
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 1, JANUARY 2014 413

Adaptive Image Resizing Based on
Continuous-Domain Stochastic Modeling

Hagai Kirshner, Member, IEEE, Aurélien Bourquard, Student Member, IEEE, John Paul Ward,
Moshe Porat, Senior Member, IEEE, and Michael Unser, Fellow, IEEE

Abstract— We introduce an adaptive continuous-domain
modeling approach to texture and natural images. The
continuous-domain image is assumed to be a smooth function,
and we embed it in a parameterized Sobolev space. We point
out a link between Sobolev spaces and stochastic auto-regressive
models, and exploit it for optimally choosing Sobolev parameters
from available pixel values. To this aim, we use exact continuous-
to-discrete mapping of the auto-regressive model that is based on
symmetric exponential splines. The mapping is computationally
efficient, and we exploit it for maximizing an approximated
Gaussian likelihood function. We account for non-Gaussian Lévy-
type processes by deriving a more robust estimator that is based
on the sample auto-correlation sequence. Both estimators use
multiple initialization values for overcoming the local minima
structure of the fitting criteria. Experimental image resizing
results indicate that the auto-correlation criterion can cope better
with non-Gaussian processes and model mismatch. Our work
demonstrates the importance of the auto-correlation function in
adaptive image interpolation and image modeling tasks, and we
believe it is instrumental in other image processing tasks as well.

Index Terms— Auto-regressive parameter estimation, adaptive
interpolation, exponential splines.

I. INTRODUCTION

IMAGE modeling is fundamental to many image processing
tasks such as resizing, restoration, analysis and compres-

sion. With the increasing use of various visual monitors
of different resolution characteristics and the handy options
of changing the size of the displayed image, resizing has
become a common task in image processing. The under-
lying idea of currently available linear resizing methods is
a regularity constraint that is imposed on the continuous-
domain image. Polynomial B-spline modeling is such an
example for which pixel values correspond to the samples of
a piecewise polynomial function. Once a continuous-domain
model is determined, one can sample it on the required new
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grid or algebraically project it onto a new function space.
Both theoretical and experimental studies have shown that
the B-spline kernels provide an excellent trade-off in terms
of interpolation performance and computational complexity
[1], [2]. Nonlinear methods, on the other hand, rely on local
properties of edges [3]–[5], on statistical properties of wavelet
coefficients [6]–[8], on Markov random field stochastic models
[9], [10], and on regularized inverse problem formulations of
differential type [11]–[13], to name a few. The main advantage
of these methods resides in their ability to locally adapt
the interpolation weights to the given data. The drawback,
however, is computational complexity.

The question we are raising in this work is whether one can
benefit from these two types of methods. Namely, introduce a
fast linear interpolation method that adapts itself to the given
data. We are in particularly interested in a modeling approach
that would be invariant to the pixel size value. That is, if two
snapshots of the same image are acquired at different pixel
size values, we require the adapted continuous-domain model
to be the same for both.

We introduce in this work an adaptive continuous-domain
modeling approach to texture and natural images. The
continuous-domain image is assumed to be a smooth func-
tion, and we embed it in a parametrized Sobolev space.
We then point out a link between Sobolev spaces and sto-
chastic auto-regressive models, and exploit it for optimally
choosing Sobolev parameters from available pixel values. To
this aim, we use exact continuous-to-discrete mapping of the
auto-regressive model that is based on symmetric exponential
splines. The mapping is computationally efficient, and we
exploit it for maximizing an approximated Gaussian likeli-
hood function. We further account for non-Gaussian Lévy-
type processes by deriving an estimator that is based on the
sample auto-correlation values only. Both of our estimators
use multiple initialization values for overcoming the local
minima structure of the fitting criteria. Auto-correlation values
are useful for describing texture images [14]. While the
available models are formulated in the discrete-domain, our
approach is based on the continuum. Exceptions to that are
the continuous-domain formulations [15] and interpolation
[16], [17] by means of an adapted auto-correlation function.
We take this idea one step further by accounting for auto-
regressive models that can take arbitrary order values and that
can have non-Gaussian innovations.

