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High-Quality Image Resizing Using
Obligue Projection Operators
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Abstract—The standard interpolation approach to image re- extremely cheap computationally, but typically introduces very
sizing is to fit the original picture with a continuous model noticeable blocklike artifacts. Bilinear interpolatign = 1),
and resample the function at the desired rate. However, one \ich calculates each new pixel value from its the four closest
can obtain more accurate results if one applies a filter prior . . .
to sampling, a fact well known from sampling theory. The ne'ghborsf’ IS Somewhat bette.r but tends to bllfr Sm?” Imgge
optimal solution corresponds to an orthogonal projection onto the details. Higher order interpolation methods—splines, in partic-
underlying continuous signal space. Unfortunately, the optimal ular—produce much better outcomes but require much more
projection prefilter is difficult to implement when sinc or high  computation. In the extreme, one approaches the ideal sinc-

order spline functions are used. In this paper, we propose 10 jqrhnator which can also be interpreted as a spline of infinite
resize the image using an oblique rather than an orthogonal

projection operator in order to make use of faster, simpler, and degree(n — +oo) [8]. This latter option is almost never
more general algorithms. We show that we can achieve almost the used in practice because of the very slow decayiwf(x) =
same result as with the orthogonal projection provided that we O(1/|z|). It also gives rise to Gibbs oscillations. For the
use the same approximation space. The main advantage is that it special case in which the scaling factor is a power of two, the

becomes perfectly feasible to use higher order models (e.g, splines, _ .._. : . ; . .
of degreen > 3). We develop the theoretical background and Sresmng (decimation or interpolation) can be implemented by

present a simple and practical implementation procedure using digital filtering using the tools developed in the context of the
B-splines. Our experiments show that the proposed algorithm wavelet transform [9]-[11]. There have also been some recent
consistently outperforms the standard interpolation methods and proposals of nonlinear extrapolation techniques but these are

that it provides essentially the same performance as the optimal typically restricted to image magnification by a factor of two
procedure (least squares solution) with considerably fewer com- [12]

putations. The method works for arbitrary scaling factors and is . . . .
applicable to both image enlargement and reduction. Even though higher order interpolation methods (typically

. . . e > 3) work very well for image magnification and rotation,
Index Terms—B-spline models, image scaling (magnification n = 3) y g 9

and reduction), oblique projection, orthogonal projection, resam- their use. IS morg questionable for |mage reductl(.)n. bepause
pling. of potential aliasing problems. To deal with those limitations,
Unser et al. recently proposed a resizing procedure that uses
the same type of spline signal representation as before, but
applies a continuous prefilter prior to sampling in order to
MAGE scaling (magnification or reduction) is a basieninimize artifacts [13]. This algorithm performs the orthogo-
operation in digital image processing [1], [2]. It is requiredhal projection of the scaled image onto the sampling space and
on a routine basis for medical imaging, multimedia, anprovides an approximation that is optimal in the least squares
digital photography. The standard interpolation procedure dense. Note that the method is equally applicable for image
to fit the data with a continuous image model and themduction or magnification by an arbitrary, not necessarily
resample this function on the grid appropriate to the scalimngteger scaling factor. The only practical limitation is that it is
desired. What differentiates among the available methods is Hificult to perform an exact numerical implementation of the
interpolation model chosen [3]-[5]. In fact, it is well knownoptimal prefilter for higher order splings, > 3).
in approximation theory that the performance of an algorithm |n this paper, we propose to extend this previous approach
depends primarily on the model’s ability to reproduce polypy considering more general approximation schemes using
nomials up to a specified degree [6], [7]. Lower order oblique rather than orthogonal projectors. Interestingly, these
methods are simplest and most rapid to implement but thgyojectors are of the same type as those encountered in
produce artifacts. Nearest neighbr = 0) interpolation is wavelet theory for the decomposition of functions in terms of
biorthogonal wavelet bases [14]-[16], except that we consider
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In addition, we have very strong theoretical reasons to expect e (k) _
that this can be achieved with no sacrifice in quality, providedf( x) Q(—x) ! (%) f(x)
that we use the same approximation space as before [17],
[18]. One goal of this paper will be to demonstrate that continuous continuous
this is indeed the case. Moreover, we will see how we can analysis synthesis

. , function function
use oblique projections to compute much higher order spline Zkﬁ(x—k)

approximations than is practicable in the orthogonal case.

