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ABSTRACT

Registration of images subject to non-linear warping has numerous practical applications. We present an algorithm
based on double multiresolution structure of warp and image spaces. Tuning a so-called scale parameter controls
the coarseness of the grid by which the deformation is described and also the amount of implicit regularization.
The application of our algorithm deals with undoing unidirectional non-linear geometrical distortion of echo-planar
images (EPI) caused by local magnetic field inhomogeneities induced mainly by the subject presence. The unwarping
is based on registering the EPI images with corresponding undistorted anatomical MRI images.

We present evaluation of our method using a wavelet-based random Sobolev-type deformation generator as well
as other experimental examples.
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1. INTRODUCTION

In the biomedical domain, image registration can be used for a variety of tasks; for example, motion analysis, inter-
subject, intra-subject, or inter-modality matching, stereotactic normalization, and distortion compensation. See,1

for a more complete list. This article deals with the development of a specific image registration algorithm for
distortion compensation of EPI images.

1.1. Unwarping of EPI images

Echo planar imaging (EPI)2 is a fast magnetic resonance imaging (MRI) technique. It is used mainly for functional
imaging (fMRI), the in vivo non-invasive study of the temporal, spatial and behavioral dependencies of brain ac-
tivities. In contrast to conventional MRI, where the number of excitations per slice is equal to the number of scan
lines, in EPI the magnetic field gradients simultaneously encode two coordinates during one excitation. As one
of the gradients (the so-called phase-encoding gradient) is several orders of magnitude weaker than the other, the
inhomogeneous magnetic field will manifest itself mainly as a geometrical distortion of the 2D slice image along the
direction of this gradient. The stronger gradient being less affected, the distortion is essentially unidirectional.

The deformation makes direct use of fMRI images difficult in applications like stereotactic surgery and hinders
the performance of others, like localization of zones of activation.

1.2. Distortion correction techniques

Some existing unwarping techniques modify the acquisition procedure,3–5 which is not always practical. Others
use a two-step procedure3, 6 consisting of correcting the deformation with a help of a deformation map previously
obtained using a phantom. The major drawback of these methods is that it is difficult to make a phantom which
would exactly duplicate the biological system being imaged.

We propose a third approach which, to the best of our knowledge, has never been applied to this particular
problem. It consists of registering the distorted EPI image with a corresponding geometrically correct anatomical
MRI image. In this way, we can recover the deformation from a single EPI slice obtained by an unaltered, standard
procedure. Once the deformation is known, the observed EPI image can be warped back to undo the distortion.
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1.3. Registration algorithms

There are many image registration algorithms based on different techniques. Each uses its particular hypotheses and
its particular tradeoffs, tuned to give the best results for a given application. See7 for a general survey of existing
linear, as well as non-linear, image registration algorithms. We shall categorize registration algorithms according to
the warp space used.

At one end of the scale we have non-parametric, local methods. These methods are formulated either as variational,
defining a scalar criterion to minimize, or (more generally) using PDEs. The continuously defined correspondence
function minimizing a given criterion, resp. solving a given PDE, is sought for in a very large and unrestrictive
functional space, e.g., the Sobolev space W 2

2 . The essence of these methods is entirely in the criterion, resp. PDE.
The PDE come from the optical flow approach (gradient methods),8 viscous fluid model,9–11 elastic deformations
with physical analogs12, 13 or without.14 Some deformation fields can also be modeled as potential fields.15

At the other end, we have parametric, global methods that describe the correspondence function using a global
model with a relatively small number of parameters.16 The model mostly consists of expressing the warping
function in a linear,17 global polynomial,18 or harmonic basis.19 For these methods, the deformation model, which
corresponds to a specific warp space, is as important as the criterion being minimized.

None of the existing techniques is directly applicable for our problem because of its specific features, mainly the
unidirectionality of the deformation. We have therefore developed our own algorithm based on a warp model situated
between the above-mentioned local and global methods, combining the advantages of both.