The advantage of the proposed model resides in its
ability to describe both sparse and non-sparse signals, while
maintaining a linear forward model. Unlike piecewise
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Fig. 1. A description of a continuous-domain AR process: w(x) is a
continuous-domain white noise (Gaussian or non-Gaussian), and H (s;θ) is
an all pole causal filter, given in the Laplace domain.

polynomial models, the Sobolev space parametrization
introduces flexibility in determining the auto-correlation
properties of the digital image. The Lévy innovation model
is particularly interesting from a signal processing point
of view. It covers the whole range of infinitely divisible
probability density functions, which guarantees the existence
of a probability density function of the available uniformly
sampled data. We demonstrate the usefulness of our approach
by considering the task of image resizing, and further compare
its performance with the polynomial B-spline kernel.

The paper is organized as follows. In Section II, we provide
the link between continuous-domain Lévy-type AR processes
and Sobolev functions. We then present a continuous-to-
discrete mapping of the AR parameters. In Section III, we
introduce two estimators from sampled data. One estimator
uses the Gaussian likelihood function, and the other estimator
is based on a more general setup. Experimental results are
described in Section IV.

II. THE PROPOSED MODEL

A. Auto-Regressive Processes With Lévy-Type Innovation

We consider a general continuous-domain AR(p) model
with parameters vector θ (Figure 1)

v(x) =
∫ ∞

0
h(x − ξ; θ) w(ξ) dξ , (1)

where w(x) is a Gaussian or non-Gaussian white-noise
process. The equivalent stochastic-integral representation is

v(x) =
∫ ∞

0
h(x − ξ; θ) dW (ξ), (2)

where W (x) is a Brownian motion (in the Gaussian case) or
a more general Lévy process (in the non-Gaussian case) [18].
The connection between both representations is

W (x) =
∫ x

0
w(ξ) dξ. (3)

Conversely, w(x) = d
dx W (x), which may be termed white

Lévy noise or innovation, is a generalized stochastic process
that corresponds to the derivative of W (x) in the sense of
distributions [19]. Sparsity is determined by the infinitesimal
increments of W (x) (Figure 2). In the case of a Brownian
motion, the increments are Gaussian random variables, and
v(x) has no sparse innovation. In the Poisson case, however,
a large portion of the increments are zero, which results in a
sparse innovation [20].

The shaping filter h(x; θ) is given in the Fourier domain by

H (ω; θ) = 1
p∏

n=1
(iω − sn)

, (4)

where
θ =

(
s1, s2, . . . , sp

)
∈ Cp. (5)

The vector of parameters θ consists of the poles of H (ω; θ).
The real part of each pole is strictly negative, and complex
poles appear in conjugate pairs. We Assume that w(x) is white
noise with finite variance σ 2. Then, for sufficiently large values
of x , the autocorrelation function ϕ(ξ) = E

{
v(x) · v(x + ξ)

}

is given in the Fourier domain by

&(ω; θ, σ 2) = σ 2
∣∣H (ω; θ)

∣∣2 = σ 2
p∏

n=1
(iω−sn )(−iω−sn )

. (6)

The advantage of the proposed model resides in its
ability to describe both sparse and non-sparse signals, while
maintaining a linear forward model. The parametrization
θ introduces flexibility in determining the auto-correlation
properties of v(x), as well. The Lévy innovation model covers
the whole range of infinitely divisible probability density
functions, which are particularly interesting from a signal
processing point of view. The infinite divisibility property
guarantees the existence of a probability density function of
the available uniformly sampled data.

B. The Link With Deterministic Signals

Let H2(λ) be a Sobolev space with scalar weights
λ = {λn}p

0 . This space consists of all finite-energy functions
for which their first p derivatives are of finite energy, as well.
The Sobolev inner product is given by

⟨x, y⟩H2(λ) =
p∑

n=0

λn ·
〈
x (n), y(n)

〉

L2
, (7)

where λ provides a positive measure for ⟨x, x⟩H2(λ). The
reproducing kernel of H2(λ) is the unique function satisfying

x(τ ) =
〈
x(t),ϕ(t − τ ; λ)

〉

H2(λ)
, (8)

for every x ∈ H2(λ) and τ ∈ R. It is given in the Laplace
domain by [21]

&(s; λ) = 1
λ0 − λ1s2 + · · · + (−1)p · λps2p . (9)

Considering a uniform grid, the sample values of a Sobolev
function uniquely define its orthogonal projection, with respect
to the Sobolev norm, onto the subspace

