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ABSTRACT

We introduce a general and computationally efficient ap-
proach to 3-D localization microscopy. The main idea is to
construct a continuous-domain representation of the PSF by
expanding it in a polynomial B-spline basis. This allows us
to fit the PSF to the data with sub-pixel accuracy. Since the
basis functions are compactly supported, the evaluation of the
PSF is computationally efficient. Furthermore, our approach
can accommodate for any 3-D PSF design, and it does not
require a calibration curve for the axial position. We further
introduce a computationally efficient implementation of the
least-squares criterion and demonstrate its potential use for
fast and accurate reconstruction of super-resolution data.

1. INTRODUCTION

The field of localization microscopy has a fundamental role
in studying the 3-D structure of the living cell. In particular,
super-resolution fluorescence microscopy is based on excit-
ing a sparse set of fluorophore markers at each time instant,
and on localizing each of them individually [1]. Localization
amounts to fitting the acquired images of single fluorophores
with the PSF (point spread function) of the microscope.

A possible approach to the fitting task is maximizing the
likelihood function of each acquired image. This is a com-
putationally demanding task that requires additional knowl-
edge on the noise sources. It relies on optimization proce-
dures that are in many cases involved in terms of the cost
function and in terms of the numerical implementation [2]. A
computationally more efficient approach is the least-squares
criterion, which relies on the PSF model only. While it is just
slightly inferior to maximum-likelihood formulations in terms
of localization accuracy (a difference in standard deviation of
2 [nm] was reported in [3]), it lends itself to fast minimization
using the Levenberg-Marquardt algorithm.

Further improvement in computational time can be achie-
ved by Gaussian approximation. This, in turn, allows for
real-time 2-D super-resolution reconstruction [4, 5, 6]. Such
an approximation was successfully applied to 3-D imaging,
too [7, 8]. Instead of using a conventional widefield set-up,
imaging was carried out using a modified pattern that better
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encodes the axial position of the particle. The advantage of
these methods resides in their simplified parametrization of
the 3-D pattern, which encodes the particle’s axial position
by a single parameter. The astigmatic PSF, for example, is
assumed to be a Gaussian function with varying ellipticity pa-
rameter, and the double helix pattern can be described by two
rotating lobes. Nevertheless, the true PSF does not necessar-
ily correspond to such simplified models, and such specificity
prevent them from being used by other PSF designs. Extract-
ing the calibration curve is another limitation of the simplified
parametrization approach.

We propose in this work a general method for 3-D par-
ticle localization. It can accommodate for any PSF model,
and it does not require a calibration curve. We approximate
the continuous-spatial 3-D PSF by means of polynomial B-
splines, using a measured or a computed z-stack of fixed
fluorophores for doing so. This type of approximation is
guaranteed to have the minimum possible approximation er-
ror bound for a given sampling step size. Since the building
blocks of our 3-D approximation are compactly-supported
functions, they allow for a computationally efficient interpo-
lation method. We also introduce a computationally efficient
minimization of the least-squares criterion and demonstrate
its potential use for fast and accurate reconstruction of super-
resolution data.

2. B-SPLINE REPRESENTATION OF 3-D PSFS

Let h(zq, Ya; Tp, Yp, 2p) be a 3-D PSE. The particle position
is (zp, yp, 2p) and the detector position is (xq,yq). We dis-
cretize h by evaluating it on the (24, yq, zp) grid (Figure 2)
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Here, A, A, are the pixel dimensions, A, is the axial step
size, and 0 < kK < ng,0 <1 < ny,0 < m < n,. We
exploit this 3-D data for approximating h(z4, Yd; Tp, Yp, 2p)
by means of polynomial splines
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Here, 0™ is a polynomial B-spline of degree n, and ¢ €
R™=*"y XM= s uniquely determined by interpolating the sam-
ple values of (1). The PSF is a smooth function and the
approximation error that is introduced by h is guaranteed to
converge to zero with decreasing values of the 3-D sampling
volume. Assuming h has n + 1 derivatives in Lo, the rate of
convergence is given by

( An+1) (3)
where A = max(A;, Ay, A;) and n is the B-spline degree
we use for constructing h. Evaluating 5™ requires monomials
of degree n. Their compact support leads to a computation-
ally efficient interpolation procedure for h; only few repre-
sentation coefficients and shifted versions of 5™ are required
for evaluating hata single point.

The dimensions of the PSF stack impose no limitation on
calculating c. We take advantage of the B-spline theory and
apply a single digital filter to all three directions of the z-stack.
The filter is an all-pole filter and is uniquely determined by
the B-spline degree [9]. The B-spline generating function 5™
is compactly supported, having the minimum possible sup-
port for a given approximation order. This means that for a
given approximation order, the values of h are determined by
the minimum possible number of representation coefficienst
c. Moreover, the piecewise polynomial structure of 5™ allows
for fast interpolation, too.

