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ABSTRACT

In this work, we propose a continuous-domain stochastic
model that can be applied to image data. This model is au-
toregressive, and accounts for Gaussian-type as well as for
non-Gaussian-type innovations. In order to estimate the cor-
responding parameters from the data, we introduce two possi-
ble error criteria; namely, Gaussian maximum-likelihood, and
least-squares autocorrelation fit. Exploiting the link between
autoregressive models and spline approximation, we use our
approach to adapt interpolation parameters to a given image.
Our numerical results demonstrate that our adaptive approach
yields higher SNR values compared to classical polynomial
splines for the task of image scaling. They also indicate that
our least-squares-based error criterion nearly achieves the
oracle performance for parameter estimation, which provides
further support to the practical relevance of our model.

Index Terms— Exponential splines, image interpolation,
stochastic modeling.

1. INTRODUCTION

Image interpolation is fundamental to several medical appli-
cations such as volume rendering, image rescaling, and im-
age registration [1, 2]. The underlying principle of currently
available linear methods is to impose regularity constraints
on the continuous-domain solution. In that regard, both theo-
retical and experimental studies have shown that polynomial
B-spline kernels provide a very good trade-off in terms of
performance and computational time for general applications
[2, 3]. Non-linear methods, on the other hand, tend to be
more specific to the type of data in hand. They can rely on lo-
cal properties of edges, statistical properties of wavelet coeffi-
cients, Markov-random-field stochastic models, or variational
formulations, to name a few. Compared to the linear case, the
main advantage of non-linear methods is their ability to lo-
cally adapt the interpolated values to the given data. Their
drawback, however, is computational time. Thus, the ques-
tion that arises is whether one can benefit from both types of
approaches, i.e., introduce a linear interpolation method that
still adapts to the given data.
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In this work, we propose to interpolate images using
a compactly supported generating function that is data-
adaptive. We consider a continuous-domain Gaussian au-
toregressive (AR) model for the image data, assuming that
the pixels are sample values of a 2D-separable process. Our
approach is motivated by [4] which relies on differential oper-
ators corresponding to continuous-domain AR(1) and AR(2)
models. In our case, however, we allow for arbitrary model
orders and for any admissible set of model parameters. We
also distinguish between Gaussian and non-Gaussian innova-
tions, and suggest two possible criteria for adapting the model
parameters to the given data. For the Gaussian case, we de-
rive a maximum likelihood cost function and demonstrate
its limitations with respect to image-scaling operations. For
the non-Gaussian case, we introduce a least-squares fitting
criterion and demonstrate its near-optimal properties.

2. THE PROPOSED MODEL

As a starting point, we present the 1D version of the model.
We consider the general non-Gaussian continuous-domain
AR(p) model with parameters vector 6 (Figure 1)
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where w(z) is a Gaussian or non-Gaussian white-noise pro-
cess. The equivalent stochastic-integral representation is

v(z) = / T b - 60)aw (@), @

where W (x) is a Brownian motion (in the Gaussian case) or
a more general Lévy process (in the non-Gaussian case) [5].
The connection between both representations is

W(z) = / " w(e) de. 3)

Conversely, w(z) = -LTW(z), which may be termed white

Lévy noise or innovation, is a generalized stochastic process
that corresponds to the derivative of W (z) in the sense of
distributions [6]. Sparsity is determined by the infinitesimal
increments of W (x) (Figure 2). In the case of a Brownian
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Fig. 1. A description of a continuous-domain AR process:
w(x) is a continuous-domain white noise (Gaussian or non-
Gaussian), and h(x; 0) is an all pole causal filter.

Gaussian

| — Variance-gamma - : 8 o
—— Compound Poisson ; gl

Fig. 2. Examples of sparse and non-sparse stochastic pro-
cesses: Shown here is W (x) for the Gaussian (non-sparse),
the Poisson and the variance-gamma (both sparse) distribu-
tions. The probability density function of the increments of
W (z) determines the sparsity property of the continuous-
domain AR process v(x).

motion, the increments are Gaussian random variables, and
v(x) has no sparse innovation. In the Poisson case, however,
a large portion of the increments are zero, which results in a
sparse innovation [7].

