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Abstract. We propose a new algorithm to find the corpus callosum au-
tomatically from midsagittal brain MR (magnetic resonance) images us-
ing the statistical characteristics and shape information of the corpus
callosum. We first extract regions satisfying the statistical characteristics
(gray level distributions) of the corpus callosum that have relatively high
intensity values. Then we try to find a region matching the shape infor-
mation of the corpus callosum. In order to match the shape information,
we propose a new directed window region growing algorithm instead of
using conventional contour matching. An innovative feature of the algo-
rithm is that we adaptively relax the statistical requirement until we find a
region matching the shape information. After the initial segmentation, a
directed border path pruning algorithm is proposed in order to remove
some undesired artifacts, especially on the top of the corpus callosum.
The proposed algorithm was applied to over 120 images and provided
promising results. © 2000 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(00)00604-8]
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1 Introduction

Object recognition is often one of the ultimate goals in
image processing, computer vision, and artificial intelli-
gence(Al). Although fully automated general object recog-
nition is far beyond the reach of current technology, spe-
cialized object recognition can be very useful in many
applications. Object recognition typically involves two dis-
tinct processing stepsfa) finding boundaries andb)

Segmentation and object recognition have been of a
great interest in medical imagif§-1* Related work in-
cludes a segmentation method using game thEbsgg-
mentation using objective functiod$3-D segmentation of
brain images/ detection of blood vessels in retinal
images'® tumor detectiort? segmentation and object rec-
ognition in echocardiogranf8;?! and segmentation of car-
diac MR image$?

matching. Each of these aspects of the problem has been an The corpus callosum, which is located at the center of
important research area on its own. Finding boundaries be-the brain (Fig. 1), is the major communication pathway

tween regiongsegmentationis the first step for various

between the two cerebral hemispheres and mainly consists

ana|yses in image processing_ There are several review pa.Of axons. Structural Changes in the corpus callosum occur

pers on segmentatidn® including thresholding;® edge
detectiorf spatial interaction models such as the Markov
Random FieldMRF) and the Gibbs Random Fie(GRP),
and neural network§However, due to the complex nature
of images, no algorithm is consistently able to find good

in a variety of neurological diseas&5Also, a substantial
number of studies have investigated the corpus callosum in
schizophreni®~33with a meta-analysis of 11 studies sug-
gesting that corpus callosum ardait not length or corpus
callosum/brain ratipin midsagittal images was decreased

boundaries across various types of images. Since shapén schizophrenia patients compared to healthy con?fgls.
matching depends on finding good boundaries, this canaddition, somé>® but not alf**" studies in mood disor-

cause serious problems in object recognition. In particular,

if an object is non-rigid and part of the boundary is missing,
which is typical in medical images, algorithms based on
contour matching may not work well. Active contour mod-

ders have reported changes in the corpus callosum. In all
cases, the corpus callosum was separated from surrounding
tissues manually or interactively with aid of computer

graphics. This is a time consuming process and the results

els, also known as snakes, have been widely used in medi-may be influenced by subjective bias. Thus, an automated

cal images to find certain objectS.Snakes, however, have
one important limitation: they require good starting condi-
tions. They are therefore primarily useful as an interactive
contour outlining tool and not really suitable for the fully

objective method to find the corpus callosum will greatly
facilitate such studies.

The corpus callosum is also an important landmark in
midsagittal MR brain images. It lies largely inferior to the

automated detection of complex structures such as the cor-cerebrum, superior to the brainstem, and antero-superior to

pus callosum.
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the cerebellum. Thus, finding the corpus callosum auto-
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Fig. 2 A cross-section of the corpus callosum.