In essence. the method that we propose is a resamplﬁ*@f 1. Orthogonal projection. The signal is first convolved with the optimal
’ ilter and sampled thereafter. The sampling is modeled by a multiplication

. . . . I
approach_rgther _than an 'nterpOIat_mn in the Con_\/em'onal S_er(%@w a sequence of Dirac impulses. The synthesis filter corresponds to the
As such, it is suited primarily for image reduction, especiallyenerating functiony.

for the case of noninteger factors that cannot be dealt with by
using conventional decimation techniques. Since the algorithm I
is fast and works for arbitrary scaling factors, it is also
applicable to image enlargements; in fact, our new meth%\d
is equivalent to a spline interpolation when the magnification’
factor is an integer, and leads to better performance otherwiseAS mentioned in the introduction, the standard approach to
The paper is organized as follows. First, we provide defininage resizing uses interpolation. Since we consider scaling
tions of some special notations and operators. In Section 11, @ely along the coordinate axes (without rotation), the pro-
present the basic principle of the algorithm and introduce t§€ssing can be performed in a completely separable fashion
relevant Signa| subspacé@_((p)_ We then discuss and Compard)rOVided that we use tensor product basis functions. In fact,
the orthogonal (least squares) and oblique projection operatéle same is also true if we use more sophisticated projection
used to approximate the rescaled signdfip). In Section Il techniques; a justification can be found in [13]. In other words,
we derive a polynomial spline version of the oblique projectio€ can re-size an image (or volume) by successive one-
algorithm and propose a simple, practical implementation. hmensional (1-D) processing along the several dimensions of
Section IV, we describe some experiments and discuss the data. Thus, the mathematical problem reduces to that of
results. In particular, we compare the proposed algorithm wit@sizing a 1-D signai(k), k = 0, ... N — 1. For our purposes,

. PROJECTIONBASED IMAGE RESIZING

Basic Principle of the Algorithm

the conventional methods. it is advantageous to think of this process in terms of the
following paradigm.
A. Notation and Operators 1) The discrete 1-D data setk) is fitted with a contin-

uously defined functiory(z) that provides an exact
interpolation of the data points; that is, such that
9(@)emr = s(k).

2) The scaling transformation, which is a mapping

Lo is the vector space of measurable, square-integrable
functions g(x),« € R. Lo is a Hilbert space whose metric
|| - || (the Lo-norm) is derived from the inner product

+o0 from L, into itself, is applied to the functiog(x).
(9,h) = / g(x)h(x) dx This yields the continuously-defined rescaled function
- f(x) = g(x/a) wherea is the scaling factor.

+oo

1/2
2 / 3) The functionf(z) is resampled at the integers (stan-
lg@)"dz) . (1) e
dard approach), or alternatively, is represented by an
) o appropriate approximation in a given sampling space
A" (x) represents the centered B-spline of degeeavhich is (new approach).
obtained from thén+1)-fold convolution of a unit rectangular

pulse. An equivalent recursive definition is

loll =G = ( [

ade o)

We note that this particular interpretation is the reverse of
the classical one in which the interpolated functidm) is kept

B (z) = ) 8 (x) ) fixed and it is the sa_mplir_lg grid that is transformed accord-
ingly. In any case, this is just a matter of preference because

where both formulations are mathematically equivalent. Here, we will
L L adopt this new paradigm because it lends itself to a more con-

B(z) = {L -3 < T <43 (3) cise mathematical treatment (compare it with the derivations

0, otherwise. in [13] which were done using the traditional framework).

The B-spline is a symmetrical compactly supported, piecewi-srge present formulation also has certain advantages if one

polynomial of degree. We use the corresponding roman Sym\gvants to extend the approach for more general classes of

bol to denote the discrete B-spline kernel, which is Obtainé@nsformations. . .
by sampling the B-spline at the integers: In order to be applicable, we need make the above paradigm

more precise by specifying the interpolation model used. With-
bk == B(x)] et (4) out loss of generality, we can assume that the interpolation

function lies in a certain Hilbert spac#;(y), generated by

The sequencéb™) (k) represents the impulse response afur interpolation functiony (a more precise definition will
the corresponding inverse filter, which is stable for anyit be given in the next section). The important point is that

is the so-called direct B-spline filter of degreg19]. the chosen Hilbert spac&(¢) assures that any function
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cy(k) _ =
£ = glx/ a) 9= F—) = (@) 9,(x) F(x)
continL_Jous digital filter continuous
analy_sxs synthesis
function function

Zkﬁ(x—

Fig. 2. Oblique projection. The block diagram is similar to Fig. 1 except that it includes an additional digital correction.fillee prefilter, on the
other hand, can be arbitrary.

s(z) € V() is uniquely determined by its sample valug$)

(its discrete representation). In other words, there is a uniqu
function g(x) € V(¢) that provides an exact interpolation of
the discrete input signal(k). The re-sizing method that we
propose here differs from the standard interpolation approac
only by the way in which we implement step 3. Instead of
a straightforward resampling, we will approximaféxz) by

its projectionf(x) into the Hilbert spacd’/(y). The resized
digital signal will then correspond to the samples ﬁ{fr);
this projected function may be thought off as the “alias-free”
version of f(x).

B. Continuous/Discrete Signal Representation

We choose to represent our signals in the sgage) C L»
which is defined as

Vip) = {S(w) =Y dk)p(z—k)|ce lz} (5)

kcZ

wherel; is the vector space of square-summable sequence
The only restriction on the choice of tlgeneratingfunction
¢(x) is that the se{p(x — k) }rez i a Riesz basis oF (¢);
this is equivalent to the condition

Fig. 3. Original magnetic resonance image of brain.

