Real-Time Haptic Nanomanipulation in Two and Three Dimensions

Andrzej J. Kulik, Philippe Thévenaz, Marc Jobin, Rafael Foschia, Kyumin Lee, Janusz Lekki, Malgorzata Lekka, Wieslaw Nowak, Elena Bertseva, Michael Unser, Giovanni Dietler

> Institute of Physics of Biological Systems - LPMV Ecole Polytechnique Fédérale de Lausanne BSP/Cubotron, CH–1015 Lausanne VD, Switzerland. IFJ, Polish Academy of Sciences, Krakow, Poland UMCS University, Torun, Poland

Abstract

Nanomanipulators with haptic (force feedback) human interface must have relatively fast update rate (1-3 kHz) to provide usable interaction. This is challenging from a technical and conceptual point of view, yet we were able to implement such a system, using contact AFM. The direct interaction between an operator's hand and the AFM tip is great for education and understanding, while still allowing for interesting scientific experiments [1]. However, inherent AFM limitations such as the lack of a "pick and release" mechanism led us to design another real-time 3D nanomanipulator—this time, based on optical tweezers. We implemented real-time (1 kHz) measurements of 3x3 stiffness matrix of surrounding media. The first results from inside living cells were encouraging [2, 3].

Refrences

[1] M. Jobin, R. Foschia, S. Grange, C. Baur, G. Gremaud, K. Lee, L. Forró, and A. Kulik, Versatile Force-Feedback Manipulator for Nanotechnology Applications. *Review of Scientific Instruments*, 76(053701) (2005).

[2] Intracellular Nanomanipulation by a Photonic-Force Microscope with Real-Time Acquisition of a 3D Stiffness Matrix, <u>E. Bertseva</u>, <u>A.S.G. Singh</u>, J. Lekki, <u>P. Thévenaz</u>, <u>M. Lekka</u>, S. Jeney, <u>G. Gremaud</u>, <u>S. Puttini</u>, W. Nowak, <u>G. Dietler</u>, L. Forro, M. Unser, and <u>A.J. Kulik</u>, *Nanotechnology*, 20(285709), (2009)

[3] Model-Based Estimation of 3-D Stiffness Parameters in Photonic-Force Microscopy

P. Thévenaz, A.S.G. Singh, E. Bertseva, J. Lekki, A.J. Kulik, and M. Unser

In IEEE Transactions on NanoBioscience, volume 9, number 2, page 90-99, 2010