gradient operation. Although one can visually recognize the
Fig. 1 Corpus callosum (a) in a midsagittal brain MR image and its outline of the corpus callosum in Fig. 1b, portions of its
edge (b). boundary are indistinct, which can make it difficult to de-
velop an automated recognition algorithm based on edge

matically would be helpful in providing valuable reference information alone. A problem with applying edge detection
points to locate other brain structures and applications suchalgorithms is that, quite often, variation within the corpus
as accurate image registration among individuals and auto-callosum can be comparable or exceed the difference be-
matic segmentation of the brain. Therefore, if the corpus tween the corpus callosum and surrounding tissues. In ad-
callosum can be extracted automatically, it can be used fordition, parts of the boundary between the corpus callosum
medical diagnosis, accurate image registration, and auto-and SL_Jrroundlng tissues are indistinct an_d thus very difficult
matic segmentation. However, the boundaries between thet0 define due to similar gray levels, particularly on the top
corpus callosum and surrounding tissues are not alwaysPortion of the corpus callosum and between the corpus cal-
clear and variations of size and Shape among individuals IOSU_m and the fornix. These prOblemS are |||UStra_ted n Flg
are significant. 2. Fig. 2b shows the gray level along the cross line of Fig.
In this paper, we investigate the problem of finding the 2a. As can be seen, the variation in the corpus callosum is
corpus callosum automatically in magnetic resonance im- @s large as the difference between the corpus callosum and
ages(MRI) and propose a robust region-based solution that the cerebrum. _
consists of a series of operations. Instead of finding bound- ~ Fig. 3 shows pixel value histograms of the corpus callo-
aries and matching contotit,the proposed algorithm is ~Sum and whole brain derived from an MR image. The num-
based on region information. Initially, we extract the statis- Per of gray levels of all the images used in this paper is
tical characteristics of the corpus callosum and obtain glo- 256. It can be seen that the corpus callosum has relatively
bal shape information. In order to locate the object of in- high intensity values. Therefore, if we apply a threshold
terest, we first select regions that meet the statistical criteriastarting at a high value, the corpus callosum will generally
and then find the one that matches the shape information.begin to appear before other brain structures show up in the
Finally, in order to remove regions that tend to be incor- binary image. Furthermore, with such thresholding, few
rectly merged to the top of the corpus callosum, we propose Other structures will be present in the thresholded binary
border path pruning that successfully removes the artifacts.image (Fig. 4), which will make the corpus callosum rec-
ognition algorithm much more efficient and robust. Fig. 4
2 Statistical Characteristics and Shape of shows binary images obtained by applying decreasing
Corpus Callosum thresholds. Witht=150, we can barely recognize the cor-
Fig. 1a shows a typical midsagittal brain MR image and pus callosum. Witht=130, a relatively distinct callosal
Fig. 1b shows edges extracted from Fig. 1a by applying a shape is evident with few other non-adjacent structures.
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Fig. 3 Histograms of the corpus callosum and the brain MR image.

With t=120, the corpus callosum is clearly defined, al-
though more other non-adjacent structures are visible. With

t=110, the corpus callosum starts to be connected to sur-

rounding tissues. Although the threshold values may be dif-
ferent depending on individual images, this property of
high intensity values of the corpus callosum can be ex-
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Fig. 4 Thresholding with various threshold values.
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Fig. 5 Size and shape variations of corpus callosum.

ploited to yield a segmentation algorithm that is efficient
across images.

Fig. 5 illustrates the substantial variation in size, shape,
location, and orientation of the corpus callosum across in-
dividuals. In particular, the shape is difficult to define be-
cause the fornix, a tail-shaped structure with similar com-
position (axong anteriorly descending from mid to
posterior corpus callosum, is hard to distinguish from the
corpus callosum, as can be seen in Fig. 5b and Fig. 5d. In
many cases, the fornix has almost identical gray levels as
the corpus callosum. As a result, it is very difficult to sepa-
rate the fornix from the corpus callosum based on edges or
gray level. This can pose a serious problem to contour
matching. Although it is difficult to describe the shape of
the corpus callosum exactly, it can be generally said that it
is arc-shaped and that its length is about one third of that of
the skull.

