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A Sampling Theory Approach for Continuous
ARMA Identification

Hagai Kirshner, Simona Maggio,

Abstract—The problem of estimating continuous-domain au-
toregressive moving-average processes from sampled data is
considered. The proposed approach incorporates the sampling
process into the problem formulation while introducing exponen-
tial models for both the continuous and the sampled processes. We
derive an exact evaluation of the discrete-domain power-spectrum
using exponential B-splines and further suggest an estimation
approach that is based on digitally filtering the available data. The
proposed functional, which is related to Whittle’s likelihood func-
tion, exhibits several local minima that originate from aliasing.
The global minimum, however, corresponds to a maximum-like-
lihood estimator, regardless of the sampling step. Experimental
results indicate that the proposed approach closely follows the
Cramér-Rao bound for various aliasing configurations.

Index Terms— Maximum likelihood estimation, signal sampling,
system identification.

1. INTRODUCTION

ONTINUOUS-DOMAIN autoregressive moving average

(ARMA) processes are widely used in control theory and
in signal/image processing and analysis. Typical examples of
applications are system identification and adaptive filtering [1],
[2]; speech analysis and synthesis [3]; stochastic differential
equations and image modeling [4]—-[6]. Linear estimation theory
for ARMA processes is closely related to Sobolev spaces [7];
the reproducing kernel of a Sobolev space has a similar role
in signal interpolation as the ARMA autocorrelation function
has in linear minimum-norm estimator design. Further, Sobolev
norms provide the continuous-domain regularization term in nu-
merous inverse problems [8]-[12] and their relation to ARMA
modeling suggests a parameterized modeling of continuous-do-
main signals. In practice, the available data is discrete and one is
usually required to estimate the underlying continuous-domain
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parameters from sample values. Potential examples are contin-
uous-domain structure modeling of physical phenomena, linear
time invariant (LTT) system identification, as well as numerical
analysis of differential operators.

The sampled version of a Gaussian ARMA process is a dis-
crete-domain ARMA process whose zeros and poles are cou-
pled in a nontrivial way [13]-[16]. Recent works on this subject
fall in two broad categories: direct and indirect [17], [18]. Di-
rect methods consist first of parameterizing a discrete-domain
model by the continuous-domain parameters. The discrete-do-
main model is then used to minimize a cost function that in-
volves the available data. In this way, the required continuous-
domain parameters are directly estimated by the minimization
process. An example of such a method would be the replacement
of derivative operators by finite-difference operations [19]-[23].
In [24], a continuous-time AR model was recast into a dis-
crete-time linear regression formulation rather than into a dis-
crete-time ARMA process. The regressor elements were then
shown to be linear combinations of the discrete-time output
measurements. As the least square solution of this regression
might result in a biased estimation, the authors of [24] suggest
two methods for reducing the bias effect: imposing constraints
on the finite difference weights, or, alternatively, compensating
for the bias as the final stage of the estimation process. The ad-
vantage of these two methods is that they require no shifting of
the data when approximating the derivative values, giving rise
to a reduced computational complexity over other least square
methods. In [25], it is suggested to parameterize the autocor-
relation sequence of the sampled process by applying the nu-
merical decomposition method of Schur to obtain a state-space
representation of the discrete-domain process. The cost function
that has been proposed there minimizes the ¢ norm of the dif-
ference between a sampled version of the autocorrelation model
and the autocorrelation sample values. Another example of a di-
rect method consists of power-spectrum parameterization [26],
[27]. Indirect methods, on the other hand, rely on standard dis-
crete-domain system identification methods such as the mini-
mization of the prediction error variance. The discrete-domain
system is then mapped to a continuous-domain one. The bi-
linear transform is one possible way of doing so, while alter-
native transformations are available, too [28].

Motivated by the deterministic theory of LTI systems, we ex-
ploit in this work the mathematical formulation of exponential
splines. These functions provide a formal link between contin-
uous-domain convolution operators and their discrete-domain
counterparts [29], [30] and they will be shown to be suitable for
describing sampled ARMA processes, too. A first study of this
property was recently suggested in [31] for the autoregressive
model. Considering an ideal sampling procedure, also known

1053-587X/$26.00 © 2011 IEEE



KIRSHNER et al.: A SAMPLING THEORY APPROACH FOR CONTINUOUS ARMA IDENTIFICATION

as instantaneous sampling, the autocorrelation sequence of the
sampled process corresponds to sample values of the autocor-
relation function of the original continuous-domain process.
It then follows that both autocorrelation measures are of an
exponential type, suggesting an exponential spline framework
for describing the relation between an ARMA process and
its sampled version. Another point is the Cramér—Rao bound.
This bound converges to zero for any sampling interval value
with increasing number of data points. In [32], the use of an
anti-aliasing filter was suggested prior to low-rate sampling
for systems of high bandwidth. It was shown there that pole
ambiguity can be resolved in certain cases while minimizing a
cost function that is based on approximating the autocorrela-
tion function. Maximum-likelihood estimators, however, were
not investigated in this context. While many of the currently
available estimation algorithms are focused on base-band
power spectra, it seems possible to derive an estimator that
overcomes aliasing. Such an estimator could prove useful to
optical imaging when the acquisition device has limited reso-
lution, and to compressed sensing in the context of a reduced
number of measurements. Another potential application is res-
olution conversion in which low-resolution digital images are
displayed on a high-resolution device [33]. From a numerical
perspective, Whittle’s likelihood function plays an important
role in deriving frequency-based estimation algorithms. This
function is often approximated by means of discrete Fourier
transform values and by Riemann sums. Such an approximation
is not necessarily optimal and there may exist better numerical
schemes.

This work provides a rigorous derivation of a maximum-like-
lihood-based estimator of continuous-domain ARMA param-
eters from sampled data. It utilizes the exponential B-spline
framework while introducing an exact zero-pole coupling for
the sampled process. For that purpose, the relation between the
autocorrelation function and the autocorrelation sequence is in-
vestigated in both time- and frequency domains. Based on this
relation, it is shown that the Cramér—Rao bound can be made
arbitrarily small by considering more sample values where the
sampling interval can take an arbitrary value. The likelihood
function of the sampled process is investigated, too. In partic-
ular, it is shown that this function possesses local minima that
originate from aliasing. The global minimum, however, corre-
sponds to the maximum-likelihood value. The only assumption
that is made throughout this study is that the number of available
samples is relatively large, allowing one to replace the whitening
matrix by a digital filter. This approximation is shown to be valid
when considering expected values of the likelihood function.