2 TABLE |
0<ds a“” Z 6w +2rk)]" < B< t+ocae. (6) ANGLE BETWEEN THE SPLINE SPACESV (3™) AND V(3Y) FORR = 0,---,9
keZ
R . . r cosB, cos0,
where¢(w) is the Fourier transform of(x), and where the # (worst case) (average speciral coherence)
constants4 and B are the so-called frame (or Riesz) bounds T, ] 1
[20]. This constraint ensures that the integer shiftspofire 1 0.866025 0.926420
linearly independent and that each functiefx) in V(¢) is 2 0.872872 0.930323
: . : N 3 0.836154 0.916853
uniquely characterized by the sequence of its coefficiefits Y 0816242 0.911748
Note thata,(w) in (6) is also the Fourier transform of the 75 0.797844 0.906829
autocorrelation sequenee. (k) = {(¢(x), p(x + k)). 6 0.783740 0.903457

The class of function spaces that can be specified in this way7 0.771842 0.900722
0.761928 0.898563

is quite general. It covers all interpolation models mentioned- 0 0.753454 0.896791
in the introduction, as well as the various multiresolution
spaces associated with the wavelet transform. For the particular
choice,p(z) = 5"(x) (B-spline of degree.), V() represents whereé[k] denotes the discrete unit impulse at the origin. For
the space of polynomial splines of degreewith equally a given representation spat&y), there is generally a unique
spaced knots at the integers ¢dd) or between the integersinterpolation kernelp;y,; € V(p), given by
for n even [21], [22].

So far, we have imposed no constraint gnother then Gint(z) = Z(b)_l(k)<p(a: — k)
the stability condition (6). If we want the coefficientsk) keZ
in (5) to coincide with the samples of(x), it is necessary

that the generating function satisfy the additional interpolatioMhere (b)) * denotes the convolution inverse of the sequence
condition b(k) = ¢(x)|s=r, the sampled version of the generating

function. For the particular case of polynomial splingg, (=)
it (k) = 6[k] is the so-called cardinal (or fundamental) spline which can be
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(b)
Fig. 4. (a) Standard interpolation (B-spline of degree one), reduced®y(b) Oblique projection (B-spline of degree one), reduced/f

written as When we combine this approximation process with steps 1
n B 1 - and 2 in our general paradigm, we end up with a generalized
Pin () —’;(b )7 (R)B"(z — k) ) version of the least squares resizing procedure described

1S

in [13], which was derived in the more restricted spline
where3(x) andb™ are defined by (3) and (4), respectivelyframework. In practice, this approach works extremely well
the transfer functions of the spline filte(d™)~! for n = 0 but is difficult to implement exactly for splines of degree
to 11 can be found in Table II. Although the cardinal splingreater than one. The complication arises because the dual
function has infinite support, it provides a very conveniernalysis functionp (optimal prefilter) is determined uniquely
representation of a spline in terms of its samples at the integdyg the choice of the synthesis functignTherefore, depending
If we compare the cardinal spline representation of signah the approximation space used, it may be extremely difficult
s(x) = Y pcz s(k)oh(z — k) (spline interpolant) with its to perform the appropriate prefiltering which needs to be
equivalent B-spline expansiosiz) = >, ., c(k)3"(n — k), applied in a continuous fashion. In order to gain in design
we find that flexibility, we can consider the more general approximation
(k) = ()2 % 5)(h). ) scheme described next.

This demonstrates that the conversion between these refie-Oblique Projection

sentations can be done by digital filtering. This equation is Fig. 2 illustrates the generalized sampling procedure ini-

the basis for the fast spline interpolation algorithm describegily proposed in [23]. In this approach, there is no restriction

in [19], which computes the B-spline coefficients recursivelyn the prefiltery; : it can be chosen independent of the generat-

using a cascade of causal and anti-causal exponential filteigg function ., = ¢. To compensate for a possible mismatch,

o the system includes a digital correction filter ensuring that the

C. Least Square Approximation input signalf (x) and its approximatiorf (x) are consistent in
Given an arbitrary functiory € L, (in our case,f(z) = the sense that they yield the same measurement:

g(z/a)) whereg is a function that interpolates the input signal . W /T _

anda the desired scaling factor), the orthogonal projection of a(k) = (f(z), pr(z = B)) = (f(z), pr(z = F))-

[ onto V() is given by (cf. [20]) Under these conditions, the approximatigfi:) corresponds
= e ite e o ot T e
where¢ € V(y) is the dual ofy and is defined as f(z) = Poaf(e) = ];(q*cl)(k)w(ﬂ? -k )
@ = l;(%)_l(k)(p(x — k). whereq = (aj2)™* is the convolution inverse of the cross-

correlation sequence:»(k) = {@i(x — k), @a2(x)). This
(a,)~! represents the convolution inverse of the autocorrelprojector has the special property that the approximation error
tion sequence., := {¢(x),w(x—k)). Note thatF, f provides is perpendicular toV (1). Therefore, unless; € V(y2)
the minimum Ls-error approximation off in V(¢) (least (or equivalentlyV(y;) = V{(p2)), the projection error is not
squares solution). This approximation process is illustrated anthogonal to the approximation spatéy-); hence the term
Fig. 1. “oblique.”
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TABLE I
DIRECT B-sPLINE FILTERS FORn = 0 up TO 11