In order to obtain size statistics of the corpus callosum,
we semi-manually extracted the corpus callosum from 20
adult subjects; Table 1 provides size statistics estimated
from the 20 adult subjects. We assume that in adults the
minimum length is 55 pixel$10 pixels less than the mini-
mum and more than 3 standard deviations less than the
mean in our samp)eand the minimum height is 18 pixels
(5 pixels less than the minimum and more than 3 standard
deviations less than the mean in our samples

Table 1 Size of the corpus callosum in pixels (MR image size is 256
by 256), based on 20 adult subjects.

Mean sd Max Min
Length 73.1 4.9 85 65
Height 27.2 2.9 33 23
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Table 2 The size, length, height of the corpus callosum for various (b)
thresholds.
Threshold Area (pixels) Length Height @

99 295 53 35
98 313 54 35
97 326 54 35
96 337 54 35
95 512 84 35
94 532 84 35
93 556 84 36 Fig. 6 Directed window region growing, (a) horizontal object, (b)
92 559 84 36 vertical object.
91 565 84 36
90 570 84 36
89 577 84 36 6b illustrates another case where region growing can only
88 581 84 36 proceed from top to bottonfsuperior to inferior in MR
87 589 84 36 images. It is noted that we do not rely on contours to find
86 678 96 39 objects. Since contours are not always well defined and

portions may be missing, this can be an important advan-
tage. By restricting horizontal and vertical directions to-
gether, we can follow more general shapes as shown in Fig.
Table 2 shows the area, length, and height of the corpus7. Furthermore, in the directed window region growing, we
callosum for various thresholds for an individual midsagit- use a window to reduce noise effects since it is more reli-
tal MR image. As the threshold decreases, the arember able to use the center of the largest circles on the next
of pixels), length and height of the corpus callosum in- vertical line in order to compute the angle. The size of this
crease as expected. It is observed that there are area andindow changes with the thickness of the corpus callosum,
length discontinuities between=96 andT=95. At this and we use circular regions.
threshold, it meets the minimum length and height require-  In order to find the shape of the corpus callosum using
ments. There are also area, length, and height discontinui-the directed window region growing algorithm, we first find
ties between 87 and 86. Starting at this threshold, surround-the largest circle that includes the leftmdstost anterior
ing tissues begin to be connected to the corpus callosum.point of the candidate region as shown in Fig. 7. Betbe
From the table, the optimal threshold appears to be betweenthe center of the circle. The center of the next circular
T=95 andT=87 for this image. Within this range, al- region to the right(posterioy, P,, is defined to be on a
though the length and the height are virtually the same, vertical line 10 pixels rightwardéposterioy from P;. And
there is a substantial variation in the area. A reason for the e angle that lineP,P, makes with the horizontal line
area difference is that for high threshold values, small holes ., st be between 20° and 70°. The values of these and the

were observed inside the corpus callosum, which need beyq|oying angles were estimated from sample images. The
filled with some post-processing such as morphological 0p- center of the next circular region to the rigfgosteriof,
erations. When holes inside the corpus callosum are fille 'P,, is similarly defined to be on a vertical line 10 pixels

the difference becomes minor. Thus, we choose the small- . . e
est threshold, because it provides the most complete strucfightwards(posterioy from P,. The angle that liné®;Ps
ture. makes with lineP;P, must be betweer-20° and—50°,
Our detection strategy is to apply a threshold to the im- based on the manual examination of sample imdgeble
age starting with a high value and find a region that
matches the shape information of the corpus callosum. An
advantage of working on binary images is that the matching
will be much easier since there are fewer other structures at

high threshold values. In order to determine whether an 2°°

object in the binary image matches the shape information 77

of the corpus callosum, we propose the directed window P /‘ P,
region growing algorithm that is described in the next sec- 3 A‘i

tion.