The paper is organized as follows. In Section II, we provide
the mathematical conventions and notations that will be used
throughout this work. In Section III, we describe the autocorre-
lation property of continuous-domain ARMA processes and its
relation to the autocorrelation sequence of the sampled process.
We then introduce in Section IV the Cramér—Rao bound for
such processes. We propose a maximum-likelihood-based esti-
mation approach in Section V and provide a detailed description
of the estimation algorithm in Section VI. Experimental results
are given in Section VIL.
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II. NOTATIONS

The bilateral Laplace transform of a scalar function (%) is

D(s) = £ {p(t)} (5) = / p(t)etdt (1)

— 00

where s takes complex values that satisfy ¢(t)e™** € Lq. The
inverse Laplace transform is denoted £~!. The Fourier trans-
form of this function is ¢(w) = F{p(t)}(w) = @(jw). The
bilateral z-transform of the sequence {¢[n]},cz is

oo

Y elnlam )

n=—oo

Pa(z) = Z{plnl} (2) =

where z takes complex values for which the infinite sum con-
verges. The discrete time Fourier transform (DTFT) of the same
sequence is pg(w) = ®4(e’*) and for sequences of length
N, the DFT (Discrete Fourier Transform) is given by ¢4[k] =
Py e%) . The argument w denotes either radial frequency in
units of [rad/time-unit] when used with the Fourier transform, or
normalized frequency in units of [rad/sample] when used with
the DTFT. Continuous-domain and discrete-domain convolu-
tion operations are denoted *. The transpose of a matrix X is
7T, its inverse is ¥ 7!, and its determinant is |Y|. The operator
E denotes expected value.

III. ARMA PROCESSES AND SPLINES

A. ARMA Processes and Linear System Theory

A differential LTI system is fully described by a rational
transfer function (p > q)

7 _ HZ:l(jw - Tk)
M) = 117 o) 3)

where {7} and {s;} are its zeros and poles, respectively. The
system is causal and stable iff Re{s;} < 0 Vk.

If such a system is driven by continuous-domain
white Gaussian noise, its output is a Gaussian ARMA
process. The spectral density function of such a process
is $(w) = o?|h(w)[*> and the autocorrelation function is
@(t) = o?{h(1) * h(—7)}(t), where o2 is the intensity of the
noise and where h(t) = F~*{h(w)}(t) is the impulse response
of the system. Exponential splines provide a mathematical
framework for relating continuous-domain LTI systems with
their discrete-domain counterparts [29], [30]. The dependence
of ¢(t) on h(t) suggests that these splines may be equally
helpful for relating continuous-domain and discrete-domain
ARMA processes.

B. Motivating Example: First-Order AR Process

The autocorrelation function of a continuous-domain AR(1)
process that has a pole at s = s7 and a unit intensity innovation
is a symmetric exponential

1
ot 1) = =g —en Il )
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The spectral density function is then

D(jw;s1) = F {o(t; 1)} (w) = 1

(jw — s1)(—jw — 51)

&)

Upon ideal, i.e., instantaneous sampling, the autocorrelation se-
quence of the corresponding discrete-domain process is

s1n]

(6)

nisi] =~
n;s1 = —-—e
Pin; s1 251
where a unit-time sampling interval was assumed for simplicity.
The spectral density function of the sampled process is then

D4(e?; 51) = Fa{e[n; s1]} (/)
6251 _ 1 1

= : NG

251 (1 —esre1¢)(1 — esreiw)

The important observation is that one is able to link the contin-
uous-domain and the discrete-domain autocorrelations via the
Shannon-like interpolation formula (see also Fig. 1)

oo

ptis1) = Y elnisi]Bt —n;s1)

n=—oo

®)

where ((¢; s1) is an interpolating basis function whose Fourier
expression is

(L—e e 79)(1 —emelv)
(jw = s1)(—jw — s1)

Observe that the latter expression is also equal to the ratio of (5)
and (7). The corresponding time-domain expression is

~ 251
ﬂ(wasl) T2 1 :

(€))

sinh[s; (1—|t])]

t’ = sinhsq
B(t; 51) {0

The key property that will be exploited in this work is that
B(t; s1) is compactly supported, which is not directly apparent
from the Fourier-domain expression (9). In fact, 5(#;s1) is
an exponential B-spline and the above method generalizes for
higher order systems.

it <1

It > 1. (10

C. General Case

A continuous-domain ARMA process is fully characterized
by its parameters vector

0={ory,...

Y

where {s} and {r} are the poles and the zeros of the process,
respectively. The poles are assumed to have a strictly negative
real part. The continuous-domain innovation process is assumed
to be Gaussian and its intensity is o2. Additionally, p > q.

The Laplace transform of the corresponding autocorrelation
function is given by

B(s;0) = o2 HZ:l(S —7g)(=85 — rk)'
’ [Ti=1(s = s6)(=s — )
By performing the partial-fraction decomposition of ®(s; 8) (we

are assuming for simplicity that the poles are simple), we find
that

TqsS1y---sSp}

12)

o 1 1
L0 — QZ
2sib) =0 kzlakw){S—sk S+Sk} 1
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Fig. 1. Exponential B-spline decomposition of ARMA models. The autocorre-
lation function (black, dashed line) can be decomposed into a weighted sum of
exponential B-spline functions (various colors, various widths, dashed and solid
lines). Shown are only few B-spline functions. The parameters of the ARMA
processesare (a) 0 = 1,s = —land(b)o =1,r = —-1,s = —1+1.

and we deduce that the autocorrelation function is a sum of ex-
ponentials

p

o(t;0) = o* Z ag(f) - e+t

k=1

(14)

In cases where ®(s;#) introduces pole multiplicity, ¢(t;0)
would involve polynomial multiplications as given in Table L.

Ideally sampling a continuous-domain ARMA process
yields a discrete-domain ARMA process. The autocorrelation
sequence of the discrete-domain process is then given by the
ideal samples of the autocorrelation function. For the partial
decomposition of (14) and for a unit-time sampling interval,
this sequence is given by

P
o[n; 0] = UQZozk(H) cesrInl, (15)
k=1
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TABLE I
CONITNUOUS-TO-DISCRETE DOMAIN MAPPING OF MULTIPLE POLES
Continuous Domain Discrete Domain
Laplace Time index z-transform
1 1 sk lt] sk|n| e %k e’k
S—8k —s—sk e’k er 2= 1 _e %k + z—1—ek
1 1 L osklt] . oSkln| e °k 2sp ek 25k
(S—Sk)Q + (—s—sk)Q |t| € |TL‘ e z—1_e— %k (271 efsk)z + 21 _c%k + (z*lfesk)2
1 e~ Sk e~ 28k —3sp
—|= + - + +
L 142 gsklt] 1p2. esklnl 2271 —em  2(z7l—emsk)? (27l —emsk)
(s—s;‘)'3 (—s—sk)?’ 2 2
1 eSk 3 €25k €35k
+ — —
2z 1 —esk  2(z 1 —esk)? (271 —esk)?
Max 10 1
9 0.9r J
8 0.8f 1
[}
7 7& 0.7k ]
[
6 ©
;i §. 0.6 1
g 05f 1
4 £
)
) 0.4F R
3 E
0.3 J
2
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Fig. 2. Local minima of the likelihood function. Shown here are simulation
results for a continuous-domain AR(2) process having poles s1 > = —1 =+ 5.
Given a sampled version of such a process, the log-likelihood function (48) was
repeatedly minimized using different initial conditions; the initial conditions are
the real and imaginary part of the poles one starts with, and they are indicated by
the x and y axes respectively. A detailed description of the five ring-like regions
is given in Table II.

