalized scaling function ϕi(t) = β2i(t)/||β2i ||L2 .
We give in Figure 2.5 a diagram that summarizes the construction of the

exponential-spline spaces. The space V(i) is included in V(i−1) by construction.
Moreover, as we shall see in the corollary to Theorem 1, the approximation
error in V(i) goes to zero as i → −∞. We therefore have a ladder of spaces
satisfying

⋃
V(i) = L2. However, in contrast with the common definition of a

multiresolution analysis, the scaling function whose shifts form a basis of V(i) is
not a dilated version of ϕ0 if i *= 0. Instead, at each scale i, we have a specific
generating function ϕi. Similarly to the first-order case, the causal Green’s
function ρ belongs to all spaces V(i) if Re{αl} < 0, l = 1, . . . , N ; else, their
intersection is empty as is usually expected (i.e.,

⋂
V(i) = ∅).

2.3.2 Order of Approximation

To measure the quality of the E-spline approximation of a signal f , we estimate
the asymptotic behavior of the approximation error as the scale T = 2i goes to
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zero (or, equivalently, as i → −∞). There are results from basic spline theory,
applicable to the case where +γ is empty, that imply that the error should decay
like TN as T → 0 [20,30]. An exact asymptotic formula is given in [21, Theorem
2]. Here, we extend this result for the general rational case (M < N).

Theorem 1 Let L#α,#γ be a defining operator for a linear differential system with
dim(+α) = N , dim(+γ) = M . Let f ∈ L2 be a function such that DNf ∈ L2, and
let PT denote the orthogonal projector into the exponential B-spline space VT .
Then, we have the following asymptotic formula for the approximation error as
T → 0:

||f − PT f ||L2 = CN,M · TN−M · ||L#α,#γf ||L2

where CN,M =
√

2ζ(2(N−M))

(2π)N−M with ζ(s) =
∑∞

k=1 1/ks (Riemann’s zeta function).

The proof of this theorem is quite technical and is given in Appendix A. The
following corollary ensures that the approximation order tends to zero as T → 0
for any f ∈ L2, as stated in the previous subsection.

Corollary 1 For any function f ∈ L2 we have ||f − PT f ||→ 0 as T → 0.

Proof: We use the fact that the Sobolev space WN
2 is dense in L2. Specifi-

cally, we estimate the error from above as ||f−PT f || ≤ ||f−fs||+ ||fs−PT fs||+
||PT (fs − f)|| ≤ 2||f − fs||+ ||fs − PT fs||, where fs ∈ WN

2 can be chosen to be
arbitrarily close to f .

Theorem 1 is a result for the approximation of smooth functions. For rougher
functions whose Sobolev degree of smoothness is r < N − M , we expect that
the error will only decay like O(T r). A proof for the standard wavelet case can
be found in [31].

2.4 Multiresolution Basis Functions

So far, we have constructed the spaces V(i) spanned by the 2i-shifts of the Green’s
function and have given an equivalent representation using compactly supported
B-splines. In this section, we construct orthonormal and dual basis-generating
functions for V(i), and the corresponding wavelets as well.
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2.4.1 E-Spline Scaling Functions

We start with a proposition that helps us construct Riesz bases in V(i). First,
we define

ai[k] = 〈ϕi(·),ϕi(·− 2ik)〉 (2.5)

which is the Gram sequence—or autocorrelation—of the basis {ϕi(t−2ik)}k∈Z.
We then have that Ai(ej2iω) =

∑
k∈Z ai[k]e−j2iωk = 2−i

∑
k∈Z |ϕ̂i(ω+2πk/2i)|2,

where Ai(z) is the z-transform of ai[k]. Ai(z) is also referred to as the autocor-
relation filter.

Proposition 1 Let ϕi be an exponential B-spline at scale T = 2i, with expo-
nential parameter vector +α such that αl − αm *= j2πk/2i, k ∈ Z for all distinct
purely imaginary roots αl,αm. Then {φi(·− 2ik)}k∈Z, with

φi(t) =
∑

k∈Z
pi(k)ϕi(t− 2ik),

is a Riesz basis of V(i) if and only if 0 < c1 ≤ |Pi(ejω)| ≤ c2 < ∞.

Proof: We know that, if +α satisfies the conditions of the theorem, then
{ϕi(·− 2ik)}k∈Z is a Riesz basis of V(i) [22, Theorem 1]. Considering the auto-
correlation filter for φi, we get

1
2i

∑

k∈Z
|φ̂i(ω +

2πk

2i
)|2 =

1
2i

∑

k∈Z
|Pi(ej2iω)|2 · |ϕ̂i(ω +

2πk

2i
)|2

= |Pi(ej2iω)|2Ai(ej2iω).

Thus, the left-hand side expression is positive and bounded if and only if
|Pi(ejω)| is positive and bounded.

The compactly supported basis {ϕi(·− 2ik)}k∈Z that we constructed in the
previous section is generally not orthogonal if the order of the exponential B-
spline is greater than 1. To construct a dual basis {ϕ̊i(· − 2ik)} of the same
space V(i), we write in the Fourier domain the condition of biorthonormality
between {ϕ̊i(·− 2ik)} and {ϕi(·− 2ik)}, from which we deduce that

ˆ̊ϕi(ω) =
ϕ̂i(ω)

Ai(ej2iω)
. (2.6)
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The dual basis is useful to project an arbitrary signal f ∈ L2 onto V(i). This
least-squares approximation is computed via the projection formula

Pif(x) =
∑

k

〈f(·), ϕ̊i(·− 2ik)〉ϕi(·− 2ik).

To build an orthonormal basis {ϕo,i(· − 2ik)}k∈Z, we orthonormalize ϕ̂i(ω)
in the Fourier domain, which yields

ϕ̂o,i(ω) =
ϕ̂i(ω)√
Ai(ej2iω)

.

Since the weighting functions (Ai(ej2iω))−1 and (Ai(ej2iω))− 1
2 are bounded

from above and are non-vanishing, we can invoke Proposition 1 which ensures
that the constructed dual and orthonormal bases are Riesz bases as well.

As noticed before, V(i+1) ⊂ V(i). In particular, ϕi+1 can be decomposed in
the basis of V(i), which gives us the scaling relation

ϕi+1(t) =
∑

k

hi[k]ϕi(t− 2ik). (2.7)

Taking the Fourier equivalent of this formula and plugging it in (2.4), we find
that

Hi(ej2iω) =
ϕ̂i+1(ω)
ϕ̂i(ω)

= 2
ci

ci+1
·

N∏

k=1

1 + e2i(αk−jω)

2
,

where ci = ||βi||L2 is a normalizing constant.
We note that this refinement equation was already given in [24] for the

standard (non-rational) case. The more general case of a rational operator and
of an arbitrary integer dilation factor m (not necessarily a power of two) is
considered in [22].

Interestingly, the refinement filter Hi(z) = 2(ci/ci+1)·
∏N

k=1((1 + e2iαkz−1)/2)
is now different for each scale; also, it is the same irrespective of the zero vector
+γ up to multiplication by a constant. The dual refinement filter H̃i(z) is given
by

H̃i(z) =
Ai(z)

Ai+1(z2)
Hi(z), (2.8)

and the dual scaling function ϕ̊i satisfies the relation

ϕ̊i+1(t) =
∑

k

h̃i[k]ϕ̊i(t− 2ik).
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By substituting (2.7) into the expression for the autocorrelation sequence at
scale i + 1 given by (2.5), it is easy to express Ai+1(z2) in terms of Ai(z) and
Hi(z) as

Ai+1(z2) =
1
2
(Ai(z)Hi(z)H∗

i (z−1)

+Ai(−z)Hi(−z)H∗
i (−z−1)). (2.9)

2.4.2 E-Spline Wavelets

The inclusion V(i) ⊂ V(i−1) allows us to uniquely introduce the orthogonal com-
plements W(i) such that

V(i) ⊕W(i) = V(i−1).

The residual space W(i) is the orthogonal complement of V(i) in V(i−1). It
plays the same role as in the case of semi-orthonormal wavelet functions, which
are orthonormal across scales, but not necessarily within a given scale. Thus,
at a given scale i + 1, we are looking for a wavelet ψi+1 of the form

ψi+1(t) =
∑

k

gi[k]ϕi(t− 2ik) (2.10)

that is orthogonal to Vi+1. In other words, for all k ∈ Z, we must have

〈ψi+1(·),ϕi+1(·− 2i+1k)〉 = 0.

From (2.10) and (2.7), and after having expressed the z-transform of this or-
thogonality relation, we obtain

Gi(z)H∗
i (z−1)Ai(z) + Gi(−z)H∗

i (−z−1)Ai(−z) = 0.

In contrast to the classical wavelet theory, all filters now depend on the scale.
Hence, the solution Gi(z) depends on the scale, too. Its general form is

Gi(z) = −zQi(z2)H∗
i (−z−1)Ai(−z),

where Qi(z) is a Laurent polynomial in z. We show now how to choose Qi to
get a Riesz basis {ψi(· − 2ik)}k∈Z of Wi, while noting that we cannot directly
apply Proposition 1 since ϕi−1 and ψi belong to different functional spaces.

Proposition 2 {ψi(·− 2ik)}k∈Z is a Riesz basis of Wi if and only if the filter
Qi−1 is bounded and non-vanishing on the unit circle.
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Proof: The autocorrelation filter is

Ri(e2ijω) =
∑

k∈Z
|ψ̂i(ω +

2π

2i
k)|2

= Gi−1(e2i−1jω)Ai−1(e2i−1jω)

+Gi−1(ejπ+2i−1jω)Ai−1(ejπ+2i−1jω)

= Ai−1(e2i−1jω)Ai−1(ejπ+2i−1jω)|Qi−1(e2i−1jω)|2

·(Hi−1(e2i−1jω)Ai−1(e2i−1jω)

+Hi−1(ejπ+2i−1jω)Ai−1(ejπ+2i−1jω))

= Ai−1(e2i−1jω)Ai−1(ejπ+2i−1jω)

·Ai(ej2ijω)|Qi−1(e2i−1jω)|2

Thus, for {ψi(t−2ik)}k∈Z to be a Riesz basis in Wi, there should exist c1, c2 > 0
such that c1 ≤ |Qi−1(e2i−1jω)|2 < c2.

In order to perform a hierarchical decomposition in our new wavelet basis,
we would like to apply Mallat’s filterbank algorithm. Therefore, we build the
filterbank shown in Figure 2.6 and impose a perfect reconstruction condition.
Following the same construction procedure as before, we obtain the dual wavelet

2 2

2 2

in out
H̃∗

i (z−1)

G̃∗

i (z
−1) Gi(z)

Hi(z)

Figure 2.6: Two-channel filterbank used for the wavelet transform.

relation
ˆ̊ψi+1(ω) = G̃i(e2ijω) ˆ̊ϕi(ω),

where the dual wavelet filter G̃i is given by

G̃i(z) = −z
H̃∗

i (−z−1)
Ai(−z)Q∗

i (z−2)
. (2.11)
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We typically use (G̃i, H̃i) on the analysis side and (Gi, Hi) on the synthesis side,
so that the synthesis wavelet is compactly supported. However, it is possible
to interchange these filter pairs; this corresponds to performing a dual E-spline
wavelet transform.

For the orthonormal E-spline wavelet transform, the same filters are used
on the analysis and synthesis side. These filters are denoted by (Go,i, Ho,i) and
are given by

Ho,i(z) =

√
Ai(z)

Ai+1(z2)
Hi(z)

Go,i(z) = −z−1H∗
o,i(−z−1).

The constructed scaling functions and wavelets at each scale i belong to the
space CN−M−2. Indeed, they all can be expressed as weighted sums of the shifts
of ϕi−1 ∈ CN−M−2 [22, Section 3]. The scaling and the wavelet filters are either
FIR (B-spline case) or IIR with exponential decay (dual or orthogonal case);
thus, the basis functions are either compactly supported, or decay exponentially.

2.5 Properties of E-Splines and E-Spline Wavelets

2.5.1 Reproduction of Exponential Polynomials

The following proposition generalizes the polynomial-reproduction property of
the classical wavelet theory:

Property 1 Suppose that +α contains a root α0 of multiplicity m. Then, for
n = 0, . . . ,m−1 the exponential monomial tneα0t has the B-spline representation

tneα0t =
∑

k∈Z
p#α,i,n[k]β#α,#γ,2i(t− 2ik),

where p#α,i,n[k] are suitable coefficients.

For the arbitrary parameter vector +α consisting of Nd distinct roots of mul-
tiplicity mk, k = 1, . . . , Nd, the direct corollary is that the exponential polyno-
mials

p#α(t) =
Nd∑

k=1

mk−1∑

n=0

cktneαkt

that constitute the null space N#α of the operator L can be reproduced with
B-splines. The result follows from Proposition 2 in [21].
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2.5.2 Vanishing Exponential Moments

In conventional wavelet theory, the vanishing-moment property of the wavelet
is closely related to the ability of the scaling function to reproduce polynomials.
This can be generalized as well to our case of rational operators.

Property 2 For each scale i ∈ Z, shift t0 ∈ R, and degree n = 0, . . . ,mk − 1,
the analysis wavelet satisfies

∫ ∞

−∞
tneαktψ̊∗i (t− t0)dt = 0,

where mk is the multiplicity of αk. In other words, the analysis wavelet ψ̊∗i has
N vanishing exponential moments that correspond to the basis functions of the
null space of L. Equivalently, for each p#α(t) ∈ N#α, we have

∫ ∞

−∞
p#α(t)ψ̊∗i (t− t0)dt = 0.

This proposition becomes obvious if we remember that W(i) is an orthogonal
complement of V(i); thus, as long as the null space of L can be reconstructed
with the basis functions of V(i), ψ̊i is orthogonal to it. In addition, the null
space is shift-invariant [22]; i.e., p#α(t− t0) ∈ N#α, which completes the proof.

2.5.3 Operator-Like Wavelets

The following theorem is a key result of the present work. It states that our
new wavelets behave qualitatively like the differential operator from which the
multiresolution analysis is derived.

Theorem 2 Let {ψi,k}i,k∈Z be an E-spline wavelet basis of L2. Then, there
exists a sequence {φi}i∈Z of E-spline scaling functions of order 2N such that
〈f, ψ̊i(·− t0)〉 = L{f ∗ φi}(t0); in addition, {φi}i∈Z generates a multiresolution
analysis of L2. The wavelet coefficients of f are therefore the samples of the
smoothed versions of L#α,#γf .

Proof: Consider the wavelet coefficient 〈f, ψ̊i(·−t0)〉 =
∫

L(jω)f̂(ω)
ˆ̊ψ∗i (ω)
L(jω) ·

ejωt0dω. We now define φ̂i(ω) = ˆ̊ψ∗i (ω)/L(jω) and study the behavior of this
function. Combining (2.8) and (2.11), we get

φ̂i(ω) =
G̃∗

i−1(e−j2i−1ω)
L(jω)

ˆ̊ϕ∗i−1(ω)
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= −e−j2i−1ω Hi−1(−ej2i−1ω)
L(jω)Ai(ej2iω)Qi−1(ej2iω)

ˆ̊ϕ∗i−1(ω).

In order to further simplify this expression, we notice that ϕ̂i(ω) = Hi(−ej2iω)
L(jω) .

Hence, taking (2.6) into account, we have

φ̂i(ω) = −e−j2i−1ω Ai−1(ej2i−1ω)
Ai(ej2iω)Qi−1(ej2iω)

| ˆ̊ϕi−1(ω)|2.

In this expression, | ˆ̊ϕi−1(ω)|2 corresponds to an exponential B-spline with aug-
mented parameters (+α : −+α∗), (+γ : −+γ∗). The discrete filters Ai−1, Ai, and Qi−1,
are bounded and do not vanish on the unit circle. According to Proposition 1,
{φi(·− 2i−1k)}k∈Z is a Riesz basis of the space generated by ϕ̊i−1 ∗ ϕ̊T

i−1, which
implies that the φi’s generate a multiresolution analysis of L2.

