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ABSTRACT

In this paper, we propose to re-size images using an

oblique projection operator instead of the orthogonal one in

order to obtain faster, simpler, and more general algorithms.

The main advantage is that it becomes perfectly feasible to

use higher order models (e.g, splines of degree n≥3). We

develop the theoretical background and present a simple and

practical implementation procedure that uses B-splines.

Experiments show that the proposed algorithm consistently

outperforms the standard interpolation method and that it

essentially provides the same performance as the optimal

procedure (least squares solution) with considerably less

computations.

I. INTRODUCTION

Image scaling (magnification and reduction) is an

important operation in digital image processing. For

example, resolution conversion is required on a routine basis

for medical imaging, multimedia, and digital photography.

The standard interpolation approach is to fit the digital image

with a continuous model and resample this function on a

new sampling grid [1]. Nearest neighbor and bilinear

interpolation are simplest and fastest, but they produces

images which are either blocky or over-smoothed. Better

results can be obtained by using higher order models.

However, these interpolation methods are sub-optimal since

they are not designed to minimize information loss.

Recently, Unser et al. proposed a minimum loss image

scaling algorithm which applies a continuously-defined

prefilter prior to sampling [2]. This algorithm performs the

orthogonal projection of the scaled image into a given spline

subspace and provides the minimum error approximation.

However, it is difficult to obtain a practical numerical

implementation as the order of splines increases (n>1).

In this paper, we extend this approach by using oblique

projection operators instead of orthogonal ones.  Our

primary motivation is to design faster and simpler algorithms

without sacrificing performance.  In particular, we show that

we can obtain almost the same performance as in the

orthogonal case if we use the same approximation space as

before but a much simpler prefilter (box function). In

addition, we can also obtain exact implementation formulas

for higher order spline models (n>1). Finally, we note that

the present theoretical formulation is general enough to

include both interpolation and least squares methods as

particular cases.

II. PROJECTION-BASED IMAGE RESIZING

A. Basic Principle of the Algorithm

Generally, we can re-size an image (or volume) by

successive 1-D processing along the several dimensions of

the data. Thus, the mathematical problem reduces to that of

re-sizing a one-dimensional signal s k k N( ), ,= … −0 1. For

our purposes, it is advantageous to think of this process in

terms of the following paradigm:

(i) The discrete one-dimensional data set s k( ) is fitted

with a continuously-defined function g x( )  that provides an

exact interpolation; that is, such that g x s k
x k

( ) ( )= = .

(ii) The scaling transformation, which is a mapping from

L2 into itself, is applied to the function g x( ) . This yields the

continuously-defined rescaled function f x g x a( ) ( / )=
where a is the scaling factor.

(iii) The function f x( ) is resampled at the integers

(standard approach), or alternatively, is represented by an

appropriate approximation of it in a given sampling space

(new approach).

The re-sizing method that we propose here only differs

from the standard interpolation approach by the way in

which we implement step (iii). Instead of a straightforward

re-sampling, we will approximate f x( )  by its projection f(x)

into a given Hilbert space V( )ϕ . The re-sized digital signal

will then correspond to the samples of f(x); this projected
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function may be thought off as the "aliasing-free" version of

f x( ).

B. Continuous/Discrete Signal Representation

We choose to represent our signals in the space

V L( )ϕ ⊂ 2 which is defined as

V s x c k x k c l
k Z

( ) { ( ) ( ) ( )| }ϕ ϕ= = − ∈
∈∑ 2

where l2  is the vector space of square-summable sequences.

The only restriction on the choice of the generating function
ϕ( )x  is that the set { ( )}ϕ x k k Z− ∈  is a Riesz basis of V( )ϕ ;

this is equivalent to the condition

 0<A≤aϕ(ω)= |ϕ(ω+2πk)|2∑
k∈ Z

≤B<+∞  a.e.

where ϕ(ω) is the Fourier transform of ϕ( )x , and where the

constants A and B are the so-called frame (or Riesz) bounds

[3]. This constraint ensures that the integer shifts of ϕ are

linearly independent and that each function s(x) in V( )ϕ  is

uniquely characterized by the sequence of its coefficients

c k( ). Note that this type of representation includes splines

and wavelets as particular cases.