TABLE I
DETAILED DESCRIPTION OF FIG. 2

Reton Log ool g s P
1 -3656 —2.44+2.11 0
2@ -3675 —0.96 + 5.0i 4.9
3 -3557 —0.46 £+ 7.8 7.8
4 -3067 —0.25 £ 11.1¢ 11.1
5 -2212 —0.16 £ 14.0¢ 14.0

¢ Global minimum of the log-likelihood function.
bFrequency of maximum response of @, (jw).

Autocorrelation functions that consist of multiple poles can be
discretized in a similar manner as given in Table L.

ARMA models are closely related to generalized exponen-
tial B-splines. These finite-support functions stem from Green’s
functions of rational operators [30]. In our case, the Green’s
function is the autocorrelation function itself. Unlike [30], how-
ever, this work introduces noncausal symmetric B-splines.

Radial Frequency [rad]

Fig. 3. Discrete-domain spectrum of sampled AR signals. Shown here is
D ,(e7*) for the AR processes of Table II while considering a unit-sampling
interval. These processes correspond to the local minima of Fig. 2. The aliased
spectrum shown here resembles each other in terms of their bandpass nature
and in terms of the frequency of maximum response. Region 1, however,
exhibits a low-pass signal, emphasizing the difference between the proposed
ML-based estimation approach and other baseband methods.

» (v [rad/time-unit]

Fig. 4. Frequencies of maximum response. Shown here by X’ are the frequen-
cies of maximum response of each local minimum of Fig. 2. Theses frequencies
are located within bands of width 7 [rad/time-unit]. Additional information is
given in Table II.

Definition 1 (Symmetric Exponential B-Spline): The expo-
nential B-spline ((¢; 6) with parameters 6 is specified by the
following inverse Fourier transform:

q
At 0) = HJW—Tk

—jw —T%)

e—jw-‘rsk)

P — edwtsk(] —
. H )(

(jw — sk)(—jw — sk)

(t). (16)
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Input parameters:

- ARMA orders: p,q
- Frequency bands: K

|
|
1

!

Initial conditions
for band k&
(see Flgure 11)

Minimize [(6; x)
(see Floure 6)

|
1
|
(

k= k+l ]

Yes

No
v

Choose the parameters
that correspond to the
global minimum

Fig. 5. Main stages of the proposed estimation algorithm.

Observe that this function corresponds to the ratio between
the ARMA power-spectrum and a discrete-domain AR power-
spectrum with poles at e’*. The exponential B-spline kernels
have the following properties:

* compactly supported functions within the interval [—p, p];

* bounded and symmetric functions;

* smooth functions: the first 2(p — ¢) — 1 derivatives are Lo
functions;

* integer shifts of B-spline kernels form a Riesz basis [34];

* weighted sum of shifted B-spline kernels can reproduce
exponential functions of the type (14);

* the convolution of two exponential B-spline kernels yields
another B-spline kernel of an augmented order. This
property allows one to iteratively construct an exponential
B-splines of any order.

Definition 2 (Localization Filter): The localization filter with

parameters 6 is specified by the Laplace transform

o-flo

Proposition 1: The autocorrelation function of an ARMA
process with parameters 6 can be written as

C-‘r@k 1 _ e—s—‘,—sk).

a7

oo

>

m=—0oo

o(t;8) = o” p[m; 0] - B(t — m;0) (18)

where (3(t; 6) is the exponential B-spline with parameters § and
the sequence p is given in the z-domain by

1 1
Py(z;6) = = )
d(z/ ) 221(1 _ eskz)(l _ eskz_l) A(ln z2; 6)

19)
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= (021, gy 81s 5 5p)
M for approximating x(6)

!

Determine ®(s; 6) in the form of (12) ]

!

Determine ®(s; ) in the form of (13) by
means of partial-fraction decomposition.
Multiple poles may appear, too

!

[ Use Table I to map D(s;0) to $gy(2;0).
Dy(2;0) is described by means
of partial-fraction decomposition

!

Determine ®4(2;6) as a ratio
of two polynomials

!

Identify the parameters
2
{ogviee s vp-1,p15- - pp}

[ Input:

[ Identify Hy(z;6) in the form of (22) ]
|

!

Apply the digital filter 1/Hy(z;0)
on the data x: y = x % gg as in (45)

!

Calculate x(8) = Zﬁil n - c[n; 0]2
as in (37)

[(‘/ul('ulu‘m: (6:%) = no2(6) + n(6) + Hyl\i]

Fig. 6. A detailed description of the log-likelihood function I (6; x) calculation.
This workflow is part of the estimation algorithm of Fig. 5.

Proof: Take the Fourier transform of (18) and substitute
(16) and (12). |
Definition 3: The discrete exponential B-spline kernel with
parameters ¢ is given by Bq(z;60) = 37 __ A[n;#]z~" and
Pa(w) = Ba(e’®).

We rely on the fact that ideal sampling preserves the auto-
correlation values of the continuous-domain ARMA process. In
such a case, also known as instantaneous sampling, the values of
the discrete-domain process are given by the point wise values
of the continuous-domain process at the sampling points. The
power spectrum of the sampled process is then related to the
continuous-domain power spectrum through aliasing and it can
be described by means of a rational transfer function in the z-do-
main [16]. The following Theorem utilizes the discrete expo-
nential B-spline kernel B4(z; #) of Definition 3 and provides a
novel direct formula for extracting discrete-domain power spec-
trum from continuous-domain parameters.