When γk *= 0 for all k and αl *= 2−i · 2πkj for 1 ≤ l ≤ N, k *= 0, then
the filters φi are lowpass. The sufficient condition is that ϕi is a valid E-spline
scaling function with αl = 0 for at least one l. The validity statement then
implies all other requirements. This is exactly the case for the examples in
Section VI.

2.6 Implementation and Examples

In this section, we describe the filterbank implementation for the wavelet de-
composition and reconstruction based on E-splines. We also discuss possible
algorithms for the calculation of the autocorrelation filter. Finally, we show
examples of exponential B-splines, illustrating the concepts of this chapter.

2.6.1 Filterbank Implementation

In practice, it is more efficient to work with discrete sequences and filterbanks,
rather than with continuous-time signals and projections. In the conventional
wavelet theory, this idea leads to Mallat’s fast filterbank algorithm [9]. It is
easy to see that this algorithm can be applied to the E-spline-wavelet case as
well; however, the filters (Gi, G̃i) and (Hi, H̃i) must be precalculated for each
iteration. IIR filters can be implemented recursively (as in [17]) or approximated
with FIR filters of sufficient length. A simple alternative is to evaluate these in
the Fourier domain using the FFT algorithm [32].
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The algorithm first interpolates the given samples f [k] with the exponential
B-splines at the initial scale i = 0,

f0(t) =
∑

k∈Z
c[k]ϕ0(t− k), (2.12)

where c[k] = (p ∗ f)[k], and where P (z) is the interpolation prefilter given by

P (z) =
1

(
∑

k ϕ0(k)z−k)
. (2.13)

The c[k]’s are used to initialize the hierarchical decomposition.
In the unlikely event where P (z) is not stable, which is also sometimes the

case with conventional splines, we propose to replace the filter by a generalized
quasi-interpolant [33] that is specifically designed to reproduce the exponential
polynomials.

The (quasi-)interpolation model (2.12) implies that f0 ∈ V0. Thus, the c[k]’s
given by the initialization procedure are also the coefficients of the projection
of f0 into V0. Indeed,

〈f0, ϕ̊0(·− k)〉 =
∑

k0∈Z
c[k0]〈ϕ0(·− k0), ϕ̊0(·− k)〉 = c[k],

because of the biorthogonality of ϕ0 and ϕ̊0.
For each iteration, we need to know the autocorrelation filter Ai(z) at the

current scale i. Then, the wavelet filters Gi(z), G̃i(z), Go,i, and the scaling filters
Hi(z), H̃i(z),Ho,i(z), can be computed using the explicit expressions given in
Section IV. Equation (2.9) allows us to find Ai+1(z) from Ai(z). For A0(z), we
recall that the autocorrelation function of the exponential B-spline corresponds
to the scaled symmetrical B-spline with parameters (+α,−+α∗), (+γ,−+γ∗) [21].

We see that, both for the autocorrelation filter and for the interpolation
prefilter, we need to compute the exponential B-spline samples in the time
domain. This can be done by evaluating the samples of the Green’s function
and by applying finite-difference operators to them.

In the first order case, the procedure is especially simple because Ai(z) = 1.
In that case, Hi(z) = H̃i(z) = Hα,i(z) = 1√

1+|e2i+1α|
·(1+e2iαz−1) and Gi(z) =

G̃i(z) = 1√
1+|e2i+1α|

(e2iα∗ − z−1), where we observe the simple dependence on

the scale. Interestingly, the filters tend to those of the Haar system (sum and
difference) as the scale gets finer (i → −∞).
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2.6.2 Computation of the Green-Function Samples

For Re{αk} > 0, the Green’s function grows exponentially. To deal with this
issue, we use anticausal Green’s functions for all k such that Re{αk} > 0, tuning
the sign in the partial fraction decomposition. Having decomposed ρ̂(ω) into
partial fractions

ρ̂(ω) =
Nd∑

n=1

mn∑

l=1

cn,l

(jω − αn)l
,

we express the components with Re{αk} > 0 as

cn,l

(jω − αn)l
=

(−1)lcn,l

(−jω − (−αn))l
.

In the time domain, the latter corresponds to anticausal Green’s function with
parameter αn.

We further notice that, to calculate N samples of the B-spline, we need
2N + 1 values of the Green’s function; thus, ρ(t) should be calculated for tk =
−N, . . . , N .

2.6.3 Computation of the Exponential B-Spline Samples
and Filters

We apply N finite-difference operators ∆(α1),2i , . . . ,∆(αN ),2i to the Green’s func-
tion samples and obtain N samples of the exponential B-spline. The value
ci =

√
ai[0] is equal to the norm of the B-spline and is used for normalization.

The autocorrelation filter is obtained by taking the value of the trigonometric
polynomial

Ai(e2ijω) =
N∑

k=−N

ai[k]e2ijωk.

Since the samples of the exponential B-spline are known, the interpolation pre-
filter can be computed from (2.13).

2.6.4 Examples

For our first example, we choose +α = (0,−1) and +γ empty. We show the basic
and dual scaling functions and the wavelets in Figures 2.7(a)–2.7(d). It can
be seen that these functions are non-symmetric, piecewise exponential, and yet
continuous because N − M = 2. The two synthesis functions ϕ0 and ψ1 are
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(b) Dual scaling function ϕ̊0(t)

10 8 6 4 2 0 2 4 6 8 10

1

0.5

0

0.5

1

(c) Synthesis wavelet ψ1(t)
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(d) Analysis wavelet ψ̊1(t)

Figure 2.7: Example 1: Basic and dual scaling functions and wavelets;
+α = (0,−1), +γ is empty.
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compactly supported, while their dual counterparts ϕ̊0 and ψ̊1 are exponentially
decaying.

The spectrum of the analysis wavelet ψ̊1 is displayed in Figure 2.8(a). The
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(a) Spectrum of the analysis wavelet

| ˆ̊ψ1(ω)| and |L(jω)|.
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(b) Spectrum |φ̂1(ω)| of the smoothing
kernel

Figure 2.8: Example 1: Spectral behavior of the analysis wavelet and
of the smoothing kernel; +α = (0,−1), +γ is empty

frequency response of the corresponding operator L = D + D2 is overlaid with
a dashed line. It can be seen that the two plots are well matched around the
origin (at the location of the pole jω = α1 = 0), which illustrates the differential-
operator property (see Theorem 2). We show the spectrum of the smoothing
kernel |φ̂1(ω)| = | ˆ̊ψ∗1(ω)/L(jω)| in Figure 2.8(b); it is clearly lowpass and decays
rapidly for high frequencies.

With our second example, we illustrate the spectral behavior of the wavelets
and of the scaling functions. For this purpose, we choose the parameters +α =
(− 5π

8 j,− 5π
8 j, 5π

8 j, 5π
8 j, 0, 0) and +γ = (−5j, 5j) to be pure imaginary and to have

Hermitian symmetry, which ensures that the time-domain functions are real. In
Figure 2.9, we show the scaling function ϕ0 and the wavelets ψ1 and ψ2 in the
time domain; these have a strong oscillatory character, with a larger number of
lobes as the scale gets coarser. It is clearly apparent that ψ2 is not a dilate of
ψ1. Figures 2.7 and 2.9 illustrate the diversity of shapes that can be obtained
with E-spline scaling functions and wavelets.

The plots in Figure 2.10 show the effect of the poles +α and of the zeros +γ
on the frequency response. In Figure 2.10(a), the pole α1 = − 5π

8 j produces a
peak of the scaling-function spectrum near ω = − 5π

8 j and makes it vanish with
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(a) Scaling function ϕ0, i = 0
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(b) Wavelet ψ1, i = 1
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(c) Wavelet ψ2, i = 2

Figure 2.9: Example 2: The scaling function at the scale i = 0 and
the wavelets at the scales i = 1, i = 2; +α = (− 5π
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+γ = (−5j, 5j).
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(a) Scaling function spectrum
|ϕ̂1(ω)|, i = 1
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(b) Wavelet spectrum
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Figure 2.10: Example 2: The spectrum of the scaling function and the
spectrum of the wavelet; +α = (− 5π

8 j,− 5π
8 j, 5π

8 j, 5π
8 j, 0, 0), +γ = (−5j, 5j).
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periodicity π. There is also a peak at the origin because of the pole at ω = 0.
The zero γ1 = −5j makes the frequency response vanish at ω = −5. In contrast,
the wavelet spectrum (Figure 2.10(b)) vanishes at jω = αl, as a result of the
vanishing exponential moment and of the linear-differential-operator properties
of E-spline wavelets.

2.7 Conclusion

We have introduced a new procedure for constructing wavelet-like bases from
linear differential operators. Similar to analog filters, the wavelet spaces are
characterized by the poles and zeros of the underlying operator. The wavelets
come in three different flavors: basic (B-spline), dual, and orthonormal. We
have studied the approximation-order properties of the multiresolution anal-
ysis. These wavelet bases possess powerful properties, including the ability
to kill exponential polynomials, which generalizes the notion of the vanishing
moments found in the conventional wavelet theory. More importantly, they es-
sentially behave as multiscale versions of the underlying operator. We recover
the polynomial B-spline case by choosing the parameter +α = (0, . . . , 0), where
the corresponding operator is the N -th derivative.

The constructed wavelets are not dilates of a single function anymore; how-
ever, they still can be implemented using a non-stationary version of Mallat’s
fast filterbank algorithm.

The proposed framework should be of interest for signal-processing appli-
cations. It might be well suited to signals that are not predominantly lowpass
but that have substantial energy concentrations in some frequency bands. In
particular, it offers the possibility of adapting the model for a given class of
signals, by selecting roots that fit the natural resonances of the data.



Chapter 3

Imaging Brain Function

Abstract — We would like to apply the new wavelet framework to the studies
in brain functional localization in fMRI. Our goal in this chapter is twofold:

• to give a brief overview of the brain anatomy and of the basic principles
of neuronal function that are relevant to imaging;

• to identify the differential operator that links the stimulus with the mea-
sured fMRI signal. To this end, we give a short introduction to fMRI and
present the balloon/windkessel model, which we use as a basis to derive
the expression for the linear operator.

For more detailed information, the reader is referred to [34,35].

3.1 Human Brain: Anatomy And Structure

The human brain is made up of about 100 billions of neuronal cells (neurons)
that communicate through a complex network of channels. Each neuron (see
Fig. 3.1) has about 10000 communication channels: the receiver channels, called
dendrites, and the transmitter channels, which are formed by splitting the end
of a relatively long fiber (axon). The cellular bodies have grayish color and form
the gray matter, while the axons are surrounded by a myeline sheath of white
color and constitute the white matter. Large-scale anatomical regions of the
brain are called the brain lobes (see Fig. 3.2).

The communication of neurons is based on action potentials. If a cell receives
more excitatory impulses than inhibitory ones above a certain threshold, it

35
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Figure 3.1: A neuronal cell (image taken from:
http://www.steve.gb.com/science/nervous system.html).
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Figure 3.2: Brain anatomy (image taken from http://www.nyas.org).
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transmits the charge down the axon — this process is called the firing of a
neuron. Firing reduces the free energy, which needs to be restored; through
a chain of chemical reactions, the restoration process boils down to oxygen
and glucose metabolism. Studies in animals and humans have shown a close
correspondence between local neural activity and glucose metabolism [36].

The delivery of glucose and oxygen to the neuronal cells is performed by the
cerebral blood flow (CBF). The value of CBF is defined as the rate of delivery
of arterial blood to capillary beds of volume of tissue, with an average of 60
mg/g-min. Note that CBF does not include the blood that transits the region
through arteries and veins. Already in 1890, it was suggested that local CBF
increases in active regions [37]. This hypothesis proved to be true; moreover,
the blood vessel density in human brain, to some extent, reflects its functional
organization. Although neurovascular coupling still remains an active area of
research, many modern techniques rely on measurements of CBF rather than
on that of direct electrical activity.

Two another important quantities in hemodynamics are the cerebral metabolic
rate of oxygen (CMRO2 ) and the cerebral blood volume (CBV). CMRO2 grows
slightly with the neural activity, but its increase is significantly smaller than the
gain in CBF. CBV measures the fraction of volume occupied by blood vessels,
and is usually equal to 4% in the resting state. Following the change in CBF,
CBV can fluctuate due to dilation or contraction of the vessels.

3.2 Functional Magnetic Resonance Imaging

Brain imaging modalities can be generally classified into two categories: those
measuring the electrical activity directly, and those observing the coupled chem-
ical or hemodynamic effects. The first category includes the fully non-invasive
techniques like EEG (electroencephalography) and MEG (magnetoencephalog-
raphy) that suffer from very poor spatial resolution, as well as very invasive
single unit recording methods that are only applicable in animal studies. ESM
(electrical stimulation mapping) is often used in neurosurgery. The second
category includes PET(positron emission tomography)/SPECT(single photon
emission computed tomography), OIS (optical imaging of intrinsic signals), OT
(optical tomography), NIRS (near-infrared spectroscopy), SSEP (somatosensory
evoked potentials) and fMRI (functional magnetic resonance imaging) methods.
These techniques are compared in terms of spatiotemporal resolution, invasive-
ness and number of publications in Fig. (3.3). For a non-invasive technique, the
achievable resolution in fMRI is promisingly good, which explains the growing
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Shedding light on brain mapping:
advances in human optical imaging
Nader Pouratian1, Sameer A. Sheth1, Neil A. Martin2 and Arthur W. Toga1

1Laboratory of Neuro Imaging, Department of Neurology, David Geffen School of Medicine at UCLA,
710 Westwood Plaza Room 4238, Los Angeles, CA 90095-1769, USA
2Division of Neurosurgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1769, USA

Several functional brain imaging techniques have been
used to study human cortical organization. Optical
imaging of intrinsic signals (OIS) offers perhaps the
best combination of spatial coverage, resolution and
speed for mapping the functional topography of human
cortex. In this review, we discuss recent advances in
optical imaging technology and methodology that have
made human OIS easier to implement and more acces-
sible, including improvements in detector character-
istics and the development of sophisticated algorithms
for reducing motion artifact. Moreover, we discuss how
these advances have helped enhance our understand-
ing of the functional organization of the human brain.
We also review newly developed analyses for interpret-
ing and validating optical signals, including refined sig-
nal analysis techniques and multimodality comparisons.
Combined, these advances have enabled the study of
not only primary sensory and motor cortices, but also
higher cognitive processes such as language production
and comprehension. Continued improvement and imple-
mentation of this technique promises to shed new light
on the functional organization of human cortex.

Several brain mapping techniques have been developed to
characterize the as yet undefined and complex functional
topography of the brain. Among all the modalities, optical
imaging of intrinsic signals (OIS) stands out because it
offers a superior combination of spatial sampling, spatial
resolution and temporal resolution (Fig. 1). It has exquisite
sensitivity and can be tuned to image different physio-
logical signals. OIS has, therefore, become awidely applied
tool for functional brain mapping [1].

OIS has paved the way for major breakthroughs in our
understanding of the functional organization, physiology
and pathophysiology of the brain. OIS studies in animals
have defined the functional topography of visual and other
cortices [2–12], helped elucidate the coupling between elec-
trophysiology and perfusion-related signals [3,5,9,10,13–15],
characterized the robustness of neurovascular response
capacities [15,16], and described perfusion-related changes
induced by pathophysiological processes such as cortical
spreading depression and seizure [17–20].