S(λ) = span {ϕ(t − n; λ)}n∈Z. (10)

Both x and its orthogonal projection PS(λ)x have the same
sample values. The orthogonal projection is also the solution
to the following interpolation problem [21]

{PS(λ)x}(τ ) = argmin
α∈R

max
∥y∥<∞, {y(nT )=x(nT )}

∣∣y(τ ) − α
∣∣, (11)

where the norms are taken in the Sobolev sense. Interpolated
values can be calculated in practice by

{
PS(λ)x

}
(τ ) = uT G−1v, (12)

where u[n] = x(nT ) are the known sample values, v[n] =
ϕ(nT − τ ; λ) are point-wise values of the reproducing kernel,
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Fig. 2. Examples of sparse and non-sparse stochastic processes: Shown here are pixel values of a 2D continuous-domain AR process v(x). The shaping filter
in the horizontal direction has two complex poles −0.05 ± 0.05i , and the poles in the vertical direction are −0.5 ± 0.5i . The non-sparse image (a) is based on
a continuous-domain Gaussian innovation process. The images (b)-(d) are based on continuous-domain Poisson process with different average density values
– 1/20, 1/80, 1/160. The size of each image is 256 × 256 pixels, the sampling interval is of a unit value, and the integral step size in (1) is 0.2.

and G(m, n) = ϕ
(
(m − n)T ; λ

)
is the Gram matrix of the

functions in (9).
This deterministic modeling is closely related to stochas-

tic AR processes. In particular, the Laplace transform (9)
describes an auto-regressive auto-correlation function, which
has the same role as the reproducing kernel in signal inter-
polation. The linear minimum mean squared error (LMMSE)
estimator of the random variable x(τ ) coincides with the
deterministic value PS(λ)x(τ ) when setting the two functions
to be equal [21].

The equivalence between deterministic Sobolev modeling
and stochastic AR processes can be utilized to adaptively
determine the weights λ from the available sample values.
We suggest here to estimate continuous-domain AR para-
meters from pixel values; determine the power spectrum of
the underlying continuous-domain process; and extract the
corresponding Sobolev weights.

C. Continuous-to-Discrete Mapping

In order to estimate the continuous-domain parameters θ of
a given image, we first characterize the stochastic properties
of sampled continuous-domain AR models. Upon sampling,
such models become discrete-domain auto-regressive moving
average (ARMA) signals [22]. This means that the sampled

data can be statistically modeled by a discrete-domain uncor-
related input signal that undergoes a digital filtering operation
(Figure 3). The digital filter has a rational transfer function in
the z-transform domain, and we express its poles and zeros
by means of a symmetric exponential spline β(t; θ). We first
introduce its Laplace transform and then define the ARMA
digital filter Hd(z; θ). The latter will then be used to define
its inverse filter Gd(z; θ) and a likelihood term κ(θ); both
will be shown to compose a maximum likelihood objective
function (in the Gaussian case) and an l2 error criterion (in
the non-Gaussian case).

Definition 1: The localization filter of θ is

,(s; θ) =
p∏

k=1

(
1 − es+sk

)(
1 − e−s+sk

)
. (13)

Definition 2: The symmetric exponential B-spline of θ is
given in the Laplace domain by

B(s; θ) = ,(s; θ) · &(s; θ). (14)

The z transform of its sampled version is

Bd(z; θ) =
p−1∑

n=−(p−1)

β(n; θ)z−n. (15)
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Fig. 3. Sampling a continuous-time AR process: the sampled process can
be described by a discrete-time innovation wd [n] that undergoes a digital
filtering operation. The digital filter Hd(z; θ) has a rational transfer function,
and the time-series is therefore an ARMA model.

In the Gaussian case, the discrete-time innovation is i.i.d;
in the non-Gaussian case, it is uncorrelated only. We define
next Hd(z : θ), Gd (z; θ) and κ(θ); they will be used later on
for parameters estimation.