C. Oblique Projection

In order to approximate the continuously defined

function f x g x a( ) ( / )=  in V( )ϕ , we propose to use an

oblique projection. Fig. 1 illustrates the generalized sampling

procedure initially proposed in [4]. In this approach, there is

no restriction on the prefilter ϕ1, which can be chosen

independent of the generating function ϕ ϕ2 = . To

compensate for a possible mismatch, the system includes a

digital correction filter that ensures that the input signal f x( )

and its approximation f(x) are consistent in the sense that

they yield the same measurements:

c k f x x k1 1( ): ( ), ( )=< − >=<ϕ f(x) , ( )ϕ1 x k− >.

Under these conditions, the approximation f(x) corresponds

to the projection of f x( ) onto V( )ϕ2  perpendicular to the

analysis space V( )ϕ1  . It is given by

f(x) = = −⊥
∈
∑P f x q c k x k
k Z

2 1 1 2( ) ( * )( ) ( )ϕ (1)

where q a= −( )12
1 is the convolution inverse of the cross-

correlation sequence a k x k x12 1 2( ): ( ), ( )= < − >ϕ ϕ . Note that

unless ϕ ϕ1 2∈ V( )  (or equivalently V V( ) ( )ϕ ϕ1 2= ), the

corresponding projection error is not orthogonal to the

approximation space V( )ϕ2 ; hence the term "oblique". This

type of approximation is essentially equivalent to the

orthogonal one in the sense that we have the following error

bound (cf. [4])

∀ ∈ − ≤ − ≤ −⊥s L f P f f P f f P f2 2 2 1
12

2

1
,

cosθ
, (2)

where P f2  denotes the orthogonal projection of f onto

V( )ϕ2  and θ12 is the angle between the subspace V( )ϕ1  and

V( )ϕ2 . We can also show that the oblique and orthogonal

errors are asymptotically as the scaling factor goes to infinity

the same provided that ϕ1 1( )x k− =∑  [5].

III. IMPLEMENTATION USING SPLINES

A. Derivation of the Algorithm

In our implementation, we select the synthesis function

ϕ ϕ2 = int
n  to be the cardinal spline of any order n [6]. As for

the analysis function, we try to choose the simplest ϕ1 with

the narrowest support such that ϕ1 1( )x k− =∑ . The first

choice that comes to mind is the B-spline of zero order:

ϕ1=β0. A clear advantage of using β0 is that the required

inner products can be computed as simple integrals:

c k g x a x k1
0( ) ( / ), ( )= < − >β

= − =
−∞

∞

−

+

∫ ∫g x a x k dx g x a dx
k

k
( / ) ( ) ( / )

/

/
β0

1 2

1 2
. (3)

If we assume that the signal interpolant g(x) obtained in step

(i) is in the spline space, i.e. g x c k x kn

k
( ) ( ) ( )= −∑ β , then

the integral of g(x) can be expressed as

G x g x dx c k x k dx
x

n
x

k

( ) ( ) ( ) ( )= = −
−∞ −∞∫ ∫∑ β . (4)

x f̃ (x)ϕ1(−x)

δ(x − k)
k∑

q = (a12 )−1 ϕ 2(x)f (x) = g(x / a)

continuous
analysis
function

digital filter continuous
synthesis
function

c1(k)

Fig. 1. Generalized sampling using an oblique projection.
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In order calculate this expression explicitly, we use the

following proposition.

Proposition 1: The integral of a B-spline of degree n is

given by

β βn
x

n

k

x dx x k( ) ( )
−∞

+

=

∞

∫ ∑= − −1 1

2
0

. (5)

By substituting (5) in (4), we can show that the integral G(x)

is a spline of degree n+1:

G x s k x k
k Z

n( ) ( ) ( )= − −
∈

+∑ β 1 1
2

(6)

whose B-spline coefficients are given by

s k c l
l

k

( ) ( )=
=−∞
∑ . (7)

Equation (3) can therefore be calculated as

c k g x a x k1
0( ) ( / ), ( )= 〈 − 〉β

= + − −aG
k

a a
aG

k

a a
( ) ( )

1
2

1
2

, (8)

an expression that requires the evaluation of the integral (6)

at two particular points. However, we can effectively reduce

the computing by half by rewriting c k1 1( )+  as follows:

c k aG
k

a a
aG

k

a a1 1
1 1

2
1
2

( ) ( ) ( )+ = + + − + (9)

and taking advantage of previous calculations. Finally, for

this particular choice of ϕ1 and ϕ2, we can show that the

required digital correction filter is

q k b b kn n( ) ( )= ( ) ∗( )+ −1 1
. (10)

B. Practical Implementation

Now we propose the following procedure for image

scaling using oblique projection.

