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Abstract. We propose a new algorithm to find the corpus callosum au-
tomatically from midsagittal brain MR (magnetic resonance) images us-
ing the statistical characteristics and shape information of the corpus
callosum. We first extract regions satisfying the statistical characteristics
(gray level distributions) of the corpus callosum that have relatively high
intensity values. Then we try to find a region matching the shape infor-
mation of the corpus callosum. In order to match the shape information,
we propose a new directed window region growing algorithm instead of
using conventional contour matching. An innovative feature of the algo-
rithm is that we adaptively relax the statistical requirement until we find a
region matching the shape information. After the initial segmentation, a
directed border path pruning algorithm is proposed in order to remove
some undesired artifacts, especially on the top of the corpus callosum.
The proposed algorithm was applied to over 120 images and provided
promising results. © 2000 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(00)00604-8]
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1 Introduction

Object recognition is often one of the ultimate goals
image processing, computer vision, and artificial inte
gence~AI !. Although fully automated general object reco
nition is far beyond the reach of current technology, s
cialized object recognition can be very useful in ma
applications. Object recognition typically involves two di
tinct processing steps:~a! finding boundaries and~b!
matching. Each of these aspects of the problem has bee
important research area on its own. Finding boundaries
tween regions~segmentation! is the first step for various
analyses in image processing. There are several review
pers on segmentation,1–3 including thresholding,4,5 edge
detection,6 spatial interaction models such as the Mark
Random Field~MRF! and the Gibbs Random Field~GRF!,
and neural networks.7 However, due to the complex natur
of images, no algorithm is consistently able to find go
boundaries across various types of images. Since sh
matching depends on finding good boundaries, this
cause serious problems in object recognition. In particu
if an object is non-rigid and part of the boundary is missin
which is typical in medical images, algorithms based
contour matching may not work well. Active contour mo
els, also known as snakes, have been widely used in m
cal images to find certain objects.8,9 Snakes, however, hav
one important limitation: they require good starting con
tions. They are therefore primarily useful as an interact
contour outlining tool and not really suitable for the ful
automated detection of complex structures such as the
pus callosum.
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Segmentation and object recognition have been o
great interest in medical imaging.10–14 Related work in-
cludes a segmentation method using game theory,15 seg-
mentation using objective functions,16 3-D segmentation of
brain images,17 detection of blood vessels in retina
images,18 tumor detection,19 segmentation and object rec
ognition in echocardiograms,20,21 and segmentation of car
diac MR images.22

The corpus callosum, which is located at the center
the brain ~Fig. 1!, is the major communication pathwa
between the two cerebral hemispheres and mainly con
of axons. Structural changes in the corpus callosum oc
in a variety of neurological diseases.23 Also, a substantial
number of studies have investigated the corpus callosum
schizophrenia24–33 with a meta-analysis of 11 studies su
gesting that corpus callosum area~but not length or corpus
callosum/brain ratio! in midsagittal images was decreas
in schizophrenia patients compared to healthy controls.34 In
addition, some,35,36 but not all31,37 studies in mood disor-
ders have reported changes in the corpus callosum. In
cases, the corpus callosum was separated from surroun
tissues manually or interactively with aid of comput
graphics. This is a time consuming process and the res
may be influenced by subjective bias. Thus, an automa
objective method to find the corpus callosum will grea
facilitate such studies.

The corpus callosum is also an important landmark
midsagittal MR brain images. It lies largely inferior to th
cerebrum, superior to the brainstem, and antero-superio
the cerebellum. Thus, finding the corpus callosum au
0 © 2000 Society of Photo-Optical Instrumentation Engineers
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matically would be helpful in providing valuable referen
points to locate other brain structures and applications s
as accurate image registration among individuals and a
matic segmentation of the brain. Therefore, if the corp
callosum can be extracted automatically, it can be used
medical diagnosis, accurate image registration, and a
matic segmentation. However, the boundaries between
corpus callosum and surrounding tissues are not alw
clear and variations of size and shape among individu
are significant.