3 Directed Window Region Growing and the
Recognition Algorithm F,

In the proposed directed window region growing algorithm, A
we restrict the direction of region growing. For example, in

Fig. 6a, region growing can only proceed from left to right o
(anterior to posterior in MR imaggsIf we have informa- 10 pixels’
tion about the horizontal length of an object, we can find it

with the directed window region growing algorithm. Fig. Fig. 7 Directed window region growing for a general shape.

wa

\

10 pixels ‘10 pixels ‘10 pixels
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Table 3 Angle statistics obtained from sample images. Al is the
angle that line P, P, makes with the horizontal line. A2 is the angle
that line P,P5; makes with line P,P,, and so on.

Al A2 A3 A4 A5 A6

Max 54.46 —10.01 5.10 —5.39 11.42 4.76
Min 3096 —39.29 —3340 -—-3340 -2241 -36.67
Ave 4187 -—-20.16 -—-14.74 -—-18.85 —5.08 -11.03
sd 5.26 6.44 9.52 8.12 9.57 12.17

3). The centers of the remaining circular regions are ob-
tained in a similar manner, proceeding from left to right
(anterior to posterigruntil there are less than 10 pixels
within the candidate region to the riglposterioy of the
center of a circle. Finally, i, is aboveP; and the center
of the last circular regionHs in Fig. 7) is below that of the
previous region P, in Fig. 7), it can be said that the object
has the shape of upward arc.

We thus summarize the characteristics of the corpus cal-
losum as follows: Its gray level is among the highest in the
brain (Fig. 3). In general, its minimum length is 55 pixels
and minimum height is 18 pixels in a 256 by 256 pixel
image(Table 1. Although its shape varies significantly be-
tween individuals, it is usually in the form of upward arc
(Fig. 5), a condition that can be enforced using the directed
window region growing method. Based on these observa-
tions, we propose the following procedure to segment the
corpus callosum automatically:

Fig. 9 (a) the original image, (b) the image obtained by applying a

3.1 Procedure for Fmd’ng Corpus Callosum gradient operation to (a), (c) the binary image obtained by applying
L. a threshold (T=30) to (b), (d) the binary image obtained by applying
1. Set the initial threshold=t,. a threshold (T=20) to (b).

2. Apply the threshold to the image.

3. Apply the directed region growing algorithm to the
binary image. If there is a region that matches the attached to the corpus callosum as the boundary may be
shape description(upward arc, minimum length  indistinct. This is illustrated in Fig. 9 which shows an en-
=55, minimum height 18), we have found the cor- larged view of a corpus callosum; part of the boundary is

pus callosum. Otherwise, decrease the threshold by pindistinct and essentially non-detectable using conventional
and go to Stép 2 ' contour detection methods. Due to the nature of brain

anatomy, this kind of problem can occur commonly in mid-
sagittal brain MR images. In order to remove such undesir-
able artifacts, we apply the post-processing method de-
4.1 Border Path Pruning scribed below. _ _ _
In some cases, we face the problem that the corpus callo- FlrSt’ we dEfm'-a a border In a binary image. A border
sum and surréundin structures are ioined toaether andcon3|s§s of two adjacent pixels. One of the pixels belongs to
therefore difficult to s%parate using grajy level im?ormation th? ObJeCt and the other to the _background. Dependmg on
This happens especially with the cingulate cortex superic;r orientation, there can be a horizontal border or a vertical
border, as illustrated in Fig. 10. A border path is defined as

to the corpus callosunicf. Fig. 8. This region may be
(a? ®

Fig. 10 Examples of the border consisting of two adjacent pixels.
One of the pixels belongs to the object and the other to the back-
Fig. 8 Corpus callosum with artifact. ground: (a) horizontal border, (b) vertical border.