Theorem 1: The discrete-domain ARMA process that is
given by the ideal unit-interval samples of the continuous-do-
main process (12) has the following parameters:

H (1 —I/k(G)z_l)

Hy(z;6) = 0a(0) D (1= pi(0)271)

(20)
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where
pi(8) = e @0
vi(8) = roots of By(z; 6) inside the unit circle  (22)
and where
Ba(1;6
oi(0) = 0® —— a(136) 5 (23)
k=1 (1 —vi(0))
is the variance of the discrete-domain innovation process.
Proof: As Pj(z;0) is an all-pole filter, the zeros of
Dy(2;0) = 0 Pa(2;6) - Ba(z;6) (24)

originate from the zeros of B4(z; #) only. Those zeros appear in
reciprocal pairs due to the symmetry property of 5(¢; 6). Also,
the DFT of the sampled version of the exponential B-spline sat-
isfies

Ba(wi0) = > Blw+ 2rk;0) = By(e!™)

k=—00

(25)

and does not vanish on w € [0,27) due to (16). The func-
tion 3(t; 0) is of finite support so that By(z;6) has no poles.
The symmetry property of A(s;#) indicates that the poles of
P4(z; 0) appear in reciprocal pairs. It then follows that ®4(z; 0)
can be described by a minimum-phase filter. The finite-support
property of 3(¢;0) and the structure of A(s;#) also guarantee
that this minimum-phase filter has a rational transfer function.
We further observe that

Ba(z;0) =B (2;0) - Bf (2;0) (26)
Pa(2:0) =Py (2:0) - Pf () (27)
where the superscript ‘—’ denotes a causal filter and where

Bf(z;6) = B;(27';0) and P;f (2;0) = P; (27';6). In par-
tiCular, P(;(,Z7 9) = W and BJ (Z, ) has zeros
only; those zeros originate from the roots of B,(z; #) inside the
unit circle. It then follows that
®4(2:0) = Ha(2;0) - Ha(27":6) (28)
where Hy(z;0) = 0 - P, (2;0) - B; (#;6) is the required filter.
Imposing the structure of (20) results in the expression for
a2(0). O
Corollary 1: Let 6 be known. Then, the autocorrelation func-
tion of a continuous-domain ARMA process is uniquely defined
by its samples. Further

oo

p(t:0) = > @(n;0) -0t —n;6)

n=-—oo

(29)

where the interpolation kernel 7)(¢; #) is specified by its Fourier
transform,

(30)
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This is the generalization of (8) for arbitrary ARMA(p, ¢) pro-
cesses.

Proof: It was shown that ®4(z; 0) = 02 Py(z;6) - Ba(z; )
and that ®(s;0) = ”;?555)
recalling that Py(z;0) = m yields the required result. [

The exponential interpolation function 7(¢;6) provides a
means for interpolating continuous-domain ARMA models. It
can also be interpreted as a spectral weighting function that
relates the power-spectrum of the discrete-domain sampled
process with the power-spectrum of the continuous-domain
process it originates from. Unlike the polynomial-based
weighting function of [27], this weighting function is param-
eterized, allowing one to describe band-pass power-spectrum,
too.

It is also possible to consider the mapping of contin-
uous-to-discrete parameters for nonideal sampling procedures
such as averaged sampling. In such cases, the continuous-do-
main process undergoes a continuous-domain filtering oper-
ation prior to the point-wise evaluation stage. The nonideal
samples are given by

. Dividing the two equations while

oo

¢n] = / z(t)s(t — n)dt

— 00

3D

where 2(t) is the stochastic process, s(t) is a function that char-
acterizes the acquisition device, and n € Z.

Theorem 2: Let s(t) describe a nonideal sampling procedure.
If 1) s(t) € Ly and 2) >, |$(w + 27k)| > O forall w €
[0, 27), then the discrete-domain process that originates from
uniform nonideal samples of the continuous-domain processes
(12) can be realized by a causal and stable digital filter, applied
to discrete-domain white Gaussian noise. The inverse filter is
causal and stable, too.

Proof: By Young’s inequality [35]

s(t) * s(—t) € Ly. (32)
The autocorrelation sequence of the nonideal samples is
rn;0,5(t)] = {o(t;0)  s(t) x s(=)} ()~ (33)

where ¢(t; #) is the autocorrelation function of the continuous-
domain ARMA process. It then follows that r[n; 8, s(t)] € [; as

S I fuststoll = X2 | [ ote = nst) - s (-0 ar
< / (Sl = n:0)]] - Is(#) = s(—1) dr

<M - ||s(t) * s(=t)|l, - (34)

Because ¢(t;6) is composed of a finite sum of exponentially
decaying functions, we have that M < oo. The z-transform of
r[n; 0, s(¢)] has then an absolutely convergent Fourier series on
the unit circle and it does not vanish there due to (if). It has also
real and strictly positive values there. For this reason, the func-
tion R4(z; 6, s(t)) does not reach a value of zero when evaluated
on the unit circle. According to Krein [36], R4(z; 6, s(t)) has a
canonical factorization on the unit circle. That is,

Ry (230, 5(t) = Hf (2:6,5(1) - Hy (:0,5(8),  (35)
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TABLE III
COMPARISON OF ESTIMATION ERRORS FOR AR(2) PROCESSES

Power Sampling Estimation Error [dB]
Spectrum Interval e(ao) e(ar) e(o?)
D(s;0) [time-unit] [27] Proposed [27] Proposed [27] Proposed
1 0.3370 1976 -30.98 4203 -55.90 3189 -39.60
(5% 4 0.4s 4 49.04) (s? — 0.4s + 49.04) 0.6827 940  -3325 -1.09  -5861 146 -39.20
(81,2 = —0.2 £ Ti) 1.1150 1342 3339 2040  -59.63 -0.48 -37.81
1 0.6059 3493 -34.97 3494  -45.89 2792 -36.99
(8% + 5+ 9.25) (s? — s +9.25) 1.3050 -16.68  -35.79 -475 -43.77 3.73 -35.81
(51,2 =—0.5+3i) 2.2370 6.93 3264 -1.86 -35.63 -8.16 -33.92
1 0.9753 2109 2238 1795 2370 -11.73 -17.05
(s? + 65+ 5) (s — 65 +5) 23507 365 417 344 368 119 -123
(51,2 = —1,-5) 3.6011 -1.83 228 -1.31 -1.60 -0.27 -0.34

where H (236, s(t)) is holomorphic (i.e., complex-valued an-
alytic function) in |z| < 1, continuous on |z| < 1, and does not
have zeros in |z| < 1; and where H (z;0, s(t)) is holomor-
phicin |z| > 1, continuous on |z| > 1, and does not have zeros
n |z| > 1. By a theorem of Wiener and Levy [36], [37], the
function In R4(z; 6, s(t)) has an absolutely convergent Fourier
series and one can write

Hy (2:0,5(t))
. (M Y a

Hy (2:0,5(t))
= exp (M +3 s (8, 5(1)) z_"> 37)
n=1

where InRq(z;0,s(t)) = Y.o_ . an(f,s(t)) - 2" The
symmetry property of the autocorrelation sequence im-
plies that Rg(z;6,s(t)) is symmetric on the unit circle
and that InR4(z;0,s(t)) is symmetric there, too. It
then holds that «,(6,s(t)) = «a_,(0,s(t)), and that
H;(20,s(t)) = Hf(27';0,5(t)). The expression of
H} (#;0,5(t)) corresponds then to a digital filter that is causal

and stable. The inverse filter m is stable and causal
too, as its region of convergence includes both the unit circle
and infinity. This stems from the fact that H; (z;6,s(t)) is
nonzero and continuous on the unit circle as well as nonzero
and holomorphic at infinity. O

Theorem 2 allows for a relatively large class of sampling
models to be considered. Among them are polynomial and
exponential B-splines, truncated and nontruncated Gaussian
functions, and continuous-domain derivative filters such as the

Laplacian of a Gaussian.