Technological and methodological advances first made
OIS possible in humans in 1992; Haglund and colleagues

reported optical signals during both seizure and cognitive
tasks [21]. Further advances, including improvements in
charge-coupled device (CCD) technology, image regis-
tration algorithms and image analysis techniques, have
enabled investigators to study the evolution of optical
signals in human cortex [22], to define the functional
topography and plasticity of sensory and language cortices
[23–27], and to explore the physiological basis of the

Fig. 1. Comparison of functional human brain mapping techniques. Several
brain mapping techniques have been developed to characterize the functional
architecture of the human brain. Each technique offers a range of spatial and
temporal resolutions, as indicated by the location of the column in the x–y plane.
Optical imaging of intrinsic signals (OIS) is unique among these techniques
because it offers a superior combination of spatial sampling, spatial resolution and
temporal resolution. Although it does not offer the best overall spatial or temporal
resolution (compared with single-unit recordings), when spatial sampling is
considered, OIS provides investigators with a unique combination of character-
istics to map the brain in an unparalleled way. Although voltage-sensitive dye
(VSD) imaging can offer an even better combination of spatial sampling, spatial
resolution and temporal resolution (because electrical responses are faster than
hemodynamic responses), dye toxicity currently precludes them from use in
humans. OIS requires cortical exposure, however, making it more invasive than
most mapping techniques, as indicated by the shading. Technical difficulties in
implementation have limited the number of human studies using OIS to under
a dozen (indicated by column height) but the methodological advances discussed
in this article should increase human OIS accessibility to the neuroscientific
community. Abbreviations: EEG, electroencephalography; ESM, electrical-
stimulation mapping; fMRI, functional magnetic resonance imaging; MEG,
magnetoencephalography; NIRS, near-infrared spectroscopy; OT, optical
tomography; PET, positron emission tomography; SPECT, single photon
emission computed tomography; SSEPs, somatosensory evoked potentials.
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Figure 3.3: Comparing functional imaging modalities: temporal reso-
lution, spatial resolution, invasiveness and number of publications (im-
age taken from [38]).

amount of related publications. In the next subsection, we briefly describe the
underlying physical principle of magnetic resonance and the ideas that make it
useful for imaging.

3.2.1 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) has revolutionized medical research. Its
popularity can be explained by its non-invasiveness, good spatiotemporal reso-
lution and high SNR in comparison with other imaging methods. The physical
principle behind MRI is the nuclear magnetic resonance phenomenon.

When exposed to a strong static magnetic field B0, certain atoms (e.g., hy-
drogen nuclei, which we will be referring to later in this chapter) align their
spins parallel with the field vector, resulting in a net bulk magnetization. Fol-
lowing the application of a selective, spatially varying gradient field, the protons
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in the area (slice) of interest have a fixed resonance frequency ω0. An excitation
radio-frequency (RF) field B1 is applied; it precesses at ω0 around B0 and is
designed to induce resonance. As a result, the spins of the particles of interest
start precessing around B0 and the bulk magnetization gets a component that is
orthogonal to B0 and therefore becomes measurable. Spatially-varying gradient
fields are used to encode the position of the particle in its precession frequency
or phase. In this way, a readout can be performed along a line in the spatial
Fourier space (k-space); the spins eventually undergo the relaxation process and
return to their equilibrium position, where they are aligned parallel to B0. The
whole process is repeated until there are enough k-space samples to perform a
reconstruction. Examples of brain MR image slices are shown in Fig. 3.4.

The whole procedure requires about 1 minute to obtain a 128 × 128 im-
age with reasonable quality. For dynamic imaging, one has to turn to faster
techniques to improve temporal resolution. In 1.5T scanners, the gradient-echo
imaging sequence is widely applied. This technique is characterized by a smaller
bulk magnetization flip angle during excitation, combined with the use of a re-
versed dephasing-compensator gradient prior to readout. For higher magnetic
fields, an even faster echo-planar imaging (EPI) method uses a single excita-
tion pulse and a swinging readout gradient that constantly refocuses spins that
went out of phase, so that the relaxation period is significantly extended and all
readouts can be done at once. As a result, a 128×128 image of reasonable qual-
ity and sub-millimeter spatial resolution can be obtained in less than a second.
The drawback of EPI is its sensitivity to the magnetic field non-uniformities;
however, this is also the reason that makes it work well for functional imaging,
as described in the next subsection.

Importantly, the SNR of MRI measurements is proportional to scan time and
to voxel size, so that an optimal trade-off should be found for the experiment
at hand.

3.2.2 The BOLD effect

It is possible to observe neuronal activity in MRI due to the blood-oxygenation-
level-dependent (BOLD) effect that was discovered by Ogawa et al. [39]. The
origin of this effect is that hemoglobin is diamagnetic when oxygenated and para-
magnetic when deoxygenated. The presence of deoxyhemoglobin alters the local
magnetic susceptibility, creating magnetic field distortions within and around
the blood vessels and weakening the MR signal. As mentioned in Section 3.1,
after the neural activation, the increase in local CBF is much higher than the
growth in CMRO2 . This implies a smaller level of deoxyhemoglobin and there-



3.2 Functional Magnetic Resonance Imaging 41

(a) Sagittal slice (b) Coronal slice

(c) Transaxial slice

Figure 3.4: MRI brain image slices.
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Figure 3.5: The mechanism of the BOLD effect.

fore, stronger MR signal. The overall scheme is presented in Fig. 3.5.

3.2.3 The Hemodynamic Model

Quantitative description of measurements in fMRI requires a model that links
the BOLD signal to the stimulus. We adopt the linearized model of Friston et
al. [35].

Our hemodynamic model is a combination of the so-called balloon/windkessel
model [40,41] with a model that links synaptic activity and changes in regional
blood flow. The auxiliary variable1 s represents the flow-inducing signal; the
flow fin satisfies

ḟin = s.

The rate of change of s is a sum of three terms that ensure a behavior similar
to experimental observations:

ṡ = εu− s

τs
− fin − 1

τf
.

Here, u is the stimulus function, ε is the neuronal efficacy, τs and τf are param-
eters that are chosen empirically. The second term ensures the natural decay
of the flow-inducing signal, while the third term represents the flow feedback
auto-control loop.

As veins are the most distensible vessels, almost all of the CBV change
happens in the venous volume v. According to the balloon model, the rate of

1The meaning of the various variables and parameters are summarized in Table 3.1. Note
that all variables are expressed in normalized form; i.e., relative to resting values. Full details
can be found in [35].
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Table 3.1: List of the variables and constants involved in the hemody-
namic model with their typical values.

symbol meaning typical value standard deviation
u stimulus – –
s flow inducing signal – –

fin blood flow – –
v normalized venous volume – –
q normalized deoxy-hemoglobine content – –
ε neuronal efficacy 0.54 0.085
τs signal decay 1.54 0.169
τf autoregulation 2.46 0.212
τ0 transit time 0.98 0.169
α balloon stiffness 0.33 0.034
E0 oxygen extraction fraction 0.34 0.043
V0 resting blood volume fraction 1 –
k1 BOLD constant 1 7E0 –
k2 BOLD constant 2 2 –
k3 BOLD constant 3 2E0 − 0.2 –
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change of v is given by

v̇ =
1
τ0

(fin − fout),

where fout is the outflow and τ0 is the mean transit time. The vessel behavior
is described by the windkessel model, so that

fout = v
1
α .

The BOLD signal is modeled as

BOLDnon−linear = V0(k1(1− q) + k2(1−
q

v
) + k3(1− v)), (3.1)

where V0 is the resting blood volume fraction, q is the deoxyhemoglobin voxel
content and k1, k2 and k3 are constants. The summation in (3.3) accounts for
the extra- and intravascular signals. The variable q is the difference between
the delivered and expelled deoxyhemoglobin in the venous compartment:

q̇ =
1
τ0

(fin
E(fin, E0)

E0
− fout

q

v
).

Here, E0 is the resting net oxygen extraction fraction by the capillary bed,
and E(fin, E0) = 1− (1− E0)

1
fin is the fraction of oxygen extracted from the

inflowing blood.

3.2.4 The Linear Approximation To the Hemodynamic
System

Mathematically, our hemodynamic model corresponds to the non-linear state-
space definition of a system with four state variables {s, fin, v, q}






ṡ = εu− s
τs
− fin−1

τf

ḟin = s
v̇ = 1

τ0
(fin − v

1
α )

q̇ = 1
τ0

(fin
1−(1−E0)

1
fin

E0
− v

1
α−1q)

(3.2)

and one observed quantity (the BOLD signal)

BOLDnon−linear = V0(k1(1− q) + k2(1−
q

v
) + k3(1− v)). (3.3)
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In our work, we use a linear approximation to (3.2), (3.3). In this setting,
the hemodynamic system is completely defined by the hemodynamic response
function (HRF) h(t) that is the response of the system to the ideal instantaneous
excitation δ(t). We define the variables {x1, x2, x3, x4} = {s, 1−fin, 1−v, 1−q}.
Linearization of (3.2) around the resting point {x1, x2, x3, x4} = (0, 0, 0, 0) gives






ẋ1 = εu− x1
τs

+ x2
τf

ẋ2 = −x1

ẋ3 = 1
τ0

(x2 − x3
α )

ẋ4 = cx2 − 1−α
ατ0

x3 − 1
τ0

x4,

(3.4)

with c = 1+(1−E0) ln(1−E0)/E0
τ0

. We diagonalize the system by making use of the
Gauss method:






(D2 + 1
τs

D + 1
τf

I){x2} = −εu

(D2 + 1
τs

D + 1
τf

I){x1} = εDu

(D + 1
ατ0

I)(D2 + 1
τs

D + 1
τf

I){x3} = − ε
τ0

u

(D + 1
τ0

I)(D + 1
ατ0

I)(D2 + 1
τs

D + 1
τf

I){x4} = −cεDu + ( 1−α
ατ2

0
− c

ατ0
)εu.

(3.5)
Additionally, the linearized equation for the BOLD signal is

BOLDlinear(t) = V0((k1 + k2)x4(t) + (k3 − k2)x3(t)).

Finally, the HRF h(t) is obtained by setting u(t) = δ(t). It satisfies the differ-
ential equation

(D +
1
τ0

I)(D +
α

τ0
I)(D2 +

1
τs

D +
1
τf

I){h}

= V0(k1 + k2)(−cεDu + (
1− α

ατ2
0

− c

ατ0
)εu)− V0(k3 − k2)(

ε

τ0
Du +

ε

τ2
0

u)

The right-hand side can be further developed as
V0ε

τ0
((−(k1 + k2)cτ0 − k3 + k2)Du + ((k1 + k2)(

1− α

ατ0
− c

α
)− (k3 − k2)

1
τ0

)u),

yielding the linear differential operator L of the form (2.3) with parameters

+α =

(
− 1

τ0
,− 1

ατ0
,− 1

2τs
(1± j

√
4τ2

s

τf
− 1)

)
,

+γ =

(
−

(k1 + k2)( 1−α
ατ0

− c
α )− (k3 − k2) 1

τ0

−(k1 + k2)cτ0 − k3 + k2

)
. (3.6)
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There is an additional scaling factor V0ε
τ0

(−(k1 + k2)cτ0 − k3 + k2).
We will refer to this model later on and eventually design wavelets that are

matched to it for the improved detection of brain activity.



Chapter 4

The Signal Processing
Problem in fMRI

Abstract — Once the fMRI signal is recorded, it is the task of the imaging
software to detect the voxels that were active during a particular cognitive task.
We split the detection problem in two steps — (1) extraction of the activity-
related signal from the time-course for each voxel and (2) a statistical test on the
activity-related signal. In the present work, we concentrate on step (1). The
primary goal of this chapter is to state the activity-related signal extraction
problem in mathematical terms. We consider two possible solutions:

• the classical linear solution that would be optimal to separate the activity-
related signal from noise, if the system were driven by a gaussian random
process;

• the non-linear sparse-solution search technique in the wavelet domain that
is optimal when the system is driven by the sparse stimulus.

As our fMRI signal formation model corresponds to the second option, we use
the non-linear solver, which will be described later on.

47
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4.1 Introduction

FMRI and Time-Course Analysis

Functional Magnetic Resonance Imaging (fMRI) is being used increasingly in
modern neuroscience. It allows non-invasive measurements of the evoked neu-
ral activity through neurovascular coupling and the blood-oxygenation-level-
dependent (BOLD) effect, first observed by Ogawa et al. [39]. Few seconds after
the stimulation, a decrease in deoxyhemoglobin (dHb) level in the implicated
brain regions occurs, making the local T2* MR signal stronger. The typical
spatio-temporal resolution of fast fMRI imaging techniques varies between 1–50
mm3/voxel and 0.5–5s/volume.

In traditional fMRI, a human subject is scanned and asked to perform a
task or exposed to stimuli that are relevant to some cognitive function [34].
There are two general types of experimental design. Within the block-based
paradigm, each stimulus lasts for a non-negligible period of time (several scans)
and is modelled as a boxcar function. In the event-based framework, a stimulus
is short in time and can be mathematically represented with a Dirac delta-
function. Event-related fMRI (efMRI) activations are weaker and more variable
than block-based responses, which makes them harder to detect. In this chapter,
we focus on the event-related paradigm.

Modeling the hemodynamic system has been (and still is) a subject of ac-
tive research [42]. One popular framework to link neural activation and BOLD
response makes use of the so-called balloon model by Buxton and Frank [43].
Essential components of their system include regional blood flow, vessel vol-
ume, dHb extraction fraction and the perfusion-inducing signal by the neuronal
response to stimulus. Although the underlying differential equations are non-
linear, it is common to assume that the hemodynamic system is linear and
time-invariant. In this setting, a model for the task-related BOLD response can
be obtained as a convolution between the stimulus pattern, describing the task,
and the hemodynamic response function (HRF). This is the type of model that
is used, implicitly or not, in all standard fMRI analysis packages.

The measured functional MR signal is degraded due to various sources: phys-
iological factors such as respiratory and (aliased) cardiac components, subject’s
movements, scanning artifacts due to field inhomogeneity, and image reconstruc-
tion and post-processing. Therefore, traditional fMRI data analysis tries to find
evidence for the presence of a hypothetical task-related BOLD response [34].
If such evidence is found (on statistical grounds), voxels are declared as “ac-
tive”. The most popular framework proposes a general linear model (GLM)
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that contains regressors of interest (e.g., task responses for various conditions)
and other variates (baseline, low-frequency drifts, and so on). Given the noise
statistics, the parameters (weights of each regressor) are then fitted to the data.
The parameters’ strength (or their statistical significance) is then evaluated by
taking into account the residual error.

Next to confirmatory analysis, researchers have also proposed data-driven
methods that do not (or only partially) rely on the prior knowledge. The
most popular ones are subspace methods, such as principal components analysis
(PCA) [44] and independent component analysis (ICA) [45,46]. These methods
have the capability to reveal unmodelled trends in the data. However, manual
intervention is often needed to distinguish noise-related from neurophysiological-
relevant components. Semi-blind approaches use the knowledge of the stimulus
timings. Glover et al. include a calibration trial from which they estimate
the HRF [47]. This provides them with a Wiener filter that they apply to
subsequent measurements to estimate the neural activity pattern through a de-
convolution process. Makni et al. proposed a Bayesian framework for a joint
HRF estimation-detection task [48].

In many event-related fMRI experiments, the activity-inducing events are
well separated in time from each other. This means that the corresponding
BOLD responses do not overlap1 and that the deconvolved stimulus pattern
is sparse in time. Here, we assume the sparsity of the stimulus and develop
a new wavelet-based framework that is able to find the activity-related signal
component in an fMRI time-course, without prior knowledge on the positions
of the activity-inducing time onsets. While current fMRI experiments heavily
rely on the knowledge of the timing of the events (typically, a stimulus or a
recorded feedback), it should be noted that in some cases this information is
imprecise or even unavailable. Possible reasons for this could be related to the
type of subject (e.g., feedback in a decision-making task with small children)
or because the “task” is implicit (e.g., interictal epileptic discharges in epileptic
patients [49]). Our aim is to extract the activity-related signal component from
time-courses, which can then be further analyzed depending on the neurological
question at hand.

Wavelets and FMRI

Over the past decade, wavelets have become an essential tool in mathematics,
engineering, and physics [9]. The wavelet function, when applied to the data,

1Such paradigms are called slow event-related designs.
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behaves as a multi-resolution derivative operator. The order of the deriva-
tive operator is directly linked to the wavelet’s number of vanishing moments.
Therefore, singularities, such as edges, only have a local influence in the decom-
position and are well approximated by a few (large) coefficients. This property
has been the driving force behind many applications, such as coding [50] and de-
noising [51]. More recently, this feature is exploited in more general applications
(e.g., reconstruction and deconvolution) by the optimizing a sparsity-inducing
criterion on the wavelet coefficients, typically /1 regularization [52]. This prin-
ciple has also been extended to more general (non-orthogonal) dictionaries such
as (redundant) wavelet frames or combined transformations [53].