Impulse
response Transfer function

(bH k) 1

B ) _ 8
7+6+7"
6

z+4+7"
384

22 +762+230+767" +7°
120

22 +267+66+2677" +77
46080

22 +7227% 4105437+ 23548 +1054377 + 7227 4+ 77
5040

22 +1202° + 11912+ 2416+ 11917 +120z > + 77
10321920

7' +65527° +3316127° + 2485288z + 4675014
+2485288z7 + 331612772 + 6552z 7 +z7*
362880

7t +5027° +146087° + 882347 + 156190 + 88237 + 1460822+ 502z + 7
3715891200

22 +59038z* +91161417° + 178300904z + 906923282z + 1527092468
+906923282z ™" + 17830090472 +9116141z + 590387 +z7°
39916800
25 +20367" +1526377° +22034882% + 9738114z + 15724248

+9738114z77 +2203488z 2 + 1526371z +2036z7 + 2

N

(b*) ' (k)

(b0

L)'k

(b7 (k)

(N0

)" (k)

b (k)

»'" 'k

When compared to the least squares solution from theSecond, we have shown recently that both approximation
previous section withy = ¢», the oblique projection will methods have the same asymptotic behavior as the sampling
in general not be optimal. However, we can expect its lostep goes to zero (cf. [18], Theorem 4.1). The only requirement
of performance to be negligible under most circumstances.flr this asymptotic equivalence is that the analysis function
fact, there are two mathematical results that partially suppestisfies the following “partition of unity” condition
this prediction.

First, we have the following error bound (cf. [23], Theorem Z pi(z—k) =1
3
) In practice, any approximation procedure will reach its asymp-
1 totic regime as soon as the function to be approximated
Vi€ Lo|f = Pof| S Nf = Para fIl £ 0301 If = P2fll pecomes sufficiently smooth with respect to the sampling grid.

(10) In the present context, this means that the eventual difference
between oblique and orthogonal projection methods should

where Py, f is defined by (9) andPf denotes the orthog- vanjsh as the scaling factor increases. More precisely, if we
onal projection off onto V(y»); 61 is the (largest) angle d€fin€ fa(2) = g(z/a), we have that

between the subspadé&(;) and V(). In other words, the L L (D41
approximation errorsdér(nus)t foIIovv( ea)\ch other rather closely 1 fol) = Pafall = C- Hfl( )H ra™h+ O(a™ )
suggesting that both methods are nearly equivalent. Of specjgl,

interest for our purpose are the angles between the space of

piecewise constant splings, = 3°) and the splines of degree ||/, () — Poy1 fal = C - || f{7]| - a=F + O(a~F+V) (11)

n (p2 = F™). These quantities are given in Table I. The

first value corresponds to the worst case (maximum angklth the same constaidt in each case. The integér=n+1

while the second is an average measure integrated overrafiresents the order of the representation (i.e., the model has
frequencies. The mathematical details of this analysis can the ability to reproduce polynomials of degreg and||ff")||

found in [23] (Sections IV and V-D). In any case, we shoulés the norm of theL-th derivative of f; = ¢. Polynomial

note that the upper bound in (10) corresponds to a worst cagdines of degree have an order of approximatidn= n+1;
scenario and that the agreement between the two errors ighie corresponding value of the constafit has also been
general much tighter than the factofcos ;. determined explicitly [18].
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@)
Fig. 5. (a) Approximation error for Fig. 4(@apNR = 33.65 dB. (b) Approximation error for Fig. 4(bNR = 39.02 dB.

The only potential problem with an oblique projection is that
it may increase noise. In our case, this effect will be minimal

(b)