Definition 3: The discrete-time ARMA parameters that
correspond to the sampled version of the continuous-time
process θ are [22]

Hd(z; θ) =
∏p−1

k=1 (1 − νk(θ)z−1)
∏p

k=1 (1 − ρk(θ)z−1)
, (16)

where

ρk(θ) = esk (17)

νk(θ) = roots of Bd(z; θ) inside the unit circle. (18)

The variance of the innovation is

σ 2
d (θ) = σ 2 Bd(1; θ)

∏ p−1
k=1 (1 − νk(θ))2

. (19)

Definition 4: Let θ be known. Then,

Gd (z; θ) = 1/Hd(z; θ) (20)
Definition 5: Let θ be known. Then,

κ(θ) =
∞∑

n=1

n · c[n; θ ]2, (21)

where

c[n; θ ]= 1
n

{
νn

1 (θ)+· · ·+νn
p−1(θ)−ρn

1 (θ)−· · · − ρn
p(θ)

}
.

(22)

III. PARAMETERS ESTIMATION FROM PIXEL VALUES

In this section we use the 1D digital filter Gd(z; θ) and
the term κ(θ) to derive a likelihood function l(θx , θy; x)
and an l2 fitting criterion ϵ2

x (θx), ϵ2
y(θy) for a given image.

To this aim, we assume a separable two-dimensional AR(p)
model

&(sx , sy; θ) = &x(sx ; θx) · &y(sy; θy), (23)

where &x ,&y are 1D continuous-domain AR( p) processes.
The vector of parameters is

θ =
(
σ 2, s1,x , . . . , sp,x︸ ︷︷ ︸

x direction

, s1,y, . . . , sp,y︸ ︷︷ ︸
y direction

)
, (24)

where σ 2 = σ 2
x σ 2

y .

Definition 6: The row-ordering lexicographic representa-
tion of an M rows by N columns image x is

x̃ =
(

x[0, 0], . . . , x[0, N − 1]︸ ︷︷ ︸
First row

, x[1, 0], . . . , x[1, N − 1]︸ ︷︷ ︸
Second row

,

. . . , x[M − 1, 0], . . . , x[M − 1, N − 1]︸ ︷︷ ︸
Last row

)
. (25)

Definition 7: The auto-covariance matrix of x̃ is given by

0(k, l; θ) = ϕx(k̃T ; θx) · ϕy(l̃T ; θy), (26)

where k̃ = (k mod N) − (l mod N) and l̃ = (k rem N) −
(l rem N).

A. Fitting Criteria

1) Brownian Motion–The Gaussian Case:
Definition 8: The log-likelihood function of x is

l(θ; x) = ln |0(θ)| + x̃ T (
0(θ)

)−1 x̃, (27)
Definition 9: The approximated likelihood function of x is

l̃(θ; x) = Mκ(θx) + Nκ(θy) + M2 ln σ 2
d (θx)

+N2 ln σ 2
d (θy) + ∥x ∗ gθ∥2

ℓ2
, (28)

where gθ [m, n] = gθx [m] ∗ gθy [n] and ∗ denotes a 2D
convolution operation.
The approximated likelihood function l̃(θ; x) converges uni-
formly in θ to l(θ; x) with an increasing number of samples

lim
min(M,N)→∞

Ex

∣∣∣l(θ; x) − l̃(θ; x)
∣∣∣ = 0. (29)

This stems from the block structure of the auto-correlation
matrix 0(θ) = 0y(θy)⊗0x (θx), where ⊗ denotes Kronecker
product. It then holds that |0(θ)| = |0y(θy)|M |0x(θx)|N , and
from [22] we have that

lim
M→∞

{
ln |0x(θx)| − κ(θx) − M ln σ 2

d (θx)
}

= 0. (30)

The 2D whitening operation in (27) is separable, and we
observe that

0(θ)−1 = 0y(θy)
−1 ⊗ 0x (θx)

−1. (31)

This means that the AR image can be whitened by applying
column- and row-wise filtering operations, and we use

lim
min(M,N)→0

Ex

∣∣∣
∣∣x̃ T (

0(θ)
)−1 x̃

∣∣−
∥∥x ∗ gθx ∗ gθy

∥∥2
∣∣∣ = 0, (32)

which holds true due to the asymptotic equivalence of 0x (θx)
and 0y(θy) with gθx and gθy , respectively.

