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Interior Tomography Using 1D Generalized Total Variation. Part II: Multiscale
Implementation∗
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Abstract. To address the classic interior tomography problem where projections at each view extend only
to the shadow of a circular region completely interior to the subject being scanned, previously we
showed that the exact recovery of two- and three-dimensional piecewise smooth images is guaranteed
using a one-dimensional generalized total variation seminorm penalty which allows a much faster
reconstruction. To further accelerate the algorithm up to a level for clinical use, this paper proposes a
novel multiscale reconstruction method by exploiting the Bedrosian identity of the Hilbert transform.
More specifically, we show that the high frequency parts of the one-dimensional signals can be quickly
recovered analytically with the Hilbert transform because of the Bedrosian identity. This implies that
computationally expensive iterative reconstruction need only be applied to low resolution images in
the downsampled domain, which significantly reduces the computational burden. Moreover, even
for incomplete trajectories such as circular cone-beam geometry, we demonstrate that the proposed
multiscale interior tomography approach can be combined with a novel spectral blending method in
order to mitigate cone-beam artifacts from missing frequency regions. We show the efficacy of the
proposed multiscale algorithm using circular fan-beam, helical cone-beam data, and circular cone-
beam geometry. With a graphics processing unit implementation, we demonstrate that the speed of
the algorithm can be significantly accelerated up to the level for clinical use for various acquisition
geometries.

Key words. interior tomography, Hilbert transform, generalized TV, Bedrosian theorem, multiscale decompo-
sition, spectral blending
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1. Introduction. The aim of this paper is to address the classical interior problem, which
is a limited data sampling problem from a two-dimensional (2D) or three-dimensional (3D)
x-ray transform where projections at each view extend only to the shadow of a circular region
completely interior to the subject being scanned. Our object model is continuous, and the
view angle and detector sampling are also continuous. For example, Figure 1 illustrates a
2D circular fan-beam source and detector systems with two types of detector sizes, where the
region of interest (ROI) area of each case is shaded in gray. While the detector in Figure 1(a)
has a large enough size to cover the whole support of the object, the detector in Figure 1(b)
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(a) Full-beam tomography (b) Interior tomography

Figure 1. Full-beam and interior tomography in a 2D circular fan-beam geometry.

is too small to cover the object from any projection view. We call the case in Figure 1(b)
interior tomography or ROI tomography.

Interior tomography is useful in reducing the radiation exposure by limiting the x-ray
aperture for specific organs such as the heart. It has also been investigated to reduce the
x-ray detector size for cost savings. However, due to detector truncation at each view, the
underlying image cannot be reconstructed accurately by analytic methods, and approximate
methods such as sinogram extrapolation method [14] are widely used instead. Nonetheless,
this often introduces bias to the CT number in the reconstructed image.

So far, most of the prior studies [5, 8, 22, 36, 37, 38, 40] have been concerned about ROI
reconstruction problems where the projection data at some view angles are not truncated, so
one can use differentiated backprojection (DBP) to reconstruct the entire ROI starting from
the complete data region. On the other hand, due to detector truncation at all projection
views, our problem is more restricted, and these approaches cannot directly be used. Recently,
it was shown that an ROI image can be reconstructed uniquely from truncated projection data
when the intensity of the subregions inside the ROI is known a priori [6]. However, in general,
it is difficult to know the intensity inside an object. In [15], a continuous domain singular
value decomposition of the finite Hilbert transform operator characterized in [17] was used
to represent an interior image with a linear combination of the eigenfunctions, after which
the null space compensation was performed by using a more general set of prior subregion
knowledge. Moreover, Katsevich, Katsevich, and Wang [18] proved the general uniqueness
results for the interior problem and provided stability estimates. On the other hand, using 2D
or 3D total variation (TV), the authors in [13, 34, 35] showed that a unique reconstruction is
possible if the images are piecewise constant, linear, or smooth. In these works, an iterative
procedure to reconstruct the interior images requires multiple applications of forward and
backward projections; thus, its computational complexity prohibits its routine use clinically,
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2454 M. LEE, Y. HAN, J. P. WARD, M. UNSER, AND J. C. YE

even though highly optimized implementations of these iterative approaches are currently
available for clinical use [27].

In our previous work [32], we revisited the classical interior problem, where projections at
each view extend only to the shadow of a circular region completely interior to the subject
being scanned, and the object model is continuous, and the view angle and detector sampling
are also continuous. In particular, we were also interested in reconstructing images that are
piecewise smooth; i.e., the domain where the image is defined can be decomposed into a finite
number of subdomains such that the image is a smooth function on each piece. However,
our approach generalized the ideas developed in [13, 34, 35] with a simplified one-dimensional
(1D) formulation on the chord lines, and as a result, we were able to perfectly reconstruct
new classes of functions. In particular, we showed that we can reconstruct any image that
is a generalized L-spline along a collection of chord lines passing through the ROI [32]. For
example, we can reconstruct images whose 1D restrictions are nonpolynomial exponential
B-splines, which were not covered in [13, 34, 35].

To further accelerate the algorithm up to a level for clinical use, this paper proposes a
multiscale reconstruction method that sequentially reconstructs the low frequency and high
frequency parts of a 1D signal at different resolutions. Related frequency-split reconstruction
methods have been used in the x-ray CT community for various purposes, such as artifact
reduction from redundant data [28] or metal artifact reduction [20]. However, in our case,
the frequency-split is a natural by-product of the Hilbert transform property, which can be
used for a more efficient numerical implementation. More specifically, we show that the high
frequency part of the signal can be recovered analytically using a one-step Hilbert transform
thanks to the powerful Bedrosian identify in the Hilbert transform of the product of two
functions [19]. Therefore, computationally expensive iterative reconstruction need only be
performed to reconstruct the low frequency part of the signal after downsampling, which
enables a fast implementation. In addition, the algorithm can be performed in parallel for
each chord, which lends itself for easy implementation using a graphics processing unit (GPU).

Yet, there are many CT acquisition trajectories which are not complete in terms of Tuy’s
condition [31]. For example, circular cone-beam CT has been widely used in practice because
the trajectory can be easily implemented in hardware, but the trajectory is not complete, and
the chord lines are not defined for whole slices of an object, except for the midplane. This
results in cone-beam artifacts as the cone angle increases. Accordingly, the direct application
of the proposed multiscale implementation to a circular cone-beam trajectory is not feasible.
To address these technical difficulties, we show that the DBP data on a virtual chord line [36]
can also be represented as a 1D Hilbert transform of an underlying signal that is filtered
through a spatially varying channel with the missing frequency regions. Therefore, to reduce
the cone-beam artifacts, we extend the Fourier blending idea proposed for the half-scan filtered
backprojection (FBP) algorithm [25] to our multiscale interior tomography approach and
provide a novel Fourier domain two-way weighting scheme. The new weighting scheme uses a
bow tie window that combines the multiscale interior tomography results from the horizontal
and vertical directions.

We verify the efficacy of the algorithm using various acquisition trajectories, which show
that a very accurate reconstruction can be obtained quickly on a practical level using the
clinical helical or circular cone-beam CT acquisition geometry.
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This paper is organized as follows. Section 2 provides the mathematical preliminaries
that are the essential components for a 1D formulation of the interior tomography problem.
Section 3 describes the main idea of the proposed algorithm, and the experimental results are
presented in section 4. In section 5, we discuss the results in detail and conclude in section 6.

2. Mathematical preliminaries. In this section, we provide the mathematical preliminar-
ies and review the main idea of our previous work [32].

2.1. Fourier analysis of DBP from a complete trajectory. The main part of this sub-
section is not novel because it has already appeared in [23, 38, 39] to derive the backprojection
filtration (BPF) algorithms. Nevertheless, we repeat it here for self-inclusiveness.

Specifically, for a given object function f(x), its d-dimensional inverse Fourier transform
from the spectrum f̂(ω) is given by

f(x) =
1

(2π)d

∫
dω f̂(ω)ejx·ω,

where d = 2, 3 are for the 2D and 3D tomography problems, respectively. In addition, if
θ denotes the d-dimensional unit vector and a ∈ R

d is the source location, then the x-ray
transform Df maps a function on R

d into the set of its line integrals

(2.1) Df (a,θ) =

∫ ∞

0
dt f(a+ tθ) .