The wavelet transform has also been applied to fMRI time-series processing.
In the spatial domain, the activity maps can be compactly represented by the
wavelet decomposition; for an overview, see [6, 7]. In the temporal domain,
the transform’s decorrelating property can be used advantageously to fit the
GLM’s parameters in the presence of colored noise, which is the case in fMRI
with fast repetition timing [54]. Also, the Hurst exponent—the characterizing
parameter of a self-similar process—can be efficiently estimated in the wavelet
domain and used to distinguish between healthy subjects and patients suffering
from Alzheimer disease [55]. Finally, estimation with the use of penalized partial
linear models and classical wavelets has been investigated by Fadili et al. in [56].

Our Contributions

While traditional wavelets, with their derivative-like behavior, offer good en-
ergy compaction for piecewise smooth signals, we believe that they are not well
suited for the activation-related signal in fMRI. In this work, we introduce a
new type of wavelets, named “activelets”, driven by a characterization of the
hemodynamic system. Basically, we (still) consider the hemodynamic system as
linear and stationary and derive the differential operator L that links the hemo-
dynamic response with the stimulus. To that end, we make use of a linearised
set of differential equations that model the hemodynamic system [35]. Start-
ing from there, we design the exponential-spline wavelets that essentially invert
the system’s response, therefore yielding a sparse representation. The essential
feature that characterizes activelets from traditional wavelets is that they have
a number of (well-chosen) exponential vanishing moments. Short activations
then induce a cone of influence in the activelet decomposition of the BOLD
signal, the same way as singularities do in the classical wavelet representation.
Consequently, the use of a sparsity-pursuing optimization can help finding fMRI
“activations”, without fixing onset timings nor activity strengths. To that aim,
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we deploy (iterative) non-linear dictionary search algorithms. As we will see,
another advantage of our method is that it improves robustness with respect to
the shape of the HRF response; i.e., deviations from the modeled HRF system
will not strongly impair the sparsifying properties of the differential operator L.
Therefore, /1 minimization will still allow to recover activity-related components
from these signals, a useful property for many event-related experiments.

4.2 FMRI Time-Course Modeling

In the event-related setting, we consider a Dirac impulse train s(t) as the source
of (neuronal) activity in the brain. Mathematically, we write the activity-
inducing signal

s(t) =
∑

k

ckδ(t− tk), (4.1)

where ck and tk denote the activity strengths and activity onsets, respectively;
δ(t) denotes the Dirac impulse. We represent the hemodynamic system that
links activity to BOLD signal as

x(t) = L {s} (t), (4.2)

where the operator L corresponds to the system of differential equations.
We assume the hemodynamic system to be linear and shift-invariant—an

approximation that is common in literature and very reasonable when the events
are sufficiently spaced in time. In that case, the activity-related BOLD signal
is modeled as a weighted sum of shifted hemodynamic response functions

x(t) =
∑

k

ckh(t− tk), (4.3)

where h(t) satisfies the differential equation

L{h}(t) = δ(t), (4.4)

and the differential operator L is linear and time-invariant. The function h(t) is
a Green’s function of L and the impulse response of the causal inverse operator
L−1.

In general, the operator L is characterized by its Fourier transform

L̂(ω) =
∏N

n=1(jω − αn)
∏M

m=1(jω − γm)
. (4.5)
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Figure 4.1: The hemodynamic system links neuronal activity to efMRI
BOLD response, which is due to neurovascular coupling and a complex
interplay between various physiological parameters.

Like in Chapter 2, we group the parameters in +α = (α1, . . . αN ) and +γ =
(γ1, . . . , γM ).

We identify the operator L and the parameters +α,+γ by linearizing the bal-
loon/windkessel model described in Chapter 3. This procedure is equivalent to
considering the first-order Volterra series approximation [35].

4.3 Problem statement

The problem that we face is to estimate the presence of activity-related signal
x(t) in the noisy fMRI measurements:

y[k] = x(k) + n[k], (4.6)

where n[k] is the disturbance term that includes noise, baseline, drifts, aliased
cardiac and respiratory contributions (cf. Fig. 4.1).

Our problem setting is different from a classical “linear model” analysis,
which looks for the presence of a fixed regressor; i.e., a known linear combination
of elementary signals. In our case, we just assume that the response will be of
the form of (4.3), without fixing the weights or onset times.
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4.4 The Linear Solution

4.4.1 L∗L Smoothing Spline Solution

First, let us suppose that the (linear, shift-invariant) hemodynamic system is
driven by Gaussian white random process with autocorrelation σ0δ(t). We mea-
sure the noisy samples y[k] = x(k) + n[k], where the fMRI noise n[k] follows an
AR(ρ) model — a first-order auto-regressive process with correlation coefficient
ρ and associated power spectrum Cnn(ω) = σ2/|1−ρe−jω|2, ρ = 0.2. We would
like to extract the activity-related component x(t). The best linear estimator
x̃(t0) =

∑
k bt0 [k]y[k] of x(t0), given the samples {y[k]}k, will then be the one

that minimizes the mean-squared error

min
x̃(t0)

E
[
|x(t0)− x̃(t0)|2

]
. (4.7)

We make use of the generalized smoothing spline theory to solve (4.7) [57].
All operators of the form (4.5) with N > M are spline-admissible [58]; hence,
so is the operator L associated to the hemodynamic system. Consequently,
we can identify an associated exponential B-spline localization filter ∆L(z) =∏N

k=1(1− eαkz−1).
Given the noisy measurements y[k] of the underlying continuous-time sta-

tionary process x(t) with whitening operator L, we then know that the best
linear MMSE estimator is the L∗L smoothing spline, given by [57, Theorem 5]

x̃(t) =
∑

k∈Z
(bλ,σ ∗ y)[k]ϕ(t− k). (4.8)

Here, ϕ(t) is the L∗L exponential B-spline with parameters {+α,−+α∗}, {+γ,−+γ∗},
and the digital filter bλ,σ is given by its z-transform

Bλ,σ(z) =
1

∑
k∈Z ϕ(k)z−k + σ2

µ2σ0|1−ρz−1|2 ∆L(z)∆L(z−1)
. (4.9)

The smoothing spline solution is the best linear MMSE estimator. If the
system input were indeed white Gaussian, it would also be the best possible
estimator. This corresponds to an extension of the traditional Wiener filter
theory for the case where the input is discrete and the output is continuously
defined. If we sample (4.8 at the integers, we recover the classical discrete-time
solution.
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4.4.2 Random impulses

A more realistic input model for event-related fMRI is a sequence of random
impulses. Suppose that the inter-event timings tk − tk−1 are independently
and identically distributed (i.i.d.) random variables that follow an exponential
distribution with rate parameter σ0 > 0 (σ0 controls the average number of
events per unit time). Let the stimulus amplitudes ck be i.i.d. random variables
with known first and second order moments E{ck} = µ1 and E{c2

k} = µ2. We
assume that ck are independent of tk.

Proposition 3 The random Dirac impulse train process

s(t) =
∑

k

ckδ(t− tk). (4.10)

is wide-sense stationary with mean µ1σ0 and autocorrelation function

css(τ) = E{s(t)s(t + τ)} = µ2
1σ

2
0 + µ2σ0 · δ(τ). (4.11)

Proof: Consider the Poisson-like process Vt that has increments ck at times
tk. For its characteristic function χVt(ω) = E{e−jωVt}, we have

χVt+∆t(ω) = E{e−jωVt+∆t} = E{e−jω(Vt+∆t−Vt+Vt)} =

E{e−jω(Vt+∆t−Vt)}E{e−jωVt} ≈

χVt(ω) ·
∫ ∞

−∞
e−jωa((1− σ0∆t)δ(a) + σ0∆t · p(a))da =

χVt(ω)((1− σ0∆t) + σ0∆tp̂(ω)),

where p(a) is the probability density function of the variables ck. Therefore,
χVt(ω) satisfies

χ̇Vt(ω) = σ0 · χVt(ω)(p̂(ω)− 1),

and we find χVt(ω) = eσ0t(p̂(ω)−1). The first and second-order moments of Vt

are computed from the derivatives of χVt(ω) at ω = 0; we have E{Vt} = σ0tµ1

and E{V 2
t } = σ0tµ2 + (σ0t)2µ2

1. Consequently, the autocorrelation function of
Vt satisfies

cVt,Vt(t, s) = E{VtVs} = E{(Vt − Vs + Vs)Vs} = E{Vt − Vs}E{Vs}+ E{V 2
s } =

σ0(t− s)µ1 · σ0sµ1 + σ0sµ2 + (σ0s)2µ2
1 = σ2

0tsµ2
1 + σ0sµ2
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for t > s and, by symmetry, cVt,Vt(t, s) = σ2
0tsµ2

1 + σ0tµ2, for t < s.
It is now sufficient to notice that the Dirac impulse train process (4.10) is

the derivative of Vt. Its autocorrelation function (4.11) is obtained by taking
the derivative of cVt,Vt(t, s) with respect to t and s.

For the power spectrum of s(t), we have Css(ω) = F {css} (ω) = µ2
1σ

2
0δ(ω)+

µ2σ0. By subtracting the mean from (4.10), we get a zero-mean, uncorrelated
innovation signal i(t) = s(t)− µ1σ0, with cii(τ) = µ2σ0 · δ(τ).

If the random Dirac impulse train process drives the hemodynamic system,
we can rewrite the activity-related BOLD response as

x(t) = (s ∗ h)(t) (4.12)

=
∑

k

h(t− tk) (4.13)

= (i ∗ h)(t) + µ1σ0

∫ ∞

−∞
h(t)

︸ ︷︷ ︸
h0

. (4.14)

The key observation to make is that the re-centered process x(t)−h0 is regular;
i.e., it admits a whitening operator that turns it into an uncorrelated, zero-mean
process. Indeed, using the operator L associated with the hemodynamic system,
we have L{i∗h}(t) = (i∗L{h})(t) = (i∗ δ)(t) = i(t) , which is uncorrelated and
zero-mean. Equivalently, we can also say L∗L

{
c(x−h0)(x−h0)

}
= µ2σ0 · δ(τ).

We can define the re-centered measurements as y0[k] = y[k] − h0. The
corresponding linear MMSE solution would coincide with the smoothing spline
solution from the previous subsection. As s(t) is not Gaussian, we can expect
non-linear estimators to do better.

The linear solution can be considered as a gold standard for signal processing
problems, and thus it is a worthful point of comparison. We implement it, using
the causal-anticausal decomposition for the digital filters in (4.8), as described
in [57, Appendix II]. Notice that the linear solution can be applied both for
traditional B-splines (only zeros at the origin) or the splines associated to the
activelet operator.

4.5 Wavelet Representations

In our model, the activity-inducing signal is a Dirac impulse train that passes
through a system characterized by the operator L−1. If we applied L to the
ideal continuous BOLD signal, we would recover a sparse representation. In
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practice, given the noisy samples, we would like to have an efficient transform
that compacts the activation energy on a few large coefficients.

The classical wavelet transform produces sparse representations of piecewise-
smooth functions. Traditional wavelets act as Nth-order derivatives. Whenever
the number N of vanishing moments is greater than the smoothness of the
function, such a wavelet would, at each point, annihilate the first N terms of
the Taylor approximation, essentially leaving significant coefficients only close
to the discontinuity points.

In our case, the activaty-related signal x(t) satisfies L{x}(t) = 0 on the in-
tervals tk < t < tk+1; i.e., the operator L annihilates x(t) at all points except
the activation points tk. If we choose the parameters +α,+γ that correspond to
the linearized hemodynamic system and construct the operator-like wavelet as
described in Chapter 2, our wavelet will behave like L, leaving non-zero coeffi-
cients only around tk. We are now able to estimate activations by identifying
the most significant coefficients with the help of sparsity-pursuing search algo-
rithms, which are described in the next chapter.



Chapter 5

Searching For Sparse
Solution

Abstract — The activelet transform guarantees a sparse representation for
the activity-related signal. The activelet basis can easily be extended to an
activelet frame by performing the undecimated activelet transform (UDAT).
The frame expansion allows for more flexibility and can lead to even sparser
representations. Given the noisy data y[k], k = 1, . . . , T , we would like to
identify signal components that have a sparse representation in the activelet
expansion. This is achieved by imposing an /1-norm penalty in the transform
domain.

5.1 Sparse representations

Let Φ be the T ×K dictionary matrix whose columns include the UDAT basis
functions normalized with respect to their /2 norm. Suppose first that the data y
consists only of the activity-related signal. We would like to identify the UDAT
functions that provide a sparse representation for y. In the case of an exact
fit (i.e., when the noise is absent), this boils down to solving the non-convex
program

(P0) : min
w
‖w‖0 subject to y = Φw, (5.1)

where the /0 quasi-norm of a vector is its number of non-zero components. The
optimization problem (5.1) is NP-hard and demands exorbitant computational
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efforts. A sub-optimal solution can be found by solving the basis pursuit problem

(P1) : inf
w
‖w‖1 subject to y = Φw. (5.2)

This formulation can be cast into a classical linear program by introducing
the vectors w+ ≥ 0 and w− ≥ 0 such that w = w+ − w−:

(P ′
1) : inf

w+≥0,w−≥0
(
∑

w+ +
∑

w−) subject to y = (Φ,−Φ)
(

w+

w−

)
. (5.3)

5.1.1 The Simplex method

The simplex method is a classical solver for problems of type (5.3). It was in-
troduced by Dantzig in the 1940-ies. The linear constraint, together with the
variable positivity conditions, defines the solution domain, which is a polygon
(simplex). The gradient of the objective functional is obviously non-zero every-
where, meaning that the solution can only be an extremal point (a vertex) of
the polygon. Each vertex corresponds to a T × T submatrix of (Φ,−Φ), and
adjacent vertices’ matrices differ in a single column. Using one T ×T matrix in-
version per step, the simplex method is able to determine which of the adjacent
vertices defines a direction of criterion decrease, and jump to it. The matrix
inversion is implemented as an update from iteration to iteration. Theoreti-
cally, the convergence speed is exponential, but in practice, the optimal vertex
is usually found in polynomial time.

5.1.2 Interior point methods

The simplex method is prohibitively slow for large-scale problems. The more
efficient interior point methods use the Newton solver for (5.3). The variable
positivity constraints are eliminated by introducing the barrier functions in the
optimization criterion. The barrier functions tend to infinity at the borders of
the optimization domain and do not allow the Newton iterate to leave it. It can
be proved that the solution (w+(µb), w−(µb)) to the parametrized problem

(P ′
1) : inf

w+,w−≥0

(
∑

w+ +
∑

w− − µb

(
∑

k

log w+,k +
∑

k

log w−,k

))
(5.4)

subject to y = (Φ,−Φ)
(

w+

w−

)
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tends to the solution of (5.3) as µb → 0. Nesterov et al. have shown that
the logarithmic barrier function is optimal for the convergence [59]. The most
efficient way to tackle (P ′

1) is to solve it together with its dual problem,

(P ′
1,d) : sup

z≥0

(
wd · y + µb

(
∑

k

log zk

))
subject to z = y −

(
Φ∗

−Φ∗

)
wd.

(5.5)
Here wd is the dual variable and z is the slack variable, whose role is to

complete the negative vector
(

Φ∗

−Φ∗

)
wd − y to zero. By the duality theorem

of Karush, Kuhn and Tucker (KKT), the necessary and sufficient condition for
w̃, w̃d and z̃ to be the solutions to (5.4) and (5.5), respectively, is






y = (Φ,−Φ)
(

w+

w−

)

z̃ = 1−
(

Φ∗

−Φ∗

)
w̃d

w̃d[k] · z̃[k] = µb, k = 1, . . . ,K.

(5.6)

The problem thus reduces to a square system of non-linear equations. In
practice, instead of solving it for each µb, the interior point methods take an
initial approximation that satisfies the constraints in (5.3) and perform a single
Newton step for each µb from a decreasing sequence. Each Newton step boils
down to the solution of a dense K×K system of linear equations. This is where
lies most of the computational effort of the interior-point methods.