In this paper, we investigate the problem of finding t
corpus callosum automatically in magnetic resonance
ages~MRI! and propose a robust region-based solution t
consists of a series of operations. Instead of finding bou
aries and matching contour,38 the proposed algorithm is
based on region information. Initially, we extract the stat
tical characteristics of the corpus callosum and obtain g
bal shape information. In order to locate the object of
terest, we first select regions that meet the statistical crit
and then find the one that matches the shape informa
Finally, in order to remove regions that tend to be inc
rectly merged to the top of the corpus callosum, we prop
border path pruning that successfully removes the artifa

2 Statistical Characteristics and Shape of
Corpus Callosum

Fig. 1a shows a typical midsagittal brain MR image a
Fig. 1b shows edges extracted from Fig. 1a by applyin

Fig. 1 Corpus callosum (a) in a midsagittal brain MR image and its
edge (b).
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gradient operation. Although one can visually recognize
outline of the corpus callosum in Fig. 1b, portions of i
boundary are indistinct, which can make it difficult to d
velop an automated recognition algorithm based on e
information alone. A problem with applying edge detectio
algorithms is that, quite often, variation within the corpu
callosum can be comparable or exceed the difference
tween the corpus callosum and surrounding tissues. In
dition, parts of the boundary between the corpus callos
and surrounding tissues are indistinct and thus very diffic
to define due to similar gray levels, particularly on the t
portion of the corpus callosum and between the corpus
losum and the fornix. These problems are illustrated in F
2. Fig. 2b shows the gray level along the cross line of F
2a. As can be seen, the variation in the corpus callosum
as large as the difference between the corpus callosum
the cerebrum.

Fig. 3 shows pixel value histograms of the corpus cal
sum and whole brain derived from an MR image. The nu
ber of gray levels of all the images used in this paper
256. It can be seen that the corpus callosum has relativ
high intensity values. Therefore, if we apply a thresho
starting at a high value, the corpus callosum will genera
begin to appear before other brain structures show up in
binary image. Furthermore, with such thresholding, fe
other structures will be present in the thresholded bin
image~Fig. 4!, which will make the corpus callosum rec
ognition algorithm much more efficient and robust. Fig.
shows binary images obtained by applying decreas
thresholds. Witht5150, we can barely recognize the co
pus callosum. Witht5130, a relatively distinct callosa
shape is evident with few other non-adjacent structur

Fig. 2 A cross-section of the corpus callosum.
925Optical Engineering, Vol. 39 No. 4, April 2000
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With t5120, the corpus callosum is clearly defined, a
though more other non-adjacent structures are visible. W
t5110, the corpus callosum starts to be connected to
rounding tissues. Although the threshold values may be
ferent depending on individual images, this property
high intensity values of the corpus callosum can be

Fig. 3 Histograms of the corpus callosum and the brain MR image.

Fig. 4 Thresholding with various threshold values.
926 Optical Engineering, Vol. 39 No. 4, April 2000
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ploited to yield a segmentation algorithm that is efficie
across images.

Fig. 5 illustrates the substantial variation in size, sha
location, and orientation of the corpus callosum across
dividuals. In particular, the shape is difficult to define b
cause the fornix, a tail-shaped structure with similar co
position ~axons! anteriorly descending from mid to
posterior corpus callosum, is hard to distinguish from t
corpus callosum, as can be seen in Fig. 5b and Fig. 5d
many cases, the fornix has almost identical gray levels
the corpus callosum. As a result, it is very difficult to sep
rate the fornix from the corpus callosum based on edge
gray level. This can pose a serious problem to cont
matching. Although it is difficult to describe the shape
the corpus callosum exactly, it can be generally said tha
is arc-shaped and that its length is about one third of tha
the skull.