IV. CRAMER-RAO BOUND

Let a continuous-domain ARMA(p, q) process be given
by its uniform samples only. Larsson and Larsson [38]
provide closed-form expressions for the CRB of estimated
continuous-domain parameters which utilize the state-space

representation of the process. These expressions involve matrix
inversion and eigenvalue decomposition, and when considering
large data sets, Friedlander’s approximate approach can be
used instead [39]. The Fisher information matrix is given by

N 1 9¢a(w;6)
1
ka(0) = Ar <¢d(w; 6) 00
0
1 9¢a(w; 9))

- = dw (38

<<pd(w; 6) 06, (38)

where k,l =1,...,p+ ¢+ 1. The CRB (Cramér—Rao Bound)

is then the inverse of /(). Sampling interval dependency can
be incorporated in the localization filter (17) by

-IIo

where T is the sampling interval. It then follows that ¢ 4(w; 6)
is not dependent upon NN nor is the integrand of (38). As the
number of available samples becomes larger, the CRB becomes
smaller regardless of T'. Such inverse proportionality with re-
spect to N was already pointed out in [38] for sampled AR
processes. This observation implies that aliasing effects can be
compensated for by taking more measurements. It further sug-
gests that there exists an ML (Maximum-Likelihood) estimator
that overcomes aliasing. Such an estimator has to take into ac-
count the fact that the discrete-domain poles and the zeros of
®,(z; ) are coupled, ensuring that it corresponds to the sam-
ples of the autocorrelation function ¢(¢; 6).

(5:0,T) e Ty (1 -

e~ =TTy (39)

V. MAXIMUM-LIKELIHOOD ESTIMATION

Motivated by the CRB, we approximate the log-likelihood
function by means of a digital filter. The proposed approxima-
tion relies on the discrete-domain parameters of (20), namely,
{62, v1,...,V4,p1,---,pp}. These parameters can be numer-
ically calculated from # in a straightforward manner as was
shown in Section III. We, however, do not allow the contin-
uous-domain poles of # to differ by 2757 as such poles yield
the same discrete-domain poles upon sampling.
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Fig. 8. Power spectra of sampled processes. Shown here are power spectra
of discrete-domain processes that originate from the same continuous-domain
process. Every power spectrum corresponds to a different sampling interval
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Fig. 7. Comparison of estimation errors. Shown here are Monte Carlo simula-
tion results for a continuous-domain AR(2) process. Sampling interval values
were chosen so as to capture different aliasing configurations. The proposed
exponential-based approach was compared with the polynomial model of [27].
The poles of the process are s;,» = —0.2 £ 7i¢ and the variance is 02 = 1.
The number of samples is N = 10,000. The ‘x’ mark that appears on the
a-axis corresponds to the sampling 1nterval 7,0z for which w,,, .., =
is the frequency that corresponds to the maximum value of the contmuous &Zo—
main power-spectrum. The CRB is depicted for comparison purposes. (a) The
parameter aq. (b) The parameter a; . (c) The parameter 2.

value. The poles of the continuous-domain AR process are s1 » = —0.2 £ 7.
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Fig. 9. A frequency-domain description of the proposed estimation approach.
Shown here is a periodogram of sample values (absolute square value of the
DFT), periodized in the range [0, 47 ]. The power-spectrum of the AR(2) process
is depicted in a solid red line. While the polynomial-based estimator captures a
base-band signal (black dashed line), the proposed approach adequately iden-
tifies the proper frequency band (magenta dashed-dotted line). The proposed
windowing function corresponds to the Fourier transform of the interpolator
7(t; 8). The poles of the process are s;,» = —1 £ 10¢ and the sampling in-
terval takes a unit value, introducing prominent aliasing conditions.

Definition 4: Let 6 be known and let x be NV uniform ideal
samples of the continuous-domain process (12) taken on a unit-
interval grid. The probability density function of x is

1 1
)= — ——xTy-1 40
f(x:0) EREIE eXp{ 5% X} (40)

where X[m, n] = ¢[m — n; 0] is the autocorrelation matrix that
corresponds to 6.

Definition 5: The corresponding log-likelihood function, in-
cluding a sign inversion, is

1(6;x) =n |¥] + xT¥ 1%, (41)
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Fig. 10. Comparison of estimation errors. Shown here are Monte Carlo simulation results for a continuous-domain ARMA(2,1) process. The poles of the process
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Definition 6: Let 6 be known. Then, the digital filter gy is
given by its z-transform G4(z) = Hdl(z) where Hy(z) is given
in (20).

Definition 7: Let § be known. Then

k(8) = Z n - c[n; 0)? 42)
where )
b=+ {0 0) 4 0 (8) — p(0) .~ g (0))
(43)

are the Fourier coefficients of In ¢4(w).

The constant x(f) can be interpreted by means of an inner
product operation. Considering a discrete-domain ARMA
power spectrum, we define the Fourier coefficients of its log-
arithm:

In@q(w;0) = Z cn; fle™7m.

n=—oo

(44)

Recalling (20),

C[O, 6] + i C[’I’L]eijwn.

In Hy(e’;0) = 5

(45)

n=1

It then follows that

K(0) = <%

Theorem 3: Let 6 be known and let x be N uniform ideal
samples of the continuous-domain process (12) taken on a unit-
interval grid. Then,

(lan(ejw)) 7lnltld(ej“’;ﬂ)> (46)

Lo

lim E, |I(6;x) —[(6;x)| =0

N —o00

(47)
where
1(6;x) = NIno2(0) + s(0) + ||x * gg||§2. (48)

Here, * denotes discrete-domain convolution of an N-length
output sequence.

Proof: According to Szeg6 theorem for infinite Toeplitz
matrices [40]-[42],

A}i_r)noo {ln|X| =N -[0;0]} = Zlnc[n; Olc[—n; 6]  (49)
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TABLE 1V
COMPARISON OF ESTIMATION ERRORS FOR ARMA(2,1) PROCESSES

Power Sampling Estimation Error [dB]
Spectrum Interval e(ao) e(a1) e(bo) e(0?)