5.2 Sparse approximations

In case where the measurement vector y contains noise, imposing the constraint
y = Φw might be not the best choice. Instead, we might want to constrain
the discrepancy ‖y − Φw‖2, while minimizing the sparsity norm. Consider the
program

(P0,ε) : min
w
‖w‖0 subject to ‖W (y − Φw)‖2 ≤ ε (5.7)

with ε > 0 and W a problem-dependent linear weighting operator which may
account for prior statistical knowledge. In this chapter, for notational simplicity,
we take W to be identity; the case of general W is equivalent if we substitute
y′ = W (y) and Φ′ = WΦ.
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Like in the previous section, this NP-hard problem is replaced by its con-
vexified /1 form

(P1,ε) : min
w
‖w‖1 subject to ‖y − Φw‖2 ≤ ε. (5.8)

In many practical cases, the solution to (P1,ε) approximates well or even coin-
cides with the solution w0 to (P0,ε). It has been shown in [60, Theorem 3.1] that
if the noiseless ideal signal x is sufficiently sparse with ‖w‖0 ≤ (µ−1

Φ + 1)/41,
then w0 is the unique maximally-sparse representation of x, and stable recovery
is possible by minimizing (P1, ε). Furthermore, if ‖w‖0 < µ−1

Φ /2, and if (P1, ε)
is solved using ε somewhat larger than the noise level σn, then the minimizer
has its support included in the support of w0 [60, Theorem 6.1]. In other words,
the solution to (P1, ε) identifies only correct atoms that participate to the sparse
signal x and never picks an incorrect atom.

We rewrite (P1,ε) in the augmented Lagrangian form

(Qλ,-1) : min
w

‖y − Φw‖22 + λ ‖w‖1 . (5.9)

(Qλ,-1) is a (perturbed) linear programming problem known as BPDN [61].
Interior-point methods are the fastest existing solvers for the generic problems
of the form (5.9). However, better performance can be achieved if we have
specific knowledge about the solution. With our problem setting, we expect the
solution to be sparse in the basis Φ. In this case, the two methods presented
in this section — Homotopy and Iterated Soft Thresholding — achieve better
performance.

5.2.1 The Homotopy method

Unlike the interior point strategy, that optimizes (5.9) for the fixed value of λ,
the homotopy method solves (Qλ,-1) for all λ ∈ [0,

∥∥ΦT y
∥∥
∞] [62]. The method

starts at λ = ‖Φy‖T
∞ and w = 0 and follows the solution path as λ → 0 [62].

The key observation is that the solution subset (called active set) is piecewise
constant as a function of λ, changing only at critical values of λ; i.e., the solution
path is polygonal. The Homotopy algorithm jumps from vertex to vertex of
this path and modifies the active set appropriately, either adding or removing
an element. Each step takes the computational cost of solving a system of

1µΦ is the mutual coherence of Φ, that is the maximal off-diagonal element in magnitude

of its Gram matrix,
q

K−T
T (K−1) ≤ µΦ ≤ 1.
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linear equations of the size of the active set. In case where the number of
atoms in the approximate solution is much less than the number of data points,
Homotopy shows a strong improvement in performance [63]. Another advantage
of Homotopy is the explicit control of the residual error level; it is useful when
the noise level σn is known or can be estimated from the data. The iterations
are applied until the residual rk satisfies

∥∥rk
∥∥

2
≤ σn.

5.2.2 Iterative Soft Thresholding

If Φ is an orthogonal basis and W is identity, the solution to (Qλ,-1) can be
explicitly obtained by pointwise soft thresholding in the wavelet domain [64]. In
the general case, Daubechies et al. suggest an iterative technique that introduces
a series of auxiliary functionals that are minimized by soft thresholding [52]. The
update iteration is given by:

wk+1 = STµkλ

(
wk + µkΦT (y − Φwk)

)

where STµkλ(·) is the soft-thresholding operator with threshold µkλ, and µk is
a sequence of relaxation parameter satisfying 0 < infk µk ≤ supk µk < 2/ ‖Φ‖22.
This iteration is very simple; it only involves fast implicit analysis and recon-
struction operators associated to the dictionary Φ. It is also possible to take into
account the structure of the basis Φ, yielding very fast algorithms [65]. However,
the choice of the regularization parameter λ remains a delicate issue in prac-
tice. Interestingly, this approach has been generalized to more general penalty
functions; for more details on proximal forward-backward splitting, see [66,67].

5.3 Inexact heuristic techniques

Another alternative to solve (Qλ,-1) is to fit sparse models heuristically. A
classical strategy of this kind is the greedy stepwise least squares optimization
often called Matching Pursuit or Orthogonal Matching Pursuit (OMP) [9] in
the signal processing literature. Despite its heuristic and greedy nature, OMP
can, in certain circumstances, succeed at identifying the sparsest solution [60].
However, OMP may fail to find the sparsest solution in certain scenarios where
/1-minimization succeeds [61]. Moreover, OMP becomes rapidly burdensome
for large-scale problems [68].

The LARS method is a greedy approximation of the homotopy algorithm
that never reduces the active set [69]. It has been shown that if x is sufficiently
sparse in Φ with incoherent Φ, then LARS selects only correct atoms that belong
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to the support of w0 [63]. Moreover, the atoms that are sequentially selected
enter the active set with the correct sign.

Replacing the soft thresholding operation with hard thresholding yields sparser
representations. In fact, the hard thresholding operation is the solution to
(Qλ,-0) in an orthonormal basis. In our algorithms, we use hard thresholding to
get better sparsity.

The LARS method computes the solution by considering one coordinate at
a time as a candidate to enter the active set. Inspired by the notion of follow-
ing the path, an accelerated algorithm (IT-LARS) was proposed by Fadili and
Starck [70]. The IT-LARS follows the solution path approximately by identi-
fying groups of atoms at each iteration using a stagewise iterative-thresholding
(IT) variant of LARS, where the sequence {λk}k≥0 is not data-adapted, but
allowed to be strictly decreasing. The algorithm is as follows:

Algorithm 1 IT-LARS algorithm
1: k = 0, r0 = y, λk =

∥∥ΦT y
∥∥
∞.

2: While
∥∥rk

∥∥
2

> σn

• Residual: rk = y − Φwk,

• Correlation: ck = ΦT rk,

• Hard Thresholding: Ik = {i : |ck[i]| > λk},

• Update direction: dk[Ik] = Φ+
Ikrk, and dk[Īk] = 0,

• Update the solution: wk+1 = wk + γdk, 0 < γ ≤ 1,

• λk+1 = g(λk), k = k + 1.

3: Reconstruct x̂ from ŵ.

The strictly decreasing function g(λ) reflects the update schedule of λk,
typically exponential or linear. The computation bottleneck of IT-LARS lies in
calculating the least-squares projection step to get dk. Following [68], this is
implemented via a conjugate gradient (CG) solver, with each iteration involving
multiplications by Φ or ΦT . It can be shown that the computational complexity
of IT-LARS is O (S(l + 2)V ), where l is the number of CG iterations (10 were
sufficient in our expriments), S < ‖w0‖0 is the number of IT-LARS iterations
and V is the computational complexity of an application of the linear operator
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ΦT or its adjoint.

5.3.1 Implementation

In our experiments, we used the IT-LARS and the acceleratied iterated soft
thresholding methods which gave the best trade-off between computation time
and approximation quality. The search routines involve numerous calls to the
decomposition procedure, which can become a bottleneck in the efficiency. How-
ever, the pre-computation of the filters makes activelets as fast as traditional
wavelets. During this preliminary step, it is also easy to normalize the rows of
the decomposition matrix to have their l2-norm equal to 1, as required by the
IT-LARS.

The fast decomposition-reconstruction algorithm for the activelet basis is an
adapted version of Mallat’s filterbank method [8]. The filtering is performed in
the FFT domain. Unlike the least-squares linear solutions, the sparsity algo-
rithm makes use of the adjoint transform for reconstruction (cf. Fig. 5.1). This
boils down to using the synthesis filters at the analysis side.
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Figure 5.1: (a) Flterbank implementation of the activelet basis de-
composition for a single decomposition level. The reconstruction is per-
formed using the dual filters. (b) Filterbank implementation of the
activelet decomposition combined with a sparsity iteration. The atoms
identified by the sparsity algorithm are reconstructed using the adjoint
operation. The (redundant) frame decomposition is done by Mallat’s
“à trous” algorithm; i.e., the signal is not subsampled at each iteration.



Chapter 6

Experimental Results

The activelets together with the sparse-solution search algorithm make up the
core of our method. In this chapter, we test the technique’s performance on syn-
thetic and real fMRI datasets. For the synthetic data, we compare our algorithm
against its linear alternatives by means of a ROC curve. Real-data experiments
show that our algorithm is able to extract the activity-related component from
the voxel’s time-course.

6.1 Synthetic Data

We first evaluated the performance of our method on a synthetic fMRI data set
consisting of 100 sequences generated according to the model (4.3). The stim-
ulus consisted of five short randomly spaced events of length 0.8s; inter-event
delays tk+1 − tk followed an exponential distribution with mean interstimulus
delay of 40s. Each event was convolved with an HRF, for which the parameters
of the underlying balloon model were randomly generated following gaussian
distributions; the mean and standard deviation were taken from the experimen-
tally measured histograms in [35], and are listed in the Table 3.1. Correlated
noise following the model AR(0.2), with σ = 0.3, leading to an average SNR of
−7dB, and a baseline consisting of a constant and a slowly-varying sinusoid of
random amplitude (frequency around 0.01Hz) were added to the data.

We compare the non-linear activelet method with two linear techniques:
the first corresponds to the linear filtering signal estimation (MMSE solution)
as described in section 4.4, while the second computes the “wavelet Wiener”
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Table 6.1: SNR values (mean ± standard deviation, measured in dB)
for different estimation methods.

MMSE Wavelet Wiener Non-linear wavelet
Activelets 4.06±0.78 3.76±0.89 6.62±1.66
B-spline Wavelets 3.56±0.77 1.08±0.81 2.27±1.24

solution given by

x̃(t) = arg min
x(t)

||y[k]− x(k)||22 +
∑

i

λi||Tix||22,

where Tix is the i-th scale of the wavelet transform coefficients and the scale-
dependent regularisation coefficients λi are chosen by an Oracle:

{λ1, . . . ,λJ} = arg min
{λ1,...,λJ}

||x− x̃||.

The linear filtering and wavelet Wiener techniques also use an Oracle to remove
the baseline. Additionally we compare each method with its traditional B-spline
counterpart.

In the non-linear activelet method, we propose to use prior information on
the second-order statistics of the signal and the noise to select an appropriate
weighting operator W in (5.7). The idea is to minimize the residual in the
Wiener domain, where the SNR of the measurements is maximized. Specifically,
we choose

F(W )(ω) =
Chh(ω)

Chh(ω) + Cnn(ω)
,

where Chh(ω) and Cnn(ω) correspond to the power spectra of the HRF and the
AR noise model, respectively.

The computations were done on a 2GHz Intel Core Duo MacBook Pro com-
puter using Matlab 7 of MathWorks, WaveLab 8.02 [71] and SparseLab .100 [72].
In Fig. 6.1, we show a sample synthetic time-course. The results of the applied
methods are shown in Fig. 6.2. The corresponding SNR levels are given in
Table 6.1.

The best performance is obtained by the non-linear method, but only when
the basis functions are well-tuned to the system response, as is the case with the
activelets dictionary. Our method looses its advantage when the basis functions
are not well matched to the stimulus. Among the linear methods, the MMSE
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Figure 6.1: A sample synthetic time-course.

estimator performs the best when the model is well chosen. The performance
of the Oracle-driven wavelet Wiener is not very adequate even when using the
activelets, and gets even worse with standard wavelets.

6.2 FMRI Experimental Data: Voxel Study

As a proof of concept, we have applied our method to several real voxels from
a traditional fMRI experiment. The subject was scanned in a Siemens Magne-
tom 3T Scanner. The visual stimulation consisted of 10 flashing checkerboard
excitations (duration=500 ms) with varying interstimulus timings, followed by
a resting period, during which the subject closed the eyes. 256 scans were
performed with TE=30ms, TR=1s and voxel size 2.6 × 1.8 × 5mm. We used
the Statistical Parameter Mapping (SPM) Matlab package to do standard pre-
processing of the dataset. This operation included realignment, coregistration
and gaussian smoothing (FWHM=8mm) of the data. We computed the SPM
parameter map for the F -test of the effects-of-interest (see Fig. 6.3) and picked
three time-courses that corresponded to a strongly active voxel, a weakly active
voxel (around the 5% FWE threshold) and a non-active voxel.

The results of the activelet analysis are presented in Figure 6.4. We show the
voxel’s time-course and the estimated activity-related signal. The time onset
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(a) Activelets with non-linear opti-
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(b) B-spline wavelets with non-linear
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(c) Activelet Wiener solution
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(d) B-spline wavelet Wiener solution
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(f) B-spline MMSE solution

Figure 6.2: Example of synthetic data: Activelets versus B-spline
wavelets; non-linear wavelet, linear wavelet and linear MMSE solutions.
Thin line: original signal, dotted line: noisy measurements, bold line:
estimation.
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Figure 6.3: Activity map (threshold of 5%, corrected for multiple com-
parisons) in hot colormap superposed on the corresponding anatomical
T1 slice. A standard regression analysis with known onset times was
performed using SPM2.

of each stimulus is indicated by a vertical line. Following an event, the BOLD
response is expected to achieve its maximum in 2-3 seconds.

6.3 Discussion

The problem of “blind” activity detection in fMRI is difficult due to the pres-
ence of strong disturbance components. Even in traditional fMRI data analysis,
where the onset times are known, an important compromise on the flexibility
of the model has to be made. As an extreme option, one could test the mea-
surement for the presence of activity-related signal of the form (4.3) with fixed
weights and onsets. Obviously, this approach is robust against false positive
(FP) detections but loses all temporal resolution. At the same time, the vari-
ability of the HRF (which is known not only to vary over space and time for
the same subject, but also between subjects) might lead to failures in detecting
the activity that is actually present but different from the model; this situation
is known as a false negative (FN) response. State-of-art fMRI analysis software
(e.g., SPM toolbox for Matlab) employ additional regressors, such as derivatives
of the model with respect to its parameters, to account for the BOLD variabil-
ity [73]. The role of supplementary functions in the GLM boils down to trading
some of the FP rate for the improved FN rate. Friman et al. use the “optimal”
FN/FP trade-off as a criterion to choose appropriate regressors [74].

When the onset times are not known, the richness of the model becomes
too high, and the linear search technique shows low specificity. Even in this
case, we observe the superiority of the activelet basis compared to traditional
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(c) Weakly active voxel: time-course
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(d) Weakly active voxel: estimated activity-
related signal
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(f) Non-active voxel: estimated activity-
related signal

Figure 6.4: FMRI experimental data and the activity-related signal
extracted by the activelet method. The vertical lines correspond to
onsets times.
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wavelets (cf. Table 6.1). At the same time, as we see in Fig. 6.2, there is no
visual improvement in the denoised signal.

One key advantage of our approach is the possibility of bypassing the FN/FP
trade-off by employing the non-linear search technique. Comparing Fig. 6.2(a)
to Fig. 6.2(b), we note that, in this case, the use of the proper (activelet)
basis becomes crucial; the B-spline wavelets cannot fit the signal well, and con-
sequently show a very low SNR. Importantly, the non-linear activelet search
reveals no activity-related signal in the areas that contain pure noise. This is
not the case for the linear methods, meaning that they suffer from a high FP
rate.

The improvement in the FN/FP trade-off is best seen on the ROC curve
that is plotted in Fig. 6.5. Given the ground truth, we divide the signal into
active and non-active intervals. The performance of the result is then measured
by the mean-squared error (εk) for each interval k with respect to the ground
truth. After normalization with the true mean signal µ during activation, we
obtain the values 1 − εk

µ , which can be related to the sensitivity (for active
intervals) and the specificity (for non-active intervals) within the framework of
a statistical decision taken for each interval.

