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ABSTRACT

We introduce an exponential-based consistent approach
to image scaling. Our model stems from Sobolev repro-
ducing kernels, motivated by their role in continuous-
domain stochastic autoregressive processes. The pro-
posed approach imposes consistency and applies the
minimum-norm criterion for determining the scaled im-
age. We show by experimental results that the proposed
approach provides images that are visually better than
other consistent solutions. We also observe that the
proposed exponential kernels yield better interpolation
results than polynomial B-spline models. Our conclu-
sion is that the proposed Sobolev-based image model-
ing could be instrumental and a preferred alternative in
major image processing tasks.

1. INTRODUCTION

Image modeling is fundamental to many image process-
ing tasks such as enhancement, restoration, analysis and
compression. In the case of image interpolation, the un-
derlying idea of current image modeling approaches cor-
responds to regularity constraints that are imposed on
the continuous-domain image. Both theoretical and ex-
perimental studies have shown that polynomial B-spline
kernels provide the best continuous-domain model for
linearly interpolating a signal in terms of the SNR mea-
sure [1, 2]. Non-linear interpolation methods, on the
other hand, are based on local features of edges; on
wavelet and multiscale image representation; on PDE
(Partial Differential Equation) models; and on the sta-
tistical properties of an image.

In this work, an alternative image modeling ap-
proach is introduced. We consider a deterministic model
that imposes a less restrictive regularization constraint
while utilizing the statistical properties of the image. It
is suggested here to use the Sobolev space framework for
this purpose. Sobolev spaces consist of smooth functions
and they serve as the underlying continuous-domain
model in several image processing tasks [3, 4, 5]. Fur-
ther motivation for the proposed Sobolev model stems
from its relation to autoregressive image modeling. The
reproducing kernel Hilbert space (RKHS) property of
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Sobolev spaces will be shown to give rise to exponential-
based interpolation kernels that correspond to general-
ized exponential splines introduced in [6].

Motivated by currently available acquisition devices,
an image scaling operation is assumed to be consistent
with the pixels of the given image. The proposed ap-
proach can assume either ideal or non-ideal sampling
procedures, and in either case the sampling model re-
mains the same for the scaled image. The pixels of the
given image are interpreted by means of a continuous-
domain signal in a certain sampling space, while the
scaled image belongs to yet another subspace. The
scaled image is not unique as there are many possible
signals that comply with the consistency constraint. We
identify the set of all possible consistent images and fur-
ther suggest to reconstruct the signal that has the mini-
mum possible norm. Experimental results indicate that
the proposed exponential-based model provides a better
alternative to currently available models, and that the
proposed minimum-norm criterion outperforms visually
other consistent solutions.

2. WEIGHTED SOBOLEV SPACES FOR
IMAGE RECONSTRUCTION

Let Hj; be a weighted Sobolev space with weights X =

{X\n}}. This space consists of all one-dimensional finite-
energy functions defined on the real line for which their
first p derivatives are of finite energy as well. The cor-
responding inner product is given by

p
(%) = ;An : <X(n)’y(n)>m’ (1)

where the set of weights X provides a positive measure
for (x,x) ;. The reproducing kernel of Hy satisfies
A

-

x(r) = (x(0.0( = 0)) (2)

for every x € Hy, and it is given by the following Laplace
transform

< 1
P(s;\) = .
(87 ) )\O_A1$2+._,+(_1)p,)\p52p

(3)

The poles of ®(s; X) are symmetric with respect to the
imaginary axis, and if they are all simple, the corre-
sponding inverse Laplace transform is a weighted sum
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of the exponential function « - €l*l. Such symmetric
functions can be described by generalized exponential
splines [6].

2.1 Ideal Sampling

The RKHS framework of Sobolev spaces suggests an or-
thogonal projection interpretation for ideally sampling
a signal. Let x be an arbitrary Sobolev function and let
{nA} be a set of sampling points. Then, one can iden-
tify a sampling space by shifting the reproducing kernel
accordingly,

Sp 5 = Span {(p(t —nA; X)} = Span {1/)n(t; A, X)} ,
(4)
where {wn (t; A, /\)} is the corresponding biorthonormal

set. Given the sampled version of x, the orthogonal
projection of x onto this subspace is

Ps, x = X(tn) vn(t; A, X). (5)

n

The RKHS property ensures that the sampled versions
of both Ps, .x and x are identical as each 1, (¢; A )
is mterpolatlve Additionally, Ps, <X is a minimax so-
lution in the following sense,

s, @

Ps _x = argmin max
JANDN HX

*IxI<L, {x(tn)}

Pointwise evaluation of Ps, .x can be performed by vec-
tor multiplication calculatlon

PSA,XX(T) =pl .G 1., (7)
where p[ | = x(nA), b[n] = p(nA—1,X) and G(m,n) =
o((m —n)A, X) is a Gram matrix.