In order to obtain size statistics of the corpus callosu
we semi-manually extracted the corpus callosum from
adult subjects; Table 1 provides size statistics estima
from the 20 adult subjects. We assume that in adults
minimum length is 55 pixels~10 pixels less than the mini-
mum and more than 3 standard deviations less than
mean in our sample! and the minimum height is 18 pixels
~5 pixels less than the minimum and more than 3 stand
deviations less than the mean in our samples!.

Fig. 5 Size and shape variations of corpus callosum.

Table 1 Size of the corpus callosum in pixels (MR image size is 256
by 256), based on 20 adult subjects.

Mean sd Max Min

Length 73.1 4.9 85 65

Height 27.2 2.9 33 23
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Lee et al.: Automated segmentation of the corpus callosum in midsagittal . . .
Table 2 shows the area, length, and height of the cor
callosum for various thresholds for an individual midsag
tal MR image. As the threshold decreases, the area~number
of pixels!, length and height of the corpus callosum i
crease as expected. It is observed that there are area
length discontinuities betweenT596 andT595. At this
threshold, it meets the minimum length and height requ
ments. There are also area, length, and height discont
ties between 87 and 86. Starting at this threshold, surrou
ing tissues begin to be connected to the corpus callos
From the table, the optimal threshold appears to be betw
T595 and T587 for this image. Within this range, a
though the length and the height are virtually the sam
there is a substantial variation in the area. A reason for
area difference is that for high threshold values, small ho
were observed inside the corpus callosum, which need
filled with some post-processing such as morphological
erations. When holes inside the corpus callosum are fil
the difference becomes minor. Thus, we choose the sm
est threshold, because it provides the most complete s
ture.

Our detection strategy is to apply a threshold to the
age starting with a high value and find a region th
matches the shape information of the corpus callosum.
advantage of working on binary images is that the match
will be much easier since there are fewer other structure
high threshold values. In order to determine whether
object in the binary image matches the shape informa
of the corpus callosum, we propose the directed wind
region growing algorithm that is described in the next s
tion.

3 Directed Window Region Growing and the
Recognition Algorithm

In the proposed directed window region growing algorith
we restrict the direction of region growing. For example,
Fig. 6a, region growing can only proceed from left to rig
~anterior to posterior in MR images!. If we have informa-
tion about the horizontal length of an object, we can find
with the directed window region growing algorithm. Fi

Table 2 The size, length, height of the corpus callosum for various
thresholds.

Threshold Area (pixels) Length Height

99 295 53 35

98 313 54 35

97 326 54 35

96 337 54 35

95 512 84 35

94 532 84 35

93 556 84 36

92 559 84 36

91 565 84 36

90 570 84 36

89 577 84 36

88 581 84 36

87 589 84 36

86 678 96 39
d

-
-
.
n

,
-
-

t

6b illustrates another case where region growing can o
proceed from top to bottom~superior to inferior in MR
images!. It is noted that we do not rely on contours to fin
objects. Since contours are not always well defined a
portions may be missing, this can be an important adv
tage. By restricting horizontal and vertical directions t
gether, we can follow more general shapes as shown in
7. Furthermore, in the directed window region growing, w
use a window to reduce noise effects since it is more r
able to use the center of the largest circles on the n
vertical line in order to compute the angle. The size of th
window changes with the thickness of the corpus callosu
and we use circular regions.

In order to find the shape of the corpus callosum us
the directed window region growing algorithm, we first fin
the largest circle that includes the leftmost~most anterior!
point of the candidate region as shown in Fig. 7. LetP1 be
the center of the circle. The center of the next circu
region to the right~posterior!, P2 , is defined to be on a
vertical line 10 pixels rightwards~posterior! from P1 . And
the angle that lineP1P2 makes with the horizontal line
must be between 20° and 70°. The values of these and
following angles were estimated from sample images. T
center of the next circular region to the right~posterior!,
P3 , is similarly defined to be on a vertical line 10 pixe
rightwards~posterior! from P2 . The angle that lineP2P3

makes with lineP1P2 must be between120° and250°,
based on the manual examination of sample images~Table

Fig. 6 Directed window region growing, (a) horizontal object, (b)
vertical object.