3. PSF FITTING

Our fitting algorithm consists of local maxima identification
and of single particle localizations. The threshold for the local
maxima is determined by the noise level, which is estimated
from the data. We identify local maxima in each frame and
make sure that no two local maxima are too close. We fit the
neighborhood of every local maximum with our continuous
PSF model. Mathematically, we minimize the least-square
error between the pixel values d[i, j] and shifted versions of h
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We utilize the Levenberg-Marquardt method and set the initial
parameters as follows ((ko,lo) denote the pixel of the local
maximum pixel):

o (zp,yp) = (koAg,loAy)
(ko, lo) are the coordinates of the local maximum with
respect to the upper-left corner of its neighborhood.

o z, =mA,
(d, h[-,-,m])
]l |A[-, -, m]]]

the maximum correlatlon with the data

where m = arg max is the slice with
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Fig. 1. The astigmatic PSF: Shown here are o, and oy of (7) as a
function of the particle depth position zp,. The acquisition parameters are
A 668[nm],NA = 1.4, n; = 1.515. The model constants are
wo = 0.21 A\/NA, ¢ = 200[nm], @ = 0.79 and d = 0.2An; /NAZ.

_ dlko, lo]
h(koAw, loAy; koAg, loAy, mA.)

The Levenberg-Marquardt algorithm requires partial-
derivative values of h, which can be evaluated by the follow-

ing relation
;) -pt <x ) )

Once a particle is localized, we examine its validity. We
do not allow its lateral position to deviate too much from the
center of the local maximum. We also exclude fitting results
that yield too low SNR values.
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4. RESULTS

Our algorithm was implemented in Java as an ImagelJ plugin.
We simulated the astigmatic PSF by [7],

_ [(mpfz(nj <yp—yd>§}
h(.l?d, Yd; Tp, Yp, Zp) = Ae oo o) low o] s (6)
where
az, — )2
0u(2p) = 0y(—2p) = 00\/1 + (I?T)' %)

The parameter oy describes the Gaussian PSF at focus and
we chose its value to be g = 2 - 0.21 \/NA [10], where
A = 668[nm|,NA = 1.4. The parameter 3 corresponds to
the particle depth value for which o, or o, is minimal, and
we chose it to be 5 = 200[nm] according to Figure 1B of [7].
The scaling constant a = 0.79 accounts for the refractive in-
dex mismatch between the immersion layer (n; = 1.515) and
the sample layer (ns = 1.35) [7]. The parameter d is related



Fig. 2. An astigmatic PSF stack: The model parameters are given in Figure 1,
and the size of the stack is 31 x 31 x 25. The pixel size is Ay, = 150[nm]
and the z step size is A, = 40[nm]. The emission rate of the particle is
2 - 108 [photons/sec] and the acquisition time is 1[sec]. The readout noise
has an RMS (Root Mean Square) value of 20[electron/pixel]. The upper
left pattern corresponds to z, = —500[nm)] and the scale bar is 10 pixels
wide, corresponding to a length of 1500[nm).

to the depth-of-field, and we chose it to be d = 0.5An;/ NA?
according to Figure 1B of [7], too. The functions o, (%) and
oy(2p) are shown in Figure 1 and the simulated PSF is de-
picted in Figure 2. The latter is a 31 x 31 x 25 stack of
Ay, = 150[nm] and A, = 40[nm]. The emission rate of
the particle is 2 - 10°[photons/sec] and the acquisition time
is 1[sec]. The readout noise follows a zero-mean Gaussian
distribution with a standard deviation of 20[electron/pixel].
This PSF stack was then represented by B-spline coefficients
according to (2).

We generated a sequence of 200 frames at a rate of
100[msec]. Each frame consists of a sparse set of parti-
cles located at random positions (Figure 3); the total number
of particles was 1000. The size of each frame was 256 x 256
pixels. We evaluated our approach using several noise levels;
the noise model consists of scatter and readout noise. We also
used several b-spline kernels with different degree values.