P(s;0) [time-unit] [27] Proposed [27] Proposed [27] Proposed [27] Proposed
(s +3)(—s+3) 03009  -1852 -4507  -32.18 -5137  -1276 -39.02 2337 -42.17
(s? + 25 4 26)(s> — 25 + 26) 06481 844 3685 -1896 -3329  -1.65 -1742  -1043 -22.50
(r1 =3, s1,2 = —1%51) L1111 -11.60  -29.69 -0.05  -41.59 026 -1261  -11.83 -15.16
(s +4)(—s+4) 0.1911  -1951 -33.71  -32.18 -5137  -1276 -39.02  -2337 -42.17
(s +2s +101)(s? — 25 + 101) 04115  -1448 3478  -1896 -3329  -1.65 -1742  -1043 -22.50
(r1=—4, s1,2 = =14 10i) 0.7055  -19.96 -29.00  -0.05 -41.59 026 -1261  -11.83 -15.16
(s+3)(—s+3) 03250  -1642 -21.08 -1824 -1726  -1073 -20.36 130  -24.55
(s2+8s+T7)(s? =85 +7) 13412 -463 -5.77 349 -4.44 456 <766  -1531 -7.33
(r1==3,s812=—1,-7) 1.8831 297 -396 2.00 -251 365 473 9.11  -576

where ¢ corresponds to the Fourier coefficients of ln ¢4(w; ).
In our case, these coefficients are given by (43) and the right-
hand-side of the equation can be replaced by x(f). Also, by the
Residue Theorem

27
1
cl0; 8] = o /1n @a(w; 0)dw = Ina(h). (50)
7r
0
It then holds that
. _ 2 _ _
ngnoo {In|%| = NIno3(8) — x(8)} = 0. (31)

The constant «(f) provides also a means for describing the
limiting behavior of the determinant. Writing (51) in a different
form [42]

I12(8)] o @) . (e"[O;e])N (52)
we observe that the right-hand-side of the equation is equal to
the determinant up to multiplication by a constant; the important
thing here is that this constant does not depend on N or on 6.

As for the term xT - ¥ ~! . x that appears in [(6;x), it may
be approximated by digitally filtering x and by calculating the
energy of the output. A possible filter one can use is gg. This
filter is guaranteed by Theorem 1 to exist, to be stable, and to be
causal. The N-length output of such a filter can be described by
means of the lower triangular matrix

Lm,n] = goglm —n], m,n=0,...,N -1 (53)
and it holds that ||x * go||?2, = xT LLTx. Following [43], the
two matrices X' and LLT are asymptotically equivalent as NV
grows. This stems from the fact that they both originate from the
same power-spectrum @4(w; #). Such a power-spectrum gives
rise to an infinite Toeplitz matrix T and the N x N matrix ¥ ~1
is defined by 1) truncating 1" and 2) taking the inverse. The ma-
trix L is defined by 1) inverting 7', 2) finding its Cholesky de-
composition, and 3) truncating the lower triangle matrix.

Asymptotic equivalence implies that the norm of the differ-
ence between the two matrices converges to zero with increasing
values of N. Focusing on a Toeplitz matrix M [, n] = t[m—n],

one can associate a discrete-time Fourier transform to the se-
quence {t[k]}, and for autocorrelation matrices, this transform
corresponds to the power spectrum function. Asymptotic equiv-
alence of two covariance matrices implies that the power spec-
trum of one matrix converges uniformly to the power spectrum
of the other. In the context of this proof, the matrix L describes
a truncated version of the filter gg. As gy € £1, its discrete-time
Fourier transform uniformly converges to ——+ This means

Hgi(eiw)*
that with increasing numbers of samples, the( ex;)ression xTL
converges in the £y sense to X * gg. This fact stems from Par-
seval’s property of the discrete-time Fourier transform. It then
follows that the output is a stochastic process with a power
spectrum that converges to a constant function. This constant is
o2(6). The term x” LLTx is then an estimation for this value.
The expression x X ~!x amounts to de-correlating the process
x and to estimating the variance of the uncorrelated process.
The value of this variance is c4(f), too. It then follows that
Ex"LL"x = Ex" %" 'x = No2(d). O

The likelihood function approximation [ (0,x) is related to
Whittle’s approximation of the log-likelihood function (41)
[44]. Whittle’s approximation is given by

27 27
- N ) 1 [ |xa(w)]?
lwl;x)=— |1 :0)d — | ————=d 54
witix) 27r/ ned Ot o | eutan)™ Y
0 0
and it holds that
27
s N .
Nlnoj; = o In @4(w; 0)dw (55)
T
0
1 27 . 2
Jim e gl |7, = LZC)] iy (56)

2 Ga(w;0)
0

where the limit is required due to the use of finite-length
convolution in /(#;x). It then follows that limx_. /(6;X)
Iw (8; %) + k(). The integrals of Whittle’s likelihood function
are often approximated by Riemann sums that involve DFT
values. DFT values of a finite-length signal, in this case x,
indeed coincide with the samples of its z-transform on the
unit circle. Nevertheless, this is not the case for the infinite
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sequences that are described by ®4(z;0) and by m. The
proposed approach, on the other hand, does provide an accurate
evaluation of these integrals and the truncation error of the
convolution operation is exponentially decreasing, providing a
higher convergence rate than the Riemann sum method.

We propose in this work to estimate the ARMA parameters by
minimizing the approximated likelihood function of Theorem 3

f = arg min (6, x). (57)
Our approach differs from currently available methods in sev-
eral aspects. It considers exponential autocorrelation models
for both the continuous- and the discrete-domain processes
whereas several previous works considered polynomial models.
It also establishes a link between the continuous- and the
discrete-domain models by incorporating the sampling process
into the problem formulation. This, in turn, allows for the
discrete model to stem naturally from the continuous-domain
formulation, while no a priori assumptions are made on the
digital data. Further, the log-likelihood function suggested
here holds true for any value of sampling interval, rather
than describing the limiting case of 7' — 0. Additionally,
the log-likelihood function considers discrete-domain data for
determining continuous-domain statistics while no approxi-
mation of continuous-domain frequency spectrum or impulse
responses is required.

The log-likelihood function (48) has several local minima, as
demonstrated by Fig. 2 and by Table II. These local minima orig-
inate from aliasing and there exist several continuous-domain
processes that result in similar discrete-domain power-spectrum
upon sampling (see Fig. 3). These very processes generate the
local minima. The peak response of these power spectra are dis-
tributed along the frequency axis in distinct bands as shown in
Fig. 4; these frequency bands are 7 [rad/time-unit] wide. This
property suggests that every local minimum can be obtained by
minimizing (48) while allocating initial conditions that corre-
spond to a peak response at the required band, for instance, at
(k‘ + %) 7w where k is the band index [31]. Another way of de-
termining initial conditions will be described later. Following
Theorem 3, the global minimum of (48) corresponds to a ML
estimator and we suggest here to minimize the likelihood func-
tion using several initial conditions.