2.2 Non-Ideal Sampling

Non-ideal samples of a continuous-domain signal are
given here by,

pln] = (x(1),

where s(t) is a sampling function that characterizes the
acquisition device. In cases where x is a Sobolev signal,
the Ly inner product can be alternatively described by
a Sobolev inner product

s(t —nd))p, (8)

pln) = (x(0), ¢t~ n2. %)) )

where
36,3 = {p(rs X) +s(n) } (1 (10)

and * denotes convolution. It then follows that a non-
ideal sampling model defines a modified sampling space,

Sa.x = Span {@(t —nA; X)} — Span {dn(t; A, X)} .
(11)

In this case, however, the biorthogonal functions are not
interpolative. Instead, they comply with a generalized
interpolation criterion given by

<zzn(t; AN, sm> = 3[n — m). (12)

Lo

The minimum norm property and the minimax optimal-
ity of Pg _x are still valid, though.
ALX

3. MMSE SIGNAL INTERPOLATION

The Laplace transform of (3) may also originate from an
autocorrelation function of a continuous-domain autore-
gressive stochastic process. As a matter of fact, both

the reproducing kernel (¢, X) and the autocorrelation

function r(t; X) have a similar role in signal interpola-
tion. The minimum mean square error (MMSE) linear
estimator of x(7) is given by,

%(r) =Y _aln] - x(tn), (13)

where a is a set of coeflicients that is determined by the
orthogonality principle of linear estimators. It follows
that

> am] - r(tm — tai X) =r(r —tn;X)  (14)

m

holds for every coordinate t,,, where r(t; X) is the auto-
correlation function of x. Denoting G(m,n) = r(t,, —
tn; A), bin] = r(1 — ty; A) and pn] = x(t,), the linear
estimation of x(7) is identical to Ps . x(7).

This equivalence between the Sobolev based deter-
ministic model and the autoregressive stochastic model

can be utilized for choosing the optimal weights X of
(1). Given a sampled signal, one can estimate the au-
toregressive parameters of the continuous-domain pro-
cess; determine the autocorrelation function r(t); and
set ¢(t) = r(t). For a uniformly sampled signal, it is sug-
gested here to assume a discrete-domain autoregressive
process and extract its parameters by the least square
estimation method. In such a case, the z-transform of
the autocorrelation sequence would consist of poles that
appear in reciprocal pairs {z,, 1/z,}5_; where |z,| < 1.
The poles of the continuous—domain process will be as-
sumed then to be {s, = In(z,)}>",, for which {\,}’_,
can be readily determined. T'wo-dimensional signals w111
be assumed to have a separable autocorrelation function
and the horizontal autocorrelation function will be esti-
mated separately from the vertical one.

The proposed approach posses the simplicity of lin-
ear methods while further pushing the paradigm of su-
per resolution methods by adapting itself to the given
signal [7]. On top of that, it provides a continuous-
domain signal that takes the sampling process into ac-
count.

4. CONSISTENT IMAGE SCALING

Motivated by typical acquisition devices, image scaling
is considered to be a zoom-in/zoom-out operation, for
which the same acquisition device is used for every scale.
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It follows that scaling an image corresponds to reac-
quiring the original signal by scaled versions of the sam-
pling functions that characterize the device. These sam-
pling functions are not necessarily Dirac distributions,
i.e., ideal sampling, but finite-support functions that de-
scribe the non-ideal nature of the device, as is the case
of zero-order-hold (ZOH) sampling for example.