Fig. 7 Directed window region growing for a general shape.
927Optical Engineering, Vol. 39 No. 4, April 2000



ob-
ht
ls

t

cal
the
ls
el
-

rc
ted
va-
the

e
he

-
y 1

allo
and
n.
rior

be
n-
is
nal
ain
d-
sir-
de-

er
s to

on
cal
as
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3!. The centers of the remaining circular regions are
tained in a similar manner, proceeding from left to rig
~anterior to posterior! until there are less than 10 pixe
within the candidate region to the right~posterior! of the
center of a circle. Finally, ifP2 is aboveP1 and the center
of the last circular region (P5 in Fig. 7! is below that of the
previous region (P4 in Fig. 7!, it can be said that the objec
has the shape of upward arc.

We thus summarize the characteristics of the corpus
losum as follows: Its gray level is among the highest in
brain ~Fig. 3!. In general, its minimum length is 55 pixe
and minimum height is 18 pixels in a 256 by 256 pix
image~Table 1!. Although its shape varies significantly be
tween individuals, it is usually in the form of upward a
~Fig. 5!, a condition that can be enforced using the direc
window region growing method. Based on these obser
tions, we propose the following procedure to segment
corpus callosum automatically:

3.1 Procedure for Finding Corpus Callosum

1. Set the initial thresholdt5t0 .

2. Apply the threshold to the image.

3. Apply the directed region growing algorithm to th
binary image. If there is a region that matches t
shape description~upward arc, minimum length
555, minimum height518!, we have found the cor
pus callosum. Otherwise, decrease the threshold b
and go to Step 2.

4 Post-Processing

4.1 Border Path Pruning

In some cases, we face the problem that the corpus c
sum and surrounding structures are joined together
therefore difficult to separate using gray level informatio
This happens especially with the cingulate cortex supe
to the corpus callosum~cf. Fig. 8!. This region may be

Table 3 Angle statistics obtained from sample images. A1 is the
angle that line P1P2 makes with the horizontal line. A2 is the angle
that line P2P3 makes with line P1P2, and so on.

A1 A2 A3 A4 A5 A6

Max 54.46 210.01 5.10 25.39 11.42 4.76

Min 30.96 239.29 233.40 233.40 222.41 236.67

Ave 41.87 220.16 214.74 218.85 25.08 211.03

sd 5.26 6.44 9.52 8.12 9.57 12.17

Fig. 8 Corpus callosum with artifact.
928 Optical Engineering, Vol. 39 No. 4, April 2000
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attached to the corpus callosum as the boundary may
indistinct. This is illustrated in Fig. 9 which shows an e
larged view of a corpus callosum; part of the boundary
indistinct and essentially non-detectable using conventio
contour detection methods. Due to the nature of br
anatomy, this kind of problem can occur commonly in mi
sagittal brain MR images. In order to remove such unde
able artifacts, we apply the post-processing method
scribed below.

First, we define a border in a binary image. A bord
consists of two adjacent pixels. One of the pixels belong
the object and the other to the background. Depending
orientation, there can be a horizontal border or a verti
border, as illustrated in Fig. 10. A border path is defined

Fig. 9 (a) the original image, (b) the image obtained by applying a
gradient operation to (a), (c) the binary image obtained by applying
a threshold (T530) to (b), (d) the binary image obtained by applying
a threshold (T520) to (b).

