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Abstract—We propose a method for accurate and fast re-
construction of the interior of a 2D or 3D tomographic image
from its incomplete local Radon transform. Unlike the existing
interior tomography work with 2D total variation, the proposed
algorithm guarantees exact recovery using a 1D generalized total
variation semi-norm for regularization. The restrictions placed
on an image by our 1D regularizer are much more relaxed
than those imposed by the 2D regularizer in previous works.
Furthermore, to further accelerate the algorithm up to a level
of clinical use, we propose a multi-resolution reconstruction
method by exploiting the Bedrosian theorem for the Hilbert
transform. More specifically, as the high frequency part of the
image can be quickly recovered using Hilbert transform thanks to
the Bedrosian equality, we show that computationally expensive
iterative reconstruction can be applied only for the low resolution
images in downsampled domain, which significantly reduces
the computational burden. We demonstrate the efficacy of the
algorithm using circular fan-beam and helical cone-beam data.

I. INTRODUCTION

In x-ray computed tomography (CT), reconstruction of
region of interest (ROI) from local projection data has been
called for to reduce radiation exposure in imaging specific
organs such as heart, or to reduce size of x-ray detector for cost
saving. Using the backprojection filtration (BPF) method [1],
it was shown that the ROI that cannot cover the whole object
can be determined uniquely when the intensity of subregions
inside the field of view (FOV) are known a priori [2], [3].
However, in general, it is difficult to know the intensity inside
the object. Consequently, using the 2D total variation, the
authors in [4] showed that unique reconstruction is possible
if the images are piecewise constant. In those papers, while
the images were assumed to be piecewise polynomial, the
regularization term was 2D and fairly complex, which led the
authors to focus on piecewise linear images [5]. Furthermore,
the iterative procedure to reconstruct the interior images under
the regularization is quite complicated, which prohibits its use
in clinical environment.

As in those papers, we seek to reconstruct images that are
piecewise smooth; i.e., the domain where the image is defined
can be decomposed into a finite number of subdomains such
that the image is a smooth function on each piece. However,
our approach generalizes the ideas developed in [5] with a
simplified 1D formulation, and as a result, we are able to
perfectly reconstruct new classes of functions. In particular, we
can reconstruct any image that is a generalized L-spline along
a collection of lines passing through the region of interest.
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Here L is a differential operator that can be more general
than an n-th order derivative. For example, we can reconstruct
images whose 1D restrictions are non-polynomial exponential
B-splines, and which are not covered by the previous works.

To further accelerate the algorithm up to a level of clinical
use, we propose a multi-scale reconstruction method that
separately reconstructs low frequency part and high frequency
part of the 1D signal at different resolution. More specifically,
thank to the Bedrosian equality for the Hilbert transform, even
for the truncated Hilbert transform, we can show that high
frequency part of the signal can be recovered accurately using
one step Hilbert transform. Therefore, the computationally
expensive iterative reconstruction can be performed only to
reconstruct the low frequency part of the signal after down-
sampling, which allows its fast implementation. We verify the
efficacy of the algorithm using 2D fan-beam and 3D cone-
beam reconstruction with realistic acquisition parameters.

II. MATHEMATICAL BACKGROUNDS

A. Differentiated Backprojection and Hilbert Transform

In helical cone-beam CT, the scanning trajectory is ex-
pressed as

r⃗0(λ) =

(
R cos(λ), R sin(λ),

h

2π
λ

)T

, (1)

where λ is the rotation angle of x-ray source, R the distance
from the source to rotation axis, and h the pitch of helical
trajectory. If h = 0, the acquisition geometry is reduced to a
2D fan-beam geometry. From helical cone-beam scanning, we
can get the cone-beam projection data of a 3D object function
f(r⃗), and it can be expressed as

P (r⃗0, β̂) =

∫ ∞

0

ds f(r⃗0 + sβ̂), β̂ ∈ S2 (2)

with the unit vector β̂ of projection direction from a x-
ray source location at r⃗0. From this projection data, the
differentiated backprojection (DBP) at the 3D point r⃗ can be
computed by [1]

g(r⃗) =
−1
2π

∫ λ2

λ1

dλ

|r⃗ − r⃗0(λ)|
∂

∂q
P
(
r⃗0(q), β̂(λ, r⃗)

)∣∣∣∣
q=λ

.