We applied the sparse activelet and the MMSE algorithms for a wide range of
regularization parameter λ. Large values of λ force the solution to zero, resulting
in no sensitivity but high specificity. As λ decreases, the algorithm eventually
fits the measurements. The two markers show the Oracle-driven wavelet Wiener
results. All MMSE estimators use an Oracle to remove the baseline. Despite
this non-neglible advantage, the results from the proposed activelets method
with non-linear optimization are very satisfying. Moreover, the parameters of
the HRFs varied randomly while the activelets operator L remained fixed.

The results for fMRI experimental data in Fig. 6.4 further demonstrate the
adequacy of our approach. For the most active voxel in Figure 6.4(a)–6.4(b), 9
activations were detected out of 10; the undetected activation coincides with a
sudden drop in the baseline BOLD signal. The additional detection (last peak of
the thin line) happened right after the subject had closed the eyes. The activity-
related signal in the weakly active voxel in Figure 6.4(c)–6.4(d) is almost entirely
masked by noise; however, the algorithm still detects 6 activations. Finally, the
detection in the non-active voxel is zero.

The usage of more sophisticated search techniques together with the highly
redundant undecimated wavelet (activelet) transform leads to increased compu-
tation times as compared to linear methods. In our case, one time-course took
up to 5 seconds of processing. However, the undecimated wavelet basis has a lot
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Figure 6.5: ROC curves for the different methods. The importance
of both the activelets dictionary and the non-linear optimization are
demonstrated; i.e., their combination leads to the best results that out-
perform the others.
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of structure that could be used by the search algorithm. In the next chapter,
we use an accelerated method and apply it to a full fMRI dataset.
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Chapter 7

Activelets: A Feasibility
Study in fMRI Retinotopy

Abstract — The results of the activelet approach on synthetic and individ-
ual real voxels are promising. Our next goals are (1) to validate our method
on a whole-volume dataset; (2) to find the optimal event length such that the
BOLD response is strong enough to be detected. In this chapter, we apply
the methodology to a full high-resolution fMRI retinotopy dataset. We show
that our algorithm is able to discriminate between active and non-active voxels.
This is achieved by introducing a data-driven approach to determine the opti-
mal regularization parameter that corresponds to the best sensitivity-specificity
trade-off. We repeat the experiment for different values of the event length and
identify the choice that gives optimal detection results.

This work has been done in collaboration with M. Costagli and K. Cheng
from the RIKEN Brain Science Institute, Wako-shi, Saitama, Japan.

7.1 Introduction

The real-data experiments in Chapter 6 prove that our method works well on
individual fMRI voxels. However, to investigate fully the sensitivity and the
specificity of the algorithm in real data, we need to show that the algorithm is
able to identify active voxels in the whole volume. The experiment in Chapter
6 is not good enough for this purpose: the activations that happen there are
non-local, and it is difficult to characterize the performance of the algorithm on
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the full-volume scale. In this work, we choose a retinotopy task, which looks
ideal to test the method: the size of active area is only a few voxels, and the
activity is relatively strong. The experimental timing in fMRI retinotopy is
known; therefore, activity maps generated by existing detection methods can
be used as a point of comparison.

Apart from the “proof-of-concept” whole-volume activelet study, it is impor-
tant to investigate the limits of applicability of the technique. In the activelet
framework, the assumption is that the wavelet decomposition of the activity-
related signal is sparse. In terms of paradigm programming, this means that
the stimuli must be short enough so that the Dirac-impulse model is valid, and
that the inter-event time must be long compared to the TR. Unfortunately, in
real experiments, we can satisfy these conditions only to a limited extent. In-
deed, the strength of the neural response (and hence, the SNR) decreases as
the stimulus gets shorter. The SNR can be improved by allowing more phase-
encoding steps, but this would lead to a longer sampling period and a poorly
conditioned reconstruction problem. At the same time, the experiment duration
is proportional to the mean inter-stimulus delay; therefore, the latter could not
be arbitrarily long. Additionally, long inter-stimulus times may cause loss of
attention from the subject.

We therefore chose to investigate the effect of the stimulus length ∆τs on
the performance of the activelet algorithm in fMRI retinotopy. We fix all other
experimental parameters and vary ∆τs within a range of values. The obtained
activity maps are checked for consistency with their counterparts produced by
SPM.

This chapter is organized as follows. Section 7.2 provides a brief introduction
to the organization of the human visual system and to the fMRI retinotopy
experiments. In Section 7.3, we give the necessary steps to adapt the algorithm
to the whole-volume processing. We describe the experimental setup and show
the results in Section 7.4. Finally, we discuss the results and suggest directions
for further development of our method.

7.2 FMRI retinotopy

7.2.1 Human visual system

The transduced visual signal coming from the retina passes the lateral geniculate
body and gets projected into the occipital lobe of the brain where the primary
(striate) visual cortex is located (see Fig. 7.1). Neurons with similar functional
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Figure 7.1: Human visual system (image courtesy of K. Cheng).
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Figure 7.2: Human visual cortex (sagittal slice, one hemisphere is rep-
resented). Abbreviations: HM=horizontal meridian, LVM=lower verti-
cal meridian, UVM=upper vertical meridian. Image taken from [77].

properties are grouped together in columns. The information corresponding to
the same area of the field of view (FOV) from the left and the right eyes gets
delivered into adjacently located ocular dominance columns (ODCs). Inouye [75]
and Holmes [76] discovered that the mapping of the FOV into the primary visual
cortex roughly corresponds to the radial coordinate system. This mapping flips
the FOV; i.e., the left hemifield projects onto the right brain hemisphere and
vice versa. The horizontal meridian of the FOV is mapped onto the calcarine
sulcus. As the FOV radius moves up, the projection moves down, and vice versa.
The primary visual cortex is located between the two vertical radii (meridians)
with the calcarine sulcus in the middle. Similarly, higher visual areas (V2, V3
etc.) are demarcated by the horizontal and vertical meridians (see Fig. 7.2).
Posterior voxels correspond to the fovea (center of the FOV), while anterior ones
map onto the periphery.

The goal of retinotopy is to establish a mapping between the regions of FOV
and the areas in the brain that are “responsible” for these regions.

7.2.2 Mapping ODCs with fMRI

Good spatial resolution and the non-invasiveness of fMRI have made it a dom-
inant tool in human retinotopic studies. With high-field fMRI, it is presently
possible to achieve voxel size as small as 0.5mm×0.5mm by 3-4mm. The ODCs
are about 1mm wide, and their mapping was successfully done by Cheng et
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al. [78]. However, retinotopy experiments are close to the sensitivity limit of
modern fMRI, so careful planning is required. The activation signal should be
concentrated on as few voxels as possible; therefore, the slice should be taken
such that the voxels are aligned with the ODCs, such as to maximize the SNR.
In our experiments, the two eyes are stimulated equally, so that the two adjacent
ODCs are always active at the same time; this generates clearer maps.

High-field experiments are prone to motion artifacts. We use a fixation
apparatus for the head during the experiment; we also compensate for rigid
head motion in a post-processing step.

7.3 Activelets for whole-volume studies

We apply the activelet method on the retinotopy dataset to extract the activity-
related signal from the measurements. The two main practical challenges are:

1. Handling large number of intracranial voxels in the volume (around 31000
for the dataset in Section 6.2): fast techniques must be exploited and
adapted for fMRI time-course processing.

2. Automatic adjustment of the regularization parameter for the sparse-
solution search problem.

7.3.1 Data-dependent choice of regularization parameter

The synthetic experiments in Chapter 6 show that the ROC curve for our
method gets closest to the ideal point where both sensitivity and specificity
are equal to 1. However, to exploit this property, we need to estimate the opti-
mal regularization parameter λopt that corresponds to the “best” point on the
curve, on a voxel-per-voxel basis. Theoretical approaches like the MAD [51] do
not give satisfactory results in practice. We suggest a data-driven approach that
entirely relies on the information in the timecourse.

Looking at the ROC curve, we notice that it goes almost vertically up,
then makes a turn at the optimal point and fades away on the left. Given our
measures for FN and FP, this means that activations are progressively fitted as
λ decreases until the critical moment when the algorithm starts fitting noise.
If we have a sample of pure noise, we can adjust λ to catch this changing
point. To this end, we modify the paradigm to include 60 samples of resting
state at the end. Our assumption is that the resting state contains only noise
and baseline. We perform a dichotomic search for the optimal regularization
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parameter that doesn’t allow fitting any noise, while any smaller value does. For
a more efficient implementation, we use only a few iterations during the search;
we let the algorithm converge completely only for the final value of λopt.

It is convenient to add a sensitivity factor µ that multiplies λopt at the
processing step. Tuning of µ allows us to run the algorithm in a more or less
conservative mode; its role is qualitatively similar to the notion of confidence
level in classical SPM.

7.3.2 Baseline extraction

The processing time of 5 seconds/voxel taken by IT/LARS procedure becomes
prohibitive for the whole-volume studies. To circumvent this problem, we use a
modification of the iterative thresholding method for wavelet bases that takes
advantage of the multiscale structure of the undecimated activelet basis [65].
However, the baseline components cannot be included in the dictionary any-
more.

One possible way to deal with this issue would be to estimate the baseline by
projecting the measurements on a basis that consists of slowly-varying splines.
However, linear baseline estimation techniques leave a lot of space for improve-
ment: at the locations of the activity-related peaks, they tend to fit the baseline
around the peak’s half-height. Therefore, after baseline subtraction, the peaks
are distorted, which results in poor sensitivity of the algorithm. In our proce-
dure, we take a different approach: we extract the baseline from the residue
at each iteration of the sparse-solution search routine. At almost no computa-
tional cost, this idea allows the algorithm to correct the detected baseline at the
locations of the peaks.

7.3.3 Displaying the results

Having the activity-related component extracted from the measurements, it
is important to provide a visual representation of the activity map, so that
comparison can be done with the reference. A classical strategy would be to
measure the l2 energy of the activity-related signal. However, various factors
that are not related to activity (e.g., motion artifacts) may cause strong signal
changes that are indistinguishable from BOLD responses. This leads to high
energy values for some of the non-active voxels. As an outlier-proof alternative,
we use the peak-count measure on the activity-related signal as the activity
indicator. Clearly, the reliability of this measure for activity detection grows
with the number of events in the experiment.
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7.4 The experiment

We studied the occipital cortex of a healthy male subject of 26 years of age.
The experiment was conducted on a 4T Varian Unity Inova scanner. A high-
resolution 3-D T1-weighted anatomical image was obtained as reference. Rigid
head motion was restricted by requiring the subject to use a bite-bar. Heartbeat
was monitored with a pulse oximeter, and respiration with a pressure sensor.
Both signals were recorded and used at the post-processing step to correct for
physiological fluctuations. Attention was controlled by asking the subject to
press the button each time the fixation cross changed color. We have used a
surface coil to acquire 4 slices of size 128× 128 in the occipital cortex.

The stimulus consisted of a flickering horizontal 30◦-wide wedge. 2 consecu-
tive experiments were conducted with the stimulus length of 1.5 and 2 seconds.
Each experiment contained 7 stimulations with random inter-event interval of
15–20s. A 60-second sample of resting state was acquired at the end.

The data was corrected for motion, heart and respiratory artifacts. From
the post-processed data and the stimulus timing, a reference map was computed
with the help of SPM (see Figure 7.3).

We applied the accelerated activelet method with data-driven regularization
parameter estimation. We compensated for the sensitivity variation of the sur-
face coil by normalizing each voxel to its mean value prior to processing. The
maps of the voxel peak-count measure for ∆τs = 1.5s are shown in Figure 7.4
for different values of µ.

Comparing Figure 7.4 with Figure 7.3, we conclude that, for the event length
of 1.5s, our algorithm achieves good detection results in the active areas, despite
of it not making use of the knowledge on the experimental timing. The graphs
of the detected signal in the most active voxel show that higher values of µ
produce less outliers at the cost of sensitivity.

For the event length of 2s and the sensitivity level of µ = 1.5, the algorithm
is unable to detect the most active voxel, while there are spurious activations
present in the image (Figure 7.5). In this case, the Dirac impulse is not a good
model for the stimulus anymore.

7.5 Discussion

The results in Figure 7.4 confirm that the activelet method is able to identify
active voxels in the retinotopy experiment. The most active voxel (as detected
by SPM) is found even at high values of µ. Note that comparison with SPM
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Figure 7.3: Activation map computed with SPM (slice 3, magnification
in the area of the most active voxel).
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(c) Detection in the most active voxel, µ = 1.75
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(d) Detection in the most active voxel, µ = 2

Figure 7.4: Peak-count measure for the ∆τs = 1.5s (slice 3, magni-
fication in the area of the most active voxel, each peak increases the
measure by 2).
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Figure 7.5: Peak-count measure for the ∆τs = 2s and µ = 1.5 (slice 3,
magnification in the area of the most active voxel, each peak increases
the measure by 2).
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should be done with precaution: SPM finds locations where activity of given
shape took place at given moments, while our method finds locations where
sparse impulses occurred at any time during the experiment.

Let us now discuss the sensitivity limits of the algorithm in reference to the
ROC curve in Fig. 6.5. We can think of three relevant “barrier” values for λ:

• λa1 corresponds to the moment when the algorithm starts fitting the
activity-related signal. If λ is less than λa1, then the activity-related
signal is partially, or completely, fitted;

• λa2 represents the moment when all activations are fitted;

• finally, λnoise is the barrier value such that whenever λ < λnoise, noise is
(at least partially) fitted by the algorithm.

It is clear that λa1 ≥ λa2. In our algorithm, we make the assumption that
the noise strength is uniform along the voxel time-course; we take λopt = λnoise.
In a non-active voxel, λa1 = λa2 = 0. When the voxel displays activity, three
situations are possible:

1. λa1 < λnoise. In this case, the activity is completely masked by the noise,
and the algorithm fails to extract it.

2. λa1 ≥ λnoise ≥ λa2. Clearly, the closer λnoise gets to the lower bound, the
better detection quality is achievable.

3. λnoise < λa2. This is the ideal situation; there exists a λ such that the
activity-related signal is fully extracted from the data.

Our preliminary experiments showed that both ∆τs = 1s and ∆τs = 3s
correspond to the case 1. With ∆τs = 1s, the energy injected in the system is
too low, and detection is impossible due to poor SNR. For the length ∆τs = 3s,
the representation of the signal in the activelet basis was not sufficiently sparse,
and the activation energy was too spread between wavelet coefficients.

From the results in Fig. 7.4, we conclude that the case ∆τs = 1.5s falls
into the second category. We see that we control the “conservativeness” of the
algorithm by varying the parameter µ. For µ = 2, only one activation in the
most active voxel is detected, while with µ = 1.75 a few false activations appear.

The event length of ∆τs = 2s brings us back to the unfavorable case 1: for
µ = 1.5, only spurious activations are present. We conclude that ∆τs = 1.5s is
the optimal event length for the activelet method in retinotopy.
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The SNR remains the key issue to successful detection. To improve SNR,
traditional tools like SPM use spatial smoothing. For certain experiments this
could lead to better detection. In retinotopy, the activations are so strongly
localized that smoothing distorts the activity-related signal and lowers λa1 more
than it does with λnoise. Nevertheless, it is sometimes possible to improve the
SNR by taking into account prior information on timing. If the studied activity
happens at more or less the same time every time the experiment is repeated,
it becomes possible to average the measurements between the sessions, and
therefore, achieve higher SNR.

Our algorithm is tuned to the fMRI event-related model, which explains
its poor performance in the case of longer events. However, if the events are
known to be long, it might be possible to improve the algorithm’s performance
by adjusting the filter W appropriately. Also, in our future work, we plan to
validate the experiment on several subjects.

7.6 Conclusion

We have demonstrated the applicability of the activelet framework to a real full
fMRI dataset. Using a retinotopy task as a testing scenario, we have demon-
strated that the method is able to detect local activations. We suggested an
accelerated version of the algorithm with a data-driven technique to estimate
the regularization parameter. Additionally, we have investigated the influence
of the event length on the detection performance; the optimal event duration
was established for use in future experiments.

