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ABSTRACT
In this work, we describe our approach of combining the most

effective ideas and tools developed during the past years to build a
variational 3D deconvolution system that can be successfully em-
ployed in fluorescence microscopy. In particular, the main compo-
nents of our deconvolution system involve proper handling of image
boundaries, choice of a regularizer that is best suited to biological
images, and use of an optimization algorithm that can be efficiently
implemented on graphics processing units (GPUs) and fully bene-
fit from their massive parallel computational capabilities. We show
that our system leads to very competitive results and reduces the
computational time by at least one order of magnitude compared to
a CPU implementation. This makes the use of advanced deconvolu-
tion techniques feasible in practice and attractive computationally.

Index Terms— Graphics Processing Unit, image regularization,
variational reconstruction, convex optimization.

1. INTRODUCTION
Fluorescence microscopy is an imaging technique that has been

proven to be a valuable tool for biologists. It has the capacity to
provide three-dimensional (3D) structural information of biological
specimens, which makes feasible the observation and study of their
cellular and subcellular components. The 3D image acquisition is
achieved by means of optical sectioning, in which a series of 2D
images is recorded at different focal planes. In this setting, one of
the greatest limitations is the presence in the measurements of out-
of-focus information from adjacent planes [1]. This optical blur re-
duces the spatial resolution and, thus, the ability to resolve fine struc-
tures, and is an inherent limitation encountered in every diffraction-
limited optical system. Another factor distorting the measurements
is stochastic measurement noise. Both of these degradation factors
can make the measured data very difficult to analyze.

Image deconvolution is a computational method that can be em-
ployed to mitigate the distortions introduced by the optical system
and lead to high-resolution images. The first deconvolution method
to be used in the context of 3D fluorescence microscopy was de-
veloped by Agard and Sedat in 1983 [2]. Since then, a plethora of
deconvolution methods have been proposed. Most of them can be in-
terpreted as variational techniques, where image restoration is cast as
an optimization problem of an objective function consisting of two
terms: (a) the data fidelity that measures the proximity of the recon-
struction to the measurements and (b) the regularizer that encodes
prior information about properties of the object to be restored.

Nowadays, with the emergence of sparsity and compressed
sensing as new regularization paradigms, non-quadratic regular-
ization methods that systematically produce state-of-the-art results
have been developed. However, their applicability to 3D image
deconvolution has been widely hindered so far. This is mainly be-
cause of the high computational complexity of these methods when

faced with large volumes of image data, which translates to several
minutes or even hours of processing time before obtaining the final
deconvolved image. Fortunately, thanks to the development of mul-
ticore and General Purpose Graphics Processing Units (GP-GPU)
architectures, which are now widely available and allow for massive
parallel computations, this is an obstacle that we can overcome.

In this paper, we exploit the computational power offered by
GPUs and we describe a variational 3D deconvolution system that
we built to be used in fluorescence light microscopy. To do so, we
combine the most effective ideas and tools that have been introduced
during the past years. First, we adopt a more accurate observation
model than the most common one which assumes periodic image
boundary conditions. The adopted model allows us to avoid any as-
sumptions about the boundaries and obtain reconstructions without
the presence of border artifacts. Then, having in mind that biological
images typically display piecewise-smooth intensity variations, we
employ a family of non-quadratic second-order regularization func-
tionals that involves the Hessian operator [3]. These regularizers are
suitable for our problem since they promote piecewise-smooth im-
age reconstructions and lead to results of improved quality. They
are also well suited for preserving ridges & filament-like structures.
Finally, to solve the corresponding minimization problem, we em-
ploy an optimization algorithm that takes full advantage of the GPU
hardware and reduces significantly the execution time.

The rest of this paper is organized as follows: In Section 2, we
discuss the image formation model and briefly describe the regular-
ization functionals that we employ. In Section 3, we present the op-
timization strategy of choice for minimizing the corresponding ob-
jective function. Then, in Section 4 we describe our approach for
efficiently implementing the deconvolution algorithm on the GPU
and highlight the challenges we have faced. Finally, in Section 5 we
provide 3D deconvolution results where we also report the speed-
up that we achieve in terms of execution time, compared to a CPU
implementation.