2. PROPOSED ALGORITHM

The image registration problem can be defined as follows: Given two images f1, f2 representing the same object,
the image registration task seeks to identify geometric correspondences between homologous features in both images.
Specifically, we want to find a correspondence function (also called deformation function or deformation field) g(x1) =
x2, where x1, x2 are coordinates of matching objects in images f1, f2. Here, we intend to concentrate on a non-linear
registration (also called elastic matching), characterized by the non-linearity of the function g.

Warping an image f2 by a deformation g, we obtain a warped version g ◦ f2, where (g ◦ f2)(x) = f2(g(x)). If
the warping g is correct (that is, close to the true deformation gT ), the image g ◦ f2 should be similar to the image
f1. This leads to a broad class of algorithms that search an optimal g minimizing a dissimilarity between a warped
version of a test image (g ◦ f2) and a reference image (f1). Symbolically,

gJ = argmin
g∈V

L(g ◦ f2, f1)︸ ︷︷ ︸
J

(1)

where L is a dissimilarity measure, J the value of the criterion, V is a warp space, and gJ is the optimal warping
function in the sense of this criterion.

2.1. Warp space

In practice, the function g is always specified by a finite number of (real scalar) parameters {ck}L
k=1 by means of

a model Φ

g(x) = Φ(x; {ck}) (2)

All functions representable by this model form a space (not necessarily a vector space, though)

V =
{
Φ(x; {ck}); {ck} ∈ Q ⊆ R

L
}

(3)

where Q is the set of all admissible parameter values.

Generally, the true warping gT will not belong to V . The best approximation of gT from V (in the sense of some
norm M) is called a projection and denoted PV gT = gV . The error we make is �min = ‖gV − gT ‖M. Its value is the
lower bound for the overall registration error; we want it to be as small as possible for reasonable deformations gT .



2.2. Optimization algorithm

The optimal gJ from V minimizing the criterion J from (1) is found by iterative multidimensional non-linear opti-
mization with respect to parameters ck. We normally use a regularized version of the Newton method,17, 20 inspired
by the Marquardt-Levenberg algorithm. The algorithm uses the first two derivatives of the criterion E with respect
to ck, ∇cE and ∇2

c E. The particularity of this algorithm is that it smoothly varies between the gradient-descent and
the Newton approach, which gives it robustness and quadratic convergence near the optimum.

2.3. Multiresolution

We will parametrize Φ by a scale parameter h, creating a coarse-to-fine sequence of models Φh1 ,Φh2 , . . . ,Φhm for
h1 > h2 > . . . > hm so that Vh1 ⊆ Vh2 ⊆ . . . ⊆ Vhm . This implies �h1 ≥ �h2 ≥ . . . ≥ �hm ; that is, the
representation error decreases with h. By construction of the models, we will want the number of parameters to
decrease as h increases; i.e., Lh1 ≤ Lh2 ≤ . . . Lhm . We call the series of models with their associated parameters
a model pyramid.

Similarly, we construct image pyramids for both images f1, f2.

2.4. Multiresolution optimization

The robustness and efficiency of our algorithm is significantly improved by the multiresolution approach. The
optimization task is first solved at the coarsest level of the pyramid. Then, the results are propagated to the next
finer level and used as a starting guess for solving the task at that level. This procedure is iterated until the finest
level is reached.

Since we have two separate pyramids for model and images, we combine the two multiresolution strategies by
alternating scale changes for the model and image.

2.5. Warp space model

The warp space, and consequently also the model generating this space, should satisfy the following requirements:

(a) Good approximation properties—we should be able to approximate a realistic warping function g by gV from V
with a small error. Ideally, affine deformations (which occur frequently) should be representable exactly.

(b) Speed—evaluation of gV is a fundamental operation in the registration process; it is therefore important to
accelerate it. In the linear generator case, this corresponds to short and fast-to-evaluate generating functions.