In our study, we intendedly concentrated on the signal processing aspects of
the problem. An important future direction is setting the neurological frame-
work that would take advantage of the activelet method in detecting activity
without prior knowledge on timing.



Chapter 8

Operator-Like Wavelets

Abstract — We have seen that the usage of the problem-specific wavelet basis
is crucial to good detection results. In order to extend the class of problems
that can profit from wavelet-based techniques, we propose to build new families
of wavelets that behave like an arbitrary differential operator. Our extension is
general and includes many known wavelet bases. At the same time, the method
takes advantage a fast filterbank decomposition-reconstruction algorithm. We
give necessary and sufficient conditions for the scale-covariant differential opera-
tor to yield admissible basis functions, and we provide examples of new wavelets
that can be obtained with our method.

8.1 Introduction

In signal analysis, we are typically interested in particular features, and often
those can be detected by continuous operators. These operators can be con-
sidered as signal “decorrelators”. For example, edges are well detected by the
derivative in 1-D or by the gradient or the Laplacian in 2-D. Specifically, the
1-D derivative turns a step edge into a Dirac delta-function, whose position
indicates the location of the discontinuity.

While continuous operators are attractive conceptually, the calculus in the
continuous domain is not directly accessible to us. To combine the advantages
of the continuous modeling and of the fast discrete computations, signals can
be represented with (discrete) coefficients in a (continuous) linear shift-invariant
(LSI) space. In this approach, the signal, most often represented by its samples,
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is projected on the LSI space, and all the following treatment is done on its
coefficients. The important question is then the choice of a convenient space
that is adapted to the problem at hand.

In our case, we would like the discrete coefficients to correspond to the
features of interest; i.e., we would like the projection operation to resemble
the action of the continuous operator. For images, traditional wavelets are the
perfect solution: acting like multi-scale derivatives, they essentially extract the
edge information. At the same time, the wavelet decomposition is very efficient
from the computational point of view due to the fast filtering algorithm.

Suppose that the signal of interest y satisfies the operator equation L{y} =
x, where x is the sparse information (features) of interest and the differential
operator L is more general than a pure derivative. Our purpose in this chapter is
to construct wavelets that behave like a multiscale version of L; in this case, the
wavelet representation of y will be a multiscale representation of the information
x.

We restrict ourselves to the class of spline-admissible, scale-covariant differ-
ential operators L. We give necessary and sufficient conditions that a spline-
admissible operator must satisfy in order to be wavelet-admissible. Importantly,
we construct the operator-like wavelet directly from the operator, bypassing the
scaling function space. What makes the approach even more attractive is that
the wavelet space is generated by the shifts of a single wavelet function. Our
work provides a generalization of some known and used constructions includ-
ing elliptic wavelets [79], polyharmonic spline wavelets [80], Wirtinger-Laplace
operator-like wavelets [81] and exponential-spline wavelets [82].

This chapter is organized as follows. In Section 2, we formally define a spline-
admissible scale-covariant operator and consider several examples. In Section
3, we construct the multiresolution analysis that corresponds to L. Then, in
Section 4, we introduce the operator-like wavelets and study their properties;
in particular, we prove that a wavelet-admissible operator L yields a stable
wavelet basis at each scale. Finally, we provide examples of the new wavelets
and conclude.

8.2 Preliminaries

Consider a linear, shift-invariant operator L that acts on the class of functions f :
Rd → C, where d is the number of dimensions. The operator L is characterized
by its frequency response L̂(ωωω).
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Definition 1 L is of order r if and only if, for all positive ρ < r−d/2, we have
that ∑

n∈Zd

||ωωω + 2πn||2ρ

1 + |L̂(ωωω + 2πn)|2
≤ Cρ < ∞.

Essentially, Definition 1 requires the frequency response L̂(ωωω) of the operator
to grow at least at the rate of ||ωωω||r as ||ωωω||→∞. The associated Sobolev space
is defined by

WL
2 = {f ∈ L2(Rd) :

∫

Rd

|f̂(ωωω)|2(1 + |L̂(ωωω)|2)dωωω < ∞}.

Definition 2 L is spline-admissible of order r if and only if the following con-
ditions are satisfied [83]:

1. L is a linear shift-invariant operator of order r > d/2;

2. L has a well-defined inverse L−1, and the impulse response ρ(x) of L−1

is a function of slow growth. Thus, ρ is a Green function of L satisfying
L{ρ(x)} = δ(x);

3. There exists a localization operator ∆̂(ejωωω) =
∑

k∈Zd p[k]e−j〈ωωω,k〉 with p ∈
/1(Zd) such that the corresponding generalized B-spline ϕ(x) = ∆{ρ}(x)
satisfies the Riesz basis condition

0 < A ≤
∑

k∈Zd

|ϕ̂(ωωω + 2πk)|2 ≤ B < ∞. (8.1)

In particular, this requirement implies that the zeros of ∆̂(ejωωω) are 2πk-
periodized zeros of L̂(ωωω). The condition (8.1) should be checked on a case-
by-case basis for each L and ∆.

Suppose now that we have a family of linear, shift-invariant operators {L#ν},
indexed by the parameter vector +ν = (ν1, . . . , νN ). Let D be an integer sub-
sampling matrix that corresponds to a similarity transform (i.e., D = aR with
an orthogonal matrix R and a > 0).

Definition 3 The operator L#ν is called scale-covariant with respect to D if there
exists an N ×N matrix A such that, for any +ν,

L̂A#ν(DTωωω) = c(D) · L̂#ν(ωωω),
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where c(D) depends only on the choice of the matrix D. The equivalent spatial
domain condition is, for any smooth function f ,

LA#ν{f}(D−1x) = c(D) · L#ν{f(D−1x)}.

In other words, the family {L#ν} is invariant with respect to scaling by D.

In the examples, we will use the unit step function u(x) = (1 + sign(x))/2
and the rectangle function rect(x) = u(x + 1

2 )− u(x− 1
2 ).

Example 1 Let d = 1 and Lν = D − νI, where ν < 0 is a scalar parameter,
D is the derivative and I the identity operator. Let us verify that Lν is spline-
admissible and scale-covariant with respect to D = (2). Indeed, Lν is of order
r = 1 > 1

2 , and its inverse has an impulse response ρν(x) = eνxu(x). With the
localization operator ∆̂ν(ejω) = 1− ejω−ν , we obtain the first-order exponential
B-spline

ϕν(x) = ρν(x)− eνρν(x− 1),

which is a function of compact support (cf. Chapter 2).
Furthermore, L̂ν(ω) satisfies L̂2ν(2ω) = 2jω − 2ν = 2L̂ν(ω), which proves

that Lν is scale-covariant with A = (2) and c(D) = 2.

Example 2 Let L̂ν(ωωω) = ||ωωω||2 + ν2 be the Matérn operator with the parameter
ν > 0. As L̂ν(ωωω) does not have poles, no localization operator is needed for
its Green’s function. Therefore, the operator Lν is spline-admissible and scale-

covariant with respect to the quincunx subsampling matrix D =
(

1 1
1 −1

)

with A = (
√

2).

The class of scale-covariant operators is large. All scale-invariant rotation-
covariant operators [81] are scale-covariant, and therefore included. At the same
time, the definition (3) allows us to apply our results to more general operator
families, such as the composition of any number of Matérn operators. It also
includes differential operators with transfer functions that are ratios of multi-
dimensional polynomials.

For the remaining part of this chapter, we assume that {L#ν} is a family of
scale-covariant, spline-admissible operators of order r.
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8.3 Multiresolution Analysis

Let us fix a scale i. Consider the function si(x) of smoothness order r that is
characterized by the relation

si(x) =
∑

k∈Zd

ckρ#ν(x−Dik).

We call this function an L#ν-spline with knots Dik. Clearly, si(x) satisfies

L#ν{si}(x) =
∑

k∈Zd

ckδ(x−Dik).

Remember that the operator LAi#ν admits a generalized B-spline

ϕAi#ν(x) = ∆Ai#ν{ρAi#ν}(x).

We define ϕi(x) = ϕAi#ν(D−ix); in the Fourier domain,

ϕ̂i(ωωω) = |det(D)|i∆̂Ai#ν(ej(DT )iωωω)ρ̂Ai#ν((DT )iωωω) =

|det(D)|ic(D)∆̂Ai#ν(ej(DT )iωωω)ρ̂#ν(ωωω)

by scale covariance. Consequently, {ϕi(x − Dik)}k∈Zd is a Riesz basis. The
multiresolution space Vi is defined as

Vi = {s(x) : s(x) =
∑

k∈Zd

c[k]ϕi(x−Dik), c[k] ∈ l2(Zd)}.

From here on, for notational simplicity, we omit the index +ν.
By using the same argument as for the 1-D case [83], we can show that L∗L is

a spline-admissible operator of order 2r > d > d/2. Its corresponding B-spline,
which is given by ϕi(x) ∗ ϕ∗i (−x), generates a Riesz basis. Consequently, the
L∗L-spline interpolant φi(x), given by

φi(x) ↔ φ̂i(ωωω) = |det(D)|i |ϕ̂i(ωωω)|2∑
k∈Zd |ϕ̂i(ωωω + (DT )−i · 2πk)|2 ,

is well-defined and generates a Riesz basis. Importantly, φi ∈ WL
2 does not

depend on the specific choice of the localization operator ∆i, as we can see from

φ̂i(ωωω) = |det(D)|i |∆̂i(ej(DT )iωωω)|2/|L̂(ωωω)|2

|∆̂i(ej(DT )iωωω)|2
∑

k∈Zd 1/|L̂(ωωω + 2 ·D−iπk)|2
=
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|det(D)|i

1 + |L̂(ωωω)|2
∑

k∈Zd\0 1/|L̂(ωωω + (DT )−i · 2πk)|2
.

The L∗L-spline interpolant plays the key role in our wavelet construction,
which we describe in the next section.

8.4 Operator-Like Wavelets

We construct the generating wavelet function at scale i as

ψi+1 = L∗{φi},

where we can apply the operator L∗ because φi ∈ WL
2 . The Fourier domain

expression for ψ̂i+1 has the form

ψ̂i+1(ωωω) = |det(D)|i L̂∗(ωωω)
1 + |L̂(ωωω)|2

∑
k∈Zd\0

1
|L̂(ωωω+(DT )−i·2πk)|2

. (8.2)

Note that for every p ∈ Rd such that L̂∗(p) = 0, ψ̂i+1(ωωω) vanishes at p +
(DT )−i2πk. In other words, each pole of L generates a periodic sequence of
zeros in the spectrum of the generating wavelet.

The wavelet system is obtained by shifting ψi+1 to all coset points DiZd\Di+1Zd

of the dilated grid. Remarkably, we have one unique wavelet function even when
the dimension d is larger than one; the |det(D)|−1 wavelets ψ(1)

i+1, . . . ,ψ
(| det(D)|−1)
i+1

are shifts of ψi+1. From here on, we will use the vectors el, l = 0, . . . , |det(D)|−1
to select one of the |det(D)| cosets, with e0 = 0 corresponding to the dilated
grid.

Let us study the properties of the new wavelet system.

Property 1 The wavelet function ψi+1 belongs to the approximation space Vi.

Proof: From (8.2), we have

ψ̂i+1(ωωω) = |det(D)|i ∆̂∗
i (ej(DT )iωωω)ϕ̂i(ωωω)

|∆̂i(ej(DT )iωωω)|2
∑

k∈Zd 1/|L̂(ωωω + 2πD−ik)|2
.

The expression in the denominator is equal to
∑

k∈Zd |ϕ̂(ωωω + 2πD−ik)|2; it
cannot vanish as ϕi generates a Riesz basis. Therefore, ψi+1 is a stable linear
combination of the shifts of ϕi.
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Property 2 The wavelets {ψi+1(x−Dik)}k∈Zd\DZd are orthogonal to the space
Vi+1.

Proof: As ϕi+1 is a linear combination of the functions {ρ(x−Di+1k)}k∈Zd ,
it is sufficient to prove that 〈ρ(x),ψi+1(x−Dik)〉 = 0 for all k ∈ Zd\DZd. We
use a simple duality argument to transfer the conjugate operator to the left side
of the scalar product to obtain

〈ρ(x),ψi+1(x−Dik)〉 = 〈Lρ(x + Dik),φi(x)〉 = 〈δ(x + Dik),φi(x)〉 =

〈δ(x),φi(x−Dik)〉 = φi(−Dik) = 0,

as φi is the interpolant and k *= 0.
We conclude that {ψi+1(x−Dik)}k∈Zd\DZd,i∈Z is a semi-orthogonal wavelet

system.
A direct implication of our wavelet construction is the following property.

Property 3 The wavelet function ψi+1 behaves like a multiscale version of the
underlying operator L in the sense that, for any f ∈ W r

2 , we have f ∗ ψT
i+1 =

L{f ∗ φT
i }.

For a vast majority of operators, φi is a lowpass filter with its passband
varying accordingly to the scale. Therefore, {L{f ∗ φT

i }}i∈Z corresponds to the
multiscale representation of L{f}.

The next result gives the condition on the operator that is necessary and
sufficient for the corresponding operator-like wavelet system to be a stable Riesz
basis. To formulate it, we introduce the set N = {p ∈ Rd|L̂(p) = 0} of poles of
L. For each scale i, we define

N (l)
i = p + (DT )−(i+1)2πel + (DT )−i2πZd, l = 0, . . . , |det(D)|− 1.

Property 4 Let i ∈ Z be an arbitrary scale. The set of functions Ψ = {ϕi+1}∪
{ψ(l)

i+1}
| det(D)|−1
l=1 generates a Riesz basis if and only if, for each 1 ≤ l ≤ |det(D)|−

1,
N (0)

i ∩N (l)
i = ∅. (8.3)

Proof: Sufficiency. Our proof is inspired by the ideas in [84]; we use
the theory of finitely-generated shift-invariant spaces developed by de Boor et
al [85]. Suppose that (8.3) holds. The set Ψ generates a Riesz basis if and only
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if, for each ωωω, the |det(D)| “fibers”

ĴΨ =





ϕ̂i+1(ωωω + (DT )−(i+1)2πk)
ψ̂(1)

i+1(ωωω + (DT )−(i+1)2πk)
...

ψ̂(| det(D)|−1)
i+1 (ωωω + (DT )−(i+1)2πk)





k∈Zd

(8.4)

are linearly independent. We know that the function ϕi generates a Riesz basis,
so that the fibers ĴΦ that correspond to ϕi(x −Diel), l = 0, . . . , |det(D)| − 1
are linearly independent. These fibers are given by

ĴΦ =





ϕ̂i(ωωω + (DT )−(i+1)2πk))
ϕ̂i(ωωω + (DT )−(i+1)2πk))e−jωωωT Die1+j2πkT (DT )−1e1

...
ϕ̂i(ωωω + (DT )−(i+1)2πk))e−jωωωT Die| det(D)|−1+j2πkT (DT )−1e| det(D)|−1





k∈Zd

.

(8.5)
Let us introduce the scaling filter

H(ej(DT )iωωω) =
ϕ̂i+1(ωωω)
ϕ̂i(ωωω)

= const · ∆̂i+1(ej(DT )i+1ωωω)
∆̂i(ej(DT )iωωω)

and the wavelet filters

Gn(ej(DT )iωωω) =
ψ̂(n)

i+1(ωωω)
ϕ̂i(ωωω)

=

|det(D)|ie−jωωωT Dien
∆̂∗

i (ej(DT )iωωω)∑
k∈Zd |ϕ̂i(ωωω + 2πD−ik)|2 , n = 0, . . . , |det(D)|− 1.