VI. THE ESTIMATION ALGORITHM

A. Proposed Approach

The algorithm is described in Fig. 5 while complementary
information is given in Figs. 6 and 11. The vector of parameters
6, which consists of the zeros and the poles of (12), can also
be represented by the polynomial coefficients of its numerator
and of its denominator. These coefficients are real numbers and
the numerical optimization was carried out using this type of
parameterization. For example, the power-spectrum of an AR(2)
process having two poles s1, S is given by

0.2

(s2 — a1+ ag)(s? + ars + ag)

B(s;0) = (58)
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where ag = s1-s2 and a1 = s1+s5. The proposed estimation al-
gorithm aims at finding the coefficients ag, a1, and the intensity
of the innovation process 2. The dominant coefficient in this
example (i.e., the one that changes substantially as the values
of the poles change) is ag. It has the most prominent effect on
the geometric distance between the coefficients one starts with
(i.e., the initial conditions for extracting every local minimum)
and the coefficients of the local minimum one ends up with. In
cases where s; and s» are mutual complex conjugate, the co-
efficient ag corresponds to their module value, as demonstrated
in Fig. 2. Every location in the image corresponds to a different
set of initial conditions. This set was then used for minimizing
the proposed approximation of the likelihood function and the
brightness at that point indicates the value it converged to upon
minimization. Initial conditions were determined by choosing
various complex values for the pole s; and the radial appear-
ance of the image stems from its module. For the general case
of an ARMA (p, q) process, the parameters that are being opti-
mized are § = {02, ap,a1,...,ap—1,bo,b1,...,by—1}, which
gives rise to the following power-spectrum:

(574 32075 bus™ ] [ ()74 00 b9

(574 2020 ams™ | [ (=8) 4+ S0 am (=)™
(59)
The proposed algorithm finds K local minima of the approx-
imated likelihood function at consecutive frequency bands and
chooses the minimum value among them. Obtaining K different
local minima requires K sets of initial conditions, and we sug-
gest here to choose bandpass power spectra that have peak re-
sponses at wy + 7k [rad/time-unit], where k is the band index
and where wy is determined by fitting the available data with a
discrete-domain AR(p) process and by extracting the frequency
that corresponds to the maximum value of the power-spectrum.
For arbitrary sampling-interval values, one should use ’%‘ in-
stead of wk. While there are many ways of obtaining such a
band-pass spectrum, we provide a constructive way of doing
so in the Appendix. Initial values for o can then be obtained
by evaluating (14) at £ = 0 and equating it to the variance of
the available data. The value of K may be derived from known
physical constraints of the problem at hand. When there is no
such knowledge, this value can be determined during the ex-
ecution of the estimation algorithm: following Table II, like-
lihood values of local minima exhibit monotonicity; they de-
crease towards the global minimum and then start to monoton-
ically increase as a function of the band index k. Such mono-
tonicity then provides a decision rule for setting a value for K.
It is noted that this value does not depend on the size of the
data or on the ARMA order. It is related to the sampling rate
value. A single sampling interval value partitions the frequency
axis into nonoverlapping segments which are % wide, and for
different sampling interval values a given continuous-domain
model might be associated with different segments. Associating
a segment with a power spectrum amounts to allocating the fre-
quency of peak response to that segment. Every local minimum
corresponds to a single segment and the choice of K, which is
the number of segment the algorithm examines, should take this
partitioning into account.

B(s;0) =02
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B. Discussion and Relation With Prior Work

A precursor of Theorem 1 has been available for a while using
the state-space representation. Several papers by Wahlberg,
Soderstrom, and Ljung [14], [15], and [28] provide closed-form
expressions for extracting discrete-time power spectrum from a
given continuous-time model. These expressions involve expo-
nentials of a matrix and integration of matrix elements; they also
involve polynomial factorization that includes a parameterized
inversion of a matrix. Larsson [45] derives explicit formulae for
the first terms of the Maclaurin series of the variance and zeros
of the sampled process as a function of the sampling interval
variable T'. These formulae allow one to analyze convergence
for the limiting case of 7' — 0. Autocorrelation functions of
continuous-time ARMA processes are exponential splines, and
the motivation for using such a parameterization stems from
the fact that autocorrelation sequences of sampled processes
are given by point wise values of these functions.

Properties of the ARMA likelihood function have been inves-
tigated by Astrém and Soderstrom [46]. Relying on the equiv-
alence of the maximum-likelihood estimator with the predic-
tion error variance minimization estimator, they showed that the
likelihood function of a discrete-domain ARMA process has a
unique global minimum when enough parameters are used in
the fitted model. Our approximated likelihood function (48) has
a global minimum, too, although it does not necessarily coin-
cide with the global minimum of [46]. The reason for that is the
zero-pole coupling that is introduced by the sampling process.

The large data sets we are considering in the present work
require approximation of the likelihood function, and several
authors addressed this problem in the past. Tsai and Chan [47]
express the likelihood function in terms of a product of inde-
pendent Gaussian variables that correspond to the discrete-time
innovation process. The innovation process corresponds to the
prediction error values and it is obtained by a linear predictor.
This predictor is recursively defined and it depends on point-
wise evaluations of the autocorrelation function. Jones and Vec-
chia [48] rely on the Gaussian property of the sampled process
and they express the likelihood function in terms of the auto-
correlation matrix. Their approximated likelihood function uses
the sample variance for estimating the innovation process while
assuming distinct roots of the power spectrum. The autocorre-
lation matrix is them inverted by the nearest-neighbor approxi-
mation method. The likelihood formulation we consider in our
work takes advantage of the fact that the samples are taken at
fixed intervals and finds a digital filter that can be directly ap-
plied to the sampled data. The digital filter is then given in the
z-domain, allowing one to use a direct form realization.

The estimation algorithm we suggest in the present work is
related to the works of Soderstrom [28] and of Larsson, Moss-
berg, and Soderstrom [17]. The author of [28] suggests three
algorithms for computing the continuous-time counterpart of a
known discrete-domain model. These algorithms can be utilized
in indirect estimation approaches, for which the sampled data is
used for estimating the discrete-domain model first. Two safe-
guards are noted in [28], though: existence of a continuous-do-
main model is not guaranteed for all discrete-domain models,
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and uniqueness of the continuous-domain poles is not guaran-
teed, either. If one, however, restricts the imaginary part of the
continuous-domain poles to be in the interval (— T %) , as sug-
gested in [28], the poles can then be uniquely resolved. This
uniqueness condition imposes an upper bound on the sampling
interval T'. The authors of [17] introduce two estimation algo-
rithms. The first algorithm relies on the indirect approach of
[28] whereas the second algorithm consists of two steps: 1) re-
placing the differentiation operator by a difference operation
and approximating the continuous-domain innovation by a dis-
crete-domain white noise; 2) optimizing the discrete-domain
model to minimize the variance of the discrete-domain innova-
tion process.

Our approach to discretizing the continuous-domain model
involves partial fraction decomposition and finite weighted
sums. It provides a discrete-domain process whose autocorrela-
tion sequence is in a perfect match with the point-wise values of
the autocorrelation function. Additionally, the discrete-domain
model we obtain by Theorem 1 is always guaranteed to have a
continuous-domain counterpart. Our approach to the unique-
ness problem does not impose restrictions on the sampling
interval values. Instead, we are allowing for arbitrary values
to be considered while exploiting the local minima properties
of the likelihood function. In particular, we find several sets of
estimated parameters, each corresponding to a local minimum,
and choose the one that corresponds to the global minimum.