(3)
In this equation, ∂

∂qP
(
r⃗0(q), β̂(λ, r⃗)

)∣∣∣
q=λ

means differen-

tiation of projection with respect to the source trajectory,
and

∫ λ2

λ1

dλ
|r⃗−r⃗0(λ)| refers the backprojection with cone-beam

weighing. Here, λ1 and λ2 are determined by a PI line through
r⃗. This PI line is unique for any point inside the helix, so
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there must be unique λ1 and λ2 for r⃗. Now, with a slight
abuse of notation, if we define DBP data and attenuation image
restricted on the PI line as

g(x) := g (r⃗0(λ1) + x(r⃗0(λ2)− r⃗0(λ1))) (4)
f(x) := f (r⃗0(λ1) + x(r⃗0(λ2)− r⃗0(λ1))) . (5)

Then, we have the following 1D Hilbert transform relationship

g(x) =
1

π
P.V.

∫ ∞

−∞

dx′

x− x′ f(x
′) = Hf(x) (6)

where P.V. denotes the Cauchy principal value. For the case
of 2D fan-beam geometry, the PI line is not unique and we can
choose infinitely many PI lines that pass through r⃗. Among
these, we use a set of PI lines that are parallel to each other
to simplify the implementation.

B. Interior Tomography Formulation

If the DBP data g(x) is available for all x, the reconstruction
of f(x) can be simply done by performing inverse Hilbert
transform H−1, which is equal to −H. However, in the case
of interior tomography problem, the detector is truncated; so,
the DBP data is only available within xı(e1, e2). The main
problem of such truncated Hilbert transform is the existence
of the null space. More specifically, there exists non-zero ν(x)
such that

Hν(x) = 0, x ∈ (e1, e2) . (7)

Indeed, ν(x) can be expressed using an appropriate DBP data
h(x) outside of the ROI:

ν(x) = − 1

π

∫
R\(e1,e2)

dx′

x− x′h(x
′) . (8)

Then, a required interior tomography formulation is to find
an appropriate regularization term that suppresses the signal
belonging to the null space of the truncated Hilbert transform.
Note that ν(x) in (8) is differentiable in any order due to the
removal of the origin in the integrand.

III. MAIN CONTRIBUTIONS

A. Exact Recovery under Generalized TV Penalty

To generalize the TV to meet the goal, we consider a
regularization with respect to a Fourier multiplier operator L
that is defined on L2(R) and satisfies two conditions. First, for
any interval E = (e1, e2) ⊂ R, we require L to map C∞

c (E)
to Cc(E). Second, the null space of L, denoted as NL, should
consist of entire functions. An example of such an operator is
a constant coefficient differential operator

L := aKDK + aK−1D
K−1 + . . .+ a1D+ a0 (9)

where K ≥ 1, D denotes the distributional derivative on
R, and each ak is a real number. In this example, the
finite-dimensional null space consists of linear combinations
of exponential functions multiplied by polynomials. For an
operator L and an interval E ⊂ R, we formally define the
generalized total variation semi-norm

∥f∥TV (L;E) := ∥Lf∥L1(E) (10)

which is valid when Lf ∈ L1(E). In order to ensure that this
semi-norm is valid for a larger class of functions, we use the
dual formulation

∥f∥TV (L;E) := sup
h∈Ch

∫
E

f(x)L∗h(x)dx (11)

where Ch = {h ∈ C∞
c (E), ∥h∥L∞ ≤ 1}. As in [4], our

results are based on the fact that ν(x) in (8) is infinitely
smooth in E. Suppose, furthermore, the signal f(x) to be
reconstructed is a generalized L-spline, where L is a finite-
order operator. It is this disparity between the infinitely smooth
ν(x) and the finitely smooth f(x) that allows us to have
perfect reconstruction.

Theorem 1. Let f0(x) be a generalized L-spline such that

Lf0(x) =
N∑

n=1

anδ(x− xn) (12)

on E. Then, the following minimization problem

argmin
f

∥f∥TV (L;E) subject to Hf0(x) = Hf(x), x ∈ E

has the unique solution equal to f0(x).

B. Multi-Resolution Decomposition Using Bedrosian Equality

Unlike the previous works [5], our regularization is based
on 1D TV semi-norm. Therefore, the optimization problem is
much less complex. In addition, we now propose a multi-scale
decomposition method that further reduces the computational
complexity.