The uniform convergence (29) implies that the global min-
imum of l̃(θ; x) provides a reasonable approximation of the
global minimum of l(θ; x). The advantage of minimizing the
former resides in its low computational complexity; it involves
the parameters mapping (16) and the convolution operation
x ∗ gθ only.
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TABLE I

PARAMETER ESTIMATION FROM PIXEL VALUES–VALIDATION OF THE PROPOSED APPROACH

2) Non-Gaussian Scenario: When W (t) is not Gaussian, the
mapping of (16) still holds true, but the discrete-domain inno-
vation is no longer Gaussian. Rather, it presents a Markov-type
dependency between its values, and the probabilistic properties
of its values depend on the Lévy parameters of W (t). Instead
of deriving explicit likelihood expressions for each Lévy-
type innovation, we suggest to fit the sample auto-correlation
sequence of the image with a continuous-domain AR model. In
particular, separately minimizing the following l2 error criteria

ϵ2
x (θx) =

K∑

k=0

|ϕ̃(k, 0) − ϕ(k; θx)|2 (33)

ϵ2
y(θy) =

L∑

l=0

|ϕ̃(0, l) − ϕ(l; θy)|2, (34)

where

ϕ̃(k, l) = 1
(M − k − 1)(N − l − 1)

·
M−l−1∑

m=0

N−k−1∑

n=0

[x(m, n) − x̄] [x(m + k, n + l) − x̄] ,

(35)

and x̄ is the average value of x . The parameters K , L
specify how many auto-correlation sample values are taken
into account for the estimation.

B. Multiple Minimizations

Both the Gaussian approximated likelihood function l̃(θ; x)
and the error criteria ϵ2

x (θx), ϵ2
y(θy) have local minima.

In order to find their global minimum, we suggest to use
multiple minimizations with different initialization values. The
main idea is to set the values of θx and θy sufficiently close to
one of the local minima. This can be achieved by estimating
the decay rate of the sample auto-correlation.

1) Decay Rate Estimation: We fit the values of log ϕ̃(k, 0)
with a regression line; the slope of the line, denoted α,
indicates the slowest decay rate of the auto-correlation function
along the x direction. The number of values that are used for
the regression are provided by the user. We apply a similar
regression for the y direction.

2) AR(1): We use a single initialization for each direction

s1 = α (36)

σ 2 = ϕ̃(0, 0)

[
Bd(1; s1)

∏ p−1
k=1 (1 − νk(s1))2

]−1

. (37)

3) AR(2): We use multiple initializations for each direction{
(s1k , s2k )

}
k∈N0 where

(s1k , s2k ) =
{

(α,α/2) k = 0
(α + ki,α − ki) else

(38)

The first initialization values, i.e. k = 0, corresponds to two
real poles. The other initialization conditions correspond to
two complex conjugate poles. The number of complex poles
is provided by the user. For each pair of poles, we compute

σ 2 = ϕ̃(0, 0)

[
Bd(1; s1, s2)

∏ p−1
k=1 (1 − νk(s1, s2))2

]−1

. (39)

4) AR(3): We use multiple initializations for each direction{
(s1k , s2k , s3k )

}
k∈N0 where

(s1k , s2k , s3k ) =
{

(α,α/2,α/3) k = 0
(α + ki,α − ki,α/2) else

(40)

For each triplet of poles, we compute

σ 2 = ϕ̃(0, 0)

[
Bd(1; s1, s2, s3)

∏ p−1
k=1 (1 − νk(s1, s2, s3))2

]−1

. (41)
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Fig. 4. Validation of the proposed estimation approach: shown in (a) is the D93 Brodatz texture image. The sample auto-correlation sequences along the x
and y directions are shown in (b) and (c) by × marks. Auto-correlation values that were obtained by minimizing the Gaussian likelihood function are depicted
by squares; the values that were obtained by minimizing the auto-correlation fit criterion are shown by circles. This example demonstrates the advantage of
the auto-correlation error criterion for adapting a continuous-domain AR model to an image with an unknown Lévy innovation.

5) General AR(p): The initialization values need to cover
all possible constellations of real and complex poles. The real
part of the first pole is α. The real part of any other pole
is either equal to the real part of its predecessor (if it is its
complex conjugate) or smaller than its predecessor (if it is
real). The imaginary part of a complex pair can take multiple
values, namely ki where k ∈ N0.