Any filter P (ej(DT )iωωω) can be decomposed into polyphase components with
respect to D:

P (ej(DT )iωωω) =
1

|det(D)|

| det(D)|−1∑

n=0

| det(D)|−1∑

l=0

F[l, n]P (l)(ej(DT )iωωω)

︸ ︷︷ ︸
n-th polyphase component

,

where P (l)(ej(DT )iωωω) = P (ej(DT )iωωω−j2π(DT )−1el) is the l-th aliased component
and F is the generalized DFT matrix associated with D [86]. With these nota-
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tions, we can express (8.4) through (8.5); the polyphase components get multi-
plied by the corresponding shifts of the scaling function:

ĴΨ =
1

|det(D)|





H(0) . . . H(| det(D)|−1)

G(0)
1 . . . G(| det(D)|−1)

1
. . .

G(0)
| det(D)|−1 . . . G(| det(D)|−1)

| det(D)|−1





︸ ︷︷ ︸
T

FĴΦ.

We need to show that det(T) is separated from zero. Under the conditions
on the order of L, all entries of T are continuous, and it is sufficient to prove
det(T) *= 0. Suppose that for some ωωω the determinant detT is null. Then, there
exist (cl) *= 0 such that

| det(D)|−1∑

l=0

clG
(l)
0 F[l, n]∗ = 0, n = 1, . . . , |det(D)|− 1 (8.6)

and
| det(D)|−1∑

l=0

clH
(l) = 0. (8.7)

The condition (8.6) means that the vector [clG
(l)
0 ]| det(D)|−1

l=0 is orthogonal to
all columns of the |det(D)|× |det(D)| matrix F except for the vector (1, . . . , 1)
that corresponds to k = 0. As F is orthogonal, we conclude that

clG
(l)
0 = c = const.

Formally, there are three cases to consider:

1. All G(l)
0 *= 0 and cl = c/G(l)

0 . Then, ∆̂i(ej(DT )iωωω−j2π(DT )−1el) *= 0. From
(8.7), we have

| det(D)|−1∑

l=0

H(l)

G(l)
0

= ∆̂i+1(ej(DT )i+1ωωω)
| det(D)|−1∑

l=0

const

G(l)
0 ∆̂i(ej(DT )iωωω−j2π(DT )−1el)

= 0.
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This can only be true if ∆̂i+1(ej(DT )i+1ωωω) = 0, which implies H(l) = 0 for
l = 0, . . . , |det(D)| − 1 and ϕ̂i+1(ωωω + j2π(DT )−i−1k) = 0 for all k ∈ Zd.
The latter contradicts the fact that {ϕi+1(x + Di+1k)}k∈Zd is a Riesz
basis.

2. There is a unique l0 such that G(l0)
0 = 0. In this case, cl = 0 for l *= l0,

and from (8.7) we have H(l0) = 0. This means that ∆̂i+1(ej(DT )i+1ωωω) = 0,
and, as ∆(l)

i *= 0 for l *= l0, we have H(l) = 0 for l = 0, . . . , |det(D)| − 1,
which is again impossible.

3. There exist l1 *= l2 such that G(l1)
0 = G(l2)

0 = 0. Let ωωω0 = ωωω−2π(DT )−i−1el1 ,
and let el be the defining vector for the coset containing el2−el1 . Clearly,
ψ̂i+1(ωωω0) = 0 and ψ̂i+1(ωωω0 − 2π(DT )−i−1el) = 0. From the expression
(8.2) for ψ̂i+1(ωωω), we conclude that ωωω0 ∈ N (0)

i ∩N (l)
i , and (8.3) is violated.

Necessity. Suppose that L violates the necessary condition; i.e., there ex-
ist p1,p2 ∈ Rd such that L̂(p1) = L̂(p2) = 0 and p1 = p2 + (DT )−i2πk +
(DT )−(i+1)2πel for some coset el and k ∈ Zd. Note that the wavelet fibers in
ĴΨ have a particularly simple structure: they are |det(D)|-periodic sequences,
multiplied by ψ̂i+1(ωωω). We have ψ̂i+1(p1) = ψ̂i+1(p1 + (DT )−(i+1)2πel) = 0.
For ωωω = p1, the |det(D)|−1 fibers will have two zeros on the main period of the
periodic sequence at the positions corresponding to e0 and el. The number of
fibers associated to wavelets is |det(D)|− 1, and there are at most |det(D)|− 2
non-zeros at each period. Necessarily, the fibers are linearly dependent.

Let us study several examples that illustrate the richness of our wavelet
construction.

Example 3 For the first-order differential operator Lν = D − νI from Exam-
ple 1, the autocorrelation filter is identity. Let D = (m), m > 0. We have∑

k∈Zd |ϕ̂i(ω + 2 ·D−iπk)|2 = 1 and the L∗L-interpolant φi(x) is a symmetric
exponential spline with poles {ν,−ν∗}. As d = 1 and m = 2, the wavelet space is
generated by a single shift of the wavelet function, which is the exponential-spline
wavelet (see Figure 8.1).

Example 4 With m = 3 and the derivative operator L = D, we get the wavelet
system, generated by two Haar wavelets, shifted to the points x = 1 and x =
2. Interestingly, despite the apparent simplicity of this operator, the separable
extension to multiple dimensions is not possible — for example, the 2-D operator
DxDy fails the necessary stability condition.
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Figure 8.1: First order exponential-spline wavelet corresponds to the
choice of Lν = D− νI.

Example 5 We show the wavelet that corresponds to the 2-D Matérn operator
L̂ν(ωωω) = ||ωωω||2 + ν2 in Figure 8.2. The function has sharp peaks, which are
caused by slow decay of the wavelet spectrum in the Fourier domain.

Example 6 As ν → 0, the Matérn operator tends to the scale-invariant Lapla-
cian operator ∆̂(ωωω) = ||ωωω||2. The corresponding wavelet is shown in Fig. 8.3.
In case of iterated Laplacian operator ∆̂2(ωωω) = ||ωωω||4, faster Fourier decay of
the wavelet spectrum leads to better regularity in space domain (see Fig. 8.4).

Note that both the Matérn and the Laplace operator-like wavelets can be
considered with any admissible subsampling matrix D. In two dimensions,

the choice of D =
(

2 0
0 2

)
corresponds to the rectangular grid, while D =

(
1 1
1 −1

)
characterizes the quincunx subsampling scheme.

8.5 Conclusion

We have constructed wavelet-like bases that behave like the multiresolution ver-
sion of a given scale-covariant, spline-admissible operator. In our construction,
all wavelets are shifts of a single generating function. In the multidimensional
setting, the wavelets are not separable. In general, separable wavelets can not
be obtained with this non-separable construction.
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Figure 8.2: Wavelet obtained from the Matérn operator; ν = 1.
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Figure 8.3: Wavelet obtained from the Laplacian operator.

Figure 8.4: Wavelet obtained from the iterated Laplacian operator.
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From the computational point of view, our wavelets still admit fast Mal-
lat’s filterbank algorithm, although, the filters are generally scale-dependent.
Whenever the transform is used intensively, it might be a reasonable option to
precompute these filters and store them in memory to accelerate computations.

The completeness of the multiresolution analysis ∪Vi in L2(Rd is still a
remaining issue. By analogy with the 1-D case, the condition on the operator
order r > d/2 should be sufficient for the decay of the error rate ||Pif−f ||2 → 0
as i → −∞ for any f ∈ W r

2 , where Pi is the orthogonal projector on Vi.
Our wavelet bases have potential of application in areas of signal processing,

where one is dealing with data convolved with a known imaging operator L−1.
The wavelets derived from this operator would behave like a multiscale version
of L and essentially decorrelate the data, concentrating the object’s energy into
a small number of coefficients.



Chapter 9

Conclusion

We have suggested a way to construct wavelets in arbitrary dimensions based
on a general scale-covariant differential operator. The framework is built in the
spirit of discrete-continuous signal processing; it can be useful for problems that
are characterized by differential operators. We have demonstrated its potential
for temporal signal processing by applying the construction to the problem
of brain activity detection in fMRI. The main contributions of this thesis are
summarized in the following section.

9.1 Main Contributions

• Starting with a differential operator L, we introduced wavelets that act as
a multiscale version of L. For a linear, shift-invariant system characterized
by Ly = x, our wavelet transform essentially inverted the system response.
We were particularly interested in the situation where the input signal x
was sparse: in this case, the relevant components of the wavelet transform
could be identified by means of a sparse-solution search algorithm. The
search time remained reasonable thanks to the fast decomposition and
reconstruction routines available within our framework.

• For the one-dimensional system defined by a linear differential equation,
we provided the explicit expressions for the scaling functions and wavelets,
as well as for scaling and wavelet filters. The classical B-spline wavelets
turned out to be part of our construction that corresponded to the pure
iterated derivative operator.
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• By tuning the differential system to the balloon/windkessel model in fMRI,
we obtained activelets — a special type wavelets for temporal fMRI signal
processing. Under the assumption of sparse activity (which corresponded
to the slow event-related paradigm), we have suggested a framework that
allowed estimation of the activity-related signal in the fMRI measurements
without knowledge of the actual onset times. We have tested the sensi-
tivity of the algorithm on a synthetic dataset by means of an ROC curve.
Unlike standard techniques that use a fixed shape model for BOLD re-
sponse, our approach works just as well when the corresponding BOLD
response exposes variability.

• Finally, we have verified that our algorithm worked on real data: it was
able to detect local activations in the primary visual cortex. We have also
identified the optimal event length, which came as a compromise between
the requirements of short impulse-like events and reasonable SNR.

One more example of a brain imaging application where operator-like wavelets
worked well was the reconstruction problem in dynamical PET [87]. We have
left this work out of scope of the present thesis and briefly describe it in the
following subsection.

9.1.1 Application to Dynamic PET

We assume that the imaged object consists of n tissue compartments that par-
ticipate in the activity exchange process. The PET signal y(τ) is modeled by
means of a state-space model that has the whole-blood activity and the plasma
activity as input. The two input quantities are related to the injection ac-
tivity through another system that models the tracer concentration dynamics.
We approximate the agglomerated system by a linear differential operator L
with zero and pole vectors +α,+γ, respectively. The selection of +α,+γ is a study-
dependent process; in [87], we give an example of parameter identification for
the [13N ]−NH3 kinetic model.

If we approximate the injection events with Dirac delta-functions, the mea-
sured PET signal will be a L-generated exponential spline, and

L{y}(τ) =
∑

t

δ(τ − τt),

where τt are the injection times. Therefore, the exponential-spline wavelets with
the properly-tuned parameters provide a sparse representation of the activity-
related signal. In order to extract it, we write the optimization criterion with a
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regularization term that forces sparsity in the temporal and spatial dimensions:

min
w

||y −Rw||+ λ||w||1,

where R is the PET reconstruction operator, and w are the wavelet coefficients.
We use traditional B-spline wavelets in space, and exponential-spline wavelets
tailored to the model in time. As in the fMRI case, the sparsity constraint is
expressed by using the l1 norm of the coefficients. The solution is obtained with
an iterative soft thresholding algorithm, where each iteration is followed by a
reprojection on the space of admissible (positive) reconstructions. We verified
the approach on a tomographic simulation study, as well as on two real PET
data sets [87].

9.2 Future Work

While we have done the whole path from the theoretical concept to the practical
data treatment, there is certainly much room left for further investigations.
Some possibilities are listed below.

• The operator-like wavelet transform could be applied to other systems
characterized by differential operators. It might also be possible to use
a separable construction and combine the favorable behavior of operator-
like wavelets in time with the good decorrelating properties of traditional
wavelets in space.

• In this work, we have tested the activelet method on a single subject, and
only visual tasks were used. The next important step to convince the
neuroimaging community is to validate the method on many subjects and
different tasks.

• A relevant future direction is the development of statistical methods that
would produce parameter maps based on the activity-related signal esti-
mated by the activelet framework. The work of Knight and Fu [88] could
give some interesting indications in this respect.

• The key advantage of the activelet method is that it does not use any ex-
perimental timing information at the processing stage. One can think of
scenarios, such as mental chronometry tasks, where precise knowledge of
timing is not available. Our algorithm could be used, for example, to iden-
tify all locations where activation happened in a specific period of time.
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For each task, a particular neurological question should be formulated and
an appropriate statistical decision scheme should be established.



Appendix A

Appendices

A.1 Proof of Theorem 1

First, we outline some basic notations used in [21] to be able to perform the
estimations. The spectrum of the first-order E-spline |β̂σ+jω0(ω)| achieves its
maximum Mσ+jω0 at ω = ω0. For the N -th order case, we denote M#α =∏N

l=1 Mαl .
By referring to the general approximation results of Blu et al. [89], we con-

sider the limit

lim
T→0

||f − PT f ||2L2

T 2(N−M)

= lim
T→0

∫ ∞

−∞

∑

k +=0

|f̂(ω)|2 |β̂T #α,T#γ(ωT + 2πk)|2/T 2N

∑
k |β̂T #α,T#γ(ωT + 2πk)|2/T 2M

dω. (A.1)

We denote Ψ1(k, T, ω) = (β̂T #α,T#γ(ωT + 2πk))/TN and Ψ2(k, T, ω) = 1
T M ·√∑

k |β̂T #α,T#γ(ωT + 2πk)|2.
To evaluate (A.1), we would like to exchange the limT→0 and

∫ ∑
signs. To

be able to apply Lebesgue’s theorem, we must first prove that |Ψ1(k,T,ω)
Ψ2(k,T,ω) f̂(ω)|2

is bounded by a summable and integrable function that does not depend on T .
As we are interested in small values of T only, we assume that

T < min
{

π

maxl |γl|+ maxl |αl|
,

π

3 maxl |αl|

}
. (A.2)
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Then, for Ψ1(k, T, ω), we have that

Ψ1(k, T, ω) =
M∏

l=1

jωT − γlT + 2πk

T (jωT − αlT + 2πk)
(1− eTαl−Tjω+2πk)

·
N∏

l=M+1

1− eTαl−Tjω+2πk

T (jωT − αlT + 2πk)
.

We perform the partial fraction decomposition

jωT − γlT + 2πk

(jωT − αlT )(jωT − αlT + 2πk)

=
(αl − γl)T/2πk + 1
(jωT − αlT + 2πk)

+
−(αl − γl)T/2πk

(jωT − αlT )
.

From [21, Appendix A], we know that | 1−eT αl−T jω+2πk

(jωT−αlT )(jωT−αlT+2πk) | ≤
Mαl
π|k| . Thus,

taking into account (A.2), we get the following estimation for Ψ1:

|Ψ1(k, T, ω)| ≤ 1
TN

|LT #α(jωT )|
M∏

l=1

MTαl(1 +
|αl − γl|T

π|k| )

·
N∏

l=M+1

Mαl

π|k| ≤ |L#α(jω)| 2MM#α

(π|k|)N−M
.

We now bound Ψ2 from below. Using a technique similar to the one in [21] for
the lower Riesz-bound estimation, we obtain

Ψ2(k, T, ω)
|
∏M

l=1(jω − γl)|
≥ inf

ω∈[− π
T , π

T ]
|β̂T #α(ωT )| ≥ MT #α

πN
.

Consequently, for |Ψ1
Ψ2

f̂ |2 we get the bound

∣∣∣∣
Ψ1(k, T, ω)
Ψ2(k, T, ω)

f̂(ω)
∣∣∣∣
2

≤ (2π)2M |L#α,#γ(jω)f̂(ω)|2

|k|2(N−M)

which is summable over k and integrable over ω under the assumptions of the
theorem.
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We thus exchange the limit with the integration and summation and calcu-
late

lim
T→0

∣∣∣∣
Ψ1(k, T, ω)
Ψ2(k, T, ω)

f̂(ω)
∣∣∣∣
2

=

∣∣∣∣∣
f̂(ω)

∏N
l=1(jω − αl)

(2πk)N−M
∏M

l=1(jω − γl)

∣∣∣∣∣

2

=
|L#α,#γ(jω)f̂(ω)|2

(2πk)2(N−M)
,

which yields the desired result

lim
T→0

||f − PT f ||2L2

T 2(N−M)
= C2

N,M ||L#α,#γf ||2L2
.
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and Sara Rüsch, who were always there to help me overcome the hard times and
thanks to whom I felt at home in Switzerland. On their example, I am learning
to be a better person. I dedicate this thesis to them.

Ildar Khalidov, Lausanne–Genève–Tokyo, October 2008
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