2. VARIATIONAL IMAGE RECONSTRUCTION

2.1. Image Formation Model

For any deconvolution method to produce high-quality results,
it is necessary that it takes into account the physical phenomena that
provide the basis of the image acquisition. In this work, we focus
on image acquisition using a widefield microscope, which can be
modeled in intensity as a linear space-invariant system [1]. In this
case, the image formation can be mathematically formulated as

y = Ax+ n, (1)

where A ∈ RM×N is a linear operator that corresponds to the point-
spread function (PSF) of the microscope, x ∈ RN and y ∈ RM are
the vectorized versions of the 3D image to be restored and the obser-
vation data, respectively, while n is a term that accounts for all pos-
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sible experimental errors, including model mismatch and stochastic
measurement noise. Hereafter, we will consider n to be i.i.d Gaus-
sian noise with variance σ2

n.

2.2. Handling Image Boundaries

In the deconvolution literature, the most common approach is to
consider that the convolution operator A is circulant. This is due
to the computational simplicity that it offers, since it allows the use
of the fast Fourier transform (FFT). However, the price to pay for
this simplification is that the restored image is periodic which often
results in spurious artifacts at the boundaries. To avoid this problem,
we consider that A in (1) is a composition of two operators, i.e.,
A = MH, where H ∈ RN×N is a circulant convolution operator,
while M ∈ RM×N is a masking operator that keeps only the valid
part of the convolution and truncates the circular wraparound at the
boundaries. This approach, which is similar to [4–6], ensures that
the formation model is more accurate, since no specific assumptions
about the boundaries of the 3D image are made. Instead, we hold the
deconvolution algorithm responsible for reconstructing the image in
a way that best explains the data.

2.3. Regularization Strategy

Similarly to many inverse imaging problems, image deconvo-
lution is an ill-posed problem [7]. This means that the equations
relating the object of interest to the measurements are not enough
by themselves to uniquely characterize the solution. In order for the
recovered solution to be physically or statistically meaningful, one
needs to take into account prior information about known properties
of the object. The use of a regularization term serves exactly this
purpose in the variational framework that we follow in this work.

Having in mind that biomedical images are typically smooth, we
employ the family of non-quadratic regularizers that was recently
proposed in [3]. These regularizers penalize the eigenvalues of the
Hessian matrix computed at every voxel of the 3D image and, thus,
favor piecewise-smooth reconstructions. Moreover, they are convex
and invariant w.r.t to transformations of the coordinate system, which
qualifies them as ideal candidates for imaging applications.

The Hessian Schatten-norm regularizers are defined as [3]

HSp [x] = ∥Hx∥1,p =
N∑

n=1

∥∥[Hx]n
∥∥
Sp

, ∀p ≥ 1, (2)

where

[Hx]n =

⎡

⎣
[∆r1r1x]n [∆r2r1x]n [∆r3r1x]n
[∆r1r2x]n [∆r2r2x]n [∆r3r2x]n
[∆r1r3x]n [∆r2r3x]n [∆r3r3x]n

⎤

⎦ (3)

is the discrete Hessian and
[
∆rirjx

]
n

denotes the discrete approxi-
mations of the second-order partial derivatives along two dimensions
of the image (volume) at voxel n. In (2), ∥X∥Sp

denotes the Schat-
ten norm of order p of a matrix X ∈ RN1×N2 . This is defined as
the ℓp norm of the singular values of X. Note that since the Hes-
sian in (3) is symmetric, its singular values are equal to the absolute
eigenvalues. Definition (2) also highlights the relation of these reg-
ularizers with the sparsity-promoting group norms commonly met
in compressive sensing (see [8], for instance). However, a notewor-
thy difference is that in (2) the mixed norm is a vector-matrix norm
rather than a vector-vector norm. Therefore, the sparsity is enforced
on the eigenvalues of the Hessian rather than directly on its elements.