C. Validation

Table I presents estimation results for simulated images. The
data corresponds to pixel values of Gaussian and non-Gaussian
continuous-domain two-dimensional AR(2) processes. The
estimated parameters are (σ 2, a, b), where a, b are the poly-
nomial coefficients of the shaping filter

H (ω; θ) = 1
(iω − s1)(iω − s2)

= 1
−ω2 −(s1 + s2)︸ ︷︷ ︸

a

iω + s1s2︸︷︷︸
b

. (42)

Our Monte-Carlo simulation included 20 realizations for
each AR model, and the error criterion was the mean squared
error. The values that appear in the table are normalized by
the oracle values of each model. The size of the images was
256 × 256. As expected, the Gaussian likelihood estimator
performs well for Gaussian images. However, it is less suited
to other types of innovations. For Poisson-driven images, the
estimation performance depends on the variance value σ 2. If it
is small, then the Gaussian likelihood value is dominated by
the norm of the discrete-domain innovation, which amounts
to whitening the data by the correct parameters. When the
value of σ 2 is dominating the likelihood value, the estimation
performance becomes worse. This is due to the fact that we
need to restrict the maximum value of σ 2 in the numerical
optimization. The auto-correlation fit criterion, on the other
hand, performs well for both Gaussian and non-Gaussian
images. It is therefore more robust to modeling inaccuracies.
This property is further illustrated in Figure 4.

IV. EXPERIMENTAL RESULTS

We demonstrate the usefulness of our modeling approach
by considering the task of image resizing. The estimated AR
parameters determine a Sobolev space, and we resize the
image by sampling PS(λ)x on the new grid. The compactly-
supported exponential B-spline of Definition 2 is instrumental
for deriving a computationally efficient reconstruction proce-
dure. It introduces the same computational complexity as the
polynomial B-spline kernel of [23], [24]. In particular,

PS(λ)x(η, ζ ) =
M−1∑

m=0

N−1∑

n=0

c[m, n] β(η − n; θx) β(ζ − m; θy),

(43)
where c is given in the z-transform domain by

C(zx , zy) = X (zx , zy)
1

Bd(zx ; θx)

1
Bd(zy; θy)

. (44)

In Tables II and III, we present resizing results of simulated
AR images, texture,1 and natural images. The quality of the
resized images is evaluated both in terms of SNR and in
terms of the structural-similarity-index measure2 (SSIM) of
[26].

The original image was down-sampled by a factor of two
(Table II) and three (Table III) in each dimension while
applying no averaging pre-filter. Continuous-domain AR para-
meters were estimated from the down-sampled image. These
parameters were then used in (43) for resizing the image back
to its original size. Both the Gaussian likelihood estimator
and the auto-correlation estimator are reported in the tables;
the auto-correlation criterion performed better in all cases.
The number of auto-correlation values that were used in
estimating the decay rate was K = L = 5, and the maximum

1The texture images were taken from the Brodatz database at
http://www.ux.uis.no/∼tranden/brodatz.html and from the database
http://www-cvr.ai.uiuc.edu/ponce_grp/data/ that was used in [25].

2The SSIM measure aims at being consistent with perceived
visual quality. Each given SSIM value is a real number defined
between 0 and 1. We use a MATLAB implementation available at
https://ece.uwaterloo.ca/∼z70wang/research/ssim/.
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TABLE II

IMAGE RESIZING BY A FACTOR OF TWO IN EACH DIMENSION

imaginary-part value considered in the search space was 2π .
The AR order was p = 2. To conform with the model, the
DC components of the down-sampled images were subtracted
before the estimation and interpolation operations and added
back to the corresponding up-scaled results. We also report
resizing results that were obtained by the cubic polynomial
B-spline kernel; no average subtraction is required in this
case due to the partition-of-unity property of this kernel.
This kernel is compactly supported between [−2, 2], as is the
exponential B-spline kernel of our approach when p = 2.
Both kernels have the same approximation order, as well.
Visual comparisons between the proposed adaptive model and
the polynomial B-spline model are given in Figures 5 and 6
for texture-image and natural-image examples, respectively.
Similar results are shown in Figure 7 for an instance where
upscaling only is performed on an image crop. Note that, in
this latter case, the data are provided as such and the oracle
solution is thus unavailable.