For a given object function f(x) and a given source trajectory a(λ), λ ∈ [λmin, λmax], we now
define the DBP:

(2.2) g(x) =

∫ λ+

λ−
dλ

1

‖x− a(λ)‖
∂

∂μ
Df (a(μ),θ)

∣∣∣∣
μ=λ

,

where [λ−, λ+] ⊂ [λmin, λmax] denotes the appropriate intervals from the source segments
between λmin and λmax, and 1/‖x−a(λ)‖ denotes the distance weighting. Then, the following
theorem holds.

Theorem 2.1. Let the source trajectory a(λ), λ ∈ [λ−, λ+] have no discontinuities. Suppose,
furthermore, x is on the connecting line of the two source positions a(λ−) and a(λ+). Then,
the DBP data in (2.2) can be represented as

(2.3) g(x) =
1

(2π)d

∫
dω f̂(ω)ejx·ωjσ(x,ω, λ−, λ+),

where

σ(x,ω, λ−, λ+) =
1

2
[sgn(α(λ−,x) · ω)− sgn(α(λ+,x) · ω)] ,(2.4)

α(λ,x) =
x− a(λ)

‖x− a(λ)‖ .

Proof. It can be derived from a result in [23, 38, 39].
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(a) (b)

Figure 2. Illustration of the chord line and the PI line. (a) is for the chord line in the circular trajectory,
and (b) is for the PI line in the helical trajectory.

The connecting line between the two sources position is often called a chord line [23, 38, 39].
If the unit vector e along the chord line (in particular, along the directional vector α(λ−,x))
is set as a coordinate axis, then we can find the (d − 1)-dimensional orthonormal basis E⊥

such that V = [e, E⊥] consists of the basis for the local coordinate system at a(λ−). Suppose
(x′,xE⊥) ∈ R

d denotes the coordinate value on the new coordinate system composed of e and
E⊥. Then, the authors in [23, 38, 39] showed that (2.3) can be converted into the following
form:

(2.5) gx
E⊥ (x

′) =
∫

dη

π(x′ − η)
fx

E⊥ (η) := He{fx
E⊥ (x

′)},

where gx
E⊥ (x

′) and fx
E⊥ (x

′) denote the restriction of g(x) and f(x) on a given xE⊥ , respec-
tively, and He denotes the Hilbert transform along the direction vector e of the chord line.
Because HH = −I, we have fx

E⊥ (x) = −He{gx
E⊥ (x)}, which is known as the BPF method

that recovers the object on each chord line by taking the Hilbert transform of the DBP data.
The following are already well-known acquisition trajectories that have one or more sets of
chord lines over the entire object domain:

• 2D fan-beam CT : In 2D circular fan-beam CT shown in Figure 2(a), the chord line
L that passes through x inside the circle is not unique; hence, we can choose multiple
filtering lines shown in Figure 2(a). For example, a vertical chord line that goes through
x is determined by a(λ−) and a(λ+). Similarly, we can use horizontal chord lines. The
redundancy in the choice of chord lines will be exploited later in mitigating cone-beam
artifacts from missing frequency regions in the circular cone-beam trajectory.

• 3D helical cone-beam CT : As shown in Figure 2(b), a helical source trajectory is
expressed as

a(λ) =

(
R cos λ,R sinλ,

h

2π
λ

)T

.

Here, λ is the rotation angle of the x-ray source which is restricted to λ ∈ [λmin, λmax],
R is the distance from the source to the rotation axis, and h is the pitch of the helix.
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Actual trajectory

Virtual trajectory

Actual chord line

Virtual chord line

Actual source

Virtual source

Figure 3. Source trajectories and virtual chord lines. The dark circle is an actual trajectory, and the dark
line is an actual chord line. The set of gray-dotted circles is virtual trajectory, and the dark-dot line is a virtual
chord line.

The pitch of the helix refers to the translation distance along the z-axis during one
rotation. In helical cone-beam CT, if two points a(λ−), a(λ+) on a helical trajectory
are selected where |λ+−λ−| ≤ 2π, the chord line connecting these two points denoted
as Lπ(λ

−, λ+) is called a PI line. Each point x = (x, y, z) in the field of view belongs
to one and only one PI line. Then, we can choose our filtering direction as eπ, the
unit vector along the PI line Lπ.

2.2. Fourier analysis of DBP from an incomplete trajectory. Even though the circular
cone-beam trajectory is not a complete trajectory, in the following, which is our novel contri-
bution, we will show that a similar Hilbert transform relationship holds true for the virtual
chord lines [9], but the frequency content on DBP on the virtual chord line has a missing
frequency region. The existence of a missing frequency region in an incomplete trajectory
has been well studied [1, 3, 4, 7, 9, 10, 24, 26, 30, 33] since the work by Grangeat [12], and
our contribution here is Theorem 2.2, which is essential for deriving the multiscale interior
tomography reconstruction algorithm.

The concept of virtual chord lines appeared originally in [9, 36] to address circular cone-
beam reconstruction. Figure 3(a) shows a virtual chord line coordinate system, which is
defined by the virtual chord line direction e, the z-axis ez, and their perpendicular axis e⊥.
The coordinate system consists of both an actual trajectory and a set of virtual trajectory
planes for the midplane and the off-midplane, respectively. Using the modified coordinate, a
point x ∈ R

3 in the cylinder is now defined as follows:

(2.6) x = a0 + x′e,

where x′ refers to the position of x along the chord line and the center point of a virtual chord
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line a0; a virtual source location av(λ) and the direction vector e of a virtual chord line are
defined as follows:

a0 =
1

2
(a(λ+) + a(λ−)) + zez,(2.7)

av(λ) = a(λ) + zez,(2.8)

e =
a(λ+)− a(λ−)

‖a(λ+)− a(λ−)‖ ,(2.9)

where z denotes the z-coordinate of the point x in the Cartesian coordinate system. In this
virtual chord line system, the Cartesian coordinate x = (x, y, z) is now converted to a new
coordinate (x′, y′, z) such that

(2.10) x = x′e+ y′e⊥ + zez.

We also denote the corresponding spatial frequency as (ωx′ , ωy′ , ωz). Then, the following
theorem shows that a similar Hilbert transform relationship holds true for the virtual chord
lines.

Theorem 2.2. Let the source trajectory a(λ), λ ∈ [λ−, λ+], have no discontinuities. Sup-
pose, furthermore, position x is on the virtual chord line that connects the two virtual source
positions av(λ

−) and av(λ
+) and has the coordinate values (x′, y′, z) on the virtual chord line

coordinate system (2.10). Then, the DBP data in (2.2) can be represented as

(2.11) g(x) =
1

2π

∫ ∞

−∞
dωx′ φ̂(ωx′ , y′, z)j sgn(ωx′)ejωx′x′

,

where

φ̂(ωx′ , y′, z) :=
1

(2π)2

∫
dωx′

∫
ωz∈{(ωx′ ,ωy′ ,ωz)/∈N (z)}

dωz f̂(ωx′ , ωy′ , ωz)e
j(y′ωy′+zωz) ,

and the missing frequency set N (z) on z is given by

(2.12) N (z) =

{
(ωx′ , ωy′ , ωz) | − 1

x′ +
√
R2 − (y′)2

≤ ωx′

zωz
≤ 1√

R2 − (y′)2 − x′

}
,

which trivially becomes an empty set when z = 0.
Proof. See Appendix A.
Let gx

E⊥ (x
′) and φx

E⊥ (x
′) denote the 1D restriction of g(x) and φ(x), respectively, for a

given (y′, z) coordinate, where φ(x) denotes the 1D inverse Fourier transform of φ̂(ωx′ , y′, z)
along ωx′ . Since j sgn(ωx′) is the Fourier transform of −1/(πx′), (2.11) can be converted into
the following:

(2.13) gx
E⊥ (x

′) =
∫

dη

π(x′ − η)
φx

E⊥ (η) := He{φx
E⊥ (x

′)},

where He denotes the Hilbert transform along the virtual chord line. Therefore, even though
φx

E⊥ (x) in (2.13) is not the same as fx
E⊥ (x) in (2.5), the Hilbert transform relationship (2.5)

is still valid with respect to φ̂(·) thanks to (2.13), which is one of the most important findings
that allows us to propose a unified multiscale interior tomography approach.
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2.3. Interior tomography using generalized 1D TV. With a slight abuse of notation, in
the following, we denote g(x) := gx

E⊥ (x) and f(x) = fx
E⊥ (x) (or f(x) = φx

E⊥ (x) for the case
of circular cone-beam geometry).