A consistent approach is suggested here for image
scaling. This approach can take either ideal or non-
ideal sampling procedures. In an ideal sampling case,
the pixels of the scaled image correspond to point-wise
evaluation of the reconstructed signal, whereas for non-
ideal sampling procedures, the pixels correspond to av-
eraging the reconstructed signal over scaled intervals.
The sampling step of the given image is assumed to be
of unit size and the sampling step of the scaled image is
assumed to be A. The consistent approach would recon-
struct a signal for which its unit-step sampled version
would be consistent with the pixels of the given image
(Figure 1). Furthermore, this signal should be as close
as possible to PgA X which is the image one would get

from x itself,

min max ‘ Ps ax—ch . (15)
* Il <L, A Hx
A5

Pz %=Pz x
S1.% S1.%

It holds that Pz _x is a shifted balanced set,
1,X

Pg‘A’Xx: PgA,ngl,XX—l—PgA,XPthX, (16)

and a minimax solution would minimize the distance to

the center of this set, Ps _Pgs _x, which is known. On
AL 1A

the other hand, admissible consistent solutions form a
shifted balanced set, too. Its center is P~ X adding a

vector in SLX would still result in a c0n51stent solution.

As theses two centers do not necessarily coincide, the
minimax solution is dependent on the norm of the orig-
inal signal L, which in practice is unknown. It is there-
fore suggested here to relax the minimax constraint and
find a consistent solution in & AX that has the minimum

possible norm. That is,

min Hx x=P: x (17)
XeS, x >

Consistent sampling gives rise to oblique projections
[8, 9]. Such projections are uniquely defined if and only
if the reconstruction and the sampling spaces comply
with a direct-sum relation. However, this is not the
case here. For image up-scaling (A < 1), for exam-
ple, there might be several possible signals in the recon-
struction space S, 5 that comply with the consistency

requirement. A consistent solution can be written as
X = X1 + X3, where

%1€ 8,5\ (SaxNSEL) (18)

is consistent with the known samples and X2 € S 1LX'

Figure 1: The proposed image scaling approach. The recon-
structed signal X should be consistent with the known pixels
(top branch) and should have a minimum norm property.
The pixels of the scaled image correspond to sampling X at
the new grid while using scaled sampling functions (bottom
branch).

Theorem 1 Let x € Hy be given by its unit-interval

samples and let §1,X be the corresponding sampling

space. Let also S Ax be a sampling space correspond-

ing to a sampling interval A as given by (11). If A < 1

(up-scaling), then a consistent reconstruction of x in the

sense of (17) is the oblique projection of Pz _x onto the
1,X

space
SA,X\ (SA,XﬂSf:X) ) (19)
having a null space glli

The approach yields a signal that has the following
properties: 1) It resides in a vector space that is de-
termined by the sampling process and by the stochastic
properties of the given image. 2) Its unit-interval sam-
pled version is consistent with the given image. 3) It is
minimum norm. The scaled image is obtained then by
re-sampling this signal at the required grid. The pro-
posed image scaling algorithm is described next. The

orthogonal projection of x onto S 5 1s given by

Za

n=0

2

@t —n), (20)

where a = G71p. G(m,n) = @(m — n) is the Gram
matrix of the sampling functions and p is a vector of
the known samples/pixels. The reconstructed signal is
given by
M—1
x=> bn]-p

m=0

(t —nA), (21)

and there need to be M linear equations for determining
the coefficients b. N equations are given by the consis-
tency constraint,

b[0] pl[0]
Anxm - : = : , (22)
b[M — 1] p[N — 1]
where A(n,m) = ¢(n — mA). The additional M — N

equations originate from the constraint

*¢§A,xﬂ§ﬁx- (23)
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The basis functions of this space are determined by the
null space of A, and the reconstructed signal should be
orthogonal to each one of them. This is expressed by

b[0] 0

Bv—nNyxar - : =11, (24)
bM — 1] 0

where B(m,n) = ny:gl Umlk] - (kA — nA) and where
Vp 18 the mth vector in the null space of A. In cases
where §1. 5 € S A the reconstructed signal is equal to
Pgl,xx. For example, for an ideal sampling model and
for cases where the grid of the scaled image contains the
grid of the given image, the proposed approach yields
the sampled version of Pgl X which accounts for stan-

dard resampling. This is not the case, however, for other
sampling grids (Figure 2) or for non-ideal sampling mod-
els.