TABLE Il

PoLeEs oF THEDIGITAL FILTERS OF TABLE Il

because the norm of the projector will remain close to one. Tmpulse Transier Fanction
In fact, there is a simple relation between the angle and the  Response
norm of this projector]|P>11|| = 1/cos 12 (cf. Theorem 4, ARG IE
in [24]). Thus, the quantity /cos 81 also represents the worst B (k) | 2= -0.171573
case amplification factor for the noise. ) (k) | 2= 0267949
Thys, the |Qea that we WI!| explore ne.xt is to modify _the B k) |- 0361331 = 00137254
resizing algorithm proposed in [13] by using such an oblique —— —
projection to simplify the approximation procedure in step 3. (b7 (k)| 4= 0430575 %= -0.0430963
bk | 5=-0.488295 2= -0.0816793
z,= -0.00141415
lIl. | MPLEMENTATION USING SPLINES @'k | u= 053528 %= -0.122555
Z,= -0.00914869
ivati i (b*) ' (k) | 4= -0.574687 2= -0.163035
A. Derivation of the Algorithm 2= -0.0236323 Z,= -0.00015382]
In our implementation, we select the synthesis function B k) | u= -0.607997 Z= -0.201751
w2 = @b, to be the cardinal spline of any degre€(cf. (7)). 7;= -0.0432226 z,= -0.00212131
As for the analysis function, we try to choose the simplest B (k) | 7= -0.636551 Z,= -0.238183
with the narrowest support such that, ., ¢1(z — k) = 1. z,= -0.065727 z,= -0.00752819
The first choice that comes to mind is the B-spline of degree 7= -0.0000169828
zero: ¢; = f°. A clear advantage of using® is that the BN k) | 7= -0.661266 7= -0.27218
required inner products can be computed as simple integrals: 7= -0.0897596 z,= -0.0166696
2= -0.000510558
cr(k) = (g(x/a), Bz — k)
= / 9(x/a)B%(x — k) da then the integral ofy(z) can be expressed as
k+1/2 x €
= / g(z/a)dz. (12) / g(z)dz =Y c(k) / Bz —k)ds.  (13)
k—1/2 oo n o0

Now, if we assume that the signal interpolgt) obtained in In order calculate this expression explicitly, we use the follow-
step 1 is in the spline space, i.@(x) = >, c¢(k)5"(z — k), ing proposition, the proof of which is provided in Appendix.
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Fig. 6. Original Barbara image (512 512).

Proposition 1: The integral of a B-spline of degree is whose B-spline coefficients are given by

given by .

/ gr(ayde =3 prt <x _ % _ k) (14) O(k) = (ux c)(k) = I_Z e(l). (17)
—oo k=0 B
By substituting (14) in (13) and using the unit stegk) = 1  Equation (12) can therefore be calculated as
for k¥ > 0 and«(k) = 0 otherwise, we obtain
*) eu(k) = (g(a/a), (@ — k)

6= [ s@a= 3 o Zﬁ"“( -5-1) (e D) ao(E- L) as

—co ke —oo a 2a
o>
oo

Z i 3n+1 <$ 1 —l) which is an expression that requires the evaluation of the
1 Z 2 integral (16) at two particular points. Since we need to scan
through all the values df successively, we can take advantage
Z u * c)( /3N+1 < —_Z_ k) (15) of previous calculations by rewriting the expression of the next
k=—oo coefficiente; (k + 1) as follows:

In other words, the integral is a polynomial spline of degree Eil 1 Eal 1
"l (an=aa( e ) —ag(PE - )

a 2a

=Y Clk ﬁ"“( ———k> (16) :aG<k+1+i>—aG<g+;—a>. (19)

keZ a 2a
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(b)

(© (d)

Fig. 7. Comparison of reduction procedures o= 1/2. (a) Result of a simple decimation by a factor of two. (b) Least squares approximation wtth
(SNR = 24.71). (c) Oblique projection with. = 0 (SNR = 24.12). (d) Oblique projection withh = 1 (SNR = 24.75).

Since the second term of (19) is the same as the first tetysing the symmetry and the convolution property of B-splines,
of (18), we therefore only need to perform one calculation dfiis simplifies to
G(x) per coefficient except d = 0. The evaluation of7(x),
which bs equivalent o 8 spine nterpolation of degree 1 4 a120K) = S — ) = (@) 1)),
clearly the most time consuming part of the whole procedure. ez
We have therefore effectively reduced the computing time Byence, the required digital correction filter is
half.
The last aspect that needs to be dealt with is the derivation of g(k) = (") ~H s« b")(k). (20)
the corresponding correction filter in Fig. 2. For our particular
choice of ¢, and ¢,, the cross-correlation function can beB. Practical Implementation
written as Now we propose the following procedure for image scaling
using oblique projection.
Image Scaling Using Oblique Projection:
> Step 1: Find the B-spline representation of the input signal
s(k),k=0,...,N=1,ie.g(x) =3, c(k)F"(z—
=) OB(x — k), Bz = 1)) k). This is done efficiently by digital filtering (cf.
ez (8)).

ara(k) = </30(aj — k), )T (= 1)

ez
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new oblique projection algorithm is not significantly different
from that of a conventional interpolation with one more order
of approximation.

So far in the literature, spline functions of relatively low
orders have been used. Since the rescaling algorithm based
on the oblique projection is easily applicable to higher order
splines, we were motivated to calculate the relevant filter
formulas and parameters for splines up to degree 11. Table I
shows the transfer functions of the spline interpolation filters
(conversion from cardinal to B-spline representation). Table 111
provides the causal poles of the transfer functions; these are the
only parameters required by the recursive filtering algorithm
[5], [19]. The additional FIR filteb™ for Step 4 can be obtained
from the inverse of the transfer functions in Table II.