If the DBP data g(x) are available for the support of object f(x) seen in Figure 1(a), the
reconstruction can simply be done by performing the inverse Hilbert transform. However, in
the case of an interior tomography problem, the detector is truncated, as seen in Figure 1(b);
thus the DBP data are only available within the ROI. The main technical difficulty of such
a truncated Hilbert transform is the existence of the null space [17]. More specifically, there
exists the nonzero fNul(x) such that

HfNul(x) = 0, x ∈ (e1, e2),

where (e1, e2) denotes the ROI. Indeed, fNul(x) can be expressed with the appropriate DBP
data ψ(x) outside of the ROI such that

(2.14) fNul(x) = − 1

π

∫
R\(e1,e2)

dx′

x− x′
ψ(x′).

Note that the null space signal fNul(x) in (2.14) is differentiable in any order due to the removal
of the origin in the integrand. Accordingly, a required interior tomography formulation finds
an appropriate regularization term that suppresses the signal belonging to the null space of
the truncated Hilbert transform by exploiting the infinite differentiability of fNul.

Instead, our previous work [32] introduced a generalized 1D TV penalty minimization as
a simplification of multidimensional TV in [13, 34, 35]. For completeness, we repeat the main
ideas of [32]. Specifically, we consider a regularization with respect to a Fourier multiplier
operator L that is defined on L2(R) and satisfies two conditions. First, for any interval
E = (e1, e2) ⊂ R, we require L to map C∞

c (E) to Cc(E). Second, the null space of L should
consist of entire functions. An example of such an operator is a constant coefficient differential
operator

(2.15) L := aKDK + aK−1D
K−1 + · · ·+ a1D+ a0,

where K ≥ 1, D denotes the distributional derivative on R, and each ak is a real number. In
this example, the finite-dimensional null space consists of linear combinations of exponential
functions multiplied by polynomials. For an operator L and an interval E ⊂ R, we formally
define the generalized TV seminorm

(2.16) ‖f‖TV (L;E) := ‖Lf‖L1(E),

which is valid when Lf ∈ L1(E). In order to ensure that this seminorm is valid for a larger
class of functions, we use the dual formulation

(2.17) ‖f‖TV (L;E) := sup
h∈Ch

∫
E
Lf(x)h(x)dx,
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where Ch = {h ∈ C∞
c (E), ‖h‖L∞ ≤ 1}. Then, the following is the main theoretical result

in [32].
Theorem 2.3 (see [32]). Let f0(x) be a generalized L-spline such that

Lf0(x) =

N∑
n=1

anδ(x− xn)

on E. Then, the minimization problem

(2.18) argmin
f

‖f‖TV (L;E) subject to Hf0(x) = Hf(x), x ∈ E,

has the unique solution equal to f0(x).

2.3.1. Optimization framework. For reconstruction under generalized TV, our previous
paper [32] used projections onto convex sets (POCS) algorithm with five constraint sets. Note
that this optimization framework is based on continuous formulation in the function space;
however, the algorithm can be implemented in a discrete setting for practical applications.

Specifically, the constraint sets {Cj}5j=1 are given by

C1 = {f(x) ∈ L2(R) : f(x) = 0, x /∈ (b1, b2)},(2.19a)

C2 = {f(x) ∈ L2(R) : Hf(x) = g(x), x ∈ (e1, e2)},(2.19b)

C3 = {f(x) ∈ L2(R) : ‖f‖TV (L;E) ≤ τ},(2.19c)

C4 =

{
f(x) ∈ L2(R) :

∫ b2

b1

dx f(x) = cf

}
,(2.19d)

C5 = {f(x) ∈ L2(R) : f(x) ≥ 0, x ∈ (b1, b2)},(2.19e)

where (b1, b2) denotes support of the object, and cf can be obtained from Df (a,θ). The
additional constraint beyond the necessity in proving the uniqueness in Theorem 2.3 is to
make the algorithm converge faster. The optimized solution of f(x) can then be solved
by POCS. More specifically, if PCj is the orthogonal projector onto the convex set Cj for
j = 1, . . . , 5, the iteration of the POCS algorithm can be described as

(2.20) fk(x) = PC5PC4PC3PC2PC1fk−1(x)

with some arbitrary initialization. This algorithm converges to one element of the intersection
of the constraints if the intersection is not empty.

Here, the projections to the constraints C1 and C5 are quite straightforward, and we can
just impose the support constraint and the nonnegativity for the intermediate reconstruction.
For the projection on the constraints C2 and C4, we can use the finite inverse Hilbert transform
formula [19]. More specifically, we have

(2.21) f(x) =
1

π

1√
(x2 − x)(x− x1)

[∫ x2

x1

dx′
1

x′ − x
g(x′)

√
(x2 − x′)(x′ − x1) + cf

]
,

where x1, x2 are any points on L(λ−, λ+) satisfying (x1, x2) ⊃ (b1, b2).D
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Now, the most complicated step is to project on the generalized TV ball. It turns out
that the projection on C3 from a point f0 can be implemented as the following denoising
step [2, 11]:

(2.22) f̃ = PC3(f0) = argmin
f∈Cf

{‖f − f0‖22 + 2λ‖f‖TV (L;E)

}

for an appropriate Lagrangian parameter. In (2.22), Cf = Bl,u is a bound constraint:

(2.23) Bl,u = {x : l ≤ x ≤ u}.

Using the definition of the generalized TV seminorm in (2.17), the optimization problem is
then given by

(2.24) sup
h∈Ch

min
f∈Cf

{‖f − f0‖22 + 2λ〈f,L∗h〉} ,
where the adjoint L∗ is

(2.25) L∗ = (−1)KaKDK + (−1)K−1aK−1D
K−1 + · · · − a1D+ a0.

The inner minimization problem can be solved by

(2.26) f̃ = PCf
(f0 − λL∗h),

where PCf
is the projection onto Cf = Bl,u. If we substitute f̃ into (2.24), then (2.24) is

reformulated as [2]

(2.27) min
h∈Ch

{−‖PCf
(f0 − λL∗h)− (f0 − λL∗h)‖22 + ‖f0(x)− λL∗h(x)‖22

}
,

and considering the objective function of (2.27) as q(h), the gradient of q(h) is

∇q(h) = 2λLPCf
(f0 − λL∗h).

Then, the optimal solution h̃ can be obtained by the gradient projection method

hn = PCh

(
hn−1 − 2

L(q)
λLPCf

(f0 − λL∗hn−1)

)

when PCh
denotes the projection on the convex set Ch, and L(q) denotes the Lipschitz constant

of ∇q(h). For the superlinear convergence rate, we implement the algorithm based on the
Nesterov method [2, 21] as described below in Algorithm 1. Here, L(q) denotes the Lipschitz
constant of ∇q(h), which is upper-bounded by 16λ2 [2], and N is the number of the iteration.
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Algorithm 1. FGP(f0, λ, L(q), N).

h0 = h′1 = 0
t1 = 1
for n = 1, . . . , N do

hn = PCh

(
h′n − 2

L(q)λLPCf
(f0 − λL∗hn−1)

)
tn+1 =

1+
√

1+4t2n
2

h′n+1 = hn +
(
tn−1
tn+1

)
(hn − hn−1)

f̃ = f0 − λL∗hN
return f̃

3. Main contribution.

3.1. Multiscale decomposition using the Bedrosian identity. The interior tomography
using a 1D formulation described so far can make the optimization problem much simpler
than the interior tomography using high-dimensional TV [13, 34, 35]. This was the main
implementation approach taken in our previous work [32]. However, the method was still
computationally expensive for practical use.