-4t

6L
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Time

Figure 2: MMSE interpolation of an autoregressive process
by a non-integer factor. A continuous-domain autoregres-
sive process has been sampled on a unit sampling grid. The
same stochastic process was then sampled at a finer grid of
A = 2/3 (dots). Shown here are an exponential-based (solid)
and a polynomial-based (dashed) reconstructed signals that
originate from the unit-interval sample values. Both signals
are consistent with the known samples of the unit-interval
grid and they are of minimum norm. The proposed expo-
nential model provides a better approximation to the true
values of the process than does the polynomial model as in-
dicated by the MSE values of their sampled versions: 0.0982
vs. 0.5683 respectively. It is noted that every third sample
in the figure coincides with both signals as it coincides with
the unit-interval sampling grid. The poles of the continuous-

domain process are X = {—0.5, —1}.

5. EXPERIMENTAL RESULTS

Consistent image scaling experiment were carried out
using the proposed model and the polynomial B-spline
model. An ideal sampling procedure was considered,
i.e., s(t) = 0(t), for which down-scaling was performed
by sampling the original image at a three-times coarser
sampling grid. The down-scaled image was then up-
scaled by a factor of A = 2/3 using both models. Both

reconstructed signals are consistent with the known
pixel values and are of minimum norm. The up-scaled
image was then compared with pixel values of the orig-
inal image taken on a two-times coarser sampling grid.
Numerical comparison is given in Table 1. As reflected
from the table, the proposed model provides higher SNR,
values when considering various types of images and tex-
ture [10] as it adopts the Sobolev weights to the given
image. SNR values were carried out while excluding
boundary pixels of the image; the width of the bound-
ary region was 10% of the image size. Shown also in
Table 1 are VIF (Visual Fidelity Information Fidelity)
values [11]. Figure 3 provides visual comparison be-
tween minimum-norm and non minimum-norm signals,
indicating that the proposed minimum-norm criterion is
preferable in this regard.

Image SNR [dB] (VIF)
Polynomial Proposed
B-spline Model
L =4, cubic p=2
Autoregressive 22.09 (0.62) 24.66 (0.69)
Lena 22.15 (0.47) 22.39 (0.50)
Fishing Boat 18.77 (0.45) 18.84 (0.46)
Alliums 19.54 (0.51) 19.70 (0.54)
Rose 25.49 (0.39) 25.87 (0.42)
D23 17.37 (0.39) 17.76 (0.40)
D28 15.93 (0.34) 15.96 (0.35)
D75 18.84 (0.39) 19.37 (0.41)

Table 1: A comparison of consistent image scaling. The
original image was down-sampled by a factor of three using
the ideal sampling model and was then up-scaled by a factor
of A = 2/3. The up-scaled image is consistent with the
down-sampled image. The up-scaled image is compared here
with pixel values of the original image taken on a doubly-
spaced sampling grid . VIF indicates Visual Information
Fidelity according to [11].

6. CONCLUSIONS

A reproducing-kernel Hilbert space approach has been
proposed for image and texture scaling. Sobolev func-
tions, which are dense in Lo, provide a useful framework
for this purpose. The reproducing kernels of Sobolev
spaces have been shown to be of an exponential type.
These kernels are related to autoregressive processes,
suggesting a method for determining the proper Sobolev
weights for a given image. Image scaling operations
were assumed to be consistent with the pixels of the
given image; these pixels can be either ideal or non-ideal
samples of the continuous-domain image. The proposed
approach assumes that images of different resolutions
originate from a single continuous-domain signal while
being acquired by properly scaled versions of a single set
of sampling functions. A minimum-norm criterion was
also suggested for reconstructing the scaled image, giv-
ing rise to an oblique projection operation in Sobolev
spaces. Experimental results show that the proposed
approach can provide a preferred alternative approach
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Minimum Norm (Proposed)

Non Minimum Norm

Figure 3: A visual comparison of consistent image scaling. Shown here are portions of the Fishing Boat image (first row)
and of the D23 Brodatz image (second row) having been up-scaled by a factor of A =2/3. The left column corresponds to
a consistent reconstruction having the minimum norm property. The other two columns are consistent but not of minimum
norm (the ¢2 norm is larger by no more than 1%). Every third pixel has the same value for all of the images as they coincide

with pixels of the original image.

s L
SA,XHSLX'

to image modeling in general, and in particular to image
scaling tasks.

1]
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