The results of the tables show that our adaptive approach
introduces notable improvements of up to 0.7[dB] over the
non-adaptive polynomial spline model when considering a
single resizing operation. The SSIM values are also consis-
tent with these SNR improvements, which indicates that the
perceived visual quality also increases. More accurate details
can indeed be observed in the visual results specific to our
method. For instance, the Brodatz texture D79 (top row) that
is reconstructed using our approach contains vertical patterns
that are more pronounced and closer to the original version
compared to the non-adaptive case. Moreover, the images we
obtain look sharper than the piecewise polynomial model,
indicating that our adaptive approach can overcomes aliasing.
The AR model introduces a parameterized family of power
spectrum functions &(ω; θ) which can be of either lowpass or
bandpass nature. Our multiple minimization algorithm exam-
ines these power spectra in an efficient manner, and extracts
the parameters that best fit the given data. The corresponding
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TABLE III

IMAGE RESIZING BY A FACTOR OF THREE IN EACH DIMENSION

power spectrum may then occupy frequency bins that are not
necessarily in the baseband. This is the key point of our
algorithm in overcoming aliasing that is introduced by the
downsampled image. A similar observation can be made in
Figure 7 even though no oracle is available for comparison in
such a case.

The results of Tables II and III further indicate that the auto-
correlation fit estimator performs well for all images, whereas
the Gaussian likelihood estimator yields strongly suboptimal
solutions except for the simulated AR image. The reason for
that is the numerical limits we imposed on the innovation
variance σ 2 during the optimization process. The tables show
that the auto-correlation fit is a general estimator for the
continuous-domain AR model that does not depend on the
type of innovation and that can be applied satisfactorily to
practical visual data.

The performance of our approach depends on the extent
to which an image complies with the AR model, and
on the amount of aliasing introduced by the downsampled
image. This observation is motivated by the relatively large

improvement of the SNR measure for the simulated AR image
in Table III. If the downsampled image introduces prominent
aliasing, such as in a downsampling factor of three, then
it is more likely to have a significant improvement by the
proposed algorithm which can cope with oscillatory structures.
This is the case in Table III for the D2 (0.4 [dB]) and
T04_1 (0.7 [dB]) images. The image T15_30 (0.8 [dB]) is not
oscillatory, though. Rather, it introduces fine details and sharp
transitions that are captured by a bandpass AR model whereas
the piecewise polynomial model cannot accommodate for such
frequencies. From a computational perspective, our method is
equivalent to the polynomial spline model; the only overhead
is the adaptive parameter-estimation stage, which introduces
only marginal additional complexity.

Resizing results for standard test-sets natural images are
presented in the tables, too. Even though such images are not
necessarily stationary, as implicitly assumed by our model, our
approach remains advantageous compared to the piecewise-
polynomial model in most cases. This observation is illus-
trated by the visual example of Figure 6. The estimated
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Fig. 5. Image resizing results: the original image (left column) was down-sampled by a factor of three in each dimension. Resizing was carried out by the
polynomial B-spline model (middle column) and by the proposed adaptive approach (right column). The images are D79 (top row), T22_16 (second row),
T20_01 (third row), and T15_30 (bottom row). Shown here are centered crops of size 320 × 320 pixels.

parameters in this configuration can be interpreted as an aver-
age model evaluated on the different stationary regions of the
image. The corresponding quality improvements demonstrate
the important role that the auto-correlation function has in
image interpolation.

Our experimental results indicate that the proposed
approach is essentially resolution-invariant. We correctly
identified continuous-domain AR parameters from simulated
images that introduce prominent aliasing effects in the
power spectrum function due to the down-sampling operation.
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Fig. 6. Image resizing results: the Pentagon image (left) was down-sampled by a factor of two in each dimension. Resizing was carried out by the cubic
polynomial B-spline model (middle) and by the proposed adaptive approach (right). Shown is a crop of size 320 × 320 pixels encompassing the central shape.

Fig. 7. Image resizing results: the data consists of a 128 × 128 crop of D105. Resizing by a factor of three in each dimension was carried out by the cubic
polynomial B-spline model (middle) and by the proposed adaptive approach (right). The original data (left) is shown at the same scale as the resized images
using pixel duplication.