Algorithm 1 : Proximal map evaluation of Hessian Schatten-
norm regularizers.
Input: z, τ > 0, p ≥ 1, PC .
Initialization: Ψ1 = Ω0 = 0 ∈ RN×3×3, t1 = 1.
Output: x̂.
while stopping criterion is not satisfied do

Ωn ← PBSq

(
Ψn + 1

144τHPC (z− τH∗Ψn)
)
;

tn+1 ←
1+
√

1+4t2n
2 ;

Ψn+1 ← Ωn +
(

tn−1
tn+1

)
(Ωn −Ωn−1);

n← n+ 1;
end
return PC (z− τH∗Ωn−1);

3. OBJECTIVE FUNCTION MINIMIZATION

Having defined the observation model and chosen the regularizer
that we will use, we can now obtain the solution to our 3D deconvo-
lution problem as the minimizer of the following objective:

x̂ = argmin
x∈RN

1
2
∥y −MHx∥22 + τ∥Hx∥1,p + ιC (x) , (4)

where ιC is the indicator function of a convex set C, defining addi-
tional constraints, while τ ≥ 0 is a regularization parameter that
balances the contributions of the data fidelity and the regularizer
in the final result. To solve (4) we choose to employ the FISTA
algorithm [9, 10], which exhibits state-of-the-art convergence rates
while it does not require any parameter tuning. In this framework,
the solution is obtained via the successive minimization of a se-
quence of surrogate functions that upper-bound the original objec-
tive. The FISTA algorithm has two main components : (a) the
computation of the forward operator MH and its adjoint and (b)
the evaluation of the proximal map of the employed regularizers,
ϕ (x) = τ ∥Hx∥1,p + ιC (x), defined as

proxϕ (z) = argmin
x∈RN

1
2
∥x− z∥22 + ϕ (x). (5)

In Algorithm 1 we describe the necessary steps for obtaining
a numerical solution of the proximal map in (5) according to the
method proposed in [3], while in the upcoming sections we will dis-
cuss its efficient implementation on GPU. Note that in the algorith-
mic description provided above, H∗ stands for the adjoint Hessian,
PC is the projection on C, and PBSq

is the projection on the set
BSq = {X ∈ RN×3×3 : ∥Xn∥Sq

≤ 1 ∀n = 1, . . . , N}.

4. GPU IMPLEMENTATION WITH CUDA

Our GPU implementation is based on the CUDA programming
environment. CUDA is a parallel computing model created by
NVIDIA. It extends a subset of the C++ programming language,
enabling code to be run on the GPU while delegating work such as
task scheduling and synchronization to the driver. It also provides
a programming environment with debugging and profiling support,
vital for more complex applications. CUDA is very popular for
scientific computing applications, thanks both to its performance
and to the collection of standardized libraries provided by NVIDIA.

As mentioned above, there are two main components in the
FISTA algorithm. Regarding the forward operator and its adjoint
(A and A∗, respectively), their special structure allows an efficient

ICIP 20141719



GPU implementation that can be accomplished in a straightforward
way. It suffices to note that the convolution operator A is expressed
in our observation model as the composition of a masking operator
M and a circulant convolution operator H. Based on this, we can
efficiently compute H in the Fourier domain using the FFT trans-
form of the cuFFT library [11] provided by NVIDIA. Then, the
masking operation is implemented as a point-wise multiplication
of the result with a 3D matrix that consists of zeros and ones. The
adjoint operator is implemented using the same type of operations,
but they take place in a reverse order.

The next and most critical component of the minimization ap-
proach is the computation of the proximal map of the Hessian-based
regularizers. From Algorithm 1, we see that a numerical solution
of (5) can be obtained by following a series of steps that involve
the projection onto the set BSq , the computation of the Hessian and
its adjoint, point-wise additions and multiplications, and finally the
projection of the result onto the convex set C. In our experiments
we consider C to be the positive orthant so as to avoid image recon-
structions with negative intensities. In this case, the corresponding
projection is a point-wise operation and amounts to setting the neg-
ative voxel values to zero. According to the definition of the set BSq

provided in Section 3, it is clear that the projection PBSq
can be per-

formed independently for each one of the N matrix components of a
multidimensional array of size RN×3×3. Finally the Hessian opera-
tor and its adjoint can also be computed independently for each voxel
of the 3D image. In short, all the involved operations for the evalu-
ation of the proximal map are separable; the values depend only on
results of previous operations and each voxel can be treated indepen-
dently. This means that the overall algorithm is an ideal candidate
for a fast and efficient implementation on the GPU, since it can fully
benefit from the massive parallel computational capabilities of mod-
ern GPU hardware. Next, we discuss in more detail the parts of the
Algorithm 1 that required special care in our implementation.