The shaping filter h(x;#) is given in the Fourier domain
by

1
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where
0 = (s1,82,...,5p) € CP. (5)

The vector of parameters 6 consists of the poles of H(w;6).
The real part of each pole is strictly negative, and complex
poles appear in conjugate pairs. Assume that w(z) is white
with finite variance 0. Then, for sufficiently large values of
x, the autocorrelation function (&) = E{v(z) - v(z + &)}
is given in the Fourier domain by
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The sampled version of such processes preserves their au-
tocorrelation structure. That is, the autocorrelation sequence
of {v(n)} is given by the values of the autocorrelation func-
tion {p(n;6)}. It then follows that the discrete-domain
model is an ARMA (Auto-Regressive Moving Average) pro-
cess, having independent discrete-domain innovation in the
Gaussian case. In the non-Gaussian cases, the innovation
is uncorrelated only. The advantage of the proposed model
resides in its ability to describe both sparse and non-sparse
signals, while maintaining a linear forward model. The pa-
rameterization 6 also introduces flexibility in determining

d(w;0,0%) = az‘H(w;9)| 6)
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the autocorrelation properties of v(x). This is very useful
for image interpolation tasks, as the autocorrelation function
provides the optimal MMSE linear estimator for unknown
pixel values.

3. EXPONENTIAL-BASED IMAGE SCALING

The polynomial B-spline model is known to provide an ex-
cellent trade-off between computational complexity and in-
terpolation performance. One of its key aspects is the use
of a compactly supported generating function, namely the B-
spline, which makes re-sampling very fast. In order to be
computationally efficient, we apply a similar approach and
represent the autocorrelation function by means of symmetric
exponential B-splines. We use this representation and suggest
the following interpolation formula

= Zc[m,n] Bl —m;0.) By —n;0y).
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Here, ¢ is an approximation for the unknown continuous-
domain image, c is a 2D sequence of representation coeffi-
cients and 3(x, 0,,) is a symmetric exponential B-spline with
a vector of parameters 6, [8]
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Similar to the polynomial B-spline approach, the represen-
tation coefficients can be extracted from the pixel values by
means of digital filtering.

4. FITTING CRITERIA

In the case where W (x, y) is a Brownian motion, the discrete-
domain innovation is independent and one can calculate the
likelihood function of § from the sampled data. In the non-
Gaussian case, however, the likelihood function is more
involved, and we suggest here to resort to a simpler cri-
terion which fits the sample autocorrelation sequence with
a continuous-domain AR model. Although simpler, the
autocorrelation-based criterion is potentially more power-
ful as it does not depend on the type of innovation.

4.1. Likelihood of sampled AR Gaussian images

We assume that the digital image is a sampled version of a
continuous-domain AR(p) Gaussian process. We then deter-
mine the vector of parameters based on the value of the like-
lihood function. These parameters can then be used in (7).
We rely on results from [9] that describe 2D separable AR
models, as given next.

The autocorrelation sequence of the sampled model is
given in the z-domain by

Dy(2;0) = 03 Hy(z;0) Hd(zfl;G) )
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Fig. 3. Parameter estimation performed on a biomedical image. The B38701 crop is displayed in (a) as an example. The
corresponding autocorrelation sequences along the X and Y coordinates are also shown using black x marks in the plots (b) and
(c). The green squares, the red circles, and the blue dots correspond to the best Gaussian-likelihood, the best ls-autocorrelation,
and the best oracle-SNR parameter fits for our continuous-domain AR model, respectively.
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We use this continuous-to-discrete mapping for approximat-

ing the likelihood function of a digital image. In particular,
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where M, N are the horizontal and vertical dimensions of the
image, x € RM*N are the pixel values, E is the expecta-
tion operation, and [(6; x) is the likelihood function of 8 for a
given image x. The approximated likelihood function is

10,,0,;%X) = M#r(6) + Nk(8,) + M?Ino2(8,) +

+N2Ino3(0,) + |x *gll7, . (12)

where g[m, n; 6, 0,] is given in the z-domain by
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Also,
k(0) = Z n - c[n; 0)%, (14)
n=1

cn; 0] = L{p@+.+vi_ (0)—pP(O)—..—p2(0)}. (15)

The uniform convergence property (11) implies that the
global minimum of [(6,, §,; x) provides a good approxima-
tion for the maximum-likelihood solution, while introducing
low computational complexity.
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4.2. Fitting the autocorrelation sequence

In the non-Gaussian case, the discrete-domain innovation is
no longer independent. For this reason, we suggest to focus
on the interpolation kernel only, rather than deriving the like-
lihood function on a case-by-case basis. The interpolation
kernel depends on the parameters of the horizontal and ver-
tical shaping filters ¢, and 6,. Our criterion is based on Iy
fitting of the 2D autocorrelation sequence of the digital im-
age with a continuous-domain AR model. It is an intuitive
criterion that has a unique solution [10].