Fig. 10 Examples of the border consisting of two adjacent pixels.
One of the pixels belongs to the object and the other to the back-
ground: (a) horizontal border, (b) vertical border.
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a sequence of borders, as shown in Fig. 11. Depending
orientation, there are two kinds of border paths: horizon
border path and vertical border path. Since artifacts ten
occur superior to the corpus callosum, we will use the ho
zontal border path to remove unwanted regions attache
the corpus callosum. We call this method border path pr
ing. In this procedure, we restrict the direction and ma
mum discontinuity of the border path. Fig. 12 illustrat
border path pruning. Assuming that we require that bor
path propagation is uni-directional and has a maximum
continuity of 2 pixels, there is no border path in Fig. 1
since the path violates the maximum discontinuity rest
tion. In Fig. 12b, there is no border path since the p
violates the uni-directional restriction.

We propose using border path pruning to remove a
facts attached on the top of the corpus callosum and
determine whether the fornix is attached or not. From
equally spaced points used in the region growing algorith
we draw vertical lines and find border points. For the d
tected shape to be acceptable, we require that there e
an uni-directional border path between any two of the
adjacent border points. In the case of Fig. 13a, there ex
one border path in every interval. However, in Fig. 13
there is one interval where no border path exists. Usually
there is an artifact, there is no border path. In that case
draw a box containing the problematic interval and refi
the threshold within this box~Fig. 13c!. Specifically, we
increase the threshold until we find a border path wit
this box. Although the corpus callosum can be barely d
tinguishable from the surrounding tissues, often there
boundary whose gray level is slightly lower than that of t

Fig. 11 An example of horizontal border path that is a sequence of
vertical borders.

Fig. 12 Examples of border path pruning. (a) There is no border
path since the path violates the maximum discontinuity restriction
(<2). (b) There is no border path since the path violates the unidi-
rectional restriction.
n

o

ts

s

corpus callosum. Thus, border path pruning can sepa
the adjacent artifact from the corpus callosum in m
cases. Fig. 14 shows the final result after the border p
pruning. As can be seen, the artifact is successfully
moved, though a part of the corpus callosum where
artifact was attached may be also lost in the process. H
ever, we can restore some of the lost part by restoring
old area while keeping the new boundary. Similarly,
applying the border path to the inferior aspect of the corp
callosum, we can determine whether the fornix is attach
to the corpus callosum and to locate the left~anterior! end
point A ~Fig. 15!, which will be described next.

Fig. 13 Border path pruning. (a) There exists one border path in
every interval. (b) There is an interval where no border path exists.
(c) In order to remove artifacts, a box is drawn.

Fig. 14 Result of the border path pruning. The holes are just dis-
played to show where the centers of the circles are located. In the
final images, there will be no holes.
929Optical Engineering, Vol. 39 No. 4, April 2000
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4.2 Removing Fornix

In some cases, the fornix is connected to the corpus ca
sum. The fornix appears as a tail-like protrusion descend
anteriorly from the inferior aspect of the mid to posteri
corpus callosum. Quite often, it has almost the same g
level as the corpus callosum and is very difficult to separ
based solely on gray levels. Fig. 15 shows such an
ample. There are two points~A and B! where the fornix
meets the corpus callosum. We can apply the border p
procedure to find the left~anterior! end pointA. However, it
may be more difficult to find the right~posterior! end point
B. In some cases, additional information may be requir
A possible solution would be extending a line posterio
from A which is parallel to the superior aspect of the corp
callosum until it hits a background region~0 in the binary
image!. We also may use, as a mask, the results of
parasagittal slices, which often lack fornix but still hav
corpus callosum. The methods provided reasonable pe
mance but had some limitations. Fig. 16 shows some of

Fig. 15 Indistinct border between fornix and corpus callosum.

Fig. 16 Fornix removal by extending a line posteriorly from A.
930 Optical Engineering, Vol. 39 No. 4, April 2000
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results where the fornix was removed by extending a l
posteriorly fromA. Although we obtained satisfactory re
sults in 18 out of 22 images that included the fornix~Fig.
16a–c!, the method did not work if the thickness poster
orly from B is greater than the thickness atA as can be seen
in Fig. 16d. Fig. 17a–b shows some of the results where
fornix was removed using a mask. In this method, t
fornix might not be completely removed~Fig. 17c! or some
of the corpus callosum might be removed~Fig. 17d! if the
location of the adjacent corpus callosum does not ma
exactly. However, finding the true boundary by removin
the fornix may be problematic in some sense since the g
levels are almost identical~Fig. 15!. Therefore, if the fornix
has to be removed to find the true boundary, the proc
needs to be guided by an expert in brain imaging.