Our localization results are reported in Table 1. The com-
parison criteria are the RMS (root mean squared) error of the
lateral and axial distances between the oracle and the local-
ized particle. The number of oracle particles and the number
of localized particles are not necessarily equal. Once we lo-
calize a particle, we look for the closest particle in the oracle
list and pair them up. The maximum distance between the el-
ements of such a pair cannot be larger than one pixel; this is
because we reject localized particles that are too far from their
local maxima. Our results indicate a very low RMS value
compared to the pixel size, which is in our case 150[nm]. We
also report the average value of the single particle localization
run time. The first row of Table 1 documents the localization
performance for noiseless super-resolution data. It shows that

586

Fig. 3. An example of super resolution data: shown here is a single frame
of a sparse set of particles that are located at different depths. Their image is
determined by the astigmatic PSF (6). The frame size is 256 x 256 and the
pixel size is 150[nm]. Noise sources include scatter noise with a mean value
that is 10 percent of the emission rate, and read-out noise that has an RMS
vale of 20[electron /pixel]. The mean emission rate is 2- 10% [photon /sec],
the acquisition time is 100[msec], and the optical efficiency is 0.033. The
scale bar is 10 pixels wide, corresponding to 1500[nm)].

higher B-spline degree values results in better localization ac-
curacy, as expected from (3). The trade off, however, is com-
putational time due to the larger support of the B-spline ker-
nels. The preferred choice for the B-spline degree is n = 2; it
provides a good balance between accuracy and computational
time. The lateral RMS (root mean square) error is less than
10[nm)] for a pixel size of 150[nm], and less than 25[nm] in
the axial direction. The PSF stack that was used here has a
pixel size of 150[nm]| and an axial step size of 40[nm] (Fig-
ure 2). Such performance demonstrates the usefulness of the
polynomial B-spline approximation, even if the PSF stack in-
cludes noise as is the case for our simulations. We did not
include the case of a linear B-spline approximation (n = 1)
due to the discontinuity of its derivative function at the origin.
Note that not all particles have been detected, which is mainly
due to configurations where several particles are close to each
other, as shown in Figure 3. The average localization time per
particle is relatively short — around 30[msec] for B-splines of
degree n = 2. This value can be made even shorter by tun-
ing certain parameters. One can reduce the maximum number
of Leveneberg-Marquadt iterations (10 in our work), and re-
lax the stopping condition, which is based on the difference
of the fitting error value between two consecutive iterations
(0.01 for the x? function in our work).

Table 1 also reports relatively good localization results for
the noisy cases (see last two rows), and the choice of n = 2
is still the preferred one. As expected, the lateral perfor-
mance deteriorates as the noise level increases. This is not
the case, however, for the axial accuracy, which suggests that
the axial 40[nm]| discretization of the PSF is the limiting fac-
tor for this quantity. We also observed a decrease in compu-
tation time, which is primarily due to the stopping condition



Table 1. Performance comparison !-23
Spline di i
Noise scenario Criterion pline cegrec Detection
n=2 n=3 n=4 rate
lateral RMS [nm] 8.2 7.9 7.8
no noise axial RMS [nm] 23.2 22.8 22.4 983/1000
time per particle [msec] 31.7 56.1 85.2
lateral RMS [nm] 16.1 16.1 16.2
mean of scatter noise = 2 - 104 [photons/sec] .
RMS of readout noise = 20 [electron/pixel] axial RMS [nm] 223 217 213 873/1000
time per particle [msec] 20.0 36.1 55.3
lateral RMS [nm] 24.1 23.9 23.9
mean of scatter noise = 2 - 10% [photons/sec] .
RMS of readout noise = 20 [electron/pixel] axial RMS [nm] 21.1 20.6 20.1 857/1000
time per particle [msec] 19.8 35.27 53.3

! The approximated PSF is based on the stack of Figure 2

2 The mean emission rate is 2+ 106 [photons/sec], the acquisition time is 100[msec] and the optical efficiency is 0.033

3 A 2.66GHz Quad-Core Intel Xeon CPU, no multi-threading implementation

that we used. Due to noise, the Levenberg-Marquardt algo-
rithm quickly reaches a state where a relative improvement
of more than 0.01 in the fitting error is no longer possible.
The reported run-time values correspond to a sequential im-
plementation. A multi-threaded implementation would de-
crease the effective localization time substantially, allowing
for real-time super-resolution reconstruction. The noise level
affects the number of localized particles, too. Some of the
localized particles result in SNR values that are too low and
some of them are too far away from the local maximum. Such
results are discarded from list of detected particles.

5. CONCLUSIONS

In this work, we introduced a general and computationally ef-
ficient approach to 3-D localization microscopy. The main
idea was to create a continuous-domain PSF model using a
basis of polynomial B-splines. This representation can be de-
rived from an analytic PSF model or from a measured PSF.
The building blocks of our 3-D approximation are compactly
supported functions, which allows for a computationally ef-
ficient interpolation of the PSF. Our approach can accommo-
date for any 3-D PSF design, and it does not require an ax-
ial calibration curve. It is based on the simple yet effective
least-squares criterion. Our results demonstrate the potential
of the method for fast and accurate reconstruction of super-
resolution data.
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