5. RESULTS AND DISCUSSION

We examined the proposed criteria through experiments on
simulated AR(2) as well as on real images. In order to quan-
tify the interpolation quality, we downsampled each original
image by a factor of 3, followed by upscaling by the same
factor using the interpolation methods under consideration.
The upscaling operation was repeated for many sets of pa-
rameters, using different values of ¢, and 0, within a large
enough search space. When using our adaptive method, we
first determined which set of values yielded the best results in
terms of SNR, and then—besides this parameter-estimation
oracle—evaluated its interpolation performance using both
practically applicable error measures (i.e., the Gaussian like-
lihood function (12) and the [, fit of autocorrelation values).
The numerical results reported in Table 5 also include the
non-adaptive cubic polynomial B-spline model for compar-
ison. Note that the used polynomial and exponential interpo-
lation kernels have the same approximation order.

For the synthetic images generated by the Gaussian AR
model, our method gave the same results independently from
the error criterion, while the polynomial B-spline model gave
worse results, as expected theoretically. Interestingly, how-
ever, our results on texture and biomedical images still indi-
cated improvements of our method over the polynomial B-
splines by 0.5[dB] on average. While the Gaussian prior is



Table 1. Results for image scaling !
Image Fitting criterion ° Poly. B-spline
Best SNR Best autocorrelation fit  Best Gaussian likelihood
SNR 2.96 2.96 2.96 2.22
Gaussian AR x —0.8—7,—0.841 —0.8—14,—0.8+1 —0.8—7,—0.8+1
y —0.2—0.6i,—0.2+0.67 —0.2—0.64,—0.240.6i —0.2—0.6i,—0.240.6i
SNR 7.87 7.79 3.97 7.51
D2 [640 x 640] z —0.1,—4 —0.1,—4 —0.6—1.3i,—0.6+1.3i
y —0.1,—4 —0.1,—1 —0.1-0.14,—0.140.14
SNR 2.64 2.52 2.12 1.95
D79 [640 x 640] z —0.2—4,—0.2+i —0.5—%,—0.5—1 —0.1,—-1.2
y —0.5,—5 —0.2,-1.8 —0.1,—1
SNR 6.03 5.74 2.35 5.53
B37251 [256 x 256]° = —0.2,—4 ~0.2,-0.9 ~0.1,—-0.2
Yy —0.2,—4 —0.2,—1 —0.9—1.5i,—0.941.5i
SNR 3.17 3.06 1.22 2.44
B38701 [256 x 256]° = —0.5,—4 —0.2,—4 1170, —141.7i
y —0.4,—4 —0.2,—4 —0.1,—0.2

T The textures D2 and D79 originate from the Brodatz database (http://www.ux.uis.no/~tranden/brodatz.html) while the biomedical

images B37251 and B38701 originate from the Cell Image Library (www.cellimagelibrary.org). The image data are used without the DC

components to allow for proper parameter estimation; this preserves the differences between the SNR values for a given image.

2 The real and imaginary parts of the poles lie in the search spaces [—5, —0.1] and [0.1, 3]. The corresponding step is 0.1 for each variable.

3 These data consist of cropped zones that are visually stationary.

mostly inadequate in that case (it yields SNR values that are
consistently lower than all other methods), the [, autocorre-
lation fit was found to be efficient, including when the im-
age resolution was low. The corresponding SNR values were
nearly optimal compared to oracle performance within the
considered search space (they were off by no more than 0.29
dB). This observation corroborates the theory: fitting the au-
tocorrelation function does not depend on the probabilistic
properties of the continuous-domain innovation process, and
is thus more robust. As an illustration, Figure 3 shows one im-
age of Table 5 with its X and Y autocorrelation values fitted
using our estimation methods. We observe that the best-SNR
and [»-based criteria are able to fit the autocorrelation satisfac-
torily, unlike the maximum-likelihood estimation approach.

6. CONCLUSIONS

We proposed an estimation method that quantifies some sta-
tistical properties of an image based on a continuous-domain
autoregressive model. We exploited the link between this
model and exponential splines to perform resolution en-
hancement. Using adaptive exponential-B-spline kernels,
we implemented our interpolation algorithm through digital
filtering, the only additional computational cost consisting
in the estimation of the model parameters. Our experiments
with texture images and two-dimensional cell images demon-
strated better results compared to the piecewise-polynomial-
B-spline model of the same order.
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