4 Post-Processing

928 Optical Engineering, Vol. 39 No. 4, April 2000
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(a)

»
ot

Fig. 11 An example of horizontal border path that is a sequence of (b)
vertical borders.

a sequence of borders, as shown in Fig. 11. Depending on
orientation, there are two kinds of border paths: horizontal

border path and vertical border path. Since artifacts tend to

occur superior to the corpus callosum, we will use the hori-

zontal border path to remove unwanted regions attached to

the corpus callosum. We call this method border path prun- ©

ing. In this procedure, we restrict the direction and maxi-
mum discontinuity of the border path. Fig. 12 illustrates

border path pruning. Assuming that we require that border
path propagation is uni-directional and has a maximum dis-
continuity of 2 pixels, there is no border path in Fig. 12a
since the path violates the maximum discontinuity restric-
tion. In Fig. 12b, there is no border path since the path
violates the uni-directional restriction.

We propose using border path pruning to remove arti-
facts attached on the top of the corpus callosum and to

determine whether the fornix is attached or not. From the Fo. 13 Bord " , - - bord "
equally spaced poynts used '.” the region gTOW'”g algorithm, e\I/%ry inter(\J/raI?r(br)Ja‘l'he?(reuinslrEri i(nat)erva?\r;h:'(tlesnso%r:)erde?rpghp;istls?
we draw vertical lines and find border points. For the de- )"\ order to remove artifacts, a box is drawn.
tected shape to be acceptable, we require that there exists
an uni-directional border path between any two of these
adjacent border points. In the case of Fig. 13a, there exists
one border path in every interval. However, in Fig. 13b,
there is one interval where no border path exists. Usually, if corpus callosum. Thus, border path pruning can separate
there is an artifact, there is no border path. In that case, Wethe adjacent artifact from the corpus callosum in most
draw a box containing the problematic interval and refine cases. Fig. 14 shows the final result after the border path
the threshold within this boxFig. 130. Specifically, we  pruning. As can be seen, the artifact is successfully re-
increase the threshold until we find a border path within moved, though a part of the corpus callosum where the
this box. Although the corpus callosum can be barely dis- artifact was attached may be also lost in the process. How-
tinguishable from the Surro_undi_ng tissues, often there is dever, we can restore some of the lost part by restoring the
boundary whose gray level is slightly lower than that of the o|d area while keeping the new boundary. Similarly, by
applying the border path to the inferior aspect of the corpus
callosum, we can determine whether the fornix is attached
(a) (b) to the corpus callosum and to locate the [gfitterioy end
B point A (Fig. 15, which will be described next.

A

Fig. 12 Examples of border path pruning. (a) There is no border

path since the path violates the maximum discontinuity restriction Fig. 14 Result of the border path pruning. The holes are just dis-
(<2). (b) There is no border path since the path violates the unidi- played to show where the centers of the circles are located. In the
rectional restriction. final images, there will be no holes.

Optical Engineering, Vol. 39 No. 4, April 2000 929
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Fig. 15 Indistinct border between fornix and corpus callosum.

4.2 Removing Fornix

In some cases, the fornix is connected to the corpus callo-
sum. The fornix appears as a tail-like protrusion descending
anteriorly from the inferior aspect of the mid to posterior
corpus callosum. Quite often, it has almost the same gray
level as the corpus callosum and is very difficult to separate
based solely on gray levels. Fig. 15 shows such an ex-
ample. There are two pointA and B) where the fornix

meets the corpus callosum. We can apply the border path

procedure to find the lefanterioy end pointA. However, it
may be more difficult to find the righiposterioj end point

B. In some cases, additional information may be required.
A possible solution would be extending a line posteriorly
from A which is parallel to the superior aspect of the corpus
callosum until it hits a background regidf in the binary
image. We also may use, as a mask, the results of the
parasagittal slices, which often lack fornix but still have

corpus callosum. The methods provided reasonable perfor-

mance but had some limitations. Fig. 16 shows some of the

Fig. 16 Fornix removal by extending a line posteriorly from A.