To accelerate the reconstruction speed to a level for clinical use, in this section, we pro-
pose a multiscale decomposition method by exploiting the powerful Bedrosian identity in the
Hilbert transform. This idea is novel and was not addressed in our previous work [32]. More
specifically, we assume that the object f(x) is decomposed as

f(x) = fL(x) + fH(x),

where fL and fH denote the appropriate low and high frequency components of f , respectively,
and fL is well modeled as an L-spline for some Fourier multiplier operator L. Under this
assumption, our multiscale interior tomography problem is formulated as follows:

(3.1) min
fL

‖fL‖TV (L;E) subject to g = H(fL + fH) .

It is important to note that (3.1) is more realistic than (2.18) because images usually have
textures or details that are often difficult to capture by a generalized TV. Moreover, even if
the texture can be modeled as a higher order TV, the formulation in (3.1) still enables us to
use a computationally more efficient lower order TV, as long as the remaining high frequency
components can be reconstructed separately. In fact, such separate reconstruction of a high
frequency component can be done accurately thanks to the Bedrosian theorem of the Hilbert
transform.

Theorem 3.1 (see [19]). Let w, f ∈ L2(R) be low-pass and high-pass signals such that the
Fourier transform of w(x) vanishes for |ω| > ω0, with ω0 > 0, and the Fourier transform of
f(x) vanishes for |ω| < ω0. Then, we have

(3.2) H{w(x)f(x)} = w(x)H{f(x)}.
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In order to appreciate the role of the Bedrosian theorem for the truncated Hilbert trans-
form problem, note that the truncated DBP data can be represented as the product of the
indicator function w(x) that represents the truncation support and the untruncated DBP data
f(x) that corresponds to the Hilbert transform of the unknown signal. Then, (3.2) informs
us that we can analytically recover the high frequency component fH which does not overlap
with the spectrum of w(x).

More specifically, after reconstructing fL(x) by solving (3.1), the residual signal gH(x) =
g(x) − HfL(x) can be obtained, which is equal to HfH(x). Because we know gH(x) only in
E = (e1, e2), this can be considered as a multiplication of the rectangular window w(x) =
[e1, e2] corresponding to the indicator function of the ROI whose spectral band is usually at
low frequency ranges. If the spectral support of gH(x) does not overlap with that of w(x),
according to the Bedrosian theorem, we have

(3.3) w(x)gH(x) = w(x)HfH(x) = H{w(x)fH(x)}.

From (3.3), fH(x) can be analytically solved by

(3.4) fH(x) =
−H{w(x)gH (x)}

w(x)
, x ∈ E,

which corresponds to applying the inverse Hilbert transform to the truncated residual DBP
data and dividing the result by the window.

Figure 4 shows a step-by-step illustration of the multiscale decomposition method on a
chord line. First, Figure 4(a) shows the low resolution signal fL(x) calculated by solving
(3.1). Figure 4(b) shows the Hilbert transform of fL(x), whereas the gray dotted line is the
original DBP data. Now, we compute the high-frequency component gH of the DBP data as
the residual signal between the original DBP data and HfL(x). Then, by taking the inverse
Hilbert transform of gH(x), we can obtain the high frequency signal fH(x) shown in Figure
4(c). By summing up the signals in Figures 4(a) and (c), the final full-resolution reconstruction
is obtained in Figure 4(d).

Note that (3.1) needs to be solved using an iterative method, and we use the POCS algo-
rithm. However, the POCS reconstruction method using TV constraints often exhibits slow
convergence in recovering high frequency signals. Interestingly, the multiscale decomposition
from the Bedrosian identity also provides a remedy for this because an iterative approach can
be used to recover only the low frequency component fL(x), and the iterative recovery of fL
can be further accelerated by downsampling. More specifically, for a given ROI window w(x)
with the bandwidth of ω0, the measured DBP data are low-pass filtered with the bandwidth
ω0 to obtain gL (see Figure 5). Because the signal content of gL is now low-passed, gL can
be downsampled without aliasing at an appropriate downsampling factor. Then, POCS is
applied to obtain a reconstruction in a downsampled domain, which is then upsampled to
the original resolution to obtain the low frequency reconstruction fL. The downsampling and
upsampling procedure can be easily implemented by wavelet decomposition and reconstruc-
tion. Specifically, we should use the matched wavelets to the generalized TV operator L in
(2.15). For example, if we use the first order TV operator (which is the case in our numerical
experiments), the matched wavelet is represented by the Haar wavelet. Note that the com-

D
ow

nl
oa

de
d 

11
/0

4/
15

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2464 M. LEE, Y. HAN, J. P. WARD, M. UNSER, AND J. C. YE

−300 −200 −100 0 100 200 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

FOV

(a) fL(x)

−300 −200 −100 0 100 200 300

−0.4

−0.2

0

0.2

0.4

0.6 FOV

(b) HfL(x)

−300 −200 −100 0 100 200 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

FOV

(c) fH(x)

−300 −200 −100 0 100 200 300
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

FOV

(d) I(x) = fL(x) + fH(x)

Figure 4. Step-by-step reconstruction procedure along a PI line.

Figure 5. Flowchart of the proposed multiscale reconstruction approach for the interior tomography problem.

putationally expensive POCS operation is implemented in a downsampled domain, which is
computationally much more efficient and provides faster convergence.

3.2. Spectral blending for minimizing the missing frequency. Having shown that the
truncated Hilbert transform can be solved using a multiscale framework because of the
Bedrosian theorem, the aim in this section is to show that a multiscale framework is fea-
sible even for incomplete trajectories. This can be done by our spectral blending technique
that minimizes the difference of φ(·) in (2.13) and f(·) in (2.5). This part was inspired from the
Fourier blending idea in [25] for half-scan imaging, but the detailed mathematical derivation
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(a)

(b) (c)

(d) (e)

Figure 6. The missing frequency region. (a) The top view of a point x = (x, y, z) and a source trajectory.
The blue line indicates the horizontal directional virtual chord line between av(λ

−
1 ) and av(λ

+
1 ), and the red line

denotes the vertical directional virtual chord lines between av(λ
−
2 ) and av(λ

+
2 ). (b)–(c) The missing frequency

region for the horizontal and vertical directions, respectively. (d)–(e) The missing frequency region for the
diagonal directional virtual chord lines that correspond to the yellow and green lines, respectively.

is novel.
Accordingly with Theorem 2.2, the missing frequency region in the missing frequency set

depends on the filtering direction. However, Theorem 2.2 also implies that at any point x, if
the missing frequency regions for different filtering directions are appropriately combined, we
can minimize the artifacts from the missing frequency regions. This section describes this in
detail.

Suppose that we are interested in recovering a voxel at x in Figure 6(a) from the DBP
data from the actual source locations a(λ), λ ∈ [λ+1 , λ

−
1 ]. In Figure 6(a), av(λ) denotes the

corresponding virtual source location. Then, (2.12) informs us that the missing frequency
region for a given z is given by

(3.5)

{
(ωx, ωy, ωz) | − zωz

x+
√
R2 − y2

≤ ωx ≤ zωz√
R2 − y2 − x

}
,

where zωz ≥ 0; otherwise, the missing frequency region is given by

(3.6)

{
(ωx, ωy, ωz) | zωz√

R2 − y2 − x
≤ ωx ≤ − zωz

x+
√
R2 − y2

}
.

Note that the missing frequency region for a given slice at z is also dependent on x and y.
However, if z is close to the midplane (i.e., z � 0), the missing frequency band vanishes. Thus,
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(a) (b) (c) (d)

Figure 7. The common missing frequency region according to the filtering directions. (a), (b), and (c)
indicate the missing frequency region according to the number of missing frequency regions with different filtering
directions. The dark region denotes a common missing frequency region, respectively. (d) Overlapped illustration
of the common missing frequency regions.

we are interested in slices far from the midplane, i.e., x z, y  z. In this case, we have{
(ωx, ωy, ωz) | |ωx| ≤ |zωz|

R

}
.