IV. RESULTS AND DISCUSSION

A. Experiments

In order to evaluate the proposed algorithm, we performed
a succession of complementary image reductions and magni-
Fig. 8. Murray image. fications, and vice versa. We tested two other algorithms for
comparison. The first one is the standard algorithm which fits
the image with a spline and then resamples this functions at

Step 2: Compute the B-spline coefficients of the integral ofhe specified rate. It is one of the most widely used algorithms,

g(x) in Step 1 (cf. (17)). at least for lower order splines. Far = 1, the approach is
Step 3: Calculate the coefficients of the re-scaled functiofquivalent to bilinear interpolation. The second is the optimal

f(x) = g(x/a) (cf. (18)). method proposed in [13]. It applies the proper prefilter prior
Step 4: Apply the appropriate postfilter to compupé{k) to sampling and provides the minimum error approximation.

[cf. (20) and (9)]. Note that these two methods also fit into the general theoretical

Steps 1, 2 and 4 are pure digital filtering operations. The filtferF’jlmeWOrk that is presented in Section Il Specifically, if
> Spte ,1 e direl(D:t Bos gline filte(rbfg)*? which Has T € V(p2) then we get the least squares solution (orthogonal
in Step P NS : . rojection). Likewise, forp, (z) = §(x) (Dirac), we obtain the
infinite impulse response (IIR). The filter in Step 2 is a simpl tandard interpolation procedure—with the important restric-
running sum updated recursively. Finally, the postfilter in Steth that th I bet the inout and output

4 consists of an all pole component—the IIR filtgr+!)=1, n Ma e ang ez DEWSEN e INpUt and owplL. SPAces

S is no longer defined (i.e., no upper error bound in (10)). The
and a finite |mpulse_ response (F.IR) kerél In all CaS€S, global loss of information was measured by the relative mean
we use standard mirror symmetric boundary conditions. T

8 . . . uare difference between the approximation and the initial
two IIR filters in Steps 1 and 4 are implemented using th(ﬁagital image, expressed in decibzlps

recursive algorithm described in [19]. Computationally, the In a first series of experiments, we first reduced the linear

most expensjve part O.f the algorithm is Step 3 Itis equ.ivaleaﬁnension of a brain magnetic resonance image (MRI)/y

to a_spllne mtgrpolaﬂon of degree + 1. This flalcuIann and then magnified it by/2. Table IV shows the signal-to-
re_qU|res_atTr9ut|rﬂe;_th?é retrrnsf the \I/alues (gf ¢ (x()j _at ZaS noise ratio (SNR) as a function of the degreeAs expected,
given pointzo; explicit B-spline formulas can be found in | ]'the proposed algorithm consistently performed better than

Nfotte thattthg sHmmatllonb(16) onlyfl?r\]/olves a srtnall nurrt]b e standard interpolation method while requiring comparable
of terms (typically.n + 1) because of the compact support o rocessing time. In some cases, the differences are quite

the basis functions. dramatic as illustrated in Figs. 3-5. Compared to the least

. Astal_rea(\jdg mentllo_nedtlr? trieéntrodu%non, tfultlr:mage res'é",:é%uare method, the oblique projection performed comparably
IS obtained by applying the 1-L procedure 1o the rows an ith significant decrease in processing time. For the piecewise

coliTnstr:ntstL:]ccessmn (tsepalrgbtle alg?otr_lthm). h constant case (splines of degree zero), both algorithms are
_ Note that the conventional interpoiation approach can t?l orously equivalent. Because an exact closed form formula
implemented by skipping Step 2 and 4 and replacing t

S X . th the least squares algorithm is extremely difficult to obtain
calculation in Step 3 by an interpolation that uses the ba d 9 y

6t n > 1, the implemented version of the optimal algorithm
i " H n+1 H Ha !
function g™ (z) instead of3™*!(z). Since the cost of digital n = 3 is not numerically exact; it uses a Gaussian

filtering is negligible compared to Step 3, the complexity of oue(pproximation instead of a kernel that is in fact the convolution

1 ) . of two B-splines of different size [13]. This lack of exactness
We are ready to provide the corresponding C code on request for B- lai hv the SNR of th . | al ithm i
splines of degree up to ten, as well as the short 1-D subroutine that perfor'm@y explain why the ot the optimal algorithm Is not as

the recursive filtering. good as the one of the oblique algorithm.
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Fig. 9. Murray images after ten successive enlargements’®yand reductions byl //3. (a) Standard method (B-spline of degree ofNR = 30.02
dB). (b) Oblique interpolation (B-spline of degree orf&YR = 55.49 dB).