(c) Plausibility—the warping space should contain only deformations which are plausible for a given application.
In this way, we limit the quantity of candidate solutions to be searched, which speeds up and stabilizes the
registration. Furthermore, we alleviate or remove the need for explicit regularization.

(d) Simplicity—to get a fast algorithm it is paramount to minimize the number of parameters and thus the dimen-
sionality of this space. Clearly, (with the same amount of information available) as the number of parameters
to estimate increases, the task gets more difficult and the results become less accurate and less robust. It is also
highly advantageous that the dependence of gV on ck be simple (ideally linear), as this increases the chance that
the information gathered locally will be reasonably accurate in some extended neighborhood.

We express the warping function as a linear combination of uniformly spaced translates of a generating function
ϕ, where we take ϕ to be a B-spline βr of degree r. (In multiple dimensions, we use a tensor product of B-splines.)

g(x) =
∑
k∈K

ck ϕ(x/h− k) (4)

A good choice seems to be r = 3. This way, we obtain a model that fulfills well the requirements above. See Appendix
for a definition of a B-spline.



2.6. Image interpolation model

An image interpolation model is needed to calculate the warped image g ◦ f2 for the criterion evaluation. We need
to get a continuous form of a discrete image. Because of their good approximation properties, simple analytic form
and effective algorithms available, we use B-splines here too.

cf(x) =
∑

i

bi β(x − i) where cf(i) = f(i), ∀ i ∈ I (5)

The coefficients bi can be obtained prior to registration by an efficient filtering algorithm,21 which incurs negligible
overhead. For the filtering, we are using mirror boundary conditions on the the image. In this way we have the same
number of coefficients bi as pixels in the original image.

2.7. Data criterion

A reasonable way to measure the discrepancy between two images is the sum of squared differences (SSD) criterion

E =
∑
i∈I

(f2(g(i))− f1(i))2 (6)

where the sum is over all pixels in the image. To minimize this criterion is equivalent to calculating the maximum
likelihood estimate of the unknown parameters, assuming that the image f1 is a geometrically distorted version of
the image f2, along with additive i.i.d. Gaussian noise. To make the test and reference images more similar, we apply
a preprocessing step to both images that consists of high-pass filtering and histogram equalization.

3. EXPERIMENTS

The performance of our algorithm was tested on several hundreds of images. In addition, thirty image pairs were
manually registered by three different people, including one experienced practitioner, and the results compared with
the automatic method. For the manual registration, we use the standard thin-plate spline method.22–24

3.1. Deformation generator

To test our algorithm, we have implemented a wavelet-based deformation generator. We want to generate a random
Sobolev-type deformation—a deformation lying in a prescribed Sobolev spaceW r

2 . The higher the r, the more regular
are the functions fromW r

2 . Wavelets are known to be good bases for functions lying in Sobolev spaces, and the decay
of wavelet coefficients across scales is directly related to a Sobolev-type regularity. Let θj,k denote the coefficients of
a wavelet expansion∗

g − gI =
∑
j,k

θj,k ψ(x2j − k) (7)

where gI is an identity transform, and ψ is an orthogonal wavelet. Then g − gI belongs to a Sobolev space W r
2 if

and only if ∑
j,k

22jr |θj,k|2 <∞ (8)

provided that the regularity of ψ is greater than r.25 It follows that for (8) to hold, the necessary condition is

∃ C ∈ R; |θj,k|2 < C ξj with ξ = 2−2r (9)

Practically, we shall generate our deformations using zero-mean, normally distributed coefficients with variance

E
{
θ2j,k

}
= σ2

0 ξ
j (10)

where σ2
0 governs the total energy of the deformation. Note that the generated displacements are white noise for r = 0

and become progressively smoother as r increases; their regularity converge to that of the generating wavelet ψ for
∗For brevity, we deal here with the unidimensional case only.
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Figure 1. Example of a unidirectional bi-variate hierarchical deformation, presented as contour plots. On the left,
r = 1.6, on the right, r = 0.6, in both cases σ = 10.

r → ∞. For moderate to large r, we get a hierarchical warping: a deformation comprising displacements at several
scale levels with gradually decreasing amplitudes, from important coarse-level deformations towards progressively
smaller finer-level details. The algorithm should work well for such deformations, which are compatible with the
multiresolution strategy.