The resulting missing frequency region is illustrated in Figure 6(b). Similarly, the missing
frequency region can be calculated for the vertical chord line direction between av(λ

−
2 ) and

av(λ
+
2 ), and as shown in Figure 6(c), the corresponding missing frequency region can be

written as {
(ωx, ωy, ωz) | |ωy| ≤ |zωz|

R

}
.

For diagonal directions along the yellow and green lines in Figure 6(a), the corresponding
missing frequency region is described in Figures 6(d)–(e), respectively.

In Figures 7(a)–(c), the missing frequency regions from two, four, and infinitely many
filtering directions are combined. Specifically, Figure 7(a) is constructed by combining the
missing frequency regions from the two filtering directions, along the horizontal and vertical
directions. In this case, the common missing frequency region is a dark square centered at the
origin. In Figure 7(b), the frequency content from four directions (the horizontal, vertical, and
two diagonal filtering directions) is combined. The common missing frequency region then
corresponds to the dark hexagon centered at the origin, and the area of the common region
is smaller than the missing region for the two directions in Figure 7(a). The minimum size
of the common missing frequency region can be obtained by combining all angular filtering
directions, and the resulting missing region should be circular, as shown in Figure 7(c). When
the common missing frequency regions for Figures 7(a)–(c) are overlapped, all the common
regions are included in the square obtained by the two-direction common missing frequency
region shown in Figure 7(d). Note that the existence of the common missing frequency regions
implies that the information within the common frequency cannot be recovered. However,
except for the common frequency regions, if we have freedom to use the frequency contents
of the reconstructions from the multiple filter directions, there is hope to recover the missing
signal contents, which would not be possible using just a single filter direction.

D
ow

nl
oa

de
d 

11
/0

4/
15

 to
 1

28
.1

78
.4

8.
12

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INTERIOR TOMOGRAPHY: MULTISCALE IMPLEMENTATION 2467

(a) (b) (c)

(d) (e) (f)

Figure 8. 3D common missing frequency regions at two x’s with different z’s. The first and second columns
represent the common missing frequency regions for the 2-direction and infinite filtering direction, respectively.
The last column illustrates the overlaps of the two missing frequency regions. The z2 corresponding to the
second row is further from the midplane than z1 of the first row.

Specifically, consider the quadrangular pyramids and cones in Figures 8(a)–(d) (and Fig-
ures 8(b)–(e)) that correspond to the 3D common missing frequency regions at two different z
locations when two (resp., multiple) filtering directions are combined. Note that the missing
frequency regions have different geometries depending on the positions of z. Specifically, as
z is placed far away from the midplane, the bigger the missing frequency region becomes, as
shown in Figure 8. Fortunately, the shapes of the missing frequency regions are still the same
regardless of the z positions, even though their sizes are different. This leads to the spatially
invariant spectral blending scheme that results in the minimized missing frequency regions.
More specifically, for the case of spectral blending using two orthogonal filtering directions,
we may want to use the frequency region corresponding to the shaded area of the bow tie
in Figure 9(a) for the reconstruction images from the horizontal filtering line. Similarly, we
can use the bow tie in Figure 9(b) for reconstructing images from the vertical filtering line.
Because the shape of the missing region remains the same, it is possible to blend the missing
frequency region like Figure 9(c) by using a 2D Fourier transform at each slice. Then, the
resulting missing frequency region becomes equal to Figures 8(a)–(d), which is the minimum
size missing frequency region we can expect from the two distinct filtering directions.

The step-by-step procedure of spectral blending can simply be expressed as Algorithm 2
and is shown in Figure 10. Our multiscale interior tomography algorithm is used for both
horizontal and vertical directional reconstructions, and they are blended into one image using
spectral weighting with the bow tie window.

4. Experimental results. The proposed method was verified using numerical experiments.
We implemented the proposed multiscale interior tomography algorithm for 2D fan-beam CT,
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(a) (b) (c)

Figure 9. Spectral weighting function for two orthogonal filtering directions. (a)–(b) Spectral weighting for
the image reconstructed using horizontal and vertical chord lines, respectively. The spectral components in the
shaded areas are used. (c) Composite spectral weighting.

Algorithm 2. Spectral blending.

1: Reconstruct the objects φ(x) and φ⊥(x) with the orthogonal direction of the chord line,
respectively.

2: For each slice, perform the 2D Fourier transform

φ̂(ω) = F{φ(x)}, φ̂⊥(ω) = F{φ⊥(x)}.

3: Reconstruct a final object f̃(x) by performing the spectral blending such that

f̃(x) = F−1(Wφ̂(ω) + (1−W )φ̂⊥(ω)).

3D helical cone-beam CT, and 3D circular cone-beam CT. To demonstrate that the algorithm
is very practical for clinical applications, all the numerical experiments were performed using
typical clinical CT geometry parameter settings.

In the POCS algorithm, we need the boundary of an object support, but the exact bound-
ary is hardly known in real scanning cases. Thus, for a realistic simulation, we assumed that
only the maximum width and height of the body (Wbody, Hbody) in the transverse planes are
known, and then the approximate boundary is defined as an ellipse with a bigger width and
height than that of Wbody and Hbody. The width and height of the ellipse are indicated as
Wellipse and Hellipse in

Wellipse =Wbody + Lextension,(4.1a)

Hellipse = Hbody + Lextension(4.1b)

with the positive real number Lextension. As in Figure 11, we can define ellipses with various
Lextension. In some cases, the ellipse could not cover the whole support, such as the arms. In
the reconstruction simulation of a circular fan-beam and helical cone-beam CT, we used the
ellipse boundary when Lextension was 60 mm.

4.1. 2D fan-beam CT. The first reconstruction result was obtained from a 2D circular
fan-beam projection, in which the projection data at each view were truncated. To cover the
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(a) (b) (c)

Figure 10. ROI tomography reconstruction results using (a) BPF, (b) the proposed multiscale reconstruction
method along the horizontal (φ(x)) and vertical (φ⊥(x)) filter directions, and (c) the spectral blending results
from the two filtering directions.

Figure 11. Approximate ellipse boundary.

whole ROI area, we chose a set of filtering lines or chord lines along the vertical direction.
The sampling distance on the chord line is the same as the reconstruction grid size. Even if
the chord line covers the whole object, the DBP data are necessary only for the ROI because
the DBP outside the ROI cannot be computed correctly due to detector truncation. For the
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(a) Ground truth (b) fL (c) fH (d) fL + fH

Figure 12. 2D fan-beam reconstruction. For the simulation, the K of the L is 1, and the iteration number
of the POCS is 100. The l and u are 0 and 0.060442, respectively, and the λ is 0.001, and N is 20. The
depth of the multiscale implementation is 2. (a) Ground truth, (b) low frequency signal reconstruction, (c) high
frequency signal reconstruction, and (d) the final reconstruction result.

simulation, we used a 2D inner organ phantom, as shown in Figure 11, which is 512×512 in size
with a 1×1 mm2 size pixel. The number of detectors in the array was 380 with a 1 mm pitch,
and the number of views was 1200. The distance from the source to the rotation axis was 800
mm, and the distance from the source to the detector was 1400 mm. The radius of the ROI
was about 107 mm, which cannot cover the whole object. For the multiscale implementation,
we used the first order operator L in (2.15), which corresponds to the conventional TV penalty.
The iteration number of the POCS was 100. For Algorithm 1, the l and u in (2.23) were 0
and 0.060442, respectively, for the inner organ phantom, and the λ was 0.001, and N was 20.
For the multiscale implementation, the depth of Haar wavelet decomposition was 2.

In Figure 12, the first image in (a) is the original ground truth. Figures 12(b)–(c) show
the low and high frequency reconstruction images, respectively, and the final reconstruction
is shown in Figure 12(d), which is nearly identical to the original image.