930 Optical Engineering, Vol. 39 No. 4, April 2000

Fig. 17 Fornix removal by applying a mask obtained from an adja-
cent image.

results where the fornix was removed by extending a line
posteriorly fromA. Although we obtained satisfactory re-
sults in 18 out of 22 images that included the for(igig.
16a—¢, the method did not work if the thickness posteri-
orly from B is greater than the thicknessAafs can be seen

in Fig. 16d. Fig. 17a—b shows some of the results where the
fornix was removed using a mask. In this method, the
fornix might not be completely removeéig. 179 or some

of the corpus callosum might be removéeg. 179 if the
location of the adjacent corpus callosum does not match
exactly. However, finding the true boundary by removing
the fornix may be problematic in some sense since the gray
levels are almost identic@Fig. 15. Therefore, if the fornix
has to be removed to find the true boundary, the process
needs to be guided by an expert in brain imaging.

5 Experiments and Results

We applied the proposed procedure to find the corpus cal-
losum in midsagittal brain MR image®@56 by 256, 256
gray levels. The proposed algorithm was tested on 120
subjects and we obtained generally very satisfactory results.
Figs. 18—20 show the results with the corpus callosum
found by the proposed algorithm highlighted. It is noted
that the results are shown in Figs. 18—20 just because we
have too many images. As can be seen, there are large
variations in the location, size, orientation, and brightness.
For instance, there are large variations in head area, from
large (Figs. 18h, 18u, 18Fto small(Figs. 18n, 19L, 19M,
200). Some of the subijects tilted forwatEigs. 18h, 184,
some tilted backwardFigs. 19H, 20j, 20y In some im-
ages, artifacts from neighboring slices are includems.

18u, 18). Some imagegFigs. 18D, 199 are relatively
bright and some are darkigs. 18i, 180, 19M In fact, the
average gray level of the head area of Fig. 190 is about 114
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Fig. 18 The results obtained by the proposed algorithm.

while it is about 38 in Fig. 18i. Out of 120 images, the (Figs. 20H-J. In Fig. 20H, a part of the corpus callosum is

proposed algorithm was able to find the corpus callosum missing and Fig. 20l includes an artifact. In Fig. 20J, the
reasonably accurately. However, in 3 images, the corpusproposed algorithm did not find the corpus callosum at all.
callosum found by the proposed algorithm was not perfect A close examination reveals that the images were not the

Optical Engineering, Vol. 39 No. 4, April 2000 931
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(N) (O)

Fig. 19 The results obtained by the proposed algorithm.

midsagittal images. If the images came from the midsagittal ditional processing may be required in some subjects to
images, better results would be obtained. Also, the headremove the fornix depending on applications. Out of 117

position of Fig. 20J was very different from the normal images where the corpus callosum was reasonably accu-
position. Although the results are generally satisfactory, ad- rately segmented, 22 images also included the fornix. The

932 Optical Engineering, Vol. 39 No. 4, April 2000
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Fig. 20 The results obtained by the proposed algorithm.

fornix was reasonably accurately separated in 18 of thesenew border path pruning method is proposed. Experiments

by extending a line posteriorly froA (Fig. 16). showed that the technique can be successfully applied to a
_ wide range of MR images. Once the corpus callosum is
6 Conclusion segmented from surrounding tissues, it can be used as a

We propose an automatic algorithm that segments the cor-reliable landmark to find other brain structures, help seg-
pus callosum from midsagittal brain MR images. The algo- ment the brain from surrounding tissues, and register im-
rithm utilizes thresholding and region-based matching by ages across individuals by matching the internal cerebral
directed window region growing. The boundary between structures. Extension of the described algorithm into three
the corpus callosum and surrounding tissues can be difficultdimensions should facilitate volumetric determination of

to detect and, in some cases, artifacts are included in thethe size of the corpus callosum, segmentation of cerebral
segmented corpus callosum. To remove such artifacts, astructures, and possibly even coregistration of MR and PET

Optical Engineering, Vol. 39 No. 4, April 2000 933
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images, as the corpus callosum has low and cortical regions
and high rates of metabolism and blood flow in PET im-
ages.

28.
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