Finally, the deformation can be projected onto Vh if needed. Typically, we use Battle-Lemarié wavelets of order 4,
σ0 = 5 and r = 0.5 ∼ 1.6, depending of what aspect of the algorithm we want to highlight. For some experiments,
we also add a random affine component. Examples of generated deformations are shown in Figure 1.

3.2. Controlled environment

Figure 2 shows results of a controlled experiment. The reference (f1) and test (f2) images are identical except for
a known transformation. We use a random Sobolev deformation with σ = 5 and r = 1.6. We measure the sum of
square differences (SSD) and the warping index (the average difference between the calculated and the true warping
in the region of interest) after registration as a function of the knot spacing h and the warp spline degree n.

We show how both error measures (E and �) decrease as the knot spacing h decreases. Moreover, we demonstrate
the advantage of using cubic splines to represent the warping, as opposed to linear and quadratic ones. The minimum
achievable error �min is shown by the dotted line for the cubic case and marked optimal. Note that, except for the
smallest knot spacing h, the warping index �min is very close to the calculated values.

3.3. Noisy case

Figure 3 demonstrates the dependence of the registration accuracy on the signal-to-noise ratio. For this series of
experiments, the test images are obtained from a known transformation of a reference image with various levels of
white Gaussian noise added. Here, we use a random Sobolev deformation with σ = 5 and r = 1.16 projected into
the warp space with h = 32. We observe that the degradation of the algorithm’s performance by noise is graceful for
SNR > 10 dB.

3.4. Real images

Figure 4 shows a typical pair of corresponding anatomical and EPI images, along with superimposed contours of the
anatomical image before and after manual and automatic registration. It illustrates that the automatic procedure
leads to subjectively comparable or better results than the manual one.
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Figure 2. The quality of the registration as a function of the warp spline degree and the knot spacing. The initial
values ranges (prior to the registration) were E = 150 and � = 3.5. Each point shown is an average of thirty
experiments.
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Figure 3. The quality of the registration as a function of the SNR in dB. h = 32, �before = 3.34. The error bars
mark one standard deviation.



Figure 4. Anatomical (top-left) and EPI (top-right) images before registration, with superimposed contours from
the anatomical images. EPI images after automatic (bottom-left) and manual (bottom-right) registration.



4. CONCLUSION

We have suggested a new approach for undoing non-linear deformation in EPI images by registering them with
corresponding geometrically correct anatomical MRI images. We have developed a fully automatic image registration
algorithm specialized for this task.†

The novelty of our registration algorithm stems from a high-order spline model for the warping. This model
has good approximation properties and lends itself well to a multiresolution approach, while permitting an efficient
implementation. We have also benefited from a spline model for the image being warped, leading to a second
dimension of the multiresolution strategy and yielding additional computational savings. Finally, we have replaced
the customary regularization criterion by a scale parameter of the search space.
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A B-spline βr of degree r is recursively defined as

βr = βr−1 ∗ β0 for r > 0

β0(x) =

{
1 if x ∈ (− 1

2 ,
1
2 )

0 otherwise

B-splines, as defined above, are piecewise polynomial of degree r, have a compact support (−r/2 − 1/2, r/2 + 1/2),
are symmetric, and (r − 1)-times continuously differentiable everywhere. As an example, we give the explicit form
of the cubic B-spline, which is the function that we have found to be the most useful for our purpose.

β3(x) =




2/3− (1 − |x|/2)x2 if 0 < |x| ≤ 1
(2 − |x|)3/6 if 1 < |x| < 2
0 otherwise

(11)
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