4.1. Projection onto Schatten-norm balls

According to [3], the projection of a matrix onto an Sq-norm
balls is performed by projecting the singular values of the matrix
onto the corresponding ℓq vector-norm ball and then reconstruct-
ing the projected matrix using the original singular vectors. In our
case, the symmetric nature of the Hessian matrix allows us to re-
place the singular value decomposition operation by an eigenvalue
decomposition. Then, one of the main costs of the projection is the
computation of the eigenvalue and the corresponding eigenvectors.
While there are existing GPU libraries available for this task, these
are mostly efficient for handling very large matrices. In our case, the
problem we need to deal with is different, since we have to handle
a large number (equal to the number of voxels) of 3 × 3 symmetric
matrices. We have implemented three alternative algorithms to solve
this problem efficiently, namely a direct method [12], the House-
holder algorithm, and the Jacobi algorithm. As we can see in Fig. 1,
the direct method performs best on CPU but loses its advantage on
GPU due to the high amount of branching. On the other hand, the
Jacobi method shows exactly the opposite behaviour and is the best
performing on GPU. For this reason, we have incorporated the Ja-
cobi method in our final software. Further, we note that in this work
we consider only three members of the Hessian-based regularization
family that are the most interesting and best performing ones. In par-
ticular, we have implemented the Hessian regularizers that involve
the Nuclear (S1), Frobenius (S2), and Spectral (S∞) matrix norms.
In these cases, the corresponding projections of the absolute eigen-
values (singular values) of the matrices are given in closed-form and,

10−2 10−1 100 101

Direct

Jacobi

Householder
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3.25

4.02 · 10−3

3.18 · 10−3

1.37 · 10−2

Time (s)
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Fig. 1: Execution times for different methods of eigenvalue de-
composition in a logarithmic scale. The input data consists of a
100×100×100 cube of 3×3 symmetric matrices. We then run the
test for each algorithm in turn. Each algorithm is executed multiple
times to obtain an accurate and consistent measurement.

thus, we have efficiently implemented them on GPU without any
problems.

4.2. Hessian operator and its Adjoint

The computation of the Hessian and its adjoint is also one of
the main bottlenecks of our GPU implementation. As the discrete
Hessian corresponds to a second-order finite difference operator, to
compute it for a single voxel we need to consider 10 voxels from
the input. For the adjoint operator, this is exacerbated as its com-
putation requires 60 distinct voxel values. Reads and writes from
global memory are the most expensive operation on the GPU. To
address this issue our approach is to exploit the data locality. Specif-
ically, the Hessian of neighboring voxels will share most of the in-
put values necessary for its computation. Therefore, we use shared
memory (fast on-chip memory) as a custom cache on which differ-
ent threads collaboratively preload the data necessary for the com-
putation. Compared to the naive implementation, this reduces the
amount of read operations by more than 80%1. This improvement is
most notable for the adjoint operator which, as noted before, needs
6 times more read operations than the Hessian operator. Further, we
have exploited the symmetry of the Hessian matrices to save mem-
ory usage. In particular, instead of storing all the elements of each
matrix we only store the distinct elements, i.e., the upper triangle.

4.3. Other implementation issues

The FISTA algorithm requires an accurate solution of the prox-
imal to lead to a satisfying reconstruction. This means that we need
to run the proximal algorithm for enough iterations in order for this
condition to be fulfilled. To circumvent this issue, we follow a warm-
up strategy where in every FISTA iteration we provide as initial so-
lution to the proximal algorithm the solution obtained in the previous
iteration. This leads to an increase of the performance of the overall
algorithm at no extra computational cost.

5. EXPERIMENTS AND RESULTS

To demonstrate the overall performance of our 3D deconvolution
software, we report reconstruction results on four 3D image stacks

1With a collaborative loading block size of 8x8x8 — a good balance be-
tween resource usage and speed — there is an effective reduction of 80.47%.
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Table 1: ISNR comparisons for the image deconvolution task. Bold values indicate the best reconstruction for the given channel/BSNR pair.