4.2. 3D helical cone-beam CT. The second experiment is from a 3D cone-beam projec-
tion with a helical scanning trajectory, where the projections at each view extend only to the
shadow of a cylindrical region completely interior to the subject being scanned. This situation
is important for low-dose cardiac CT imaging using a clinical multislice helical CT.

To cover the whole 3D ROI area, we defined the PI lines shown in Figure 13. First, λ− was
sampled along the helical trajectory such that the increment of a(λ−) along the z-axis should
be shorter than the reconstruction grid size along the z-axis in the 3D Cartesian coordinate
system. Second, λ+min and λ+max were chosen to cover only the ROI, and λ+ was sampled such
that the increment of a(λ+) in the xy-plane should be smaller than the reconstruction grid
size in the xy-plane. Third, the x along the PI line L(λ−, λ+) that connects a(λ−) to a(λ+)
was sampled to cover the object support boundary (b1, b2). The sampling distance on the PI
line should be determined such that the corresponding projection on the xy-plane should be
smaller than the reconstruction grid size in the xy-plane. To calculate the DBP data at x on
L(λ−, λ+), backprojections are required for C(λ−, λ+), and the DBP data are necessary only
for the ROI (e1, e2).

For helical cone-beam simulation, we used two kinds of 3D phantoms: XCAT and inner
organ phantoms. For comparison, we implemented two types of analytic exact cone-beam
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Figure 13. Implementation of helical trajectory.

Transverse Coronal Sagittal

Figure 14. 3D XCAT phantom.

reconstruction methods: the Katsevich-type FBP [16] and BPF algorithm, and the fully
iterative reconstruction method using the 3D TV regularizer. The first result is for the XCAT
phantom, and its resolution was 512× 512× 320 voxels with a voxel size 1×1×1 mm3. Figure
14 shows the transverse, coronal, and sagittal planes of the phantom. The distances from the
source to the rotation axis and from the source to the detector were the same as in the circular
fan-beam simulation. The detector resolution was 400× 109 pixels with a pitch of 1×1 mm2;
thus the radius of the ROI was about 127 mm. For the helical scanning trajectory, the number
of rotations was 3, the helical pitch H was 100 mm, and the number of views was 800 per
rotation. The object was reconstructed in the PI line space first, and the resolution of the PI
line space to cover the ROI was 727×245×339. After reconstructing all the PI lines, the final
reconstruction of about 236 slices was obtained by the regridding process. For the simulation
parameters, the K of the L, the iteration number of the POCS, λ, N , and the depth were all
the same as the fan-beam simulation, and the l and u were 0 and 0.030888, respectively.

Figure 15 shows the reconstruction result in the ROI by FBP, BPF, 3D TV, and the
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Figure 15. Reconstructed images by the truncated helical cone-beam simulation of the 3D XCAT phantom.
For the simulation, the K of the L is 1, and the iteration number of the POCS is 100. The l and u are 0
and 0.0309, respectively, and the λ is 0.001, and N is 20. The depth of the multiscale implementation is 2.
From the first to third columns, each column shows the slice image when the slice number is (a) 84, (b) 130,
and (c) 212, and each row is for the ideal phantom, FBP, BPF, 3D TV, and the proposed method. The last
column shows the cut views indicated by the white line on the images. The number written at the corner of the
reconstructed image shows the RMSE and NRMSE in the Hounsfield unit (HU) scale.
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Transverse Coronal Sagittal

Figure 16. 3D inner organ phantom.

proposed method. From the first to third columns, the first row is for the ideal phantom, and
the second to fourth rows are for the reconstructed images by FBP, BPF, 3D TV, and the
proposed method, respectively. As shown in the images of Figure 15, it is clearly observed
that the FBP images are much darker compared to the original phantom, and the BPF images
are still dark, while the images by our proposed method show almost the same intensity as
the original. Even when comparing the result of the 3D TV method, the proposed method
is competitive. This can also be seen in the cut view, which is the last column of Figure
15. Moreover, the root-mean-square error (RMSE) and normalized root-mean-square error
(NRMSE) values indicated on the images provide clear quantitative evidence.

The second result is for the noisy simulation of the 3D inner organ phantom. Figure
16 shows the transverse, coronal, and sagittal planes of the phantom. To make the noisy
projection data, we assumed the detector measurements have a Poisson distribution, and
the signal-to-noise ratio (SNR) was set to about 30dB in the intensity domain. The helical
CT geometry was the same as before, and the hyperparameters for the proposed interior
tomography algorithm were the same as those for the 2D experiments.

As shown in Figure 17, the FBP and BPF methods still show dark images, and the 3D TV
method and the proposed method recover the images correctly. However, there is a difference
between the 3D TV and the proposed algorithms. Compared to the reconstruction without
truncation, the recovered textures of the proposed algorithm are very similar, which indicates
that the algorithm did not provide unnatural smoothings. On the other hand, the 3D TV
algorithm reduces not only the noise of the image but also the details. The noise reduction
is necessary for some cases, but it can also remove important structures of the image. Our
proposed algorithm conserved the details of the image thanks to the analytic reconstruction
of the high frequency details.

Tables 1 and 2 show the computational time of each process step in the case of the 3D
inner organ phantom simulation. In Table 1, time was measured by increasing the truncation
rate (TR) with a depth of 2, and the TR corresponds to

(4.2) TR =
l − lT
l

× 100%,

where l and lT denote the length of the original and truncated detector, respectively. For
reference, the result in Figure 17 is for the case in which the truncation rate was 60.9%. All
processes were implemented by a GPU to accelerate the reconstruction speed, and a whole
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Figure 17. Reconstructed images by the truncated helical cone-beam simulation of the 3D inner organ
phantom with noise. For the simulation, the K of the L is 1, and the iteration number of the POCS is 100.
The l and u are 0 and 0.0604, respectively, and the λ is 0.001, and N is 20. The depth of the multiscale
implementation is 2. From the first to third columns, each column shows the same (a) transverse, (b) coronal,
and (c) sagittal image, and each row is for full-beam BPF, FBP, BPF, 3D TV, and the proposed method. The
last column shows the cut views indicated by the white line on the images. The number written at the corner
of the reconstructed image shows the RMSE and NRMSE in the HU scale.
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Table 1
Computational time (seconds) by truncation rate for helical cone-beam CT when depth is 2.

Proposed

TR 56.1% 60.9% 65.8%

DBP 14.1 13.7 13.3
Downsampling 0.7 0.6 0.5
fL reconstruction 85.4 170.4 335.1
Upsampling 0.3 0.3 0.2
fH reconstruction 9.1 8.9 8.6
Regridding 2.7 2.5 2.2

Total (236 slices) 112.3 196.4 359.9
Slices/sec 2.102 1.202 0.656

Table 2
Computational time (seconds) by depth for helical cone-beam CT when truncation rate is 60.9%.

3D TV Proposed

Depth 0 1 2

DBP 13.7 13.8 13.7
Downsampling 0 0.4 0.6
fL reconstruction 1418.5 558.5 170.4
Upsampling 0 0.1 0.3
fH reconstruction 8.5 8.4 8.9
Regridding 2.6 2.5 2.5

Total (236 slices) 3141.2 1443.3 583.7 196.4
Slices/sec 0.075 0.164 0.404 1.202

Table 3
Whole workstation environment for simulating the proposed method.

System Specification

CPU Intel Core i7-4700 Haswell Quad-Core 3.40GHz
RAM Samsung 16GB kit (4×4GB) DDR3 PC3-128000, 1600MHz
GPU GeForce GTX TITAN
OS Windows 7 Enterprise with CUDA 5.5

workstation environment is presented in Table 3. Table 1 shows more computational burden
with a more severe truncation due to the increase in the iteration number for convergence.
Because the time for the low frequency reconstruction is the longest compared to all the others,
the total amount of time mainly consists of the low frequency part.