5 Experiments and Results

We applied the proposed procedure to find the corpus
losum in midsagittal brain MR images~256 by 256, 256
gray levels!. The proposed algorithm was tested on 1
subjects and we obtained generally very satisfactory resu
Figs. 18–20 show the results with the corpus callos
found by the proposed algorithm highlighted. It is note
that the results are shown in Figs. 18–20 just because
have too many images. As can be seen, there are la
variations in the location, size, orientation, and brightne
For instance, there are large variations in head area, f
large ~Figs. 18h, 18u, 18F! to small ~Figs. 18n, 19L, 19M,
20o!. Some of the subjects tilted forward~Figs. 18h, 18A!,
some tilted backward~Figs. 19H, 20j, 20v!. In some im-
ages, artifacts from neighboring slices are included~Figs.
18u, 18J!. Some images~Figs. 18D, 19o! are relatively
bright and some are dark~Figs. 18i, 18O, 19M!. In fact, the
average gray level of the head area of Fig. 19o is about

Fig. 17 Fornix removal by applying a mask obtained from an adja-
cent image.
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Fig. 18 The results obtained by the proposed algorithm.
e
um
pus
ect

is
he
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the
while it is about 38 in Fig. 18i. Out of 120 images, th
proposed algorithm was able to find the corpus callos
reasonably accurately. However, in 3 images, the cor
callosum found by the proposed algorithm was not perf
~Figs. 20H–J!. In Fig. 20H, a part of the corpus callosum
missing and Fig. 20I includes an artifact. In Fig. 20J, t
proposed algorithm did not find the corpus callosum at
A close examination reveals that the images were not
931Optical Engineering, Vol. 39 No. 4, April 2000
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Fig. 19 The results obtained by the proposed algorithm.
ittal
ead
al
ad-

to
17
ccu-
he
midsagittal images. If the images came from the midsag
images, better results would be obtained. Also, the h
position of Fig. 20J was very different from the norm
position. Although the results are generally satisfactory,
932 Optical Engineering, Vol. 39 No. 4, April 2000
ditional processing may be required in some subjects
remove the fornix depending on applications. Out of 1
images where the corpus callosum was reasonably a
rately segmented, 22 images also included the fornix. T



Lee et al.: Automated segmentation of the corpus callosum in midsagittal . . .
Fig. 20 The results obtained by the proposed algorithm.
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fornix was reasonably accurately separated in 18 of th
by extending a line posteriorly fromA ~Fig. 16!.

6 Conclusion

We propose an automatic algorithm that segments the
pus callosum from midsagittal brain MR images. The alg
rithm utilizes thresholding and region-based matching
directed window region growing. The boundary betwe
the corpus callosum and surrounding tissues can be diffi
to detect and, in some cases, artifacts are included in
segmented corpus callosum. To remove such artifact
-

t
e
a

new border path pruning method is proposed. Experime
showed that the technique can be successfully applied
wide range of MR images. Once the corpus callosum
segmented from surrounding tissues, it can be used
reliable landmark to find other brain structures, help s
ment the brain from surrounding tissues, and register
ages across individuals by matching the internal cere
structures. Extension of the described algorithm into th
dimensions should facilitate volumetric determination
the size of the corpus callosum, segmentation of cere
structures, and possibly even coregistration of MR and P
933Optical Engineering, Vol. 39 No. 4, April 2000
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images, as the corpus callosum has low and cortical reg
and high rates of metabolism and blood flow in PET i
ages.
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