Regularizer TV Hessian (Nuclear) Hessian (Frobenius)
Channel 1 2 3 4 1 2 3 4 1 2 3 4

BSNR

5 2.90 2.52 0.51 6.00 2.87 2.64 0.51 9.61 2.90 2.64 0.57 9.92
10 2.91 2.62 0.60 8.33 2.85 3.31 0.54 9.67 2.89 2.95 0.57 9.93
15 2.92 2.74 0.53 8.49 2.83 3.42 0.52 9.72 2.88 2.95 0.53 9.89
20 2.84 2.75 0.52 9.24 2.84 3.21 0.52 9.69 2.84 2.95 0.52 9.83

(a) Ground-truth/Degraded (b) Total Variation

(c) HS1 regularizer (d) HS2 regularizer

Fig. 2: Maximum intensity projections of (a) the ground truth and
the degraded image (note that the ground truth does not include the
red channel, which would display as a uniform ellipsoid covering the
cell), and (b)-(d) the restored images using different regularizers.

from the ISBI 2013 deconvolution challenge that simulate optically-
sectioned digital micrographs of biological samples. These image
stacks are of size 320 × 320 × 64 and they reproduce four distinct
sub-cellular structures that are typically observed in mitotic cells,
i.e., point sources, filaments, membranes and dense volumetric fea-
tures, corresponding to channels one to four, respectively. In Fig. 2a
the maximum intensity projection of the entire synthetic cell model
is shown, where each sub-cellular structure is represented with a dif-
ferent colour corresponding to the use of a different fluorescence
marker. In this figure we juxtapose the cell image and the degraded
version after applying optical blur and Gaussian noise. To simulate
an optical blur that is typically encountered in widefield microscopy,
we used dedicated software, which is freely available at http://
bigwww.epfl.ch/algorithms/psfgenerator/, and we gener-
ated a PSF of size 129 × 129 × 127 according to the Gibson-Lani
PSF model. To provide comparisons with alternative regularization
approaches, apart from the Hessian-based deconvolution software,
we have also implemented on GPU a deconvolution method that re-
lies on the total variation (TV) regularizer [13]. The results for a
blurred SNR of 10 dBs are shown in Fig. 2b-2d. From Fig. 2 and

100 101 102
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Projection (Nuclear)
Projection (Frobenius)

Projection (Spectral)
FISTA Iter. (Nuclear)

FISTA Iter. (Frobenius)
FISTA Iter. (Spectral)

152

145.9

10.8

19.4

15.1

40.1

44.4

46.7

Fig. 3: Relative performance between different parts of the GPU and
MATLAB implementation, calculated as tMATLAB/tGPU.

Table 1 we can verify that the Hessian-based regularizers seem more
suitable for the reconstruction of biological data. Only for channel 1
(point sources), TV shows a slight advantage but the overall recon-
struction is significantly better both visually and quantitatively using
the Hessian regularizers.

To demonstrate the speed-up that we achieved through our GPU
implementation, we compare it with a reference MATLAB imple-
mentation. The latter is parallelized and the critical paths are imple-
mented in C through MATLAB’s MEX file API. We run all experi-
ments on a Mac Pro with a six core, 3.33GHz, Xeon W3680 CPU,
16GiB of ECC Memory, and an NVIDIA Quadro 5000K for Mac
GPU. The display is driven by a separate graphics card (NVIDIA
Quadro 4000) to ensure there is no interference between graphical
display and CUDA computation. In Fig. 3 we report the relative
performance of the Matlab and GPU implementations, calculated as
tMATLAB/tGPU. In absolute terms, for a single iteration of the FISTA
algorithm involving ten internal iterations for the evaluation of the
proximal, the GPU versions of the HS1 and HS2 regularizers took
on average 1.089 and 0.872 secs, while their MATLAB counterparts
took 43.647 and 38.424 secs, respectively. In practice, this translates
to 3D deconvolution in about one minute per channel.

6. CONCLUSIONS

To summarize, in this paper we described our approach of
combining the most effective variational methods and optimization
tools to build a 3D deconvolution system that can be applied in
fluorescence microscopy. The central parts of our system involve
proper handling of image boundaries, a suitable regularizer for bi-
ological data, and an optimization strategy that can be efficiently
implemented on GPUs. Our GPU implementation achieves full 3D
deconvolution using state-of-the-art signal processing in about one
minute, which is very competitive with solutions in current use.
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