TABLE IV
MAGNETIC RESONANCE IMAGE (FIRST REDUCED BY /2 AND MAGNIFIED BY \/5)

order standard optimal oblique
0 27.19 dB | 32.73 dB | 32.73 dB
33.65 dB | 39.25 dB 39.02 dB

1

3 41.54 dB | 41.74 dB | 42.15 dB
5 42.20 dB 42.70 dB
7 42.21 dB 42.82 dB

Tables V and VI provide similar performance comparisong
for two other test images (Murray and mandrill images), whic
are shown in Figs. 8 and 10. We have arbitrarily chosen
set of irrational scaling factors. The images are first reduce
(enlarged) and then enlarged (reduced) back using the sar
scaling factora. As can be seen from those results, the
performance of the oblique projection is essentially the sam
as that of the optimal solution for < 3, which confirms |
our expectations. When the images are first reduced and th¢
enlarged [Tables V and VI(a)—(d)], the performance of the:
oblique projection is better than that of the standard algorith
by 1-2 dB. For larger reduction factors, this is true irrespectivg
of the degree. It appears that the primary reason for the lesser
performance of the standard interpolation methods is aliasing.
This effect is more prominent for larger reduction factors or
when the images contain many high-frequency details (e.tactors. This is a somewhat special situation in which all in-
the mandrill). In the case of image reduction using the obliquerpolation algorithms give the same results and are equivalent
projection operator, there is a tendency to saturatiomfar3, to a simple decimation without prefiltering. Some comparative
sometimes with a very slight loss of performance for- 3. examples of image reductions by a factor of two are shown in
In principle, higher order approximations should be better, Btg. 7. For the purpose of demonstration, we used the Barbara
least for the least squares case [26]. kar 3, the benefit of image which has many structured high frequency patterns
having a higher order of approximation appears to be offset ffyig. 6). The aliasing is quite visible in Fig. 7(a) (standard
the fact that the anglé,» between the input and output spacemterpolation); in this case, the SNR depends on the underlying
increases withn (cf. (10)). In this sense, the proposed cubispline model:SNR = 21.18 for n = 0, SNR = 23.89
spline algorithm appears to provide the best compromise flmr » = 1, and SNR = 22.75 for n = 3. The results
image reduction. are obviously much more satisfactory if we use our oblique

To further highlight the differences between the algorithmgyrojection algorithm, and there is not much difference with the
we also performed some experiments with integer reductiteast squares solution displayed in Fig 7(b). The fact that there

Fig. 10. Mandrill image.
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(@) (b)

Fig. 11. (a) Accumulated distortion after ten iterations of the standard interpolation algorithm (degteescale = 0.97). (b) Accumulated distortion
after ten iterations of the oblique projection algorithm (degteel, scale = 0.97).

is a better suppression of aliasing is also reflected by the higli®moted that when an image is enlarged and reduced to the
values of the SNRYNR = 24.7 dB for n = 1) computed original size using the standard interpolation of degree zero
using the same methodology as before. Note that when fmearest neighbor interpolation), the error will be zero. The
reduction factor is an integer, there are also more stand&¥R in this case is meaningless as the enlarged image appears
filtering/decimation techniques with the same kind of perforery blocky.
mance as our new algorithm [19]. These methods tend to bd-ig. 9 displays the result of ten successive enlargement
more efficient computationally but they require a prefilter thdty /3 and reduction byl/+/3 using linear splines, for the
needs to be designed specifically for each reduction fagtor Standard interpolation method and the oblique projection. The
Our resizing algorithm is obviously also applicable to imageNR’s are 30.02 dB and 55.49 dB, respectively. The oblique
magnification. If we do the same type of back and fortBrojection provides more faithful and sharper image. Fig. 11
experiment as before with an integer magnification, we firfisplays the final results of ten cumulative image reductions
that the error is zero, at least for the cases wheris odd by a factor of 0.97 using a linear spline signal representation.
(for n even, this is only true for odd magnification factorsyAdain, the oblique projection provides a much higher quality
The reason for this special behavior is that the underlyif§sult with better preservation of small image details. Of
spline spaces are nested so that the projector can reprodtR¢’Se: these are artificial experiments des_ig_ned to accumulate
the signal inV () without error. Another way to understand€'T0rs SO that the differences are more striking visually.
this property is that a spline stretched by an integer factor
m can still be viewed as a spline with finer knots at the V. CONCLUSION

integers. Hence, for integer scaling factors, our method iS\ye have introduced a new image scaling algorithm based
equivalent to a standard spline interpolation of degreafact ,, gp oblique projection. By using an oblique rather than
that we have verified experimentally. We do not present agy, orthogonal projection, we have obtained faster, simpler,
examples here because the performance of spline interpolatgs§ more general algorithms. In particular, the new approach
in well documented in the literature [5]. However, as soon g$ows great flexibility in the design of the prefilter. For a
we attempt a nonintegral magnification [cf. Tables V and Vjmple and easy implementation, we have proposed using the
(e)—(9)], the oblique projection performs considerably bettgf_spline of degree zero as prefilter so that the required inner
than the corresponding interpolation. If high order splingsoducts can be computed by straightforward integration of
(n > 3) are used, the improvement in SNR's is often morge input signal. We have derived the formulas required and
than 10 dB. For linear splines, the improvement is as muelave discussed some techniques for fast implementation. In
as 20 dB. This finding is in agreement with the fact that thell our test experiments, the proposed algorithm outperformed
obligue projection is asymptotically optimal [cf. (11)], whilethe standard interpolation method and showed comparable
the standard interpolation is usually biased asymptotically [2'flerformance to the optimum algorithm while reducing com-
For image enlargement in general, the oblique projection usipgting time substantially with respect to the latter. The oblique
high-order splines outperforms all other methods. This findingojection that we have proposed using splines of degead