1) Low frequency reconstruction: To reconstruct f(x) from
its truncated Hilbert transform, we split it into low-pass and
high-pass components. This is accomplished by convolving
with a function ϕ whose Fourier transform Φ satisfies:

• For some ω0 > 0, Φ(ω) = 1 when |ω| < ω0 and Φ(ω)
has fast decay for |ω| > ω0;

• Φ is even, smooth, and decreasing for |ω| > ω0

In this paper, we use a spline for ϕ. Then, the low-pass
component fL(x) is given by convolving a−1

f ϕ(af ) with f(x),
for some dilation factor af > 0. This can be easily imple-
mented using spline wavelet transform and taking the lowest
band signal. Furthermore, the low-pass component fL(x) can
be recovered from the corresponding low-pass component of
the DBP data g(x) since the Hilbert transform preserves the
bandwidth as observed in

G(ω) = F{Hf}(ω) = −i sgn(ω)F (ω). (13)

Thanks to (13), we can reconstruct the fL(x) from the down
sampled DBP data gL(x). For the recovery of the resulting
low-pass band fL(x), we make the following assumption.

Assumption 1. fL is well modeled as an L-spline for some
Fourier multiplier operator L.

Under this assumption, fL is reconstructed using the it-
erative algorithm with TV semi-norm regularization. The
implementation of the iterative step will be explained in detail
later.
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2) High frequency reconstruction: After reconstructing
fL(x), the high-pass component fH(x) is the complement.
Note in particular that the Fourier transform of fH is iden-
tically zero in a neighborhood of the origin. This allows us
to compute fH using Bedrosian’s theorem for the Hilbert
transform.

Theorem 2 (Bedrosian). Let f, g ∈ L2(R). Suppose that the
Fourier transform of f , denoted by F (ω), vanishes for |ω| >
ω0, with ω0 > 0, and the Fourier transform of g, denoted by
G(ω), vanishes for |ω| < ω0; then

H{f(x)g(x)} = f(x)Hg(x) . (14)

Since we only have exact data for Hf(x) on a restricted
interval E = (e1, e2), we apply a band-limited finite length
window w(x) before computing the inverse Hilbert transform.
Bedrosian’s theorem implies that

w(x)gH(x) = w(x)HfH(x) = H{w(x)fH(x)} (15)

as long as the support of W (w) is contained in a neighborhood
of the origin that is disjoint from the support of FH(w). Here,
we use the characteristic function of the interval E = (e1, e2).
Solving for fH in (15), we get

fH(x) =
−H{w(x)gH(x)}

w(x)
, x ∈ E . (16)

IV. IMPLEMENTATION

A. Low Frequency Signal Reconstruction

To recover the low frequency signal, we first take down-
sampling of the original DBP by wavelet decomposition and
taking the lowest frequency band (see Fig. 1). From the
downsampled DBP signal, the low frequency part of signal
is reconstructed using projection onto convex sets (POCS)
algorithm, and the reconstructed signal is then upsampled to
the original resolution signals. This procedure takes much less
time than iterative reconstruction of the original full-resolution
DBP signal. For POCS implementation, the following five
convex constraint sets are used:

C1 = {f(x) ∈ L2(R) : f(x) = 0, x /∈ (b1, b2)}
C2 = {f(x) ∈ L2(R) : Hf(x) = g(x), x ∈ (e1, e2)}
C3 = {f(x) ∈ L2(R) : ∥f∥TV (L;E) ≤ τ}
C4 = {f(x) ∈ L2(R) :

∫ b2
b1

dxf(x) = P (r⃗0(λ1), β̂(λ1, r⃗))}
C5 = {f(x) ∈ L2(R) : f(x) ≥ 0,∀x},

Here, (b1, b2) denotes the approximate object boundary. The
projection to each constraint is quite straightforward except
for the projection on C3, the generalized TV norm constraint.
It turns out that the projection on C3 from a point f0 can be
implemented as the following denoising step.

f̂ = argmin
f

{
∥f − f0∥22 + 2λ∥f∥TV (L;E)