Image Scaling Using Oblique Projection

STEP 1. Find the B-spline representation of the input

signal, g x c k x kn

k
( ) ( ) ( )= −∑ β . This is done

efficiently by digital filtering (cf. [7]).

STEP 2. Compute the B-spline coefficients of the

integral of g(x) in STEP 1 (cf. (7)).

STEP 3. Calculate the coefficients of the re-scaled

function f(x)=g(x/a) (cf. (8)).

STEP 4. Apply the appropriate post-filter to compute

f(k) (cf. (1) and (10)).

STEP 1, 2 and 4 are pure digital filtering operations

which can be implemented recursively. Computationally, the

most expensive part of the algorithm is STEP 3. It is

equivalent to a spline interpolation of degree n+1. This

calculation requires a routine that returns the values of

βn x+1( ) at a given point x0 ; explicit B-spline formulas can be

found in [7]. Note that the summation (6) only involves a

small number of terms (typically, n+1) because of the

compact support of the basis functions.

IV. RESULTS AND DISCUSSION

In order to evaluate the proposed algorithm, we

performed a succession of complementary image reductions

and magnifications, and vice versa. We tested two other

algorithms for comparison. The first one is the standard

algorithm which fits the image with a spline and then

resamples this functions at the appropriate rate. It is one of

the most widely used algorithms, at least for lower order

splines. For n=1, the approach is equivalent to a bilinear

interpolation. The second is the optimal method proposed in

[2]. It applies the proper pre-filter prior to sampling and

provides the minimum error approximation. The global loss

of information was measured by the relative mean square

difference between the approximation and the initial digital

image, expressed in dB.

In a first series of experiments, we first reduced the

linear dimension of a brain MR image by √ 2 and then

magnified it by √ 2. Table I shows the signal-to-noise ratio as

a function of the degree n. As expected, the proposed

algorithm consistently performed better than the standard

interpolation method while requiring comparable processing

time. Compared to the least square method, the oblique

projection performed comparably with significant decrease in

processing time. For the piecewise constant case (splines of

degree 0), both algorithms are rigorously equivalent.

Because an exact closed form formula with the least squares

algorithm is extremely difficult for n>1, the implemented

version of the optimal algorithm for n=3 is not numerically

exact; it uses a Gaussian approximation to a kernel that is in

fact the convolution of two B-splines of different size (cf.

[2]). Finally, we note that the first two methods also fit into

the general theoretical framework that is presented in Section

II. Specifically, if ϕ ϕ1 2∈ V( )  then we get the least squares

solution (orthogonal projection).  Likewise, for
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ϕ δ1( ) ( )x x=  (Dirac), we obtain the standard interpolation

procedure — with the important restriction that the angle θ12

between the input and output spaces is not defined any more

(i.e., there is no upper error bound in (2)).

Table I. Magnetic resonance image

(first reduced by √ 2 and magnified by √ 2)

order standard optimal oblique
0 27.19 dB 32.73 dB 32.73 dB
1 33.65 dB 39.25 dB 39.02 dB
3 41.54 dB 41.74 dB 42.15 dB
5 42.20 dB 42.70 dB
7 42.21 dB 42.82 dB

Fig. 2. The standard algorithm
(degree = 1, scale = 0.97, iteration = 10).

Fig. 2. Oblique projection
(degree = 1, scale = 0.97, iteration = 10).

Figs. 2-3 display the final results of 10 cumulative image

reduction by a factor of 0.97 using a linear spline signal

representation. As can be seen, the oblique projection

provides a much higher quality result with a better

preservation of small image details.

V. CONCLUSION

We propose a new image scaling algorithm based on

oblique projection. The oblique projection allows great

flexibility in choosing a sampling kernel. In all our test

experiments, the proposed algorithm outperformed the

conventional interpolation method and showed comparable

performance to the optimum algorithm while reducing

computing time substantially. The oblique projection that we

propose using splines of degree n has approximately the

same computational complexity as a spline interpolation of

degree n+1; but its performance is usually better.

As far as the new algorithm is concerned, the best results

for image reduction are obtained for n=3 (cubic spline

model). For image enlargement, the performance of the

algorithm can be improved almost arbitrarily by using higher

order splines. Considering that the optimal least squares

solution is very difficult to implement for n>1, the oblique

projection can provide a very attractive solution if high

quality results are required.
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