is also consistent with the theoretical results presented dpproximately the same computational complexity as a spline
Section II-C. In particular, for a very large scaling factoiterpolation of degree + 1; but its performance was usually
(v/26 = 5.10), the oblique projection produces no error. Ibetter.
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TABLE V TABLE VI
MURRAY. (@) @ = 1/v/26 = 0.196. (b) a = 1/v/8 = 0.354. (c) MANDRILL. (@) a = 1/v/26 & 0.196. (b) @ = 1//8 & 0.354.
a=05 (d)a=1/V3=0.577.()a =1/v3 ~ 1.732. (©a=0.5 (da=1/V3=0577.(€)a=1/V3 ~ 1.732.
(fa=1/v5~2.236.(@)a = 1/v26 = 5.10 (fa=1/Vv5 ~ 2.236.(g)a = 1/v26 = 5.10
order standard optimal oblique order standard optimal oblique
0 22.97 24.68 24.67 0 19.28 21.84 21.84
1 25.31 26.17 26.24 1 21.44 22.44 22.39
3 24.90 26.09 26.46 3 20.45 22.53 22.46
5 24.65 26.40 5 20.14 22.44
7 24.52 26.34 7 20.00 22.41
(a) (@
order | standard optimal oblique order | standard optimal oblique
0 26.43 28.65 28.64 0 21.01 23.68 23.67
1 29.47 30.61 30.58 1 23.41 24.18 24.13
3 29.49 31.13 30.97 3 22.42 24.29 24.13
5 29.17 30.93 5 22.04 24.05
7 29.00 30.88 7 21.85 24.00
(b) (b)
order standard optimal oblique order standard optimal oblique
0 27.14 31.31 31.30 0 21.91 24.79 24.78
1 31.74 32.55 32.71 1 24.25 25.51 25.55
3 31.77 33.03 33.34 3 23.64 25.72 25.56
5 31.56 33.25 5 23.40 25.41
7 31.43 33.18 7 23.27 25.31
(© ()
order | standard  optimal oblique order | standard  optimal oblique
0 27.65 32.06 32.05 0 22.53 25.60 25.59
I 32.69 34.15 34.25 ! 25.47 26.42 26.47
3 313.76 34.72 34.67 3 25.35 26.61 26.40
5 33.33 34.52 5 24.86 26.20
7 33.05 34.39 7 24.57 26.06
(d) (d)
order | standard  optimal oblique order | standard  optimal oblique
0 - 40.67 40.63 0 - 33.08 33.06
1 40.73 63.00 63.46 ! 33.07 54.78 5715
3 58.66 63.94 69.74 3 5245 66.58 67.69
5 61.76 70.25 5 60.40 68.51
7 61.24 70.28 7 60.30 68.89
(e) (e)
order standard optimal oblique order standard optimal obligue
0 - 35.11 35.08
0 - 42.64 42.58
1 35.09 60.53 62.88
I 42.89 66.54 68.07
3 56.69 62.22 70.48
3 62.42 59.91 75.16
5 62.97 77.84 5 61.36 75.82
5 62.29 78.97 7 60.61 76.63
) ®
order | standard optimal oblique order | standard optimal oblique
0 - 41.95 41.86
0 - 49.72 49.54
1 41.94 80.99 95.82
1 49.77 87.91 81.67
3 63.62 65.99 no error
3 66.83 63.96 no error
5 61.76 no error
5 64.93 no error 7 61.04 no error
7 64.02 no error :
© )

As far as the new algorithm is concerned, the best results &gty difficult to implement forn > 1, the oblique projection
image reduction were obtained for= 3 (cubic spline model). can provide a very attractive solution whenever high-quality
For image enlargement, the performance of the algorithrasults are required.
could be improved almost arbitrarily by using higher order Our method can deal with arbitrary scaling factors; it
splines. Considering that the optimal least squares solutiorst®ows its full strength when noninteger factors are desired.
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It is particularly well suited for image reduction because[7]
of its built-in antialiasing mechanism. It can also handle

image magnification and is most indicated for nonintegrajg
magnification factors because of its improved performance.
When the magnification factor is an integer, it provides thﬁg]

same results as a spline interpolation of degtee

APPENDIX

Proof of Proposition 1: A form equivalent to the definition

of B-spline in (2) is

.q;+%
f(u) = / A7 H(w) du. (A1)
By substitutingz by = — 3 — & in (A1), we find that
i <x - - k) = / B (w) du
2 z—1—k
r—k
:/ B (u) du

7ooac—l—k

—/ B Hu)du.  (A2)

Now we sum (A2) overk (from O to infinite) and obtain

oo

Zﬁ"(w—%—k)

k=0

o0 z—k
:;;) /m i (u)du—[m

[ [T

= /; B (w) du. h

r—1—k
B (u) du

[10]
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Therefore, we have shown that the integral of the B-spline g

degreen — 1 is given by

/_OO B Y (x) de = kzzo/s" <x - % - k)
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