On the other hand, Table 2 shows a reduced computational time with more multiresolu-
tion decomposition. Table 2 also shows the computational time of the 3D TV method. In
Table 2, the computational time of the 3D TV method is quite long because the process for
the 3D helical projection and backprojection is repeated. However, the computation time
of the proposed method is an order of magnitude faster than that of the 3D TV method.
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Moreover, by increasing the depth, the time for the low frequency reconstruction rapidly de-
creases to a practical level. Table 2 confirms that the computational time is quite reasonable
(1.2 slices/second) even for clinical multislice helical CT applications. This is because of the
multiscale decomposition which leads to a dramatic reduction in the reconstruction time.

4.3. 3D circular cone-beam CT. For the circular cone-beam simulation, we also used two
kinds of 3D phantoms which are the same as the helical cone-beam simulation. Again, the
experimental scenario was for the classic interior problem, which is a limited data sampling
problem where projections at each view extend only to the shadow of a cylindrical region
completely interior to the subject being scanned. Moreover, due to the cone-beam artifact,
there exist additional technical huddles in the image reconstruction.

For comparison, we implemented two types of analytic cone-beam reconstruction methods:
the Feldkamp–Davis–Kress (FDK) and BPF algorithm, and the fully iterative reconstruction
method using the 3D TV regularizer. The first result is for the XCAT phantom, which is
equal to the previous one. The distances from the source to the rotation axis and from the
source to the detector were the same as in the circular fan-beam simulation. The detector
resolution was 350 × 640 pixels with a pitch of 1 × 1 mm2; thus the radius of the ROI was
about 94 mm, and the number of views was 1000. The simulation parameters were the same
as in the fan-beam and helical cone-beam cases, except for the iteration number of the POCS,
and λ. In the 3D circular cone-beam CT case, the iteration number of the POCS was 30, and
λ was 0.01 and 0.02 for the inner organ phantom and XCAT phantom, respectively.

Figure 18 shows the reconstruction result in the ROI by FDK, BPF, 3D TV, and the
proposed method. The first row is for the ideal phantom, and the second to fourth rows are
for the reconstructed images by FDK, BPF, 3D TV, and the proposed method, respectively.
Each column represents the 50th, 105th, and 180th slices when the midplane is the 160th
slice. The reconstructed images are similar to the helical cone-beam simulation results, except
that the FDK images are brighter than that of the original phantom. Figure 19 shows the
noisy simulation of the 3D inner organ phantom. The artifact patterns from the existing
reconstruction algorithms were also noticeable, whereas the details of the image are well
conserved by the proposed method.

Table 4 compares the reconstruction time using the conventional 3D TV approach and the
proposed method. All processes were implemented by a GPU to accelerate the reconstruction
speed. The proposed method significantly outperformed the conventional approach by an
order of magnitude acceleration, and it achieved a speed of three slices/second reconstruction.

5. Discussion.

5.1. Comparison with the extrapolation method. To demonstrate the limitation of the
conventional method using sinogram extrapolation, we compared the conventional method
and our proposed method by increasing the Lextension in (4.1). In our POCS implementation,
we used information from the approximate ellipse boundary, and thus in the extrapolation
method, we also used the same approximate ellipse boundary to determine the extension length
of the sinogram. The extrapolation method is sensitive to the extension length; therefore, by
changing the size of the ellipse, the accuracy can be also changed. For extrapolation, we chose
the square root function

√
aξ2 + bξ + c which was used in [29], and from the extrapolated
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Figure 18. Reconstructed images by the truncated circular cone-beam simulation of the 3D XCAT phantom.
For the simulation, the K of the L is 1, and the iteration number of the POCS is 30. The l and u are 0 and
0.0309, respectively, and the λ is 0.02, and N is 20. The depth of the multiscale implementation is 2. From
the first to third columns, each column shows the slice image when the slice number is (a) 50, (b) 105, and (c)
180 when the midplane is the 160th slice, and each row is for the ideal phantom, FDK, BPF, 3D TV, and the
proposed method. The last column shows the cut views indicated by the white line on the images. The number
written at the corner of the reconstructed image shows the RMSE and NRMSE in the HU scale.D
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Figure 19. Reconstructed images by the truncated circular cone-beam simulation of the 3D inner organ
phantom with noise. For the simulation, the K of the L is 1, and the iteration number of the POCS is 30.
The l and u are 0 and 0.0604, respectively, and the λ is 0.01, and N is 20. The depth of the multiscale
implementation is 2. From the first to third columns, each column shows the same (a) Z = 100, (b) Y = 260,
and (c) X = 220 when the midplane is Z = 160, and each row is for full-beam BPF, FDK, BPF, 3D TV,
and the proposed method. The last column shows the cut views indicated by the white line on the images. The
number written at the corner of the reconstructed image shows the RMSE and NRMSE in the HU scale.
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Table 4
Computational time (seconds) for circular cone-beam CT when TR = 65.8% and depth = 2.

3D TV Proposed

Vertical directional BPF 14.3
Vertical directional multiscale reconstruction 33.4
Horizonal directional BPF 13.4
Horizontal directional multiscale reconstruction 33.4
Spectral blending 2.1

Total (320 slices) 1274.4 96.6
Slices/sec 0.251 3.313

(a) Extrapolated FBP (b) Extrapolated BPF (c) Proposed

Figure 20. Error images from the extrapolated projection by FBP, BPF, and the proposed method when
Lextension = 140.

sinogram, the object was reconstructed by FBP and BPF. Figure 20 shows the error images
of the 3D inner organ phantom by extrapolated FBP, extrapolated BPF, and the proposed
method when Lextension was 140 mm, and all images are displayed with the same gray-scale
map. Figures 20(a)–(c) have a similar high frequency error, but the low frequency error
appears only in Figure 20(a)–(b). Figure 21 represents the NRMSE of the reconstructed
result by extrapolated FBP, extrapolated BPF, and the proposed method as the Lextension

increases. When the Lextension was 60 mm, the errors by all methods were similar, but as
the Lextension increased, the extrapolated methods had much bigger errors than that of the
proposed method. As shown in Figures 20 and 21, our proposed method is more stable than
the extrapolation methods.

5.2. Downsampling factor. Note that if the low frequency signal fL(x) is band-limited
with a bandwidth less than ω0, then the corresponding DBP data gL = HfL should have
the same bandwidth. However, for the truncated DBP signal, the converse is not generally
true. More specifically, if we apply a low-pass filter to w(x)g(x) to obtain gL(x) whose
bandwidth is ω0, the recovered signal fL(x) from the truncated Hilbert transform under 1D
TV penalty does not guarantee recovery of all the frequency content of f(x) up to ω0. This
is because our reconstruction method is nonlinear due to the generalized TV penalty to deal
with data truncation. Consequently, the residual signal gH(x) = g(x) − HfL(x) should still
have a lower frequency content below ω0. This indicates that the bandwidth ω0 should be
determined conservatively compared to the linear recovery case. As a rule of thumb, we found
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Figure 21. NRMSE value changes with respect to Lextension.
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Figure 22. Window for interior tomography w(x). (a) is for the large ROI case, and (b) is for the small
ROI case.

that a bandwidth of −65dB is sufficient enough for our purpose of determining the cut-off
frequency ω0.

Furthermore, to suppress the spectral overlap between the window w(x) and gH(x), we
can use a higher order window with a faster decay rate. Accordingly, we used a third order
spline window, as shown in Figure 22. The advantage of using a third order spline rather than
a first or second order spline is that the decay of its spectrum is faster.