Moreover, we achieved improved interpolation results for
down-sampled texture and natural images. The proposed esti-
mation approach relies on the uniqueness results of AR(2)
processes [27], which states that the sampling interval value
imposes no constraint on the one-to-one mapping between
the continuous- and the discrete domains AR models. Similar
uniqueness results hold for AR models of higher orders, which
raises the question of optimal model order selection. One
possible way of choosing the optimal order for a given image
is by minimizing the l2 approximation errors ϵ2

x (θx) and ϵ2
y(θy)

using several values of the model order p. That is, for every
possible value of p, we find the best parameters θx , θy . We
then choose the model order that yields the minimum error
values.

V. CONCLUSION

We introduced in this work an adaptive, yet computa-
tionally efficient, linear resizing approach for digital images.
We described the sampling operator by means of an orthog-
onal projection in a continuous-domain Soblev space, and
optimized the Sobolev weights to the given image. This was
carried out by relating the Sobolev reproducing kernel function
with a continuous-domain auto-regressive model. Pixel values

were assumed to be a realization of such a process, and
we used them to estimate the auto-regressive parameters.
We derived a maximum-likelihood estimator for the Gaussian
case, and a more general estimator that accounts for the
larger class of Lévy-type processes. The proposed estimators
use multiple initializations for overcoming the aliasing effect
in the down-sampled image. Our results also demonstrate
that the Gaussian maximum-likelihood estimator is in many
cases unsuitable for describing texture and natural images; the
estimator that is based on the autocorrelation sample values
provided a better alternative. It achieved higher SNR values,
compared to the polynomial B-spline approach, while main-
taining a linear image resizing formulation. We demonstrated
the important role the auto-correlation measure has in image
resizing, and we believe it is instrumental in other image
processing tasks, as well.

REFERENCES

[1] T. Blu, P. Thévenaz, and M. Unser, “MOMS: Maximal-order interpola-
tion of minimal support,” IEEE Trans. Image Process., vol. 10, no. 7,
pp. 1069–1080, Jul. 2001.

[2] E. H. W. Meijering, W. J. Niessen, and M. A. Viergever, “Quantitative
evaluation of convolution-based methods for medical image interpola-
tion,” Med. Image Anal., vol. 5, no. 2, pp. 111–126, Jun. 2001.



KIRSHNER et al.: ADAPTIVE IMAGE RESIZING 423

[3] K. Jensen and D. Anastassiou, “Subpixel edge localization and the
interpolation of still images,” IEEE Trans. Image Process., vol. 4, no. 3,
pp. 285–295, Mar. 1995.

[4] X. Li and M. Orchard, “New edge-directed interpolation,” IEEE Trans.
Image Process., vol. 10, no. 10, pp. 1521–1527, Oct. 2001.

[5] L. Zhang and X. Wu, “An edge-guided image interpolation algorithm
via directional filtering and data fusion,” IEEE Trans. Image Process.,
vol. 15, no. 8, pp. 2226–2238, Aug. 2006.

[6] W. Carey, D. Chuang, and S. Hemami, “Regularity-preserving
image interpolation,” IEEE Trans. Image Process., vol. 8, no. 9,
pp. 1293–1297, Sep. 1999.

[7] S. Chang, Z. Cvetkovic, and M. Vetterli, “Locally adaptive wavelet-
based image interpolation,” IEEE Trans. Image Process., vol. 15, no. 6,
pp. 1471–1485, Jun. 2006.

[8] J. Wang, S. Zhu, and Y. Gong, “Resolution-invariant image rep-
resentation and its applications,” in Proc. IEEE CVPR, Jun. 2009,
pp. 2512–2519.

[9] X. Zhang and X. Wu, “Image interpolation by adaptive 2-D autore-
gressive modeling and soft-decision estimation,” IEEE Trans. Image
Process., vol. 17, no. 6, pp. 887–896, Jun. 2008.

[10] M. Li and T. Nguyen, “Markov random field model-based edge-directed
image interpolation,” IEEE Trans. Image Process., vol. 17, no. 7,
pp. 1121–1128, Jul. 2008.

[11] F. Malgouyres and F. Guichard, “Edge direction preserving image
zooming: A mathematical and numerical analysis,” SIAM J. Numer.
Anal., vol. 39, no. 1, pp. 1–37, 2001.

[12] T. F. Chan and J. Shen, Image Processing and Analysis: Variational,
PDE, Wavelet, and Stochastic Methods. Philadelphia, PA, USA: SIAM,
2005.

[13] A. Bourquard, P. Thévenaz, K. Balać, and M. Unser, “Consistent and
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