In terms of computational complexity, the proposed algo-
rithm minimizes the likelihood function using several sets of
initial conditions. Numerical optimization was also used in [27],
[47], [48] and our algorithm repeats the optimization procedures
several times. The number of repetitions, denoted K in Fig. 5,
is determined by the number of the local minima one wishes to
find and it is a user-dependent parameter. Our spline formula-
tion allows for fast implementation as it involves the parameter
mapping of Theorem 1 and a direct form implementation of the
digital filter (20).

VII. EXPERIMENTAL RESULTS

The proposed approach was implemented in Matlab using
nonconstrained numerical optimization. It was compared with
the polynomial B-spline estimator of [27]. Sampled signals were
generated by filtering a discrete-domain Gaussian white noise
with the digital filter (20). Several sets of the parameters § were
considered. For every set, several Monte Carlo simulations were
conducted; every simulation corresponds to a different sampling
interval. Sampling-interval values were chosen so as to capture
different aliasing configurations. A single Monte Carlo simula-
tion involved 500 experiments and every experiment was carried
out using N = 10,000 sample values. The variance parameter
was set to 02 = 1 and was unknown to the estimation algo-
rithm. The value of x(6) (42) was calculated using the first 500
terms in the infinite sum. The number of local minima that were
examined was K = 2. The estimation error for a Monte Carlo
simulation is the relative MSE (Mean Square Error) between the
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v
Input: ARMA order P, q Numerical optimization
Band index k o 1;11{11 : |F(jwg)]
Variance of the data 62 i
¥ Initial conditions for wq # 0
Find base-band power spectrum B(s) [(s=r)(s— ﬁ))]% q is even
s) = -1
e Determine a discrete-domain AR(p) model [(s=r)(s— ﬁ)]gT (s—1r) g¢isodd
(e.g., predictive-error minimization method) »
e Determine wo, the frequency of maximum A(s) = { [(s —s1)(s = a)]Iil pis even
power spectrum value [(s—s1)(s=37)] 2 (s—s2) pisodd
) Initial conditions for wy = 0
Set frequency of maximum response B(s) = [(s — 1) (—s —)]P
wp = wo + k7w
K f i A(s) = [(s = s1)(=s — s1))?
Set possible poles 57 = —1+ jwy v
527 "Wk [ Use the optimized parameters to construct @(s) ]
Set possible zeroes 1y = l;)ﬁ v
ro= % Determine the inverse Laplace transform
' elt) = L7HD()H)
) _ B(s)B(=s)
Define  @(s) = A
1 A4
where  B(s) =9+ Y0 b, s" [ Set 02 = 0> ]
~1 TIT=20
As) =P+ P as™ dQ
‘ A4
Express F(s) = d—‘f(e) The initial conditions are {by}, {a;y} that
by means of the coefficients {by,} , {am} were found by optimization and o2

[

Fig. 11. Allocating initial conditions. Every local minimum of the likelihood function (48) is obtained by a different set of initial conditions. This workflow is

part of the estimation algorithm of Fig. 5.

estimated parameter and the correct one. For example, the esti-
mation error of the single parameter ay is given by

: 22021 (&O,n - a0)2

E(CL()) = —1010g 500 (a0)2

where g, is the estimation of ag at the nth experiment.
Experimental results for an AR(2) process are shown in Fig. 7
and in Table III. The sampling interval values of the Figure were
chosen so as to introduce various aliasing configurations. The
maximum value of the continuous power spectrum of the AR
model of Fig. 7 is located at 5.05 [rad/time-unit] and the 3[dB]
frequencies are 4.09 and 6.10 [rad/time-unit]. A sampling in-
terval value of 7' = (.21 [time-unit] corresponds to a sam-
pling frequency of 29.92 [rad/time-unit] and it introduces minor
aliasing effects. The value of T' = 1.24 [time-unit] corresponds
to a sampling frequency of 5.07 [rad/time-unit] and it introduces
substantial aliasing effects. The various aliasing configurations
are depicted in Fig. 8. The CRB values were calculated ac-
cording to [49]. We further describe in Fig. 9 the proposed expo-
nential-based approach from a frequency-domain point of view,
emphasizing the flexibility of the exponential B-spline model
to adapt to band-pass power spectra. An ARMA(2,1) estima-
tion comparison is given in Fig. 10 and in Table IV while con-
sidering various sampling aliasing configurations, too. We note
that more sample values are required for the proposed estima-
tion algorithm when the number of parameters increases. Also,

(60)

the proposed algorithm relies on the fact that the number of sam-
ples NV is relatively large and there is a trade off between [V and
€. Our results indicate that the proposed approach outperforms
the polynomial-based direct method while following the CRB
for various aliasing configurations. It also guarantees that the
estimated parameters correspond to a valid continuous-domain
model whereas this property does not necessarily hold true for
other discrete-domain-based methods, such as the minimization
of the prediction error variance.

VIII. CONCLUSION

In this work, we have proposed an estimator for contin-
uous-domain ARMA parameters from sampled data that is
based on the likelihood function. It utilizes an exponential
B-spline framework while introducing an exact zero-pole
coupling for the sampled process. The relation between the
autocorrelation function and the autocorrelation sequence of
the sampled process was investigated in both time- and fre-
quency domains. Our approach relies on the known fact that the
Cramér-Rao bound can be made arbitrarily small by increasing
the number of samples while fixing the sampling interval at an
arbitrary value. The likelihood function of the sampled process
was then investigated and it was shown to posses local minima
that originate from aliasing. The global minimum was exper-
imentally shown to corresponds to the maximum-likelihood
value. The only assumptions that were made throughout this
work are that the number of available samples is relatively large
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and that the model orders are known, allowing one to replace
the whitening matrix by a digital filter. This approximation
was then shown to be valid when considering expected values
of the likelihood function. Experimental results indicate that
the proposed exponential-based approach closely follows the
Cramér—Rao bound for various aliasing configurations, while
imposing no restrictions on sampling rate values.

APPENDIX
ALLOCATION OF INITIAL CONDITIONS

The algorithm of Section VI repeatedly requires the alloca-
tion of band-pass power-spectrum. Each such allocation corre-
sponds to a single local minimum extraction, and is based on
equating the derivative of the power-spectrum ®(s;6) to zero
while substituting s = jwy, where wy, is the required frequency
of maximum response. The coefficients of ®r(s) are then ob-
tained by numerically minimizing the derivative value at wy.
The initial value for the innovation variance is determined by
the autocorrelation function of the model, which is the inverse
Laplace transform of the power-spectrum, and by the variance
of the available data. A description of the allocation workflow
is given in Fig. 11.
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