}
(17)

for an appropriate Lagrangian parameter. Using the definition
of the generalized TV semi-norm, the optimization problem is
given by

sup
h∈Ch

min
f

{
∥f − f0∥22 + 2λ⟨f,L∗h⟩

}
, (18)

whose optimal solution of the inner minimization is given by
f̂ = f0 − λL∗h. So, (18) can be reformulated with respect to
the dual variable:

min
h∈Ch

{
λ2∥L∗h∥2L2(E) − 2λ⟨f0,L∗h⟩

}
. (19)

Then, the optimal solution ĥ can be obtained by gradient
projection method

hk = PCh
(hk−1 − 2tkλL (λL∗hk−1 − f0)) (20)

when tk denotes the k-th step size, PCh
denotes the projection

on the convex set Ch, and 2λL(λL∗h− f0) is the gradient of
the cost function in (19). For super-linear convergence rate,
we implement the algorithm based on Nestrov method.

Fig. 1. Multi-resolution reconstruction flowchart.

B. High Frequency Signal Reconstruction

After low frequency reconstruction, the reconstructed low
frequency signal is upsampled using wavelet reconstruction.
The upsampled low resolution image is then transformed using
Hilbert transform to extract the high frequency residual DBP
signals. Then, the resulting high frequency residual signal
is applied to an inverse Hilbert transform to obtain high
frequency signal. Finally by adding the reconstructions of low
and high frequency, we can get the interior tomography with
the original resolution (see Fig. 1).

V. NUMERICAL RESULTS

A. Circular Fan-Beam CT

The first reconstruction result was obtained with circular
fan-beam projection. The 2D phantom is 512×512 size with
1×1 mm2 size pixel. The number of detector array is 400 with
1 mm pitch, and the number of views is 1200. The distance
from source to rotation axis is 800 mm, and the distance from
source to detector is 1400 mm. The radius of FOV is about 113
mm, so for each PI line, the truncation rate (length of support
divided by length of FOV) is from 0 to 0.95. In Fig. 2, the first
image in (a) is the original ground truth. Fig. 2(b)(c) show the
low and high frequency reconstruction images respectively,
and the final reconstruction is shown in Fig. 2(d), which is
nearly identical to the original signal.

B. Helical Cone-Beam CT

The second simulation is 3D cone-beam CT with helical
trajectory. The resolution of the phantom is 512×512×512
voxels with voxel size 1×1×1 mm3. The distances from
source to rotation axis and from source to detector are same
with the circular fan-beam simulation. The detector resolution
is 450×109 pixels with pitch of 1×1 mm2, so the radius of
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(a) Ground truth (b) fL

(c) fH (d) fL + fH

Fig. 2. 2D fan-beam reconstruction: (a) ground truth, (b) low frequency
signal reconstruction, (c) high frequency signal reconstruction, and (d) the
final reconstruction result.

FOV is about 127 mm. For helical scanning trajectory, the
number of rotations is 3, the helical pitch h is 100 mm, and
the number of views is 1200 per rotation. First, the object was
reconstructed in PI line space, and then by regridding process,
the final reconstruction of about 250 slices was obtained.

Fig. 3 is the reconstruction result in FOV for the helical
cone-beam CT. Even for helical cone-beam CT, the original
3D problem can be converted into many 1D problems on the
PI line, so what we need to do is repeat the 1D reconstruction
processes for all PI lines. In the first column, transection,
coronal, and sagittal planes are shown, and for each row, the
line profile whose location is indicated by white line in the
plane image was plotted. The total computational time was
less than 14 minutes, which corresponds to about 3 seconds
for each slice.

VI. CONCLUSIONS

Using the differentiated back projection, an interior to-
mography problem in 2D or 3D can be converted to a 1D
truncated Hilbert transform problem. Due to the existence of
the null space in the truncated Hilbert transform, appropriate
regularization is necessary. To overcome the complexity and
restriction of the existing 2D-TV regularization approach,
this paper proved that 1D generalized TV semi-norm penalty
is more relaxed but still sufficient to guarantee the perfect
recovery. Moreover, by exploring the Bedrosian theorem,
we demonstrated that the computational expensive iterative
reconstruction can be performed at very coarse resolution,
which significantly reduces the computational complexity. The
simulation result shows the proposed algorithm can produce

Fig. 3. Reconstruction images and line profiles with 3D inner organ phantom
and helical cone-beam scanning

high quality reconstruction for both 2D and 3D geometries,
and its computational time can be significantly reduced down
to practical level even for helical cone-beam CT.
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