Figures 23(a)–(b) show the reconstruction results with a large and small ROI, respectively;
and Figures 23(c)–(d) are the spectrum of w(x) and gH(x) for the large and small ROIs,
respectively. Because the size of the window varies with the size of the ROI, the bandwidth of
the window spectrum varies with the ROI, too. More specifically, a larger w(x) has a smaller
bandwidth. Accordingly, if we set the cut-off frequency ω0 to a bandwidth of −65dB, the cut-
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Figure 23. Interior tomography reconstruction results with various downsampling rates for two kinds of
window sizes. Reconstructed f(x) from (a) a large ROI and (b) a smaller ROI. The spectrum ŵ(ω) and ĝH(ω)
for (c) a large ROI and (d) a smaller ROI. The subscript numbers after f and ĝH represent the downsampling
rate. In (c)–(d), B refers to the Nyquist sampling rate of the original DBP data.

off frequency ω0 of a large ROI is smaller than that of the small ROI shown in Figure 23(c)–(d).
In other words, in the case of a large ROI, we can perform more aggressive downsampling
of the DBP signal for low frequency reconstruction. In Figure 23(c), the cut-off frequency is
about B/16, which means the maximum downsampling rate will be 16, and in Figure 23(d),
the cut-off frequency is larger than B/4, which means the maximum downsampling rate will
be 4. Accordingly, f(x) can be reconstructed well with a downsampling rate of up to 16 in
Figure 23(a), but in Figure 23(b), a downsampling rate of only up to 4 can produce the correct
reconstruction.
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5.3. Role of spectral blending. The spatially invariant spectral blending scheme to deal
with the missing frequency region can be equally applied for FBP or BPF types of algorithms.
In fact, Pack et al. [25] applied a similar spectral blending idea for the FBP-type algorithm
even though the detailed Fourier domain analysis was not fully developed in their original
work.

The proposed interior tomography algorithm for 2D fan-beam CT or 3D helical cone-beam
CT is performed on the actual chord (or PI) lines, so no missing frequency components for the
chord lines exist, and the exact reconstruction is possible at the chord lines. However, in the
reconstructions on the virtual chord lines from the circular cone-beam geometry, the spectral
blending is required to minimize the missing frequency region. Figure 24 shows the results from
the proposed method with and without spectral blending, respectively. Although the profiles
for all results seem to be reconstructed well, the reconstruction using the multiscale interior
tomography in either the horizontal or the vertical direction exhibits streaking artifacts along
the filtering directions. However, the streaking artifacts were reduced by applying spectral
blending, which confirms that spectral blending minimizes the missing frequency regions.

6. Conclusion. The existing iterative method of interior tomography based on 2D or 3D
TV penalties is computationally too expensive to be used clinically because it requires multi-
ple projections and backprojections. To overcome the disadvantage of the existing approaches,
in our previous work, we proposed a 1D generalized TV seminorm penalty that is more re-
laxed but still sufficient to guarantee perfect recovery with significantly reduced computational
complexity.

To further accelerate the algorithm, this paper proposed a multiscale interior tomography
by exploiting the Bedrosian theorem. Thanks to the Bedrosian theorem, high frequency
components of an object can be reconstructed analytically by the Hilbert transform; thus,
only for the low frequency reconstruction, computationally expensive iterative reconstruction
was performed at a very coarse resolution, which significantly reduced the computational
complexity. Moreover, our TV modeling is only for the low frequency signal, which is more
practical in capturing high frequency details that cannot be modeled by the generalized TV.

We further demonstrated that the DBP data from circular cone-beam data have a similar
Hilbert transform relationship on virtual chord lines, but the content is different because of
the missing frequency regions. To deal with additional cone-beam artifacts from incomplete
acquisition geometry, we provided a novel analysis of the missing frequency region using
Fourier domain analysis. Based on the analysis, a spectral blending scheme that weights
the reconstruction from two orthogonal filtering directions was proposed. Accordingly, our
algorithm for circular trajectory consisted of a two-step reconstruction procedure: first the
multiscale interior tomography algorithm with 1D TV penalty on two orthogonal virtual chord
lines and then the spectral blending of two reconstructions from the horizontal and vertical
filtering directions.

The results of the numerical experiments showed that the proposed algorithm can produce
a high quality reconstruction for both 2D fan-beam CT, 3D helical cone-beam CT, and 3D
circular cone-beam CT, and its computational time can be significantly reduced down to a
practical level. Moreover, the spectral blending approach significantly reduced cone-beam and
missing frequency artifacts with minimal increases in the computational complexity.
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Figure 24. 3D inner organ phantom reconstructed results from the proposed method with and without
spectral blending. From the first to third columns, each column shows the slice image when the slice number
is (a) Z = 90, (b) Y = 290, and (c) X = 210 when the midplane is Z = 160, and each row is for the ideal
phantom, 1D TVcol, 1D TVrow, and the proposed method. The last column shows the cut views indicated by
the white line on the images.

Appendix A. Proof of Theorem 2.2.
Proof. Consider an axial view of the circular trajectory in Figure 6(a). Among the various

choices of virtual chord lines, without loss of generality, we consider the horizontal direction
from two virtual source locations av(λ

−
1 ) and av(λ

+
1 ). In this case, we have

α(x, λ−1 ) = c−
[
x+

√
R2 − y2 0 z

]T
, α(x, λ+1 ) = c+

[
x−

√
R2 − y2 0 z

]T
,
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where c− and c+ denote normalization constants to make the corresponding vector unit norm.
Accordingly, sgn(α · ω) can be expressed as

sgn(α(x, λ−1 ) · ω) = sgn
((
x+

√
R2 − y2

)
ωx + zωz

)
,(A.1a)

sgn(α(x, λ+1 ) · ω) = sgn
((
x−

√
R2 − y2

)
ωx + zωz

)
.(A.1b)

Then, the corresponding DBP data can be represented as

(A.2) g(x) =
1

(2π)3

∫
dω ejx·ωf̂(ω)jσ(x,ω, λ−1 , λ

+
1 ),

where σ(x,ω, λ−1 , λ
+
1 ) is defined by

σ(x,ω, λ−1 , λ
+
1 ) =

1

2

[
sgn(α(x, λ−1 ) · ω)− sgn(α(x, λ+1 ) · ω)

]
=

1

2
[sgn(ωx −A) + sgn(ωx −B)] ,

where

A = − zωz

x+
√
R2 − y2

, B =
zωz√

R2 − y2 − x
.

Accordingly, for zωz ≥ 0, σ(x,ω, λ−1 , λ
+
1 ) = 0 when A < ωx < B. Similarly, for zωz < 0,

σ(x,ω, λ−1 , λ
+
1 ) = 0 when B < ωx < A. Otherwise, σ(x,ω, λ+1 , λ

−
1 ) = sgn(ωx). This leads to

the following:

(A.3) σ(x,ω, λ+1 , λ
−
1 ) =

{
0 if (ωx, ωy, ωz) ∈ N (z),

sgn(ωx) otherwise,

where the missing frequency set N (z) on a slice at z is given by

N (z) =
{
min{A,B} ≤ ωx ≤ max{A,B}}

=

{
(ωx, ωy, ωz) | − 1

x+
√
R2 − y2

≤ ωx

zωz
≤ 1√

R2 − y2 − x

}
,(A.4)

where the last equality comes from considering both zωz > 0 and zωz < 0. For z = 0, the
missing frequency region is reduced to a null set. Accordingly, (A.2) can be simplified as

g(x) =
1

2π

∫ ∞

−∞
dωx φ̂(ωx, y, z)j sgn(ωx)e

jxωx ,

where

φ̂(ωx, y, z) :=
1

(2π)2

∫
dωy

∫
ωz∈{(ωx,ωy,ωz)/∈N (z)}

dωz f̂(ωx, ωy, ωz)e
j(yωy+zωz) .
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Now, the remaining part of the proof is to show that this holds for the e of the arbitrary
chord line. This can be done simply by changing the expression in (A.4) as well as the integral
representation using the virtual coordinate values (x′, y′, z) defined in (2.10):

N (z) =

{
(ωx′ , ωy′ , ωz) ∈ R | − 1

x′ +
√
R2 − (y′)2

≤ ωx′

zωz
≤ 1√

R2 − (y′)2 − x′

}

and

g(x) =
1

2π

∫ ∞

−∞
dωx′ φ̂(ωx′ , y′, z)j sgn(ωx′)ejωx′x′

,

where

φ̂(ωx′ , y′, z) :=
1

(2π)2

∫
dωy′

∫
ωz∈{(ωx′ ,ωy′ ,ωz)/∈N (z)}

dωz f̂(ωx′ , ωy′ , ωz)e
j(y′ωy′+zωz).

This concludes the proof.
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